
A Large-Scale Study of Test Coverage Evolution

Michael Hilton
Carnegie Mellon University

Pittsburgh, PA, USA
mhilton@cmu.edu

Jonathan Bell
George Mason University

Fairfax, VA, USA
bellj@gmu.edu

Darko Marinov
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

marinov@illinois.edu

ABSTRACT

Statement coverage is commonly used as a measure of test suite

quality. Coverage is often used as a part of a code review process:

if a patch decreases overall coverage, or is itself not covered, then

the patch is scrutinized more closely. Traditional studies of how

coverage changes with code evolution have examined the overall

coverage of the entire program, and more recent work directly ex-

amines the coverage of patches (changed statements). We present

an evaluation much larger than prior studies and moreover consider

a new, important kind of change — coverage changes of unchanged

statements. We present a large-scale evaluation of code coverage

evolution over 7,816 builds of 47 projects written in popular lan-

guages including Java, Python, and Scala. We find that in large,

mature projects, simply measuring the change to statement cover-

age does not capture the nuances of code evolution. Going beyond

considering statement coverage as a simple ratio, we examine how

the set of statements covered evolves between project revisions.

We present and study new ways to assess the impact of a patch

on a project’s test suite quality that both separates coverage of the

patch from coverage of the non-patch, and separates changes in

coverage from changes in the set of statements covered.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Software testing, code coverage, empirical study, flaky tests

ACM Reference Format:

Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale

Study of Test Coverage Evolution. In Proceedings of the 2018 33rd ACM/IEEE

International Conference on Automated Software Engineering (ASE ’18), Sep-

tember 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3238147.3238183

1 INTRODUCTION

Code coverage metrics are often used by developers to identify how

well-tested an application is. There are a wide variety of coverage

metrics, including statement, branch, MC/DC, method, file, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238183

path coverage [10]. Statement coverage—the ratio of statements

executed by tests divided by total number of statements—is the

simplest but most commonly used.

Modern development workflows often use a continuous integra-

tion (CI) service to build every push and run their project’s tests.

As CI services have become widely adopted [25], ancillary services

that track additional metrics from CI, such as code coverage, are

also becoming more popular. Developers can configure CI services,

such as Travis [40], to post code coverage data to a service such as

Coveralls [19], which makes the data easily available to developers,

for instance when reviewing pull requests. Coveralls maintains a

record of a project’s coverage over time. Additionally, Coveralls can

automatically update coverage badges that display the latest cover-

age result on a project’s homepage [41]. This growing public record

of coverage data, organically collected by developers, provides a

great opportunity for researchers to study real code coverage data.

To the best of our knowledge, we are the first researchers to study

coverage data collected and so widely shared by developers.

While the overall statement coverage of a test suite provides

some insight into its (in)completeness, it reduces the quality mea-

sure to a single ratio, making developers potentially miss valuable

information about their test suite and its limitations. For developers

of large, stable projects that have a large number of statements, it

is often difficult to recognize any noticeable change in this metric

from one commit (patch) to another, e.g., for a project with 1 mil-

lion lines1 of code, a change in coverage of even 100 lines would

only impact coverage by one hundredth of one percentage point.

Nonetheless, these changes can add up over time: although a sin-

gle 100-line patch may not make a noticeable change in coverage,

many small patches can make such a change. Even more concern-

ing, coverage of some lines may change non-deterministically due

to inherent non-determinism in the tests [22, 28, 29]. Even in

smaller projects, where an increase in the overall coverage might

be more noticeable, tracking only this simple ratio does not capture

which statements are covered [32]. In an extreme case, a project

with 50% code coverage could maintain that overall coverage while

completely flipping the set of statements covered. Coverage can

also increase, seemingly indicating a better test suite, even when

that is not necessarily the case, e.g., coverage might go up despite

a drop in the number of executed statements if code is removed,

decreasing the total number of statements even more.

One approach for gaining better insights from statement cov-

erage is to focus not on the coverage of the entire system under

test (SUT) but, instead, only on the coverage of each patch (changed

statements) performed on the SUT [4, 19, 29, 32]. Collecting patch

coverage can be useful because if a patch is not covered enough,

1This paper uses “line(s)” and “statement(s)” interchangeably.

53

ASE ’18, September 3–7, 2018, Montpellier, France Michael Hilton, Jonathan Bell, and Darko Marinov

2b. Extract data from Coveralls API
1b. GitHub +

Coveralls mining

1a. Literature

search

2a. Clone and build projects, collect

coverage
3. Analyze diffs and

coverage per-build

4. Visualize aggregate

data

18 projects

29 projects

2,456 builds

5,360 builds
47 projects,

7,816 builds

Identifying Projects Collecting Coverage Synthesizing Results Generating Visualizations

Figure 1: Overview of methodology. Compared to prior studies: green is new; yellow is nearly an order of magnitude larger.

then developers can easily flag this patch in code review and require

more tests to be added with the patch. However, even if a patch is

well covered, the impact of the patch on the non-patch (unchanged

statements) part of the SUT is not known a priori.

Prior empirical work has evaluated how coverage changes during

code evolution but for a relatively small number of projects and

builds. For example, Zaidman et al. [43] reported a high amount of

manual labor when studying just 3 projects (and collecting coverage

for a total of 30 builds), while Marinescu et al. [29] reported an

immense amount of infrastructure needed to collect coverage data

from just 6 projects (for a total of 1,222 builds). Further, while

prior work has investigated the change in overall coverage, or the

coverage of patches, no prior empirical study has examined how the

set of lines covered changes. Even when the overall SUT coverage

appears stable, and the coverage of new patches is high, are the

actual lines covered still changing? Or, are there hidden changes to

coverage that developers should be aware of, beyond coverage of

the entire SUT and coverage of the patch?

To better understand code coverage, how it changes, and how

developers can better reason about their code and their tests, we

present a large-scale longitudinal study of test coverage evolution.

Our study builds on prior empirical work studying code coverage

but increases the number of projects (47, written in 7 different lan-

guages) and revisions of those projects (7,816) by almost an order

of magnitude. Also, ours is the first study of code coverage to corre-

late the coverage of individual lines of coverage throughout project

evolution, tracking how a line may become covered and then later

become not covered. Further, ours is the first study to utilize code

coverage history that developers collect on Coveralls [19] (gathered

through the public API of the Coveralls service), in addition to

coverage metrics that we collect ourselves.

In this paper, we answer the following questions:

RQ1:What is the distribution of patch coverage across revi-

sions?What fraction of a patch is covered by the regression

test suite? Do projects with high patch coverage also have

high overall coverage?

RQ2: What impact do patches have on the coverage of non-

patch code? Do we see similar behavior across projects?

Does high patch coverage imply that a patch increases cov-

erage of non-patch code?

RQ3:Are all changes equally visible?Do projects have changes

that are occluded (hidden)?

RQ4: How does the set of covered lines change? Are there

hot-spots of coverage change, i.e., lines that flip between

being covered and uncovered throughout evolution?

RQ5: What kinds of changes to code drive changes to cov-

erage? Does code coverage change more because old code

becomes tested, or because new, tested code is added? Or, do

line deletions drive changes to code coverage?

To answer these questions, we prepare an extensive dataset

of code coverage, develop a toolset for automated analysis, and

perform various analyses, making the following contributions:

• Dataset: Our dataset of code coverage information from

7,816 revisions of 47 projects is publicly available:

http://www.code-coverage.org

• Toolset: Our toolset includes the scripts that gathered our

dataset and that can analyze the dataset, allowing other

researchers to perform similar experiments and build new

tools that analyze coverage change.

• Novel Coverage:Wehighlight the importance ofmeasuring

change in coverage of unchanged code.

• Results:We perform several analyses and present new find-

ings that answer the listed research questions. One finding

is that which lines are covered can vary widely in a project,

even when the overall coverage appears to remain the same.

• Implications:We identify important implications for devel-

opers, tool builders, and software engineering researchers

working to measure and improve test quality. For instance,

we found that changes to non-code files often impact code

coverage, and hence, regression test selection tools should

track such dependencies to be safe.

2 METHODOLOGY

Researchers have previously studied the evolution of code cover-

age [21, 29, 43] by downloading some open-source projects and, for

several revisions of these projects, compiling the code and running

tests while collecting code coverage. Our methodology builds on

this approach but significantly expands the breadth of the study

by including almost an order of magnitude more projects (47) and

revisions (7,816). We leverage Coveralls [19], the increasingly pop-

ular service for tracking code coverage for open-source projects.

We also significantly extend the depth of the study by tracking the

change to coverage of individual statements across revisions.

