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ABSTRACT: The validation of the quality of the description of excited electronic
states is of special importance in quantum chemistry as the general reliability of ab
initio methods shows a much larger variation for these states than for the ground | .
state. In this study, we investigate the quality of excited state energy gradients and
potential energy surfaces on selected systems, as provided by the single reference
coupled cluster variants CC2, CCSD, CCSD(T)(a)*, and CC3. Gradients and
surface plots that follow the Franck—Condon forces are compared to the
respective CCSDT reference values, thereby establishing a useful strategy for
judging each variant’s accuracy. The results reveal serious flaws of lower order
methods - in particular, CC2 - in several situations where they otherwise give
accurate vertical excitation energies, as well as excellent accuracy and consistency

of the recently proposed CCSD(T)(a)* method.
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1. INTRODUCTION

Characterization of excited electronic states by quantum
chemical methods is of considerable interest and is generally
more difficult than the ground state. Since experimental
interpretations are also not straightforward for excited states,
support by theoretical calculations is particularly important for
spectroscopy. As the interests of spectroscopists are also
turning toward larger and larger molecules, efficient methods
for theoretical characterization are warranted.

However, many cost-effective computational approaches are
unreliable or perform inconsistently for excited states and often
require the user to have a high level of experience and
advanced knowledge about the system being treated. There-
fore, for accurate black-box excited state calculations, equation
of motion (EOM)' ™ or Linear Response (LR)*~* versions of
coupled cluster (CC) theory” "' are of interest. CC methods
also offer the advantage of a hierarchical structure: truncation
of the expansion can be done according to excitation level
(singles, doubles, triples),'” but perturbational arguments can
also be used”®"*7'® to obtain cost-effective variants. Nowa-
days, a number of excited state CC approaches are available,
several of which have become popular in application studies.

Many of these variants have been extensively benchmarked
in the past years. Several studies by our group'”'® and
others'?~>” have addressed the quantification of errors for each
method for vertical excitation energies and transition moments,
sometimes revealing surprising behavior of popular techniques.
The CC2-LR method,” for example, was found to perform very
badly for Rydberg-type excited states, while being exceptionally
accurate for the valence type ones."® A deeper investigation of
CC2 done recently”® found that the latter should be regarded
as a result of fortuitous error cancellation, which does not
occur for the Rydberg states. This also raised concern if one
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may expect that the accuracy found for the vertical excitation
energies of valence states also extends to the associated
surfaces and energy derivatives.

The accuracy of excited state gradients and the quality of
excited state potential energy surfaces (PESs) provided by a
certain method is of high importance for judging the methods’
overall reliability from the application perspective. In this
study, we aim to do this by evaluating excited state gradients
for several excited states of representative systems with single-
reference coupled cluster methods and comparing them to
accurate reference values. In addition, we also perform excited
state PES scans via mass-weighted geometry steps in the
direction of the forces acting at the Franck—Condon point, in
order to characterize the accuracy of the PES itself.

In the following section, we review calculations made by
several methods in detail, followed by the presentation of
results for representative test systems. The paper concludes
with a discussion of these findings.

2. METHODS

2.1. Coupled Cluster Methods for Excited States.
There are two general ways to extend coupled cluster (CC)
theory for excited states: Linear ResPonse (LR) theory*™ and
the Equation of Motion (EOM)' ™" extension of CC theory.
These two families of methods have been reviewed in e.g. refs
29 and 30. The two strategies result in methods that are
equivalent if the energy and, obviously, its derivatives are of
interest.””*" The differences between the two formalisms only
impact molecular properties other than excitation energies
(e.g, transition moments), but, as was confirmed in a ecent
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benchmark study of our group,l?’?'l the magnitude of these
differences is minor for typical systems. In the case of LR
theory, CC2-LR’ has been derived as an approximation to
CCSD-LR, while CC3-LR,® as well as the CCSDR(T) and
CCSDR(3)" variants, approximates CCSDT-LR. In the case
of EOM, the corresponding methods are EOM-CCSD(2)"”
and Partitioned EOM- MBPT(2)'® to approximate EOM-
CCSD, as well as EOM-CCSD#*,** EOM-CCSDT-1,"*> EOM-
CCSDT-3,"* EOM-CCSD(T),"* EOM-CCSD(T),"* and
EOM-CCSD(T)(a)*** to approximate EOM-CCSDT.** In
the following sections, where we only focus on excitation
energies and their gradients, the LR and EOM designations
will be omitted for simplicity.

