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ABSTRACT

Statement coverage is commonly used as a measure of test suite
quality. Coverage is often used as a part of a code review process:
if a patch decreases overall coverage, or is itself not covered, then
the patch is scrutinized more closely. Traditional studies of how
coverage changes with code evolution have examined the overall
coverage of the entire program, and more recent work directly ex-
amines the coverage of patches (changed statements). We present
an evaluation much larger than prior studies and moreover consider
a new, important kind of change — coverage changes of unchanged
statements. We present a large-scale evaluation of code coverage
evolution over 7,816 builds of 47 projects written in popular lan-
guages including Java, Python, and Scala. We find that in large,
mature projects, simply measuring the change to statement cover-
age does not capture the nuances of code evolution. Going beyond
considering statement coverage as a simple ratio, we examine how
the set of statements covered evolves between project revisions.
We present and study new ways to assess the impact of a patch
on a project’s test suite quality that both separates coverage of the
patch from coverage of the non-patch, and separates changes in
coverage from changes in the set of statements covered.
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1 INTRODUCTION

Code coverage metrics are often used by developers to identify how
well-tested an application is. There are a wide variety of coverage
metrics, including statement, branch, MC/DC, method, file, and
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path coverage [10]. Statement coverage—the ratio of statements
executed by tests divided by total number of statements—is the
simplest but most commonly used.

Modern development workflows often use a continuous integra-
tion (CI) service to build every push and run their project’s tests.
As CI services have become widely adopted [25], ancillary services
that track additional metrics from CI, such as code coverage, are
also becoming more popular. Developers can configure CI services,
such as Travis [40], to post code coverage data to a service such as
Coveralls [19], which makes the data easily available to developers,
for instance when reviewing pull requests. Coveralls maintains a
record of a project’s coverage over time. Additionally, Coveralls can
automatically update coverage badges that display the latest cover-
age result on a project’s homepage [41]. This growing public record
of coverage data, organically collected by developers, provides a
great opportunity for researchers to study real code coverage data.
To the best of our knowledge, we are the first researchers to study
coverage data collected and so widely shared by developers.

While the overall statement coverage of a test suite provides
some insight into its (in)completeness, it reduces the quality mea-
sure to a single ratio, making developers potentially miss valuable
information about their test suite and its limitations. For developers
of large, stable projects that have a large number of statements, it
is often difficult to recognize any noticeable change in this metric
from one commit (patch) to another, e.g., for a project with 1 mil-
lion lines' of code, a change in coverage of even 100 lines would
only impact coverage by one hundredth of one percentage point.
Nonetheless, these changes can add up over time: although a sin-
gle 100-line patch may not make a noticeable change in coverage,
many small patches can make such a change. Even more concern-
ing, coverage of some lines may change non-deterministically due
to inherent non-determinism in the tests [22, 28, 29]. Even in
smaller projects, where an increase in the overall coverage might
be more noticeable, tracking only this simple ratio does not capture
which statements are covered [32]. In an extreme case, a project
with 50% code coverage could maintain that overall coverage while
completely flipping the set of statements covered. Coverage can
also increase, seemingly indicating a better test suite, even when
that is not necessarily the case, e.g., coverage might go up despite
a drop in the number of executed statements if code is removed,
decreasing the total number of statements even more.

One approach for gaining better insights from statement cov-
erage is to focus not on the coverage of the entire system under
test (SUT) but, instead, only on the coverage of each patch (changed
statements) performed on the SUT [4, 19, 29, 32]. Collecting patch
coverage can be useful because if a patch is not covered enough,

! This paper uses “line(s)” and “statement(s)” interchangeably.



ASE ’18, September 3-7, 2018, Montpellier, France

Michael Hilton, Jonathan Bell, and Darko Marinov

O OO O MO d

OO O O 0mmmo OO TITTm OrOIrmmO O 10
I Ty
- I ) —'\
[IT11T i:> [T 00 O
/ OO T M [} I O M T
STana] - T 18 0 0 T m

MM+ :: > [T

OCCIIINO [ [ CTIITm OO . OO o O

Figure 1: Overview of methodology. Compared to prior studies: green is new; yellow is nearly an order of magnitude larger.

then developers can easily flag this patch in code review and require
more tests to be added with the patch. However, even if a patch is
well covered, the impact of the patch on the non-patch (unchanged
statements) part of the SUT is not known a priori.

Prior empirical work has evaluated how coverage changes during
code evolution but for a relatively small number of projects and
builds. For example, Zaidman et al. [43] reported a high amount of
manual labor when studying just 3 projects (and collecting coverage
for a total of 30 builds), while Marinescu et al. [29] reported an
immense amount of infrastructure needed to collect coverage data
from just 6 projects (for a total of 1,222 builds). Further, while
prior work has investigated the change in overall coverage, or the
coverage of patches, no prior empirical study has examined how the
set of lines covered changes. Even when the overall SUT coverage
appears stable, and the coverage of new patches is high, are the
actual lines covered still changing? Or, are there hidden changes to
coverage that developers should be aware of, beyond coverage of
the entire SUT and coverage of the patch?