Figure 1 shows an overview of our methodology. We first iden-

tified candidate projects to include in our study, selecting both

projects studied in recent regression testing research and projects

that use the Coveralls service. We then collected coverage for these

projects, either running the test suites ourselves or collecting data

from Coveralls. We next aggregated the data with version-control

history to track the coverage of individual code lines throughout

project evolution. We finally summarize and visualize the results.

2.1 Identifying Projects

Automatically downloading, compiling, and executing tests for

open-source projects is often non-trivial. Some projects fail to com-

pile (e.g. due to missing dependencies), and others require manual

configuration or installation of external dependencies. However,

54

A Large-Scale Study of Test Coverage Evolution ASE ’18, September 3–7, 2018, Montpellier, France

excluding projects that require some degree of manual configura-

tion could bias the projects included in a study. We relied on two

complementary approaches to gather a diverse set of projects.

Traditional Evaluation: We identified four recent research

papers [12, 15, 23, 36] that had experiments with software evolution

(specifically with regression testing). We tabulated the open-source

projects studied in these experiments and tried to clone, build,

and test each of them. In total, we selected 29 projects: 11 (of the

32) from [23], 5 (of the 10) from [15], 3 (of the 17) from [36], and

10 (of the 26) from [12]. We included all projects which (1) used

the Maven build system and (2) successfully compiled (on its most

recent commit) with the command mvn package. We allowed for up

to thirty minutes of troubleshooting per project to potentially install

external dependencies required by the project as may have been

specified in README files or error messages during this process.

These 29 projects make up our traditional evaluation set.

In Vivo set: We broadened the scope of our evaluation by in-

cluding projects which we did not compile or test ourselves, instead

leveraging coverage data collected and shared by the project devel-

opers themselves. Coveralls [19] is a free service that stores cover-

age data, allowing developers to track the coverage of their projects

over time. Many open-source projects from GitHub use Coveralls

as part of their continuous integration (CI) pipeline: when develop-

ers push their changes to GitHub, a CI service (e.g. TravisCI [40])

automatically fetches these changes, compiles the project, runs the

test suite, and uploads coverage data to Coveralls. While some prior

work [12, 14, 27] has used the output of CI services, like TravisCI,

as a dataset for evaluation, we are not aware of any prior work that

used code coverage from services like Coveralls as we do. Reusing

coverage data has several advantages: (1) we can include projects

that are more complex to build, for which developers have provided

automated configuration scripts to a CI service; (2) we can include

projects written in any language supported by Coveralls, because

it abstracts the actual collection of code coverage; and (3) we need

not expend resources compiling and running these projects’ tests.

We refer to the data from Coveralls as our in vivo evaluation set,

because the coverage results come directly from the field.

To identify projects for our in vivo dataset, we started by crawl-

ing GitHub to find projects that use both TravisCI and Coveralls

services. We searched GitHub by project language (including most

popular and more recent languages in our criteria), looking for

projects with configuration files that refer to Coveralls, collecting

the most-starred projects per language meeting our criteria. For

each project that referred to Coveralls, we queried the Coveralls’

public API [20] to detect if the project indeed has publicly avail-

able coverage data on Coveralls. For each project that had data, we

checked the number of builds for which the project shipped cover-

age data to Coveralls, and the number of lines of code in the most

recent version of the project. We then picked arbitrary thresholds

to filter out projects with short histories on Coveralls (less than 250

revisions built and tested) or trivially small projects (less than 1,000

lines of code total), leaving 19 projects.

2.2 Collecting Coverage

Traditional Evaluation:We conducted our traditional evaluation

by compiling, testing, and collecting coverage on each of the 250

most recent commits of the 29 projects that we had identified,

successfully completing a total of 5,382 builds. We ran these builds

on a cluster of Ubuntu 14.04 virtual machines, running Apache

Maven 3.3.9 and Java 1.8.0_131. We collected coverage using the

mature JaCoCo tool [5], configured to collect coverage of all project

code files. If a build failed, we did not seek out more builds, hence we

may not have 250 successful builds of each project. We considered

other coverage tools, Cobertura [18] and Clover [17], but neither

fully supports Java 8, and hence, would have limited our study to

include only projects that do not use recent Java features.

In Vivo set: Coveralls terms of use request broadly that users of

their API do not impose an undue load on the service, and we did

not want to abuse the service. Unfortunately, collecting our data

required making many requests to the service: one per file, per-

revision, per-project. Hence, a project with 1,000 files would require

1,000 requests to collect detailed coverage of each file of a single

revision. We self-imposed a rate limit of 5,000 requests per hour and

restricted our data collection to only several days. We contacted

Coveralls to inquire if they could make the data easier to obtain

(e.g., one request for all files in a revision) and to check that our

procedure would not place an undue load on their service, but we

received no response. Hence, for the 19 projects, we downloaded

coverage data for only 2,575 builds—we skipped the remaining

builds to not abuse the service.

2.3 Determining Code Changes

The next step in our study required unifying the coverage data

with code change information. For each commit of each project,

we needed to find which lines were added, modified, or removed

from the previous commit. Because our experiments include only

projects that use the Git version-control system, it was relatively

straightforward to collect code change information using git diff

. Using the diff algorithm, we simplified the potentially rather

complex process of tracking lines that may have moved or shifted

throughout the codebase [35]. We matched each commit with its

parent commit for whichwe had data, using Git information to track

branching and ensuring that each commit was properly matched

with a prior commit from which it descended. We compare each

commit with its parent, obtaining the list of added and removed

lines. For the remaining (unchanged) lines, we built a mapping

between the line numbers from the two commits, which is non-

trivial when new lines are added or old lines deleted from files,

making it difficult to identify where a line from a prior commit

is in the next commit. We used diff to generate these mappings,

invoking it for each changed file to determine the new line number

of each line from the previous commit of that file.

2.4 Aggregating Results

Finally, we aggregated code coverage and code change information,

and generated visualizations by creating and running a series of R

scripts. Table 1 shows a summary of basic statistics for each project.

For the remainder of this paper, we refer to projects by their ID

(the far left column). For each project, we report the programming

language, the prior paper or Coveralls (abbreviated as C.IO), the

number of builds studied, average lines of code across commits, and

the total commit time window that our coverage data spans. The

Coveralls projects are mostly smaller (in LoC) than the rest, but

nonetheless are similar in overall coverage. Before addressing our

55

ASE ’18, September 3–7, 2018, Montpellier, France Michael Hilton, Jonathan Bell, and Darko Marinov

Table 1: Key statistics describing all of the projects included in this study.

Coverage % of Commits Changing: Avg. Patch Size (Lines)

