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Abstract

We show that a quantum many-body system may be controlled by means of Floquet engi-
neering, i.e., their properties may be controlled and manipulated by employing periodic
driving. We present a concrete driving scheme that allows control over the nature of mo-
bile units and the amount of diffusion in generic many-body systems. We demonstrate
these ideas for the Fermi-Hubbard model, where the drive renders doubly occupied sites
(doublons) the mobile excitations in the system. In particular, we show that the amount
of diffusion in the system and the level of fermion-pairing may be controlled and under-
stood solely in terms of the doublon dynamics. We find that under certain circumstances
the diffusion in 1D systems may be eliminated completely for extremely long times. We
conclude our work by generalizing these ideas to generic many-body systems.
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1 Introduction

Understanding properties of quantum many-body systems is a central theme in condensed
matter physics. Already in one spatial dimension, many-body systems provide an enormous
theoretical challenge. In recent years, the development of new numerical methods and the
outstanding increase in computational power allowed us to peer into the many-body realm.
Nevertheless, these methods are limited to low spatial dimensions and small system sizes.

A different direction for tackling the many-body problem lies within the framework of
quantum control. The ability to manipulate and control many-body systems is a desirable goal.
Influencing the interplay between different microscopic processes can dramatically reduce the
level of complexity of these system and may shed light on their fundamental properties.

Amongst the promising means for achieving quantum control, periodic drives have drawn
a great deal of attention over the last few years. Periodic drives emerged as a tool to control the
band-structure and the dynamics of electronic systems in situ, both for solid-state setups and
for cold atoms in optical lattices. These ideas have been demonstrated both for non-interacting
and for interacting systems. In solid-state systems, Floquet engineering led to the emergence of
exotic phases such as the non-interacting Floquet topological and Anderson insulators [1–8]
and interacting time-crystals [9–15]. In cold atomic systems, periodic lattice-shaking tech-
niques have been used to dynamically control tunneling [16, 17], induce a Superfluid-Mott
transition [18] and generate artificial gauge fields [19–21].

Motivated by these ideas, we show in this work that quantum many-body systems may be
controlled by employing a systematic driving scheme. We show that such a control gives rise
to a plethora of phenomena ranging from a novel pairing mechanism and emergent composite
particles to a complete elimination of diffusion. Before diving into the details, we summarize
our main findings.

We propose a driving scheme under which many-body systems show an excitation-
hierarchy. Particularly, we show that in the presence of the driving, the elementary particles
in the system can be frozen while emergent composite particles become the stable mobile ex-
citations. In models with interactions of range M , a hierarchy of different composite particles
exists. Composite particles in a given hierarchy level, R, contain R+ 1 particles, where R = 0
corresponds to single particles.

We show that by systematically driving the system, one can eliminate (freeze) the com-
posite particles at level R, rendering the particles at level R+1 the mobile units in the system.
Such a driving scheme serves as a novel bunching mechanism for Fermions or Bosons in arbi-

2

https://scipost.org
https://scipost.org/SciPostPhys.5.2.017


SciPost Phys. 5, 017 (2018)

trary dimensions. This mechanism can be easily understood for M = 0 (on-site interaction)
or M = 1 (next-nearest-neighbor interaction), where the bunching mechanism is a real-space
pairing mechanism, which renders doubly occupies sites (for M = 0) or neighboring sites (for
M = 1) the mobile stable units in the system. In realizable cold atomic setups of Fermionic
systems, such dynamical pairing mechanisms may lead to a buildup of superfluid correlations
which cannot exist without the existence of the drive.

The above bunching mechanism sheds light on the fate of dynamical localization [22,23]
in the presence of interactions. Recently, it was shown in Ref. [24] that dynamical localization
of spinless fermions does not survive the addition of nearest-neighbor interactions and the
system becomes more and more diffusive as the interaction strength increases. The physical
picture behind this becomes clear by considering the drive-induced bunching. While single
particles remain localized, two neighboring particles behave as stable composite particles that
become the mobile units in the system. We find the effective Hamiltonian for these composite
particles and show that the original interacting Fermionic system behaves as a system of mobile
hard-core Bosons. In particular, the revival of diffusion in the system may be understood
(quantitatively) solely in terms of the composite particles’ motion. Thus, we pinpoint the
mechanism through which interactions destroy the localization.