To better understand code coverage, how it changes, and how
developers can better reason about their code and their tests, we
present a large-scale longitudinal study of test coverage evolution.
Our study builds on prior empirical work studying code coverage
but increases the number of projects (47, written in 7 different lan-
guages) and revisions of those projects (7,816) by almost an order
of magnitude. Also, ours is the first study of code coverage to corre-
late the coverage of individual lines of coverage throughout project
evolution, tracking how a line may become covered and then later
become not covered. Further, ours is the first study to utilize code
coverage history that developers collect on Coveralls [19] (gathered
through the public API of the Coveralls service), in addition to
coverage metrics that we collect ourselves.

In this paper, we answer the following questions:

RQ1: What is the distribution of patch coverage across revi-
sions? What fraction of a patch is covered by the regression
test suite? Do projects with high patch coverage also have
high overall coverage?

RQ2: What impact do patches have on the coverage of non-
patch code? Do we see similar behavior across projects?
Does high patch coverage imply that a patch increases cov-
erage of non-patch code?

RQ3: Are all changes equally visible? Do projects have changes
that are occluded (hidden)?

RQ4: How does the set of covered lines change? Are there
hot-spots of coverage change, i.e., lines that flip between
being covered and uncovered throughout evolution?

RQ5: What kinds of changes to code drive changes to cov-
erage? Does code coverage change more because old code
becomes tested, or because new, tested code is added? Or, do
line deletions drive changes to code coverage?
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To answer these questions, we prepare an extensive dataset
of code coverage, develop a toolset for automated analysis, and
perform various analyses, making the following contributions:

e Dataset: Our dataset of code coverage information from
7,816 revisions of 47 projects is publicly available:
http://www.code-coverage.org

e Toolset: Our toolset includes the scripts that gathered our
dataset and that can analyze the dataset, allowing other
researchers to perform similar experiments and build new
tools that analyze coverage change.

e Novel Coverage: We highlight the importance of measuring
change in coverage of unchanged code.

o Results: We perform several analyses and present new find-
ings that answer the listed research questions. One finding
is that which lines are covered can vary widely in a project,
even when the overall coverage appears to remain the same.

e Implications: We identify important implications for devel-
opers, tool builders, and software engineering researchers
working to measure and improve test quality. For instance,
we found that changes to non-code files often impact code
coverage, and hence, regression test selection tools should
track such dependencies to be safe.

2 METHODOLOGY

Researchers have previously studied the evolution of code cover-
age [21, 29, 43] by downloading some open-source projects and, for
several revisions of these projects, compiling the code and running
tests while collecting code coverage. Our methodology builds on
this approach but significantly expands the breadth of the study
by including almost an order of magnitude more projects (47) and
revisions (7,816). We leverage Coveralls [19], the increasingly pop-
ular service for tracking code coverage for open-source projects.
We also significantly extend the depth of the study by tracking the
change to coverage of individual statements across revisions.
Figure 1 shows an overview of our methodology. We first iden-
tified candidate projects to include in our study, selecting both
projects studied in recent regression testing research and projects
that use the Coveralls service. We then collected coverage for these
projects, either running the test suites ourselves or collecting data
from Coveralls. We next aggregated the data with version-control
history to track the coverage of individual code lines throughout
project evolution. We finally summarize and visualize the results.

2.1 Identifying Projects

Automatically downloading, compiling, and executing tests for
open-source projects is often non-trivial. Some projects fail to com-
pile (e.g. due to missing dependencies), and others require manual
configuration or installation of external dependencies. However,
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excluding projects that require some degree of manual configura-
tion could bias the projects included in a study. We relied on two
complementary approaches to gather a diverse set of projects.

Traditional Evaluation: We identified four recent research
papers [12, 15, 23, 36] that had experiments with software evolution
(specifically with regression testing). We tabulated the open-source
projects studied in these experiments and tried to clone, build,
and test each of them. In total, we selected 29 projects: 11 (of the
32) from [23], 5 (of the 10) from [15], 3 (of the 17) from [36], and
10 (of the 26) from [12]. We included all projects which (1) used
the Maven build system and (2) successfully compiled (on its most
recent commit) with the command mvn package. We allowed for up
to thirty minutes of troubleshooting per project to potentially install
external dependencies required by the project as may have been
specified in README files or error messages during this process.
These 29 projects make up our traditional evaluation set.

In Vivo set: We broadened the scope of our evaluation by in-
cluding projects which we did not compile or test ourselves, instead
leveraging coverage data collected and shared by the project devel-
opers themselves. Coveralls [19] is a free service that stores cover-
age data, allowing developers to track the coverage of their projects
over time. Many open-source projects from GitHub use Coveralls
as part of their continuous integration (CI) pipeline: when develop-
ers push their changes to GitHub, a CI service (e.g. TravisCI [40])
automatically fetches these changes, compiles the project, runs the
test suite, and uploads coverage data to Coveralls. While some prior
work [12, 14, 27] has used the output of CI services, like TravisCI,
as a dataset for evaluation, we are not aware of any prior work that
used code coverage from services like Coveralls as we do. Reusing
coverage data has several advantages: (1) we can include projects
that are more complex to build, for which developers have provided
automated configuration scripts to a CI service; (2) we can include
projects written in any language supported by Coveralls, because
it abstracts the actual collection of code coverage; and (3) we need
not expend resources compiling and running these projects’ tests.
We refer to the data from Coveralls as our in vivo evaluation set,
because the coverage results come directly from the field.