The very recent EOM-CCSD(T)(a)* method of Matthews
and Stanton®’ incorporates the effect of triple excitations in a
noniterative manner, via individual corrections to both the
ground and the excited state energies. This approach scales as
the seventh power of the system size and was found to provide
a performance similar to the already available CCSDR(T) and
CCSDR(3) methods for excitation energies. However,
Matthews and Stanton found it to be promisingly accurate
for excited states geometries and frequencies of various states
of NO;, NH;, and C,H,, as well as for the potential energy
surface of the S, state of acetylene.’® In the latter case,
CCSD(T)(a)* essentially reproduced the EOM-CCSDT
potential surface as well as that obtained by the fully iterative
EOM-CC3 and EOM-CCSDT-3 methods, while remaining a
relatively inexpensive noniterative correction to EOM-CCSD.
This finding encourages us to include this method in our tests
and investigate if this is a general behavior of this method,
which would make it a useful tool for calculating accurate
excited state surfaces.

2.2. Excited State Gradients. Geometrical first derivatives
of the excited state electronic energy at the ground state
equilibrium geometry (also referred to as the Franck—Condon
gradient) can be obtained analytically or numerically. For the
former aﬂ)roach, implementations are available at CC2,’
CCSD,*”*° and CCSDT*"** levels in the CFOUR’® program
package, while for the CCSD(T)(a)* and CC3 methods
numerical gradients are used here. These latter calculations
tend to be very expensive if the molecule has many internal
degrees of freedom, and several excited states are investigated.

Franck—Condon gradients carry the first-order information
about the excited state potential energy surfaces around the
ground state equilibrium geometry. Gradient vectors can be
visualized using arrow plots, i.e. with arrows placed on the
atoms whose length and direction indicate that of the
gradient’s atomic component. If, however, the system possesses
a nontrivial point group symmetry, the direction of the
gradients can partially or even completely be determined by
symmetry. In this case, the comparison of two gradients
calculated with different methods visually by an arrow plot is
generally not informative. Comparability also suffers if the
system is large, and several methods provide similar Franck—
Condon gradients - which is normally the situation if none of
the approaches turns out to be exceptionally different from the
others.

Comparing the length and direction of gradient vectors
seems to be more favorable by numerical measures. As for the
latter, the angle of two vectors a and b is defined as

y= cos_l(

a- ]
lall- Il )
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which, together with the gradient norms, provides a convenient
measure of similarity that is useful here.

2.3. Surface Plots Following Franck—Condon Forces.
Franck—Condon gradients differing in length or direction
correspond to forces driving the system to different displace-
ments or regions of the potential energy surface. As the system
is likely to follow a similar path immediately after being excited
to the state of interest, altering the geometry in a stepwise
manner in the direction of these forces with steps proportional
to the gradient would explore an important region of the PES.
The definition of such a function is

E, = E[Ry — n:S:(VE)g, ] — E'[R,] )
where E'R] is the total electronic energy of state i at geometry
R, VE refers to the mass-weighted gradient of this state, and
R, is the ground state equilibrium geometry. Normally, with
the right value of the step size S (in this study, a choice of 0.6
m.2 E; a2 was found to work well) such an exploration
proceeds toward a minimum on the excited state surface. If the
surfaces are harmonic in the gradient direction, the locations of
the minima on these curves are determined by the force
constants. Excited state surfaces cannot, however, generally
assumed to be harmonic, thus the exact locations of the
minima and their agreement is of little importance. The actual
parallelity of these curves, however, can indeed illustrate the
differences between methods, highlighting their impact on the
quality of the PES (and, potentially, on applications like
excited state spectroscopy or molecular dynamics) without
requiring any further input but the Franck—Condon gradient.
Note that, by using steps proportional to the gradient length,
direct comparison of these curves between different states and
systems will not be useful due to the very different nature and
regions of the PESs being explored.