Project Lang Source Builds LoC

Time
range
(months) Start Sparkline End Test Source Both Neither Source Test All

P01 apache/commons-collections java [24] 189 12,765 40 84% 84% 6% 34% 24% 36% 89 53 154
P02 apache/commons-dbcp java [24] 164 5,662 19 48% 51% 13% 27% 12% 48% 14 14 37
P03 apache/commons-exec java [12] 212 971 65 63% 72% 24% 17% 13% 47% 13 20 44
P04 apache/commons-functor java [24] 248 2,693 69 83% 97% 11% 47% 8% 34% 116 78 210
P05 apache/commons-io java [24] 35 5,021 2 88% 87% 26% 26% 31% 17% 97 79 178
P06 apache/commons-jxpath java [24] 199 9,633 94 75% 77% 8% 33% 13% 47% 74 9 125
P07 apache/commons-math java [24] 217 45,034 16 90% 90% 19% 39% 32% 10% 314 114 935
P08 apache/commons-net java [24] 53 9,210 1 30% 30% 11% 40% 11% 38% 40 4 61
P09 apache/commons-validator java [24] 104 2,854 10 77% 78% 23% 36% 21% 20% 44 10 65
P10 apache/empire-db java [24] 241 21,258 60 14% 14% 0% 72% 3% 24% 158 1 190
P11 apache/httpcore java [12] 223 13,198 18 77% 75% 13% 36% 39% 11% 1,249 387 1,658
P12 ARMmbed/mbed-ls python C.IO 60 804 6 75% 78% 2% 65% 30% 3% 27 11 53
P13 bitwalker/timex elixer C.IO 128 2,615 16 65% 68% 2% 50% 31% 16% 23 6 79
P14 broadinstitute/firecloud-orchestration Scala C.IO 170 2,658 13 64% 68% 4% 16% 64% 16% 93 95 213
P15 containers/virtcontainers go C.IO 296 5,332 9 66% 61% 1% 33% 42% 23% 1,276 51 1,664
P16 coreos/alb-ingress-controller go C.IO 98 2,041 7 3% 21% 0% 50% 27% 23% 509 34 569
P17 damianszczepanik/cucumber-reporting java [15] 248 794 15 88% 99% 9% 8% 48% 34% 60 64 208
P18 dask/dask python C.IO 290 15,322 7 94% 92% 5% 21% 54% 20% 46 33 114
P19 doanduyhai/Achilles java [12] 111 11,008 9 56% 54% 4% 29% 41% 26% 370 201 626
P20 dropwizard/dropwizard java [12, 36] 246 7,700 9 86% 87% 9% 10% 24% 57% 13 21 50
P21 eBay/cors-filter java [15] 204 280 45 94% 100% 24% 27% 17% 31% 35 42 83
P22 F5Networks/k8s-bigip-ctlr go C.IO 103 5,621 5 76% 83% 7% 24% 33% 36% 68 48 191
P23 fasseg/exp4j java [15] 233 640 40 89% 95% 6% 12% 39% 43% 292 80 382
P24 Gillespie59/eslint-plugin-angular node C.IO 212 1,213 19 100% 100% 5% 20% 47% 28% 99 30 195
P25 goldmansachs/gs-collections java [24] 249 38,242 16 92% 93% 20% 20% 41% 19% 295 292 767
P26 google/jimfs java [12] 100 3,401 45 89% 91% 11% 23% 39% 27% 758 292 1,054
P27 HazyResearch/deepdive Scala C.IO 111 1,913 5 81% 73% 0% 17% 8% 75% 31 29 271
P28 hector-client/hector java [12] 137 8,583 25 35% 39% 4% 55% 32% 9% 114 50 195
P29 ikawaha/kagome go C.IO 91 1,099 27 80% 86% 10% 33% 29% 29% 111 29 144
P30 ilovepi/Compiler dotNet C.IO 96 1,874 1 87% 90% 7% 57% 31% 4% 209 19 238
P31 jhy/jsoup java [15] 246 6,615 28 76% 77% 11% 23% 41% 25% 33 16 70
P32 jknack/handlebars.java java [12] 100 3,935 9 83% 84% 11% 30% 40% 19% 192 26 225
P33 JodaOrg/joda-time java [24, 36] 248 14,789 35 90% 90% 5% 25% 17% 53% 11 7 90
P34 joel-costigliola/assertj-core java [12, 36] 241 11,104 9 90% 90% 15% 22% 42% 22% 234 315 557
P35 mailgun/kafka-pixy go C.IO 64 4,387 13 80% 69% 6% 27% 59% 8% 983 233 1,385
P36 MITLibraries/topichub Scala C.IO 102 2,466 11 57% 60% 7% 25% 43% 25% 33 40 112
P37 platinumazure/eslint-plugin-qunit node C.IO 62 628 22 100% 100% 8% 6% 27% 58% 55 27 102
P38 PragTob/benchee elixer C.IO 148 441 6 94% 94% 7% 29% 44% 20% 56 52 119
P39 raml-org/raml-java-parser java [15] 248 6,455 16 86% 86% 2% 58% 23% 17% 168 9 605
P40 ShiftForward/apso Scala C.IO 94 1,629 9 54% 59% 7% 19% 29% 45% 30 13 58
P41 spatialmodel/inmap go C.IO 55 5,983 9 81% 83% 5% 24% 36% 35% 273 98 442
P42 square/okhttp java [12] 247 11,854 10 78% 78% 10% 29% 45% 15% 36 33 72
P43 square/retrofit java [24] 181 2,479 17 56% 57% 7% 35% 38% 20% 119 102 235
P44 SteamDatabase/ValveResourceFormat dotNet C.IO 179 2,794 23 82% 73% 2% 80% 4% 13% 108 1 147
P45 terasolunaorg/terasoluna-gfw java C.IO 97 2,561 17 99% 99% 12% 4% 16% 67% 1,481 1,188 2,921
P46 undertow-io/undertow java [12] 238 51,388 9 60% 60% 7% 72% 18% 4% 49 12 64
P47 zxing/zxing java [12] 198 15,440 21 68% 76% 5% 34% 16% 45% 31 7 712

Total 47 projects, 384,412 LOC Average: 166 8,178 20 74% 76% 9% 32% 30% 29% 224 93 397

five research questions, we present three demographic questions,

DQs, that describe the overall composition of our dataset in terms

of patches and overall coverage.

DQ1: Do patches touch both code and tests? This question mir-

rors a question often studied in the context of code coverage and

mining software repositories [29, 43]. We examined each patch of

each project, looking at the files changed by each patch. We cate-

gorized each file as a test code file, source code file, or a non-code

file. Code files were defined as ending with the correct suffix given

the project language: .java, .scala, .go, .js, .ts, .cs, .ex, .exs, .py. Fol-

lowing prior work [43], code files were then categorized as test or

source code files if their path contained “test” or “.spec”. Table 1

presents the results. Similar to prior studies [29], we found that few

commits modified only test files; far more common were commits

that modify both test and non-test files, or only non-test files.

DQ2: What are the sizes of each patch? This question also mir-

rors one posed previously [29]. If a project has primarily small

patches, then these patches are perhaps easier for humans to reason

about. However, if those patches are larger—hundreds, or thousands

of lines, they may require different approaches to be reasoned about.

To answer this question, again, we categorize files as “source code”

or “test code,” and compute the number of changed lines in each file.

This includes all changes to these files and counts each edited line

as a change. Table 1 shows the results (“Avg. Patch Size (Lines)”),

including all changed lines in the “all” column (in source code, test

code, or non-code files).

Our results strikingly differ from those of Marinescu et al. [29];

their study of six C/C++ programs reported a median number of

patch lines ranging between 4 and 7. While the difference may be

partly due to us counting all changed lines (not only executable

statements), this alone is unlikely to lead to such a significant

difference in the extreme cases of projects such as P11, P15, and P45.

We believe that this indicates that many of the projects that we

studied were under substantially more active development than

the mature projects in their study (GNU Binutils, Git, Lighttpd,

Memcached, Redis, and ∅MQ). This finding also underscores the

importance of sampling a diverse set of projects in empirical studies.

DQ3: How does coverage change over time? Finally, we calcu-

lated the coverage for each project across all commits we studied.

Table 1 reports the average lines of code (LoC) and coverage of each

56

A Large-Scale Study of Test Coverage Evolution ASE ’18, September 3–7, 2018, Montpellier, France

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47

0 (0−25) (25−50] (50−75] (75−100) 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

0% 25% 50% 75% 100%

Percent of builds satisfying patch coverage % at level indicated by color:

Figure 2: Coverage of new lines in each patch. Each bar represents the proportion of builds with that coverage level (as denoted

by the color). The black bar indicates the average overall coverage of each build per-project (against the percentage scale)

project at the start and end of our dataset, along with a sparkline

visualization showing how the coverage changed over time (scaled

to 0-100%). We see that our dataset contains a diverse set of projects:

some with low coverage, others with high; some with little change,

others with more. For most projects, coverage remains relatively

flat during the studied window, similar to prior results [29].

However, from the sparklines we see that some projects—in

particular P23, P27, and P44—have spikes in their coverage, where

coverage drops significantly and then returns to its prior position.

After manual inspection, it appears that this is often caused by

broken tests: if a test fails early in its execution, then it does not

continue to run and cover the statements that it would typically

cover. Unfortunately, while we had test result information from our

own experiments, we did not have easy access to test results from

Coveralls to filter out failed tests.

It is perhaps unsurprising that we do not observe significant

changes to coverage, given that our projects are non-trivially large,

averaging 8,178 lines of code. The most visible spikes (e.g. P23,

P27) are in projects with the fewest lines of code, while the largest

projects (P07, P25, and P46) appear nearly flat. Given that state-

ment coverage is simply the ratio of executed statements to total

statements, increasing coverage by even one percentage point may

require covering thousands of lines of previously uncovered code.

Hence, on a day-to-day basis, developers (especially of large, mature

projects) are unlikely to see changes in total coverage.

3 RESULTS

RQ1: What is the distribution of patch coverage across revi-

sions? Since it is difficult to observe changes to overall project

coverage on a day-to-day basis, prior work [4, 19, 29, 32] as well as

current tools [1–3, 6, 7] have advocated that developers pay particu-

lar attention to coverage of patches. We use the term patch, commit,

and change-set interchangeably: a unit that represents a developer’s

changes to code (without attempting to understand the nature of

the change as a bug fix or new feature). Given that patches are

generally much smaller than the overall codebase, patch coverage

might be more meaningful to developers reviewing a patch.