To identify projects for our in vivo dataset, we started by crawl-
ing GitHub to find projects that use both TravisCI and Coveralls
services. We searched GitHub by project language (including most
popular and more recent languages in our criteria), looking for
projects with configuration files that refer to Coveralls, collecting
the most-starred projects per language meeting our criteria. For
each project that referred to Coveralls, we queried the Coveralls’
public API [20] to detect if the project indeed has publicly avail-
able coverage data on Coveralls. For each project that had data, we
checked the number of builds for which the project shipped cover-
age data to Coveralls, and the number of lines of code in the most
recent version of the project. We then picked arbitrary thresholds
to filter out projects with short histories on Coveralls (less than 250
revisions built and tested) or trivially small projects (less than 1,000
lines of code total), leaving 19 projects.

2.2 Collecting Coverage

Traditional Evaluation: We conducted our traditional evaluation
by compiling, testing, and collecting coverage on each of the 250
most recent commits of the 29 projects that we had identified,
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successfully completing a total of 5,382 builds. We ran these builds
on a cluster of Ubuntu 14.04 virtual machines, running Apache
Maven 3.3.9 and Java 1.8.0_131. We collected coverage using the
mature JaCoCo tool [5], configured to collect coverage of all project
code files. If a build failed, we did not seek out more builds, hence we
may not have 250 successful builds of each project. We considered
other coverage tools, Cobertura [18] and Clover [17], but neither
fully supports Java 8, and hence, would have limited our study to
include only projects that do not use recent Java features.

In Vivo set: Coveralls terms of use request broadly that users of
their API do not impose an undue load on the service, and we did
not want to abuse the service. Unfortunately, collecting our data
required making many requests to the service: one per file, per-
revision, per-project. Hence, a project with 1,000 files would require
1,000 requests to collect detailed coverage of each file of a single
revision. We self-imposed a rate limit of 5,000 requests per hour and
restricted our data collection to only several days. We contacted
Coveralls to inquire if they could make the data easier to obtain
(e.g., one request for all files in a revision) and to check that our
procedure would not place an undue load on their service, but we
received no response. Hence, for the 19 projects, we downloaded
coverage data for only 2,575 builds—we skipped the remaining
builds to not abuse the service.

2.3 Determining Code Changes

The next step in our study required unifying the coverage data
with code change information. For each commit of each project,
we needed to find which lines were added, modified, or removed
from the previous commit. Because our experiments include only
projects that use the Git version-control system, it was relatively
straightforward to collect code change information using git diff
. Using the diff algorithm, we simplified the potentially rather
complex process of tracking lines that may have moved or shifted
throughout the codebase [35]. We matched each commit with its
parent commit for which we had data, using Git information to track
branching and ensuring that each commit was properly matched
with a prior commit from which it descended. We compare each
commit with its parent, obtaining the list of added and removed
lines. For the remaining (unchanged) lines, we built a mapping
between the line numbers from the two commits, which is non-
trivial when new lines are added or old lines deleted from files,
making it difficult to identify where a line from a prior commit
is in the next commit. We used diff to generate these mappings,
invoking it for each changed file to determine the new line number
of each line from the previous commit of that file.

2.4 Aggregating Results

Finally, we aggregated code coverage and code change information,
and generated visualizations by creating and running a series of R
scripts. Table 1 shows a summary of basic statistics for each project.
For the remainder of this paper, we refer to projects by their ID
(the far left column). For each project, we report the programming
language, the prior paper or Coveralls (abbreviated as C.IO), the
number of builds studied, average lines of code across commits, and
the total commit time window that our coverage data spans. The
Coveralls projects are mostly smaller (in LoC) than the rest, but
nonetheless are similar in overall coverage. Before addressing our
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Table 1: Key statistics describing all of the projects included in this study.