Surface plots defined by eq 2 were obtained for all
investigated states of the benchmark systems mentioned
below. The comparison of these plots for lower level methods
can be done by investigating their “divergence” from a
reference curve (in the examples below, with the exception
of guanine, the CCSDT result)

E,=E, - E" — (B - E;) ®
where the second term shifts the curve to 0 for n = 0.

2.4, Test Systems. Keeping the focus on small and
medium sized systems containing 7z-bonds and nitrogen
heteroatoms, a series of molecules was chosen as a benchmark
set: methanimine (formaldimine), formamide, cytosine, and
guanine. To study Franck—Condon gradients, the low lying
valence excited states of these systems were selected, the
gradients of which were calculated at the CC2, CCSD,
CCSD(T)(a)*, CC3, and, with the exception of guanine,
CCSDT levels. The calculations were performed using the cc-
pVDZ basis set of Dunning et al,® except in the case of the
first 7—n* state of methanimine where the ANOO basis set*""*>
has been used. The reference structures were optimized at the
CCSD/cc-pVDZ level The core electrons were excluded from
the correlation treatment in all cases. All calculations have been
performed using the CFOUR” program package.

3. RESULTS

3.1. Methanimine. The methanimine (formaldimine)
molecule can be regarded as one of the smallest neutral
systems that contain both a 7-bond and a nitrogen lone pair,
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thereby being a simple model for interactions present in
important medium sized heterocycles. The three investigated
valence excited states are of the n—n*, 7—r*, and o—7m* type,
respectively. In the cc-pVDZ basis set, the 7—7z* state shows a
significant n-Rydberg contribution around the Franck—
Condon region, which is known to be a source of unreliability
for CC2."*® To eliminate this known phenomenon from the
analysis, the ANOO basis set has been applied to calculate this
state, where this contamination is not present. The Franck—
Condon gradients of all three states are shown in the arrow
plots of Figure 1, while the vertical excitation energies and the
numerical measures of the gradients according to eq 1 are
summarized in Table 1.

n—m* n—n*

—CC2
— CCSD
—— ccsD(T)(a)*
—CC3
o-nt* — CCSDT

Figure 1. Mass-weighted excited state gradient vectors of

methanimine (only components larger than 0.02 m, 1z E, a;" are

shown).

The excitation energies are in good agreement with our
previous statistical findings,'””'® all triples methods are within a
few 1072 eV from each other, while from the doubles methods
the CC2 vertical excitation energies are closer to CCSDT than
those provided by CCSD. The latter exhibits its general
tendency of overestimating excitation energies.l" The arrow
plots of the Franck—Condon gradients show a high level of

agreement among the different methods, as is confirmed by the
numerical measures of Table 1 as well. The nonparallelity with
respect to CCSDT is up to 6 degrees, the latter shown by CC2
for the o—n* state. This is also accompanied by an inaccuracy
of the CC2 gradient magnitude for this state. For the lowest
lying n—n* state, CCSD turns out to be the least accurate,
deviating from all other methods with a nonparallelity of more
than 4 degrees and a gradient 7% smaller than that of CCSDT.
These values, however, still reflect a qualitatively acceptable
description of this state.

The surface plots described in eqs 2 and 3 are shown in the
left and right panels of Figure 2, respectively. The overall
similarity of the curves among the benchmarked methods is
also apparent here, and the triples methods are barely
distinguishable from each other. For the n—z* state, CCSD
does not seem to show the deviation that might be suggested
by the gradient measures discussed above. However, one has to
keep in mind that a significant difference in the driving
gradient causes the system to explore different regions of the
PES, thus the points on the surface plot may represent very
different geometries. This is likely the case here where, in fact,
none of the plots diverge more than 0.05 eV from CCSDT for
any of the points. For the 7—z* state, on the other hand,
CCSD shows a quite large deviation from the other methods.
Considering the fact that, for this state, all gradients are
basically parallel (as shown in Table 1), this divergence must
be attributed to the smaller length of the CCSD gradient.
Although the difference compared to CCSDT is no more than
five percent for the gradient length, the corresponding curves
clearly deviate: the minimum on the CCSD plot is located at
point n = 5 instead of point n = 6 seen for the other methods.
For the o—n* state, the CC2 curves show a pronounced
deviation: here the CC2 gradient vector is substantially longer
than those obtained with any other method, causing the energy
curve to decrease more rapidly in the initial steps. The
difference in energy between the Franck—Condon point and
the minimum is, however, much larger: 1.19 eV for CC2 while
about 1.0 eV for CCSD and the triples methods. This likely