To study the coverage of patches in the wild, we calculated the

coverage of all changed statements in each patch in our dataset.

To visualize these results, we binned each patch by its coverage,

choosing bins of 0%, (0%-25%), (25%-50%], (50%-75%], (75%-100%)

and 100% coverage of the patch. Figure 2 shows the distribution of

patches in each bin, by each project. We also visualize the average

coverage across all versions of all of the code in each project with a

black bar. For example, for the project P01, almost 50% of the code

patches have 100% coverage. However, the overall coverage of all

code across all builds for this project is 85%.

This visualization is similar to one created by Marinescu et al. in

their study of patch coverage of six projects, with two distinctions:

(1) we add two more bins (“0” and “100” to segregate patches that

are fully covered or not at all covered, rather than simply 0-25,

25-50, 50-75, 75-100), and (2) we superimpose the overall project

coverage. Adding these two additional bins allows us to recognize

that, in fact, patches are often either entirely covered, or not at all

covered: it is far less frequent in the projects that we studied to

observe patches that were partially covered.

While it might seem intuitive that higher patch coverage implies

higher overall coverage, when we look at our data, we did not

see evidence of this. From this chart, we can observe that having

more patches with higher coverage does not always indicate higher

overall coverage. For example, when comparing P03 and P02 we

57

ASE ’18, September 3–7, 2018, Montpellier, France Michael Hilton, Jonathan Bell, and Darko Marinov

P01
P02
P03
P04
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47

0 25 50 75 100

Patches with changes to code files:
Patches with no changes to code files:

Increase

Increase

No impact

No impact

Decrease

Decrease

Figure 3: For each patch, we show whether it increases, decreases, or has no impact on coverage of existing (non-patch) code.

The size of each bar represents the percent of patches in that bucket.

see that even though P02 has a higher percentage of patches with

more coverage, it has lower overall coverage than P03. To better

understand the relationship, we tested the correlation between

patch coverage and overall coverage. We computed the Kendall Tau

coefficient between patch coverage and overall coverage for each

patch. We found that there was no correlation between the two

variables [r=-0.01,p<0.01].

Finding: Patch coverage varieswidely between projects. Patch

coverage does not correlate with overall coverage.

RQ2: What impact do patches have on the coverage of ex-

isting (non-patch) code? While patch coverage considers how

well-tested a patch may (not) be, it surely cannot be the only cri-

teria used to judge the impact of that patch. For instance: a patch

might have 100% patch coverage, but applying that patch might

reduce the coverage of existing code.

Hence, to better understand the impact of each commit, we also

look at the effect that each commit has on the unchanged, existing,

non-patch code in the project. We categorized the impact of each

commit on existing (non-patch) code as a net-increase to the number

of existing lines covered, net-decrease, or having no impact. Upon

a preliminary investigation, we observed that many of the commits

which increased or decreased coverage in non-patch code contained

no changes to code themselves. Hence, we further separated each

of these groups into patches with and without changes to code files.

This statistic is complementary to patch coverage: when reviewing

a patch, in addition to seeing that the patch is covered or not,

developers can also see if this patch increases or decreases the

coverage of the rest of the codebase. Rather than looking at total

coverage (of both the new and the existing code), by separating

the coverage of a patch from the coverage of existing code, we can

observe instances where overall coverage might go up (for instance,

because a patch contained a very large number of newly covered

lines), but coverage of non-patch code might go down (because that

patch removes calls to existing code).

Figure 3 shows the impact of each commit on non-patch code

coverage for all commits for each project in our corpus. It is interest-

ing to note that different projects have very different profiles. Some

projects, such as P02 have many commits to non-code files which

nonetheless have an impact on coverage. Other projects, such as

P47 have almost no such commits, where most commits do touch

code files and do impact coverage of existing code.

Upon manual inspection, we found that many of these non-code

changes involve changing configurations. These changes could be

causing changes to coverage due to differences between different

versions of APIs or other non code changes. P46 contained many

non-code changes; one example commit message describes the

change as “Fix build on latest JDK9” and the only changes are to

the project’s pom.xml file [8]. These changes to coverage could also

be due to non-determinism [22], rather than intentional changes.

To determine if there is a relationship between patch coverage

and non-patch coverage, we perform a statistical analysis. For each

commit in our data, we look at all of the patches which have at

least one statement in their diff. We then computed the change to

non-patch coverage by calculating the ratio between the number

of non-patch lines hit and the total number of non-patch lines.

We computed the Pearson’s correlation coefficient between patch

coverage and non-patch coverage for each patch. We found no

58

A Large-Scale Study of Test Coverage Evolution ASE ’18, September 3–7, 2018, Montpellier, France

P01
P02
P03
P04
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47

0 25 50 75 100

0 1−10 11−100 101−1,000 1,001+

Figure 4: Percentage of commits (size of bar) with statements changing coverage (color of bar) even when the total project

coverage did not appear to change.

correlation between the two variables [r=-0.004,p=0.79], concluding

that coverage of a patch is not correlated with the patch’s impact

to coverage of existing, non-patch code.

Finding: Patches often impact coverage of existing (non-

patch) code, and high patch coverage does not correlate with

increasing non-patch coverage.

RQ3: Are all changes equally visible?When developers observe

that overall coverage has not changed between different builds, they

might naturally assume that there have not been changes to what

their tests execute. However, it is possible that the lines covered

might change — perhaps drastically — even if the total project

coverage appears to be the same. We call these changes occluded,

and study their prevalence in our dataset. To do so, we filtered our

data to examine only commits where there did not appear to be

any change to coverage from the prior build (specifically, where

the difference in coverage was less than 0.01 percentage points),

and then calculated the number of statements changing coverage.

Figure 4 shows how many occluded changes we observed per-

project, per-commit: each colored bar represents a range of occluded

statements, and the size of the bar represents the percentage of

that project’s commits at that level. We observe that the number of

occluded changes varies widely by project — they are very preva-

lent in some projects and uncommon in others. However, every

project had at least one commit where there were occluded changes,

indicating that “steady” coverage does not imply “no change” to

code covered. We looked closer at P25, P35 and P46, which always

had occluded changes. We found that P25 contained a large amount

of generated code that often changed between commits, but the size

of that generated code remained stable, making coverage appear to

be stable. We found that general non-determinism in P35 and P46

caused the lines covered to vary.

Finding: Even when patches appear to leave coverage un-

changed, the set of lines covered can still vary widely. Devel-

opers should not trust a seemingly steady coverage metric to

indicate that the same lines are continuously covered.

RQ4: How does the set of existing lines covered change? In

our prior questions, we considered how a patch is covered or how it

impacts the coverage of existing code. Here, we study the coverage

of individual lines changing over time. Each time that tests are run,

the coverage of a line might “flip” from covered to uncovered, or

uncovered to covered. For each commit, we examine each flipped

line in our dataset. To do so, we used the diff tool to identify (1)

all lines that exist in every version of each project studied, and (2) a

mapping for each of those lines in each revision to the equivalent

line number in the most recent revision. We used this global ID to

track the position of each line over time and then computed the

number of times that each of these lines flipped coverage. Figure 5

shows the distribution of the number of flips for each of these lines.

We see lines which only flip once, all the way up to a single line

which flips coverage 128 times. A line with a high flip count is likely

covered non-deterministically, and hence, its coverage might be

less important for developers to follow on a day-to-day basis. We

note that P25 and P46 (which had many occluded changes) also have

lines with many flips in coverage.