Time Coverage % of Commits Changing: Avg. Patch Size (Lines)
range

Project Lang Source Builds  LoC (mmfths) Start Sparkline End  Test Source Both  Neither  Source Test All
Po1 apache/commons-collections java [24] 189 12,765 40 84% 84% 6% 34% 24% 36% 89 53 154
P02 apache/commons-dbcp java [24] 164 5,662 19 48% 51%  13% 27% 12% 48% 14 14 37
P03 apache/commons-exec java [12] 212 971 65 63% 72%  24% 17% 13% 47% 13 20 44
P04  apache/commons-functor java [24] 248 2,693 69 83% 97%  11% 47% 8% 34% 116 78 210
P05  apache/commons-io java [24] 35 5,021 2 88% - 87% 26% 26% 31% 17% 97 79 178
P06  apache/commons-jxpath java [24] 199 9,633 94 75% 77% 8% 33% 13% 47% 74 9 125
P07  apache/commons-math java [24] 217 45,034 16 90% 90%  19% 39% 32% 10% 314 114 935
P08  apache/commons-net java [24] 53 9,210 1 30% 30% 11% 40% 11% 38% 40 4 61
P09  apache/commons-validator java [24] 104 2,854 10 77% 78%  23% 36% 21% 20% 44 10 65
P10 apache/empire-db java [24] 241 21,258 60 14% 14% 0% 72% 3% 24% 158 1 190
P11 apache/httpcore java [12] 223 13,198 18 77% 75%  13% 36% 39% 11% 1,249 387 1,658
P12 ARMmbed/mbed-ls python CIO 60 804 6 75% 78% 2% 65% 30% 3% 27 11 53
P13 bitwalker/timex elixer CIO 128 2,615 16 65% 68% 2% 50% 31% 16% 23 6 79
P14 broadinstitute/firecloud-orchestration Scala C.I0 170 2,658 13 64% 68% 4% 16% 64% 16% 93 95 213
P15 containers/virtcontainers go C.IO 296 5,332 9 66% 61% 1% 33% 42% 23% 1,276 51 1,664
P16 coreos/alb-ingress-controller go CIO 98 2,041 7 3% — 21% 0% 50% 27% 23% 509 34 569
P17  damianszczepanik/cucumber-reporting ~ java [15] 248 794 15 88% 9% 9% 8% 48% 34% 60 64 208
P18 dask/dask python CIO 290 15,322 7 94% 92% 5% 21% 54% 20% 46 33 114
P19  doanduyhai/Achilles java [12] 111 11,008 9 56% — 54% 4% 29% 41% 26% 370 201 626
P20  dropwizard/dropwizard java [12, 36] 246 7,700 9 86% - 8% 9% 10% 24% 57% 13 21 50
P21 eBay/cors-filter java [15] 204 280 45 94% 100%  24% 27% 17% 31% 35 42 83
P22 F5Networks/k8s-bigip-ctlr go CIO 103 5,621 5 76% 83% 7% 24% 33% 36% 68 48 191
P23 fasseg/exp4j java [15] 233 640 40 89% v T 95% 6% 12% 39% 43% 292 80 382
P24 Gillespie59/eslint-plugin-angular node CIO 212 1,213 19 100% T 100% 5% 20%  47% 28% 99 30 195
P25  goldmansachs/gs-collections java [24] 249 38,242 16 92% 93%  20% 20% 41% 19% 295 292 767
P26 google/jimfs java [12] 100 3,401 45 89% 91% 11% 23% 39% 27% 758 292 1,054
P27  HazyResearch/deepdive Scala CIO 11 1,913 5 81% T 73% 0% 17% 8% 75% 31 29 271
P28  hector-client/hector java [12] 137 8,583 25 35% — 3% 4% 55% 32% 9% 114 50 195
P29  ikawaha/kagome go CIO 91 1,099 27 80% - 8% 10% 33% 29% 29% 111 29 144
P30  ilovepi/Compiler dotNet CIO 96 1,874 1 87% 90% 7% 57% 31% 4% 209 19 238
P31 jhy/jsoup java [15] 246 6,615 28 76% 7%  11% 23%  41% 25% 33 16 70
P32 jknack/handlebars.java java [12] 100 3,935 9 83% T 84% 11% 30% 40% 19% 192 26 225
P33 JodaOrg/joda-time java [24, 36] 248 14,789 35 90% - 9% 5% 25% 17% 53% 11 7 90
P34 joel-costigliola/assertj-core java [12, 36] 241 11,104 9 90% 90%  15% 22% 42% 22% 234 315 557
P35 mailgun/kafka-pixy go C.IO 64 4,387 13 80% 69% 6% 27% 59% 8% 983 233 1,385
P36 MITLibraries/topichub Scala C.IO 102 2,466 11 57% 60% 7% 25% 43% 25% 33 40 112
P37  platinumazure/eslint-plugin-qunit node CIo 62 628 22 100% 100% 8% 6% 27% 58% 55 27 102
P38  PragTob/benchee elixer CIo 148 441 6 94% 94% 7% 29% 44% 20% 56 52 119
P39  raml-org/raml-java-parser java [15] 248 6,455 16 86% 86% 2% 58% 23% 17% 168 9 605
P40 ShiftForward/apso Scala C.IO 94 1,629 9 54% 59% 7% 19% 29% 45% 30 13 58
P41 spatialmodel/inmap go CIO 55 5983 9 81% 83% 5% 24% 36% 35% 273 98 442
P42 square/okhttp java [12] 247 11,854 10 78% 78%  10% 29% 45% 15% 36 33 72
P43 square/retrofit java [24] 181 2,479 17 56% - 57% 7% 35% 38% 20% 119 102 235
P44 SteamDatabase/ValveResourceFormat dotNet CIO 179 2,794 23 82% E— 73% 2% 80% 4% 13% 108 1 147
P45  terasolunaorg/terasoluna-gfw java CIo 97 2,561 17 99% 9% 12% 4% 16% 67% 1481 1,188 2,921
P46 undertow-io/undertow java [12] 238 51,388 9 60% 60% 7% 72% 18% 4% 49 12 64
P47  zxing/zxing java [12] 198 15,440 21 68% 76% 5% 34% 16% 45% 31 7 712
Total 47 projects, 384,412 LOC Average: 166 8,178 20 74% 76% 9% 32% 30% 29% 224 93 397

five research questions, we present three demographic questions,
DQs, that describe the overall composition of our dataset in terms
of patches and overall coverage.