Table 1. Vertical Excitation Energies (in electron volts) and the Length (in atomic units) and Angle (degrees) of Excited State

Gradient Vectors of Methanimine

angles/degrees
excitation energy gradient length cC2 CCSD CCSD(T)(a)* CC3 CCSDT
State 1 (n—n*)
cc2 5.65 0.1626 0.00 3.33 1.61 1.67 L56
CCSD 5.54 0.1576 0.00 4.45 4.52 437
CCSD(T)(a)* 548 0.1681 0.00 0.09 0.56
CC3 549 0.1686 0.00 0.53
CCSDT 547 0.1692 0.00
State 2 (m—n*)
cc2 9.74 0.2927 0.00 0.99 1.06 1.06 0.91
CCSD 9.71 0.2843 0.00 1.07 1.09 0.99
CCSD(T)(a)* 9.51 0.3025 0.00 0.14 0.41
CC3 949 0.3031 0.00 0.31
CCSDT 9.52 0.2983 0.00
State 3 (o—n*)
cc2 9.92 0.2606 0.00 4.74 4.65 5.26 612
CCSD 9.79 0.2423 0.00 2.01 2.53 3.18
CCSD(T)(a)* 9.69 0.2456 0.00 0.77 1.81
CC3 9.68 0.2429 0.00 L07
CCSDT 9.65 0.2387 0.00
5861 DOl: 10.1021/acs.jctc Bb006E 1
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Figure 2. Potential energy curves following the gradient of low lying excited states of methanimine relative to the ground state equilibrium energy
(left panels) and their divergence from the respective CCSDT curve (right panels).

would be exhibited in a simulated spectrum by correspondingly
long (CC2) and short (CCSD) vibrational progressions,
relative to CCSDT.

3.2. Formamide. The two lowest lying valence excited
states of formamide were investigated, one of n—z* and the
other of 7—7* type. The results are presented in Table 2 and

5862

Figures 3 and 4. The latter state is known to be a challenge for
the CCSD method due partially to valence-Rydberg mixing in
this state. The vertical excitation energy is indeed very
inaccurate, almost 0.3 eV above the CCSDT value.
Surprisingly, however, the CCSD gradient does not seem to
be comparably bad. Its length is, in fact, in very good

DOI: 10.1021/acs.jctc 8b0068 1
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Table 2. Vertical Excitation Energies (in electron volts) and the Length (in atomic units) and Angle (degrees) of Excited State

Gradient Vectors of Formamide

angles/degrees
excitation energy gradient length cc2 CCSD CCSD(T)(a)* CC3 CCSDT
State 1 (n—n*)
cca 6.00 0.3063 0.00 346 2.57 246 2.52
CCSD 5.87 0.2683 0.00 1.59 1.63 1.58
CCSD(T)(a)* 5.87 0.2858 0.00 0.11 0.70
CC3 5.87 02851 0.00 0.00
CCSDT 5.84 02850 0.00
State 2 (m—n*)
cca 772 02427 0.00 21.31 18.59 19.36 16.00
CCSD 792 02019 0.00 4.98 1370 6.80
CCSD(T)(a)* 7.74 02166 0.00 15.76 3.07
CC3 7.65 02105 0.00 0.84
CCSDT 7.64 0.2066 0.00
case of the first state, less convincing: despite the good
accuracy of the gradient, the surface plot shows a remarkable
cco divergence from CCSDT.
_ cosD For the first n—z* state, results are much more interesting,
— CCSD(T)(a)* as already suggested by the very intricate nature of the arrow
/J . o * —cCC3 plot in Figure 5. CCSD(T)(a)* seems to perform more
- T —CCsDT similarly to CCSD than to CC3: the surface plots provided by

Figure 3. Mass-weighted excited state gradient vectors of formamide

—-1/2

(only components larger than 0.02 m; /> E; a; ' are shown).

agreement with that of the higher level methods, and the plots
show a surface highly parallel with the CCSDT one. This
indicates that despite the questionable Franck—Condon
excitation energy, the potential energy surface of this 7—x*
state should itself be well described by CCSD. CC2 results,
however, show completely opposite characteristics for this
state: the vertical excitation energy is much better than the
CCSD one, but the gradient is grossly wrong both in size and
direction, some 16° askew from the respective CCSDT vector.