We randomly select some of the lines with many flips to better

understand why lines are flipping coverage. In one, a line in P20

59

ASE ’18, September 3–7, 2018, Montpellier, France Michael Hilton, Jonathan Bell, and Darko Marinov

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●● ●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●● ● ●●●●● ●●● ●● ●●●● ●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●●●●●● ●●● ●●●● ●●

●●●●

●●●●●●

●●

●●●●●●●● ● ●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●●●● ●●●●● ●● ●● ●● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●●● ●●●●●● ●●●● ●●●● ●● ●●● ●● ● ●●●●● ●●●● ● ●● ● ●●●●● ●● ●● ●●●●●● ●● ●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●● ●●● ● ●●● ●●●● ● ●● ●●● ●●●●●●●●●●● ● ●●●● ●● ●● ●● ●●●● ●● ●● ●●● ● ● ●● ●● ●●● ●●●● ●●●●● ●●● ●●●●● ●● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●●●●● ●●● ●● ● ●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●●●●●● ● ●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●●● ●●●●● ●●●●●●● ●● ●●● ●●● ● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●● ● ●● ●● ● ●●● ●●● ●●● ●●●● ●● ●● ●●●●● ●●●●●● ●● ●●● ● ●●● ●●●●●● ●● ● ●●●● ● ●● ●●●● ●●●●●●● ●●●● ●●● ●● ●● ● ●●● ●● ●●●● ●●● ●●●● ●●●●● ●●● ●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●● ●●●● ●● ●●● ●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●● ●●●●● ●● ●● ●●●● ●●● ●● ● ●●● ●● ● ● ●●●● ●● ●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●●●●● ●● ● ●●●● ●● ●●● ●● ●● ●●● ● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●●●● ●●●● ●●● ●● ●● ●●●● ●●●● ●●●●● ●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ● ●●● ●●● ● ●●●● ●● ●● ●●●● ● ●●●●●●●●● ●● ●●● ●●●●● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●●●● ●● ●●●● ●●● ●●

● ●●●● ●●●● ●● ● ●●●● ●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●● ●●●●●●●●●● ● ●●●● ●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●

●●

●●● ●●● ●●●●● ●●● ●●● ●●● ●●● ●● ●●●●●●●●●●● ●●●●●●●● ● ●●● ●●● ●●●● ●● ● ●● ●●● ● ●●●●●●●● ●●● ●● ●● ●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●● ●● ●● ●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●●● ● ●●● ●● ●● ●●●●● ●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ● ●●● ●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ● ●●●●● ●●● ●●●●●● ●●●● ●●●●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●●● ●●●●● ●● ●● ●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●● ●●●● ● ●●● ●●●●●● ● ●● ●●●●●●● ● ●● ●● ● ●●● ● ●●●●● ●●● ●●● ●● ●● ●● ●● ●●●●● ●● ●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●● ●● ●● ●●● ●●●●●●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ● ●●●● ●● ●● ● ●●● ● ●●●●●● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●● ● ●● ●● ●●● ● ●●●● ●● ●●● ● ●● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ● ●●●●●●●●●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●●● ●●●●●●●●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●● ● ●●●●●● ● ●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●● ●● ●● ●● ● ●●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ● ●●●● ●●●●● ●●● ●●●●● ●●● ●● ●●●● ●●●●●● ●●●● ●● ●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ● ●●●●● ●●●● ●●●●● ●●●● ● ●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●●● ●● ●● ●●● ●●● ● ● ●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●● ● ●●●●●●●●●●●●●●●●● ●●●● ● ●●●●● ●● ●● ●●● ●●●● ●●●●●● ●●●●● ●●●●●● ●●●●● ●●●● ● ●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●●● ● ● ●●●● ●●●● ●●● ●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●● ● ●● ●● ●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●● ●●●●●●●●●● ●●● ●●● ●●● ● ●●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ● ● ●●● ●● ● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●● ●●●●●●●● ●●●●●● ●●● ●● ●●●● ●●● ●●●●●●●●● ●●● ●●● ●●●●●●● ● ●●●●●●●●● ●● ●●●● ●●●● ●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●●●●● ●●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●● ●●● ● ●● ●●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●●●● ●●● ●●● ●●●● ●●●● ●●●●● ●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●●● ● ●●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●● ●●●●● ● ●● ●● ●●●● ●●●●●●●●● ●●●●● ●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●● ●● ●●● ● ●● ●● ●●●● ●●● ●●●●●●●●●●● ●●●● ● ●● ●●●● ●●●●●● ● ●● ●●● ●●● ●●●●●●● ●●●●● ● ●●● ●●● ●●●●●●●●●●●●●●● ● ●● ●●●●●●●●● ●●● ●●●●●● ●●●●● ●● ●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●●● ● ●●● ●●● ●● ●●● ●●●●●●●●● ●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●● ●●●●● ●●●●● ●●● ●●●●● ●●● ●●●●● ●●●● ● ●●●●● ●●●● ●●● ●●●●●● ● ●● ●●● ●●●●●● ●●● ●●● ● ●●●●●●●●● ● ●●●● ●●● ●●●●●● ●●● ● ●●●● ●●● ●●● ●● ●● ●●●● ●●●●● ●● ● ●●●● ●● ●●● ● ●●●● ●●●●● ●●●●● ●● ●●●●●●● ●● ● ●●●● ●●●●●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ● ●●●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ●●● ●●●●●●●●●●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ●●●●●●● ●●●●●●● ●● ●●● ● ●●● ● ●● ●● ● ● ●● ●●●● ●●● ●●●●● ●●● ●●●●● ●●●● ●●●●● ●● ●●●●●● ●● ●●● ●●● ●●●●● ● ● ●●●● ●●●●● ●●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ● ●● ●●●● ●●● ●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ● ●● ●●●● ●●● ●● ●●●●●●●● ●●●●● ●●● ●● ●●●● ●● ● ●● ●● ●●●●●●●●●● ●● ● ●● ●●● ● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●●●● ●●●● ● ●● ●●●● ●●● ●●● ●● ●●●●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●● ● ●●●●● ●●●●● ● ●● ●●● ●●● ●●●●● ●●●●●●● ●●● ●●●●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●● ●● ● ● ●●●● ●● ●● ●●●● ●●●●● ●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●● ●●● ●● ● ●● ●●●●● ●● ●● ● ●●●● ●●●●● ●●● ●●● ● ●●●● ●●●● ● ●● ●●●● ●●● ● ●● ●●●● ●●● ●●●●●●●●●●● ●●● ● ●●● ●●●●●● ●●●●●● ●●● ●●●● ●●●● ●● ● ●●●●●●● ●● ● ●●●● ●●●●●● ●●● ●●●●●● ●●●● ●● ● ●● ●●●●● ●●●●● ● ● ●● ●●● ●●● ●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●● ●● ●●●● ●●● ●●●●●●●●● ●●● ●●●●●● ●●●● ●● ●●●●●●●●●● ● ●● ● ●●●● ●● ●●●● ●●● ●

●●●●●● ●●● ●●●● ●●●●● ●●

●●● ●●● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ●●●● ●●●●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●●● ●●●● ●●●● ● ●●●●●●●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●● ●●● ● ●● ●● ●● ●●●●●● ●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●● ● ●● ●● ● ●●●● ● ● ●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●●●● ●● ● ●●●●● ●●●●●●●● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ● ●● ●●● ●●●●●●● ●●● ●●● ●● ●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●● ●● ● ●● ●●●●● ●● ●●● ●●●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●● ●●●●●●● ●● ●●●●●●● ● ●● ●● ●●●●●●● ●● ● ●●●●●●●● ●● ●● ●● ●●●● ●●● ●●● ● ●●●● ● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●● ● ●●● ●●●● ●●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●● ●● ●●●●● ●●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●● ●●●●● ●●● ●●● ● ●●● ●●●●●● ●●●●●● ●● ●●●●●●● ●● ● ●●● ●●●●●●●●● ●●●● ● ●●● ●●●●●●●●●● ●● ●●● ● ●●●●●●●●● ●●●● ●●●●●● ● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●● ●●●●●●● ●●●●●●●● ●●● ● ●●● ●●●● ● ●●●● ●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●● ● ●●●●●● ●● ●●●● ●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ● ●●● ●●●●● ●●●●●● ●●● ●●●●●●●● ●● ●● ●●●● ●●●● ●●●●● ●● ●●● ●● ●●● ●●● ●●●●●● ●●●●●● ●● ●● ●● ●●●●●●●●●● ●● ●●●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●●● ●●●●● ●●● ●●●●●● ● ● ●●●● ●●● ●●● ●●●●● ●● ●●●

● ●●●● ●● ● ●●● ●●●●●● ●●●●●● ●●●●●● ● ●●● ●●●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●●● ●●●● ●● ●●● ●●●●●● ●●●● ●● ●● ●●●● ●●

●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●

● ●● ● ●●● ●●●●●●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●● ●●●● ●●●● ● ●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●● ● ●●●● ●●●●●● ●●●● ●● ●●●●●● ●●● ●● ●●● ●●●●●● ● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●●● ●●● ● ●●● ● ●●● ●●●●● ●●● ●● ●●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●● ●●●●●●●● ●●●● ●● ●● ●●●●●● ● ● ●● ●●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●●● ● ●●●●●●●●●●●● ●●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●● ●●●●●● ●●● ● ●● ●● ●● ●●●● ●●● ● ● ●● ●● ●●● ●● ● ●●●● ●● ●● ●

●●

●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●

●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●● ●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●● ● ●●●●● ●●● ●● ●●●● ●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●●●●●● ●●● ●●●● ●●