DQ1: Do patches touch both code and tests? This question mir-
rors a question often studied in the context of code coverage and
mining software repositories [29, 43]. We examined each patch of
each project, looking at the files changed by each patch. We cate-
gorized each file as a test code file, source code file, or a non-code
file. Code files were defined as ending with the correct suffix given
the project language: .java, .scala, .go, s, .ts, .cs, .ex, .exs, .py. Fol-
lowing prior work [43], code files were then categorized as test or
source code files if their path contained “test” or “.spec”. Table 1
presents the results. Similar to prior studies [29], we found that few
commits modified only test files; far more common were commits
that modify both test and non-test files, or only non-test files.
DQ2: What are the sizes of each patch? This question also mir-
rors one posed previously [29]. If a project has primarily small
patches, then these patches are perhaps easier for humans to reason
about. However, if those patches are larger—hundreds, or thousands
of lines, they may require different approaches to be reasoned about.
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To answer this question, again, we categorize files as “source code”
or “test code,” and compute the number of changed lines in each file.
This includes all changes to these files and counts each edited line
as a change. Table 1 shows the results (“Avg. Patch Size (Lines)”),
including all changed lines in the “all” column (in source code, test
code, or non-code files).

Our results strikingly differ from those of Marinescu et al. [29];
their study of six C/C++ programs reported a median number of
patch lines ranging between 4 and 7. While the difference may be
partly due to us counting all changed lines (not only executable
statements), this alone is unlikely to lead to such a significant
difference in the extreme cases of projects such as P11, P15, and P45.
We believe that this indicates that many of the projects that we
studied were under substantially more active development than
the mature projects in their study (GNU Binutils, Git, Lighttpd,
Memecached, Redis, and OMQ). This finding also underscores the
importance of sampling a diverse set of projects in empirical studies.
DQ3: How does coverage change over time? Finally, we calcu-
lated the coverage for each project across all commits we studied.
Table 1 reports the average lines of code (LoC) and coverage of each
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Figure 2: Coverage of new lines in each patch. Each bar represents the proportion of builds with that coverage level (as denoted
by the color). The black bar indicates the average overall coverage of each build per-project (against the percentage scale)

project at the start and end of our dataset, along with a sparkline
visualization showing how the coverage changed over time (scaled
to 0-100%). We see that our dataset contains a diverse set of projects:
some with low coverage, others with high; some with little change,
others with more. For most projects, coverage remains relatively
flat during the studied window, similar to prior results [29].

However, from the sparklines we see that some projects—in
particular P23, P27, and P44—have spikes in their coverage, where
coverage drops significantly and then returns to its prior position.
After manual inspection, it appears that this is often caused by
broken tests: if a test fails early in its execution, then it does not
continue to run and cover the statements that it would typically
cover. Unfortunately, while we had test result information from our
own experiments, we did not have easy access to test results from
Coveralls to filter out failed tests.

It is perhaps unsurprising that we do not observe significant
changes to coverage, given that our projects are non-trivially large,
averaging 8,178 lines of code. The most visible spikes (e.g. P23,
P27) are in projects with the fewest lines of code, while the largest
projects (Po7, P25, and P46) appear nearly flat. Given that state-
ment coverage is simply the ratio of executed statements to total
statements, increasing coverage by even one percentage point may
require covering thousands of lines of previously uncovered code.
Hence, on a day-to-day basis, developers (especially of large, mature
projects) are unlikely to see changes in total coverage.

3 RESULTS

RQ1: What is the distribution of patch coverage across revi-
sions? Since it is difficult to observe changes to overall project
coverage on a day-to-day basis, prior work [4, 19, 29, 32] as well as

current tools [1-3, 6, 7] have advocated that developers pay particu-
lar attention to coverage of patches. We use the term patch, commit,
and change-set interchangeably: a unit that represents a developer’s
changes to code (without attempting to understand the nature of
the change as a bug fix or new feature). Given that patches are
generally much smaller than the overall codebase, patch coverage
might be more meaningful to developers reviewing a patch.

To study the coverage of patches in the wild, we calculated the
coverage of all changed statements in each patch in our dataset.
To visualize these results, we binned each patch by its coverage,
choosing bins of 0%, (0%-25%), (25%-50%], (50%-75%], (75%-100%)
and 100% coverage of the patch. Figure 2 shows the distribution of
patches in each bin, by each project. We also visualize the average
coverage across all versions of all of the code in each project with a
black bar. For example, for the project P01, almost 50% of the code
patches have 100% coverage. However, the overall coverage of all
code across all builds for this project is 85%.

This visualization is similar to one created by Marinescu et al. in
their study of patch coverage of six projects, with two distinctions:
(1) we add two more bins (“0” and “100” to segregate patches that
are fully covered or not at all covered, rather than simply 0-25,
25-50, 50-75, 75-100), and (2) we superimpose the overall project
coverage. Adding these two additional bins allows us to recognize
that, in fact, patches are often either entirely covered, or not at all
covered: it is far less frequent in the projects that we studied to
observe patches that were partially covered.

While it might seem intuitive that higher patch coverage implies
higher overall coverage, when we look at our data, we did not
see evidence of this. From this chart, we can observe that having
more patches with higher coverage does not always indicate higher
overall coverage. For example, when comparing Pe3 and Po2 we
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Figure 3: For each patch, we show whether it increases, decreases, or has no impact on coverage of existing (non-patch) code.
The size of each bar represents the percent of patches in that bucket.

see that even though Pe2 has a higher percentage of patches with
more coverage, it has lower overall coverage than Pe3. To better
understand the relationship, we tested the correlation between
patch coverage and overall coverage. We computed the Kendall Tau
coeflicient between patch coverage and overall coverage for each
patch. We found that there was no correlation between the two
variables [r=-0.01,p<0.01].