On the surface plots, both CC2 surfaces diverge from the
CCSDT ones. The CCSD(T)(a)* method, on the other hand,
performs very well for both states. In the case of the n—n*
state, both the gradient and the surface plot are practically
indistinguishable from CC3, and the z—z* surface shows
excellent parallelity with the CCSDT one, clearly out-
performing CC3 in this case.

3.3. Cytosine. Results for the two lowest 7—n* and one
n—n* excited states of cytosine are presented in Table 3 and
Figures 5 and 6. As reported already in previous studies,'”" ***
CCSD systematically overestimates all excitation energies,
while CC2 happens to be very accurate for this quantity,
overestimating the #—z* and underestimating the n—z*
excitation energies, respectively, by just ca. 0.1 eV.

The 7—n* surfaces seem to be generally well described by all
methods. CCSD(T)(a)* results are largely indistinguishable
from CCSDT, and even CCSD provides surfaces much more
parallel than might be suggested by the accuracy of the vertical
excitation energy or the magnitude of the gradient vector: the
divergence remains under 0.2 and 0.1 eV for the first and the
second state, respectively. Although the points, as mentioned
earlier, may represent different structures due to the variation
of gradient directions and lengths, this high level of parallelity
among all the curves suggests that the CCSD surfaces are still
of good quality after all. The CC2 results are, at least in the
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the two methods show equally good agreement with CCSDT,
while that from CC3 diverges significantly from the reference.
The similarity is not reflected by the gradient vectors, where
CCSD(T)(a)* seems to be the most accurate approximate
method, and CCSD is clearly problematic. CC3 also shows a
significant 11° angle with the CCSDT gradient, much larger
than in the previous examples. This, along with the apparent
revelations of the surface plots, clearly indicates a problem with
CC3 for this state.

This, however, still looks pleasing in light of the rather
catastrophic performance of CC2 for this state: the massive
divergence of the surface plots exaggerates the already large
error of the gradient. One should note that there is absolutely
no indication of this unreliability of CC2 at the level of the
vertical excitation energy; in fact, it is no more than 0.13 eV
away from the CCSDT value.

3.4. Guanine. Three 7—7* and two n—7z* excited states of
guanine were investigated, with the results presented in Table
4 and Figures 7 and 8. As CCSDT calculations for this system
are computationally demanding, and CCSD(T)(a)* showed
excellent accuracy and consistency in the previous examples,
we use these results as a reference for the other methods. The
orientation of the gradients for all 7—7* states agree fairly well
with the respective CCSD(T)(a)* results. Unlike cytosine, this
also holds for the first n—7* state, with all gradients showing a
very high level of parallelity. There is some variation in the
gradient lengths, though. For the first two 7—7* states as well
as the first n—7* one, CC2 and CCSD show roughly the same
deviation from CCSD(T)* but with opposite sign: the CC2
gradients are larger, and CCSD ones are smaller. For the third
n—n* state, CCSD gives a significantly smaller gradient, while
CC2 happens to agree very well with CC3. CC3 exhibits nearly
perfect agreement with CCSD(T)(a)* for all four states.

The results for the second n—z* state show larger variations
among the methods, however. CC2, despite providing an
excellent vertical excitation energy, seriously overestimates the
size of the corresponding gradient, with remarkable non-
parallelity: the angle with the CCSD(T)(a)* gradient is as

DOI: 10.1021/acs.jctc 8b0068 1
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Figure 4. Potential energy curves following the gradient of low lying excited states of formamide relative to the ground state equilibrium energy
(left panels) and their divergence from the respective CCSDT curve (right panels).

large as 39 degrees; and, for that matter, CCSD also does quite
badly compared to the examples seen before. The gradient
vector is - just like in case of the other states - shorter than the
CCSD(T)(a)* one. Even CC3 shows a remarkable disagree-
ment with CCSD(T)(a)* for this state. The differences are,
however, still small compared to both CC2 and CCSD, and
with the absence of a higher level reference value, it is not clear
if either CC3 or CCSD(T)(a)* should be regarded as a
certainly more accurate result.