●●●●

●●●●●●

●●

●●●●●●●● ● ●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●●●● ●●●●● ●● ●● ●● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●●● ●●●●●● ●●●● ●●●● ●● ●●● ●● ● ●●●●● ●●●● ● ●● ● ●●●●● ●● ●● ●●●●●● ●● ●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●● ●●● ● ●●● ●●●● ● ●● ●●● ●●●●●●●●●●● ● ●●●● ●● ●● ●● ●●●● ●● ●● ●●● ● ● ●● ●● ●●● ●●●● ●●●●● ●●● ●●●●● ●● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●●●●● ●●● ●● ● ●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●●●●● ●● ●●●● ●●● ●●● ●●● ●●●●●● ● ●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●●● ●●●●● ●●●●●●● ●● ●●● ●●● ● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●● ● ●● ●● ● ●●● ●●● ●●● ●●●● ●● ●● ●●●●● ●●●●●● ●● ●●● ● ●●● ●●●●●● ●● ● ●●●● ● ●● ●●●● ●●●●●●● ●●●● ●●● ●● ●● ● ●●● ●● ●●●● ●●● ●●●● ●●●●● ●●● ●● ●● ●● ●●●● ● ● ●● ●● ●● ● ●● ●●●● ●● ●●● ●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●● ●●●●● ●● ●● ●●●● ●●● ●● ● ●●● ●● ● ● ●●●● ●● ●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●●●●● ●● ● ●●●● ●● ●●● ●● ●● ●●● ● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●●●● ●●●● ●●● ●● ●● ●●●● ●●●● ●●●●● ●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ● ●●● ●●● ● ●●●● ●● ●● ●●●● ● ●●●●●●●●● ●● ●●● ●●●●● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●●●● ●● ●●●● ●●● ●●

● ●●●● ●●●● ●● ● ●●●● ●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●● ●●●●●●●●●● ● ●●●● ●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●

●●

●●● ●●● ●●●●● ●●● ●●● ●●● ●●● ●● ●●●●●●●●●●● ●●●●●●●● ● ●●● ●●● ●●●● ●● ● ●● ●●● ● ●●●●●●●● ●●● ●● ●● ●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●● ●● ●● ●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●●● ● ●●● ●● ●● ●●●●● ●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ● ●●● ●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ● ●●●●● ●●● ●●●●●● ●●●● ●●●●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●●● ●●●●● ●● ●● ●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●● ●●●● ● ●●● ●●●●●● ● ●● ●●●●●●● ● ●● ●● ● ●●● ● ●●●●● ●●● ●●● ●● ●● ●● ●● ●●●●● ●● ●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●● ●● ●● ●●● ●●●●●●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ● ●●●● ●● ●● ● ●●● ● ●●●●●● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●● ● ●● ●● ●●● ● ●●●● ●● ●●● ● ●● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ● ●●●●●●●●●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●●● ●●●●●●●●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●● ● ●●●●●● ● ●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●● ●● ●● ●● ● ●●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ● ●●●● ●●●●● ●●● ●●●●● ●●● ●● ●●●● ●●●●●● ●●●● ●● ●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ● ●●●●● ●●●● ●●●●● ●●●● ● ●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●●● ●● ●● ●●● ●●● ● ● ●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●● ● ●●●●●●●●●●●●●●●●● ●●●● ● ●●●●● ●● ●● ●●● ●●●● ●●●●●● ●●●●● ●●●●●● ●●●●● ●●●● ● ●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●●● ● ● ●●●● ●●●● ●●● ●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●● ● ●● ●● ●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●● ●●●●●●●●●● ●●● ●●● ●●● ● ●●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ● ● ●●● ●● ● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●● ●●●●●●●● ●●●●●● ●●● ●● ●●●● ●●● ●●●●●●●●● ●●● ●●● ●●●●●●● ● ●●●●●●●●● ●● ●●●● ●●●● ●● ●●●●●● ●● ●● ●●● ● ●●● ●● ●●●●●● ●●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●● ●●● ● ●● ●●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●●●● ●●● ●●● ●●●● ●●●● ●●●●● ●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●●● ● ●●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●● ●●●●● ● ●● ●● ●●●● ●●●●●●●●● ●●●●● ●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●● ●● ●●● ● ●● ●● ●●●● ●●● ●●●●●●●●●●● ●●●● ● ●● ●●●● ●●●●●● ● ●● ●●● ●●● ●●●●●●● ●●●●● ● ●●● ●●● ●●●●●●●●●●●●●●● ● ●● ●●●●●●●●● ●●● ●●●●●● ●●●●● ●● ●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●●● ● ●●● ●●● ●● ●●● ●●●●●●●●● ●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●● ●●●●● ●●●●● ●●● ●●●●● ●●● ●●●●● ●●●● ● ●●●●● ●●●● ●●● ●●●●●● ● ●● ●●● ●●●●●● ●●● ●●● ● ●●●●●●●●● ● ●●●● ●●● ●●●●●● ●●● ● ●●●● ●●● ●●● ●● ●● ●●●● ●●●●● ●● ● ●●●● ●● ●●● ● ●●●● ●●●●● ●●●●● ●● ●●●●●●● ●● ● ●●●● ●●●●●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ● ●●●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ●●● ●●●●●●●●●●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ●●●●●●● ●●●●●●● ●● ●●● ● ●●● ● ●● ●● ● ● ●● ●●●● ●●● ●●●●● ●●● ●●●●● ●●●● ●●●●● ●● ●●●●●● ●● ●●● ●●● ●●●●● ● ● ●●●● ●●●●● ●●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●● ● ●● ●●●● ●●● ●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ● ●● ●●●● ●●● ●● ●●●●●●●● ●●●●● ●●● ●● ●●●● ●● ● ●● ●● ●●●●●●●●●● ●● ● ●● ●●● ● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●● ●●●●●● ●●●● ● ●● ●●●● ●●● ●●● ●● ●●●●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●● ● ●●●●● ●●●●● ● ●● ●●● ●●● ●●●●● ●●●●●●● ●●● ●●●●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●● ●● ● ● ●●●● ●● ●● ●●●● ●●●●● ●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●● ●●● ●● ● ●● ●●●●● ●● ●● ● ●●●● ●●●●● ●●● ●●● ● ●●●● ●●●● ● ●● ●●●● ●●● ● ●● ●●●● ●●● ●●●●●●●●●●● ●●● ● ●●● ●●●●●● ●●●●●● ●●● ●●●● ●●●● ●● ● ●●●●●●● ●● ● ●●●● ●●●●●● ●●● ●●●●●● ●●●● ●● ● ●● ●●●●● ●●●●● ● ● ●● ●●● ●●● ●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●● ●● ●●●● ●●● ●●●●●●●●● ●●● ●●●●●● ●●●● ●● ●●●●●●●●●● ● ●● ● ●●●● ●● ●●●● ●●● ●

●●●●●● ●●● ●●●● ●●●●● ●●

●●● ●●● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ●●●● ●●●●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●●● ●●●● ●●●● ● ●●●●●●●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●● ●●● ● ●● ●● ●● ●●●●●● ●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●● ● ●● ●● ● ●●●● ● ● ●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●●●● ●● ● ●●●●● ●●●●●●●● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ● ●● ●●● ●●●●●●● ●●● ●●● ●● ●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●● ●● ● ●● ●●●●● ●● ●●● ●●●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●● ●●●●●●● ●● ●●●●●●● ● ●● ●● ●●●●●●● ●● ● ●●●●●●●● ●● ●● ●● ●●●● ●●● ●●● ● ●●●● ● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●● ● ●●● ●●●● ●●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●●● ●●●●● ●● ●● ●●●● ●● ●●●●● ●●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●● ●●●●● ●●● ●●● ● ●●● ●●●●●● ●●●●●● ●● ●●●●●●● ●● ● ●●● ●●●●●●●●● ●●●● ● ●●● ●●●●●●●●●● ●● ●●● ● ●●●●●●●●● ●●●● ●●●●●● ● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●● ●●●●●●● ●●●●●●●● ●●● ● ●●● ●●●● ● ●●●● ●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●● ● ●●●●●● ●● ●●●● ●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ● ●●● ●●●●● ●●●●●● ●●● ●●●●●●●● ●● ●● ●●●● ●●●● ●●●●● ●● ●●● ●● ●●● ●●● ●●●●●● ●●●●●● ●● ●● ●● ●●●●●●●●●● ●● ●●●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●●● ●●●●● ●●● ●●●●●● ● ● ●●●● ●●● ●●● ●●●●● ●● ●●●

● ●●●● ●● ● ●●● ●●●●●● ●●●●●● ●●●●●● ● ●●● ●●●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●●● ●●●● ●● ●●● ●●●●●● ●●●● ●● ●● ●●●● ●●

●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●

● ●● ● ●●● ●●●●●●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●● ●●●● ●●●● ● ●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●● ● ●●●● ●●●●●● ●●●● ●● ●●●●●● ●●● ●● ●●● ●●●●●● ● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●●● ●●● ● ●●● ● ●●● ●●●●● ●●● ●● ●●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●● ●●●●●●●● ●●●● ●● ●● ●●●●●● ● ● ●● ●●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●●● ● ●●●●●●●●●●●● ●●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●● ●●●●●● ●●● ● ●● ●● ●● ●●●● ●●● ● ● ●● ●● ●●● ●● ● ●●●● ●● ●● ●

●●

●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●

●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

P01
P02
P03
P04
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14
P15
P17
P18
P19
P20
P21
P22
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47

25 50 75 100 125

Figure 5: Distribution of how many times coverage flipped for unmodified lines throughout all revisions of each project,

showing only lines that changed coverage at least once. The x-axis displays the number of covered/uncovered transitions.