Finding: Patch coverage varies widely between projects. Patch
coverage does not correlate with overall coverage.

RQ2: What impact do patches have on the coverage of ex-
isting (non-patch) code? While patch coverage considers how
well-tested a patch may (not) be, it surely cannot be the only cri-
teria used to judge the impact of that patch. For instance: a patch
might have 100% patch coverage, but applying that patch might
reduce the coverage of existing code.

Hence, to better understand the impact of each commit, we also
look at the effect that each commit has on the unchanged, existing,
non-patch code in the project. We categorized the impact of each
commit on existing (non-patch) code as a net-increase to the number
of existing lines covered, net-decrease, or having no impact. Upon
a preliminary investigation, we observed that many of the commits
which increased or decreased coverage in non-patch code contained
no changes to code themselves. Hence, we further separated each
of these groups into patches with and without changes to code files.
This statistic is complementary to patch coverage: when reviewing
a patch, in addition to seeing that the patch is covered or not,
developers can also see if this patch increases or decreases the
coverage of the rest of the codebase. Rather than looking at total

coverage (of both the new and the existing code), by separating
the coverage of a patch from the coverage of existing code, we can
observe instances where overall coverage might go up (for instance,
because a patch contained a very large number of newly covered
lines), but coverage of non-patch code might go down (because that
patch removes calls to existing code).

Figure 3 shows the impact of each commit on non-patch code
coverage for all commits for each project in our corpus. It is interest-
ing to note that different projects have very different profiles. Some
projects, such as Pe2 have many commits to non-code files which
nonetheless have an impact on coverage. Other projects, such as
P47 have almost no such commits, where most commits do touch
code files and do impact coverage of existing code.

Upon manual inspection, we found that many of these non-code
changes involve changing configurations. These changes could be
causing changes to coverage due to differences between different
versions of APIs or other non code changes. P46 contained many
non-code changes; one example commit message describes the
change as “Fix build on latest JDK9” and the only changes are to
the project’s pom.xml file [8]. These changes to coverage could also
be due to non-determinism [22], rather than intentional changes.

To determine if there is a relationship between patch coverage
and non-patch coverage, we perform a statistical analysis. For each
commit in our data, we look at all of the patches which have at
least one statement in their diff. We then computed the change to
non-patch coverage by calculating the ratio between the number
of non-patch lines hit and the total number of non-patch lines.
We computed the Pearson’s correlation coefficient between patch
coverage and non-patch coverage for each patch. We found no
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correlation between the two variables [r=-0.004,p=0.79], concluding
that coverage of a patch is not correlated with the patch’s impact
to coverage of existing, non-patch code.
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Figure 4: Percentage of commits (size of bar) with statements changing coverage (color of bar) even when the total project
coverage did not appear to change.
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of that generated code remained stable, making coverage appear to
be stable. We found that general non-determinism in P35 and P46
caused the lines covered to vary.

Finding: Patches often impact coverage of existing (non-
patch) code, and high patch coverage does not correlate with
increasing non-patch coverage.

RQ3: Are all changes equally visible? When developers observe
that overall coverage has not changed between different builds, they
might naturally assume that there have not been changes to what
their tests execute. However, it is possible that the lines covered
might change — perhaps drastically — even if the total project
coverage appears to be the same. We call these changes occluded,
and study their prevalence in our dataset. To do so, we filtered our
data to examine only commits where there did not appear to be
any change to coverage from the prior build (specifically, where
the difference in coverage was less than 0.01 percentage points),
and then calculated the number of statements changing coverage.

Figure 4 shows how many occluded changes we observed per-
project, per-commit: each colored bar represents a range of occluded
statements, and the size of the bar represents the percentage of
that project’s commits at that level. We observe that the number of
occluded changes varies widely by project — they are very preva-
lent in some projects and uncommon in others. However, every
project had at least one commit where there were occluded changes,
indicating that “steady” coverage does not imply “no change” to
code covered. We looked closer at P25, P35 and P46, which always
had occluded changes. We found that P25 contained a large amount
of generated code that often changed between commits, but the size
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Finding: Even when patches appear to leave coverage un-
changed, the set of lines covered can still vary widely. Devel-
opers should not trust a seemingly steady coverage metric to
indicate that the same lines are continuously covered.

RQ4: How does the set of existing lines covered change? In
our prior questions, we considered how a patch is covered or how it
impacts the coverage of existing code. Here, we study the coverage
of individual lines changing over time. Each time that tests are run,
the coverage of a line might “flip” from covered to uncovered, or
uncovered to covered. For each commit, we examine each flipped
line in our dataset. To do so, we used the diff tool to identify (1)
all lines that exist in every version of each project studied, and (2) a
mapping for each of those lines in each revision to the equivalent
line number in the most recent revision. We used this global ID to
track the position of each line over time and then computed the
number of times that each of these lines flipped coverage. Figure 5
shows the distribution of the number of flips for each of these lines.
We see lines which only flip once, all the way up to a single line
which flips coverage 128 times. A line with a high flip count is likely
covered non-deterministically, and hence, its coverage might be
less important for developers to follow on a day-to-day basis. We
note that P25 and P46 (which had many occluded changes) also have
lines with many flips in coverage.