One may wonder if the composite particles themselves may be localized as well. To an-
swer that, we show that if a hierarchy level exits such that the composite particles are non-
interacting, then these particles may be dynamically localized without generating higher order
mobile composite particles. If such a scenario occurs, the many-body system cannot support
particle diffusion. Indeed, such a scenario occurs for spinful fermions with on-site interac-
tions, i.e., the Fermi-Hubbard model. Remarkably, such a non-diffusive state is not special to
the standard 1D Fermi-Hubbard model, and it may be achieved also in the presence of addi-
tional hopping terms beyond the next-nearest-neighbor and in dilute systems in two or three
spatial dimensions.

2 Background

2.1 Dynamical localization

We start by briefly reviewing the basic concepts of dynamical localization for non-interacting
particles [22, 23]. In particular, we demonstrate how the dynamical properties of a system
may be controlled by means of an external drive.

To that end, we consider a 1D lattice model in the presence of a time-dependent linear
potential,

i∂t cn(t) = Hn−n′ cn′(t) + E(t)ncn(t) , (1)

where cn annihilates a particle from lattice site n. The last term in Eq. (1) describes a uni-
form force, and therefore, may be described by a uniform time-dependent vector potential. In
practice, the last statement is equivalent to the following unitary transformation,

Û = exp

�

i

∫ t

d t ′E(t ′)
∑

n

nc†
ncn

�

, (2)

and the transformed equation of motion is given by,

i∂t cn(t) = Hn−n′e
−iA(t)(n−n′)cn′(t), (3)

where Ȧ(t) = E(t) is the vector potential. The eigenstates of the discrete-translation-
invariant Hamiltonian are labeled by their momentum k, i.e., c(k)n (t) = eikn−i f (k,t)ck(0) where
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ḟ (k, t) = E (k + A(t)) with E (k) denoting the band-structure of H, and ck being the annihi-
lation operator for particles with momentum k. As a result, the evolution of an initial state
localized on a single site is then given by,

Ψ(t, n) =
∑

k

〈n|c†(k)
n (t)|vac〉=

π
∫

−π

dk
2π

eikn−i f (k,t). (4)

We say that the system is localized if the mean square displacement of generic localized initial
states is finite at all times, i.e.,

∑

n |Ψ(t, n)|2n2 <∞. We say that a system is exponentially
localized if a finite n0 > 0 exists, such that at all times P(n, t) ≡ |Ψ(t, n)|2 < e−α|n| for any
|n|> n0 and some α > 0.

For Hamiltonians that include only nearest-neighbor hopping, with amplitude J0, and a
drive of the form E(t) = E0 cos (ωt), the probability for occupying site n at time t is given by,

P(t, n) =
�

�

�Jn

�

2J0

Æ

F1(t)2 + F2(t)2
�

�

�

�

2
. (5)

where the functions F1(t), F2(t) are given by:

F1(t) =

t
∫

0

cos
�

x sin (ωt ′)
�

d t ′ =
∑

n

Jn(x) sin (nωt)
nω

, (6)

F2(t) =

t
∫

0

sin
�

x sin (ωt ′)
�

d t ′ =
∑

n

Jn(x) (cos (nωt)− 1)
nω

,

where x = E0/ω and Jn are the Bessel functions of the first kind. In general, the argument
of the sine and cosine functions, in the integral representation of Eq. (6), is A(t ′) while the
series-representation is specific for the cosine-drive.

In the limit E0 → 0 (no force) it is easy to see from the integral representation of
Eq. (6) that F1 = t while F2 = 0. Therefore, P(n, t) = (Jn (2J0 t))2. Using the relation
∑

n n2Jn(z)2 = z2/2, we get that 〈n2〉 = 2(J0 t)2. The mean-square displacement increases to
infinity and hence, without a force, the system is ballistic.