The surface plots for the 7—z* states generally reflect the
agreement between the methods seen for the gradients. The
CC3 surfaces exhibit excellent parallelity with CCSD(T)(a)*
until to the minimum point, and even beyond that their
divergence remains moderate. This even holds for the third
state where the vertical excitation energy is underestimated by
0.15 eV. The CC2 and CCSD surfaces are fairly accurate as
well, both predicting essentially the same minima for all states.
This suggests that, despite the variation of the vertical
excitation energies, all methods may provide a reasonable
description of these states.

This is clearly not the situation for the n—7* states, though.
The most vividly apparent feature seen on the respective
panels of Figure 8 is the very bad performance of CC2, with
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the surfaces diverging from the CCSD(T)(a)* ones by up to
0.5 eV. One should note that this poor performance occurs
despite the very good accuracy of the vertical excitation
energies. CCSD also diverges considerably for the first n—z*
state but, at least, seems to show an accurate minimum point.
For the second n—n* state, CCSD seems to be reliable, with
the divergence remaining below 0.1 eV throughout the surface
scan. The agreement of CC3 with CCSD(T)(a)* remains very
good for the n—n* states as well, a noticeable divergence only
shows up way beyond the minimum point on the first n—z*
curve. This provides evidence for the contention that
CCSD(T)(a)* provides a consistently reliable description of
excited states, the quality of which are, more or less, in line
with CC3.

4. DISCUSSION

Various ways to judge the quality of excited state gradients and
potential energy surfaces were presented in the previous
sections and illustrated by calculations with the CC2, CCSD,
CCSD(T)(a)*, CC3, and CCSDT methods. All these ways of
characterizing the accuracy and reliability of these techniques
can thereby be regarded as a benchmark strategy to calibrate
the performance of excited state methods.

DOI: 10.1021/acs.jctc 8b0068 1
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Table 3. Vertical Excitation Energies (in electron volts) and the Length (in atomic units) and Angle (degrees) of Excited State

Gradient Vectors of Cytosine

angles/degrees
excitation energy gradient length ccz CCSD CCSD(T)(a)* CC3 CCSDT
State 1 (m—n*)
cc2 496 02468 0.00 11.74 5.49 4.00 4.24
CCSD 5.11 02034 0.00 6.82 8.88 7.97
CCSD(T)(a)* 493 0.2268 0.00 232 1.01
CC3 486 02304 0.00 0.81
CCSDT 4.86 02267 0.00
State 2 (m—n*)
cc2 5.86 02172 0.00 992 6.12 6.67 7.14
CCSD 6.10 0.1961 0.00 6.67 792 7.57
CCSD(T)(a)* 5.86 02141 0.00 1.89 2.18
CC3 5.76 02129 0.00 131
CCSDT 575 02095 0.00
State 3 (n—n*)
cc2 5.15 02489 0.00 54.90 43.16 2444 35.42
CCSD 5.53 0.1538 0.00 14.59 3197 21.42
CCSD(T)(a)* 5.36 0.1635 0.00 19.16 8.20
CC3 525 0.1739 0.00 11.14
CCSDT 528 0.1628 0.00
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Figure 5. Mass-weighted excited state gradient vectors of cytosine

(only components larger than 0.02 m; /> E, a; " are shown).

Three dimensional arrow plots, although a nice way to
depict gradients, do not seem to be very effective for
comparisons between different methods. This can be mainly
attributed to the fact that even minor rotations of the entire
vector can cause large changes in the individual atomic
contributions, thereby overemphasizing the perceived variation
of gradients. For larger systems, the complexity of the gradient
vector also poses difficulties, leading to very confusing figures
in many cases.