We randomly select some of the lines with many flips to better
understand why lines are flipping coverage. In one, a line in P20
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Figure 5: Distribution of how many times coverage flipped for unmodified lines throughout all revisions of each project,
showing only lines that changed coverage at least once. The x-axis displays the number of covered/uncovered transitions.

(DBIHealthCheck.java:31), the high-flip statement checks to see
if a database connection is still open at a regular time interval.
In some cases, tests might complete before this health check is
scheduled, causing it to not be executed. In another case, a line
in Pe8 (TFTPServer.java:643), we found a high-flip statement that
was dependent on a network socket’s state — and would detect
lost packets. The coverage of this line is dependent on whether
packets are lost in transmission during the test case — which occurs
non-deterministically.

Finding: Lines may often flip between covered and uncov-
ered, suggesting non-determinism in the test suite. Tool builders
should consider how to best track and represent this non-
deterministic coverage.

RQ5: What kinds of changes to code drive changes to cover-
age? We conclude our study by returning to project-level coverage,
looking at what kinds of changes cause coverage to change. A tradi-
tional viewpoint might be that coverage increases because existing
lines of code become covered, and coverage decreases because those
lines are no longer covered. However, of course, looking at a specific
revision of a project (compared to the prior), coverage can change
for a variety of reasons. For instance, adding new lines will cause
coverage to increase or decrease, depending on the coverage of the
new lines that are added to the code. Likewise, deleting lines can
also impact coverage. If the deleted lines were covered, it can cause
coverage to decrease, and if the deleted lines were not covered, it
can cause coverage to increase. Coverage can also change due to
change in coverage of unchanged lines.

Figure 6 shows all of these impact factors for all revisions of each
project. By identifying the different impact factors and what role
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they play in each projects, we can make observations about how
the projects and their test code are changing over time, rather than
simply observing “coverage increased” or “coverage decreased”. For
some projects (e.g., P38) we observe that over 75% of the changes
to coverage are because of new lines being added. This suggests
that most of the code changes are coming from new development.
However, for other projects (e.g., P02), we observe that they expe-
rience many changes when coverage is lost or added to existing
lines. This seems to point to higher levels of non-determinism in
that project’s tests, especially when there are a similar number of
changes adding and losing coverage. Comparing to Figure 5, we
observe that projects with lines that flip coverage often (P02, Po7,
P25, P42, P46) also have significant numbers of coverage changes
driven by changes to existing code.

Finding: Many factors have an impact on coverage: newly
covering existing statements is not always the primary driver
to coverage change.

4 DISCUSSION

In this section we discuss our findings, presenting implications
for Developers, Tool Builders and Researchers and discuss several
limitations of our study.

4.1 Implications

Developers: Between subsequent revisions, there is often very lit-
tle observable change in overall project coverage, especially for
large projects. Because of this, developers use tools [1-3, 6, 7] that
examine patch coverage. However, while knowing if a patch is
covered or not clearly has value, developers should not use patch
coverage as a stand-in metric to evaluate the impact of a patch
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Figure 6: Overview of key factors driving change to coverage of each project during the entire development period measured.
Size of bar represents how much that factor contributed to the net change in coverage. Green factors increase coverage, red

decrease coverage.

on the overall project coverage. We found that patches often im-
pact the coverage of existing non-patch code, and importantly, that
having high patch coverage does not correlate with increasing the
overall coverage of a project. Developers should adjust their code
review processes to consider not only the patch coverage, but also
its effect on non-patch code coverage. More generally, developers
should consider using more detailed metrics than just the ratio of
statements covered to measure their code’s testedness.

Developers should be aware that even if the number of lines cov-
ered remains relatively static, the set of covered lines can greatly
vary between runs. If there is concern that a particular part of the
project is covered, developers need to specifically track that the
relevant lines in that part are covered, because we found that there
can be a significant churn in the set of lines covered. We found that
in some projects, individual statements might change their cover-
age very often — perhaps every single build. Hence, developers who
closely track coverage must be aware of inherent non-determinism
in coverage. If developers have a better understanding of how and
where their coverage is not deterministic, they may be better pre-
pared to address other impacts of this non-determinism, such as
flaky test failures.

Tool Builders We observed that many commits do not involve
changes to code files, yet these changes can still change the coverage
of existing code, a finding with implications for tool builders whose
tools rely on code coverage (for instance, regression test selection
tools). Tool builders must be aware of all inputs (e.g. config and data
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files, as well as non-determinism) that can impact test execution —
not only the code itself.

Our study also has implications for tool builders creating code
coverage tools. Other researchers [22, 29, 39] have also identified
non-deterministic behavior when studying tests. We believe that
tool builders should build tools to help developers identify which
tests are deterministic, and which are not. Currently, there is no way
for developers to identify if their tests are covering code in a deter-
ministic or non-deterministic manner without rerunning tests and
comparing very low level coverage data, or waiting for a test to fail
in a non-deterministic manner, and having to track down the source
of the problem. To help developers identify non-deterministic be-
havior, tools should show developers which lines have changes
in coverage (even unchanged lines), and which of those changes
are non-deterministic (or at least potentially non-deterministic).
This information would be a valuable tool for developers when
debugging flaky test failures [12].