(DBIHealthCheck.java:31), the high-flip statement checks to see

if a database connection is still open at a regular time interval.

In some cases, tests might complete before this health check is

scheduled, causing it to not be executed. In another case, a line

in P08 (TFTPServer.java:643), we found a high-flip statement that

was dependent on a network socket’s state — and would detect

lost packets. The coverage of this line is dependent on whether

packets are lost in transmission during the test case — which occurs

non-deterministically.

Finding: Lines may often flip between covered and uncov-

ered, suggesting non-determinism in the test suite. Tool builders

should consider how to best track and represent this non-

deterministic coverage.

RQ5: What kinds of changes to code drive changes to cover-

age?We conclude our study by returning to project-level coverage,

looking at what kinds of changes cause coverage to change. A tradi-

tional viewpoint might be that coverage increases because existing

lines of code become covered, and coverage decreases because those

lines are no longer covered. However, of course, looking at a specific

revision of a project (compared to the prior), coverage can change

for a variety of reasons. For instance, adding new lines will cause

coverage to increase or decrease, depending on the coverage of the

new lines that are added to the code. Likewise, deleting lines can

also impact coverage. If the deleted lines were covered, it can cause

coverage to decrease, and if the deleted lines were not covered, it

can cause coverage to increase. Coverage can also change due to

change in coverage of unchanged lines.

Figure 6 shows all of these impact factors for all revisions of each

project. By identifying the different impact factors and what role

they play in each projects, we can make observations about how

the projects and their test code are changing over time, rather than

simply observing “coverage increased” or “coverage decreased”. For

some projects (e.g., P38) we observe that over 75% of the changes

to coverage are because of new lines being added. This suggests

that most of the code changes are coming from new development.

However, for other projects (e.g., P02), we observe that they expe-

rience many changes when coverage is lost or added to existing

lines. This seems to point to higher levels of non-determinism in

that project’s tests, especially when there are a similar number of

changes adding and losing coverage. Comparing to Figure 5, we

observe that projects with lines that flip coverage often (P02, P07,

P25, P42, P46) also have significant numbers of coverage changes

driven by changes to existing code.

Finding: Many factors have an impact on coverage: newly

covering existing statements is not always the primary driver

to coverage change.

4 DISCUSSION
In this section we discuss our findings, presenting implications

for Developers, Tool Builders and Researchers and discuss several

limitations of our study.

4.1 Implications
Developers: Between subsequent revisions, there is often very lit-

tle observable change in overall project coverage, especially for

large projects. Because of this, developers use tools [1–3, 6, 7] that

examine patch coverage. However, while knowing if a patch is

covered or not clearly has value, developers should not use patch

coverage as a stand-in metric to evaluate the impact of a patch

60

A Large-Scale Study of Test Coverage Evolution ASE ’18, September 3–7, 2018, Montpellier, France

P01
P02
P03
P04
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47

0 25 50 75 100

Deleted tested lines

Added new lines that are not covered

Coverage lost on existing lines

Added coverage to existing lines

Added new lines that are covered

Deleted untested lines

Figure 6: Overview of key factors driving change to coverage of each project during the entire development period measured.

Size of bar represents how much that factor contributed to the net change in coverage. Green factors increase coverage, red

decrease coverage.

on the overall project coverage. We found that patches often im-

pact the coverage of existing non-patch code, and importantly, that

having high patch coverage does not correlate with increasing the

overall coverage of a project. Developers should adjust their code

review processes to consider not only the patch coverage, but also

its effect on non-patch code coverage. More generally, developers

should consider using more detailed metrics than just the ratio of

statements covered to measure their code’s testedness.

Developers should be aware that even if the number of lines cov-

ered remains relatively static, the set of covered lines can greatly

vary between runs. If there is concern that a particular part of the

project is covered, developers need to specifically track that the

relevant lines in that part are covered, because we found that there

can be a significant churn in the set of lines covered. We found that

in some projects, individual statements might change their cover-

age very often — perhaps every single build. Hence, developers who

closely track coverage must be aware of inherent non-determinism

in coverage. If developers have a better understanding of how and

where their coverage is not deterministic, they may be better pre-

pared to address other impacts of this non-determinism, such as

flaky test failures.

Tool Builders We observed that many commits do not involve

changes to code files, yet these changes can still change the coverage

of existing code, a finding with implications for tool builders whose

tools rely on code coverage (for instance, regression test selection

tools). Tool builders must be aware of all inputs (e.g. config and data

files, as well as non-determinism) that can impact test execution —

not only the code itself.

Our study also has implications for tool builders creating code

coverage tools. Other researchers [22, 29, 39] have also identified

non-deterministic behavior when studying tests. We believe that

tool builders should build tools to help developers identify which

tests are deterministic, and which are not. Currently, there is no way

for developers to identify if their tests are covering code in a deter-

ministic or non-deterministic manner without rerunning tests and

comparing very low level coverage data, or waiting for a test to fail

in a non-deterministic manner, and having to track down the source

of the problem. To help developers identify non-deterministic be-

havior, tools should show developers which lines have changes

in coverage (even unchanged lines), and which of those changes

are non-deterministic (or at least potentially non-deterministic).

This information would be a valuable tool for developers when

debugging flaky test failures [12].

We also found that there are various reasons why coverage can

increase or decrease. Current tools show the change in coverage,

but they do not show why there was a change. If developers are

aware of how their coverage is changing, and they are not expecting

it to change based on their latest commit, they can then evaluate

whether their tests are flaky, or if their latest change impacted

the system coverage in ways that they were not expecting. Either

way, having this information can help developers better understand

their system, and the state of their automated test coverage. Code

61

ASE ’18, September 3–7, 2018, Montpellier, France Michael Hilton, Jonathan Bell, and Darko Marinov

coverage tools should fuse code change information with code

coverage information, as the Operias tool [32] also proposed.

Researchers Our study was the first to make use of the Cov-

eralls service [19] to gather code coverage data. Code coverage

data is notoriously hard to collect, because older project versions

are often hard to compile and run, and collecting coverage takes

machine time. Fortunately, Coveralls both collects and makes avail-

able real data from many different types of projects. This data can

be invaluable for researchers who wish to better understand code

coverage. By leveraging this data, researchers can use coverage

data without having to collect and run historical versions of soft-

ware, which may be very difficult due to missing dependencies and

other infrastucture-related problems. We expect that analysis of

data from Coveralls can lead to new insights similar to how analy-

ses of GitHub and TravisCI [13, 16, 33, 37, 38, 42, 44] data enabled

researchers to obtain new insights into software development.

4.2 Threats to Validity

1) Construct: Are we asking the right questions? To ensure we are

asking the right questions, we base a number of our questions on

previous research. For our new research questions, we posed these

questions before looking into our data, based on our anecdotal

experience from our own development noticing that code coverage

can vary greatly.

2) Internal: Did we skew the accuracy of our results with how we

collected and analyzed information? We chose projects that were

used in previous research, enhanced with a set of large projects

with diverse demographics collected from Coveralls. To provide

confidence that we have not skewed the results and allow for greater

scrutiny, we have made all of the scripts that we wrote and the data

we collected available with this paper.

3) External: Do our results generalize? To have our results generalize

as much as possible, we selected a large and diverse set of projects

in various languages, and from various types of applications. Our

dataset is almost an order of magnitude larger (both in terms of the

number of projects and the number of builds) than prior related

studies, which is encouraging. All of the projects are open source, so

we cannot make any claims about how our results might generalize

to proprietary projects.