The gradient angles and lengths, however, seem to be
practical benchmarks if evaluated against a well chosen
reference. The former can characterize the direction, and the
latter the magnitude, of the Franck—Condon forces, obviously
both being important in the whole picture. However,
differences in the gradient lengths, as is shown by the surface
plots, seem to be generally more sensitive measures of
goodness than in their directions. Good examples of this are
the CC2 gradient of the first 6—z* state of methanimine and

5865

E_I
e &
AE_E

Stpnumber T epumber
—e—CC2
—=—CCSD
—A—CCSD(T)(a)*
—v—CC3
—e—CCSDT

Figure 6. Potential energy curves following the gradient of low lying
excited states of cytosine relative to the ground state equilibrium
energy (left panels) and their divergence from the respective CCSDT
curve (right panels).

DOI: 10.1021/acs.jctc 8b0068 1
J. Chem. Theory Comput. 2018, 14, 5859-5869


http://dx.doi.org/10.1021/acs.jctc.8b00681

Journal of Chemical Theory and Computation

Table 4. Vertical Excitation Energies (in electron volts) and the Length (in atomic units) and Angle (degrees) of Excited State

Gradient Vectors of Guanine

angles/degrees
excitation energy gradient length cc2 CCsD CC3 CCSD(T)(a)*
State 1 (m—n*)
cca 5.35 0.1982 0.00 11.44 5.14 6.39
CCSD 544 0.1697 0.00 843 6.60
CC3 524 0.1835 0.00 2.54
CCSD(T)(a)* 532 0.1843 0.00
State 2 (m—n*)
cca 5.88 0.2077 0.00 9.35 527 4.94
CCSD 6.11 0.1798 0.00 7.30 6.55
CC3 5.81 0.1940 0.00 1.39
CCSD(T)(a)* 591 0.1957 0.00
State 3 (mr—n*)
cca 691 0.1843 0.00 11.90 5.88 6.57
CCSD 7.10 0.1498 0.00 696 6.04
CC3 672 0.1840 0.00 2.15
CCSD(T)(a)* 6.87 0.1788 0.00
State 4 (n—n*)
cca 5.75 0.3173 0.00 9.11 3.60 5.21
CCSD 5.80 0.2626 0.00 6.54 4.94
CC3 5.69 0.2852 0.00 2.40
CCSD(T)(a)* 5.75 0.2835 0.00
State 5 (n—n*)
cca 6.57 0.2339 0.00 47.84 25.18 38.52
CCSD 6.87 0.1705 0.00 24.34 11.90
CC3 6.61 0.1932 0.00 14.62
CCSD(T)(a)* 6.73 0.1823 0.00
surfaces with the reference one seems to be, however, very
: E 5 5!; informative about the description quality. Especially, plotting
“ these results as divergences from the chosen reference (e.g, as
- 4 differences from the reference surface, shifted to zero in the
Franck—Condon point) seems very practical for comparisons.
o L ¢ P - It shcruld be kept in mind, however, that depending on the
TT—T =7 magnitude of Franck—Condon forces, these plots may explore
regions quite far from the ground state equilibrium, potentially
leaving the area where the single-reference description of the
ground state can be considered reliable. In these regions, all
- ¢ —CC2 results may be compromised to a certain extent, and any
“ - . —ccsD comparison between methods might become useless. There-
o v N — cCSD(T)(a)* fore, attention should be paid to the quality of the ground state
“ n—m* n—m* —CC3 wave function, and preferably no conclusions should be drawn

Figure 7. Mass-weighted excited state gradient vectors of guanine
(only components larger than 0.02 m; /> E, a; " are shown).

the CCSD result for the first n—n* state of guanine where,
despite fairly accurate directions, the overall description is of
bad quality due to the large differences in the gradient lengths.

The surface plots that follow Franck—Condon forces via
equidistant mass-weighted steps proved effective in high-
lighting differences between methods and, especially, pointing
out the occasional discrepancies in the description of certain
surfaces by lower level methods. However, if the excited state
possesses a minimum along these surface plots - as is the case
for all systems investigated - the locations of these minima
show only a minor variance among the methods, even in cases
where there was a clear disagreement between the gradients.
This is, however, not very surprising in light of the
considerations mentioned in Section 2. The parallelity of
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from the furthest regions of these plots that lie way beyond the
minimum point. The results in the first few, practically most
important, points should be, however, reasonably modeled by
these curves.