We also found that there are various reasons why coverage can
increase or decrease. Current tools show the change in coverage,
but they do not show why there was a change. If developers are
aware of how their coverage is changing, and they are not expecting
it to change based on their latest commit, they can then evaluate
whether their tests are flaky, or if their latest change impacted
the system coverage in ways that they were not expecting. Either
way, having this information can help developers better understand
their system, and the state of their automated test coverage. Code
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coverage tools should fuse code change information with code
coverage information, as the Operias tool [32] also proposed.
Researchers Our study was the first to make use of the Cov-
eralls service [19] to gather code coverage data. Code coverage
data is notoriously hard to collect, because older project versions
are often hard to compile and run, and collecting coverage takes
machine time. Fortunately, Coveralls both collects and makes avail-
able real data from many different types of projects. This data can
be invaluable for researchers who wish to better understand code
coverage. By leveraging this data, researchers can use coverage
data without having to collect and run historical versions of soft-
ware, which may be very difficult due to missing dependencies and
other infrastucture-related problems. We expect that analysis of
data from Coveralls can lead to new insights similar to how analy-
ses of GitHub and TravisCI [13, 16, 33, 37, 38, 42, 44] data enabled
researchers to obtain new insights into software development.

4.2 Threats to Validity

1) Construct: Are we asking the right questions? To ensure we are
asking the right questions, we base a number of our questions on
previous research. For our new research questions, we posed these
questions before looking into our data, based on our anecdotal
experience from our own development noticing that code coverage
can vary greatly.

2) Internal: Did we skew the accuracy of our results with how we
collected and analyzed information? We chose projects that were
used in previous research, enhanced with a set of large projects
with diverse demographics collected from Coveralls. To provide
confidence that we have not skewed the results and allow for greater
scrutiny, we have made all of the scripts that we wrote and the data
we collected available with this paper.

3) External: Do our results generalize? To have our results generalize
as much as possible, we selected a large and diverse set of projects
in various languages, and from various types of applications. Our
dataset is almost an order of magnitude larger (both in terms of the
number of projects and the number of builds) than prior related
studies, which is encouraging. All of the projects are open source, so
we cannot make any claims about how our results might generalize
to proprietary projects.

4) Replicability: Can others replicate our results? To support oth-
ers in replicating our results, we have made our data and the R
scripts that we used to process our data publicly available. These
can all be found on the project’s companion website: http://www.
code-coverage.org

5 RELATED WORK

Previous Coverage Studies. We are not the first researchers to
study code coverage of software programs. Elbaum et al. [21] study
two systems using different types of code coverage metrics. The
authors find that the impact of changes on coverage information
can be difficult to predict, but calls for further study of the effects
of software evolution on coverage information is needed.
Zaidman et al. [43] study three systems and observe changes to
coverage. The paper reports that there are periods when the tests
and code evolve together, but there also are periods of intense test-
ing. The paper also suggests future work should include analyzing
more and larger cases to better understand test coverage evolution.
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The most related work to ours is from Marinescu et al. [29].
The authors present both a tool and dataset of code coverage. To
evaluate the tool, the paper uses six C/C++ systems. The paper
answers nine research questions, three of which are repeated in this
paper. Marinescu et al’s work was also the first to specifically focus
on patch coverage, although other researchers [32] have developed
tools to help developers visualize patch coverage. In this paper, we
examine both patch coverage and also non-patch coverage, and use
a significantly larger dataset.

Other Coverage Work. Coverage has often been used as a
metric when studying some property of a system. Kochhar et al. [26]
find that code coverage has an insignificant correlation with the
number of bugs that are found after the release of software at
the project level. Mokus et al. [31] find that test effort increases
exponentially with test coverage, but the reduction in field problems
increases linearly with test coverage. They suggest that the optimal
level of coverage for most projects is likely to be well short of
100%. Ahmed et al. [9] study the relationship between statement
coverage and mutation score. They find that both metrics have
only a weak negative correlation with bug-fixes. Memon et al. [30]
describe the challenge when dealing with a codebase the size of
Google’s, and how it is not possible for them to collect coverage at
that scale. Pinto et al. [34] have used coverage to study how tests
evolve over time. One category of test evolution they identify is
coverage augmentation tests. Gao et al. [22] investigate differences
between unit testing, system tests, and invariant detection. They
find that when executing system tests, there is often significant
non-determinism in the lines that are executed by each test. Our
results confirm this finding also.

6 CONCLUSIONS

Statement coverage is often used by developers to evaluate the
quality of their test suites. However, by reducing coverage to a
single ratio, much valuable information is lost. When working with
a large mature project, only very large changes to the number of
lines covered will be detectable as a change in the overall coverage,
so moderate changes to the test suite may not be observable. Even
on smaller projects, viewing coverage as a simple ratio hides po-
tential non-determinism that exists in tests and changes to which
statements are covered. Of course, many of these changes to non-
patch code may be due to the genuine impact of code changes
too; interesting future work may try to identify changes due to
non-determinism versus those due to code changes, perhaps using
dynamic taint tracking [11]. In this paper, we found that measuring
the change in the set of statements covered, and the impact of a
patch on the coverage of those statements allows developers much
more visibility into the impact of their changes. We have released
our tools and data so that others can benefit from them and build on
our work to obtain new insights that eventually lead to improving
quality of testing.
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