4) Replicability: Can others replicate our results? To support oth-

ers in replicating our results, we have made our data and the R

scripts that we used to process our data publicly available. These

can all be found on the project’s companion website: http://www.

code-coverage.org

5 RELATED WORK

Previous Coverage Studies. We are not the first researchers to

study code coverage of software programs. Elbaum et al. [21] study

two systems using different types of code coverage metrics. The

authors find that the impact of changes on coverage information

can be difficult to predict, but calls for further study of the effects

of software evolution on coverage information is needed.

Zaidman et al. [43] study three systems and observe changes to

coverage. The paper reports that there are periods when the tests

and code evolve together, but there also are periods of intense test-

ing. The paper also suggests future work should include analyzing

more and larger cases to better understand test coverage evolution.

The most related work to ours is from Marinescu et al. [29].

The authors present both a tool and dataset of code coverage. To

evaluate the tool, the paper uses six C/C++ systems. The paper

answers nine research questions, three of which are repeated in this

paper. Marinescu et al.’s work was also the first to specifically focus

on patch coverage, although other researchers [32] have developed

tools to help developers visualize patch coverage. In this paper, we

examine both patch coverage and also non-patch coverage, and use

a significantly larger dataset.

Other Coverage Work. Coverage has often been used as a

metric when studying some property of a system. Kochhar et al. [26]

find that code coverage has an insignificant correlation with the

number of bugs that are found after the release of software at

the project level. Mokus et al. [31] find that test effort increases

exponentially with test coverage, but the reduction in field problems

increases linearly with test coverage. They suggest that the optimal

level of coverage for most projects is likely to be well short of

100%. Ahmed et al. [9] study the relationship between statement

coverage and mutation score. They find that both metrics have

only a weak negative correlation with bug-fixes. Memon et al. [30]

describe the challenge when dealing with a codebase the size of

Google’s, and how it is not possible for them to collect coverage at

that scale. Pinto et al. [34] have used coverage to study how tests

evolve over time. One category of test evolution they identify is

coverage augmentation tests. Gao et al. [22] investigate differences

between unit testing, system tests, and invariant detection. They

find that when executing system tests, there is often significant

non-determinism in the lines that are executed by each test. Our

results confirm this finding also.

6 CONCLUSIONS

Statement coverage is often used by developers to evaluate the

quality of their test suites. However, by reducing coverage to a

single ratio, much valuable information is lost. When working with

a large mature project, only very large changes to the number of

lines covered will be detectable as a change in the overall coverage,

so moderate changes to the test suite may not be observable. Even

on smaller projects, viewing coverage as a simple ratio hides po-

tential non-determinism that exists in tests and changes to which

statements are covered. Of course, many of these changes to non-

patch code may be due to the genuine impact of code changes

too; interesting future work may try to identify changes due to

non-determinism versus those due to code changes, perhaps using

dynamic taint tracking [11]. In this paper, we found that measuring

the change in the set of statements covered, and the impact of a

patch on the coverage of those statements allows developers much

more visibility into the impact of their changes. We have released

our tools and data so that others can benefit from them and build on

our work to obtain new insights that eventually lead to improving

quality of testing.

ACKNOWLEDGMENTS

We thank Hayder Al Haddad and Owolabi Legunsen for discussions

about this work. Darko Marinov’s group is supported by NSF grants

CCF-1409423, CCF-1421503, CNS-1646305, and CNS-1740916; and

gifts from Google and Qualcomm.

62

A Large-Scale Study of Test Coverage Evolution ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2018. coverage-diffe. https://docs.codecov.io/v4.3.6/docs/coverage-diff.
[2] 2018. diff-cover. https://github.com/Bachmann1234/diff-cover.
[3] 2018. diff-coverage. https://github.com/ptone/diff-coverage.
[4] 2018. git-coverage. http://stef.thewalter.net/git-coverage-useful-code-coverage.

html.
[5] 2018. JaCoCo Java Code Coverage Library. http://www.eclemma.org/jacoco/.
[6] 2018. jest-diff-coverage. https://github.com/Hylozoic/jest-diff-coverage.
[7] 2018. Patch-Status. https://github.com/codecov/support/wiki/Patch-Status.
[8] 2018. Undertow.io commit a945c17f58cd809558950d858030379179dfdf82.

https://github.com/undertow-io/undertow/commit/
a945c17f58cd809558950d858030379179dfdf82.

[9] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.
2016. Can Testedness Be Effectively Measured?. In FSE.

[10] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing (1 ed.).
Cambridge University Press, New York, NY, USA.

[11] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow
in Commodity Jvms (OOPSLA).

[12] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In
ICSE.

[13] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In MSR.

[14] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In MSR.

[15] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie. 2017. How Do Assertions
Impact Coverage-Based Test-Suite Reduction?. In ICST.

[16] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zum-
beri, and Harald C. Gall. 2017. An Empirical Analysis of the Docker Container
Ecosystem on GitHub. In MSR.

[17] clover. [n. d.]. Clover. https://www.atlassian.com/software/clover.
[18] cobertura. [n. d.]. Cobertura. http://cobertura.github.io/cobertura/.
[19] Coveralls. [n. d.]. Coveralls.io. https://coveralls.io/.
[20] coverallsapi. [n. d.]. coveralls API. https://coveralls.zendesk.com/hc/en-us/

articles/201774865-API-Introduction.
[21] Sebastian Elbaum, David Gable, and Gregg Rothermel. 2001. The Impact of

Software Evolution on Code Coverage Information. In ICSM.
[22] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang. 2015. Making System

User Interactive Tests Repeatable: When and What Should We Control?. In ICSE.
[23] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight

Test Selection. In ICSE-DEMO.
[24] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression

Test Selection with Dynamic File Dependencies. In ISSTA.
[25] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.
In ASE.

[26] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan. 2017. Code Coverage and Postre-
lease Defects: A Large-Scale Study on Open Source Projects. IEEE Transactions
on Reliability (2017).

[27] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
Cost of Regression Testing in Practice: A Study of Java Projects Using Continuous
Integration. In ESEC/FSE 2017.

[28] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In FSE.

[29] Paul Marinescu, Petr Hosek, and Cristian Cadar. 2014. Covrig: A Framework for
the Analysis of Code, Test, and Coverage Evolution in Real Software. In ISSTA.

[30] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale Continuous Testing. In
ICSE-SEIP ’17.

[31] A. Mockus, N. Nagappan, and T. T. Dinh-Trong. 2009. Test coverage and post-
verification defects: A multiple case study. In 2009 3rd International Symposium
on Empirical Software Engineering and Measurement.

[32] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant,
and Alberto Bacchelli. 2016. Visualizing Code and Coverage Changes for Code
Review. In FSE.

[33] Klérisson V. R. Paixão, Crícia Z. Felício, Fernanda M. Delfim, and Marcelo de
A. Maia. 2017. On the Interplay Between Non-functional Requirements and
Builds on Continuous Integration. In MSR.

[34] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In FSE.

[35] Steven P. Reiss. 2008. Tracking Source Locations. In ICSE.
[36] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and

Combining Test-suite Reduction and Regression Test Selection. In ESEC/FSE.
[37] Mauricio Soto, Zack Coker, and Claire Le Goues. 2017. Analyzing the Impact of

Social Attributes on Commit Integration Success. In MSR.
[38] Rodrigo Souza and Bruno Silva. 2017. Sentiment Analysis of Travis CI Builds. In

MSR.
[39] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the Validity

and Value of Empirical Assessments of the Accuracy of Coverage-based Fault
Locators. In ISSTA.

[40] travis. [n. d.]. Travis-ci.com. https://travis-ci.org/.
[41] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.

Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in
the npm Ecosystem. In ICSE.

[42] Zahy Volf and Edi Shmueli. 2017. Screening Heuristics for Project Gating Systems.
In ESEC/FSE.

[43] Andy Zaidman, Bart Rompaey, Arie Deursen, and Serge Demeyer. 2011. Studying
the Co-evolution of Production and Test Code in Open Source and Industrial
Developer Test Processes Through Repository Mining. Empirical Softw. Eng.
(2011).

[44] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The Impact of Continuous Integration on Other Software
Development Practices: A Large-scale Empirical Study. In ASE.

63

	Abstract
	1 Introduction
	2 Methodology
	2.1 Identifying Projects
	2.2 Collecting Coverage
	2.3 Determining Code Changes
	2.4 Aggregating Results

	3 Results
	4 Discussion
	4.1 Implications
	4.2 Threats to Validity

	5 Related Work
	6 Conclusions
	References