We note that one may regard the above analysis as a
simplified and cost-effective alternative for a steepest-descent
scan of the excited state PES between the Franck—Condon
point and the actual excited state minimum - a very expensive
procedure without analytic gradients being available for all
methods.

The fact that excited state surfaces definitely need
benchmarking via such strategies is underscored by our results
that show that excited state gradients illustrate much larger
discrepancies for lower level methods than vertical excitation
energies do. Another important property revealed by these
results is the correlation between the type of excited states and
the overall reliability of their description via CC methods:
while generally accurate gradients and surfaces are found for
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Figure 8. Potential energy curves following the gradient of low lying
excited states of guanine relative to the ground state equilibrium
energy (left panels) and their divergence from the respective
CCSD(T)(a)* curve (right panels).

n—n* states, the results for n—n* type states tend to show a
significantly larger level of inconsistency among the methods.
For the m—na* states, the doubles methods CCSD and CC2
both seem to perform acceptably, and the CCSD surfaces
barely diverge from the reference by more than a few 0.1 eV.
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CC2 is somewhat less consistent, but the only worrisome result
we find is that for the first 7—s* state of formamide, where the
Franck—Condon gradient is considerably overestimated. For
n—m* states, on the other hand, our results clearly raise
questions about the general reliability of doubles methods.
CC2, in particular, can suffer from enormous errors, as is seen
in excited state gradients and potential energy surfaces in many
cases. Considering that CC2 is also known for its poor
description of Rydberg type states,'® these findings raise
serious questions about the intrinsic consistency of CC2
theory. The fact that the 7—z* surfaces were apparently more
accurate than n—7z* ones should, however, probably not be
regarded as an incentive for blindly trusting doubles methods
for m—nx* states, either: the consequence of the planar
symmetry of our test molecules is that the two types of
contributions were not allowed to mix in the excited state wave
functions, which will not apply for larger systems with no point

group symmetry.

5. CONCLUSIONS

The calculations performed in this study reveal several
important facts about the reliability of coupled cluster excited
state methods. Although the selected systems and states do not
form a sufficient set for a rigorous statistical analysis -
performing such analysis on a wider set (e.g., the Miilheim
set'”) is beyond the scope of this work -, they belong to those
that received wide interest in recent excited state studies, and
thus, important conclusions can be drawn from the above
results.

The CCSD(T)(a)* technique was found to be very accurate
and consistent throughout the study, basically providing the
accuracy of the iterative CC3 method for a significantly lower
cost. The very low divergence of the CCSD(T)(a)* surface
plots from the higher level references - even in regions far from
the Franck—Condon point - is a very pleasing finding for
potential black-box applications of this method in the future
and provides motivation for the development of analytic
gradients for this approach. None of our results revealed any
inherent flaw of this method; in fact, the surfaces show it to be
a considerably more powerful method than what is suggested
by the accuracy of excitation energies. This is in agreement
with the findings of ref 33. In this sense, one may regard
CCSD(T)(a)* as a cost-effective way to include the effect of
triple excitations in excited electronic state surfaces.

Generally, the possibly most important conclusion of our
study is that the quality of the excited state gradients and
potential energy surfaces is definitely not related to that of the
vertical excitation energy. CC2, in particular, was found to
perform surprisingly badly for many states where it otherwise
gives a very good excitation energy. This supports the
conclusion of our previous studies,'*”" where the remarkable
accuracy of CC2 valence excitation energies was shown to be a
consequence of certain error cancellation phenomena. This
apparently breaks down not only for Rydberg states but also
for the derivatives of the excites state energy and, thus,
potential energy surfaces. This definitely raises concerns about
the reliability of many excited state molecular dynamics studies
performed with CC2 or similar methods (including the
popular ADC(2) technique*!), where the early nuclear
motions are driven by forces acting in the Franck—Condon
region.

We believe that the investigation techniques presented in
this paper provide a robust and easily applicable way to
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prevalidate these approaches for similar applications and
thereby increase the reliability of their results.
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