The limit ω→ 0 corresponds to a constant force. Again, it is easy to see from the integral
representation of Eq. (6) that,

P(t, n) =

�

�

�

�

Jn

�

4J0

E0
sin
�

E0 t
2

��

�

�

�

�

2

. (7)

The mean-square displacement is bounded at all times and the system is exponentially local-
ized. The above statement is nothing but the fact that lattice models with a linear potential
give rise to a Wannier-Stark-ladder, in which all the eigenstates are localized. For a large
enough force, such that 4J0/E0� 1, the initial state is practically frozen at its initial position.
Equivalently, the probability in Eq. (7) is a manifestation of Bloch oscillations. The initial state
returns to itself whenever t = 2π/E0 × integer.

Finally, for both E0, ω 6= 0, it is instructive to separate the n = 0 term in the series repre-
sentation of Eq. (6),

F1(t) = J0(x)t +
∑

n6=0

Jn(x)
nω

sin (nωt)≡ J0(x)t + ν(t),

F2(t) =
∑

n6=0

Jn(x)
nω

(cos (nωt)− 1)≡ µ(t).
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Hence, the mean-square-displacement is given by 〈n2〉= 2J2
0

�

(J0(x)t + ν(t))
2 +µ(t)2

�

. The
functions µ and ν are bounded for all t and x . As long as J0(x) 6= 0, the mean-square-
displacement grows to infinity and the system is ballistic. Yet, for values of x such that
J0(x) = 0, the system becomes exponentially localized. At these values of x the system effec-
tively performs an integer number of Bloch oscillations every half period of the drive. Hence,
dynamical localization is nothing but an extension to the notion of Bloch oscillations.

2.2 Floquet Hamiltonian of interacting particles

We wish to understand the fate of dynamical localization in the presence of interactions, where
single particle band-structure cannot be defined. While the transformation in Eq. (2) elimi-
nates the linear term also in the presence of interactions, the transformed Hamiltonian is in-
teracting and cannot be solved by means of Fourier transform as before. Yet, for time-periodic
drives, E(t+T ) = E(t), the Hamiltonian may be mapped into Floquet space, which sheds light
on the the allowed processes and the relevant energy scales in the problem.

We first demonstrate the procedure for the non-interacting case. For time-periodic drives,
Eq. (3) is invariant to time translations of T = 2π/ω, and its solutions therefore have a Floquet
form, i.e.,

cn(t) = e−iεt
∑

γ

cn,γe
iγωt . (8)

Here, the operator c†
n,γ creates a dressed state of γ photons and a particle on site n. Inserting

Eq. (8) into Eq. (3) yields a time-independent problem which is governed by the following
Floquet Hamiltonian,

H F =
∑

n,n′

∑

γ,γ′
Hn−n′,γ−γ′ c

†
n,γcn′,γ′ , (9)

where Hx ,γ is the Fourier component of Hx e−iA(t)x .

2.3 Driven Fermi-Hubbard model

Let us next see how a periodic drive can be used to control the Fermi-Hubbard model. Consider
a one-dimensional Hubbard model of spinful fermions in the presence of a periodic drive which
couples to the total fermion density. Such drives may be achieved by alternating electric fields
in the case of charged fermions or by lattice shaking in the case of neutral fermions, see Fig. 1.
Overall, the Hamiltonian is:

H =
∑

j,σ

(J0 c†
j,σc j+1,σ + h.c.) +

U
2

n j,↑n j,↓ + jF(t)n j,σ, (10)

where c†
j,σ creates a fermion with spinσ in site j, n j,σ = c†

j,σc j,σ is the density, J0 is the hopping
amplitude, U is the energy cost of having a doubly occupied site, and F(t) is a periodic function.
In the following analysis we assume a cosine-drive, i.e, F(t) = Acosωt. While the quantitative
findings depend of the exact form of the drive, the qualitative result should not change.

Employing the transformation of Eq. (2), the Hamiltonian becomes,

H =
∑

j,σ

(J0eix sin (ωt)c†
j,σc j+1,σ + h.c.) +

U
2

n j,↑n j,↓. (11)

where x = A/ω. Employing the identity eix sin (ωt) =
∑

m Jm(x)eimωt , and transforming to the
Floquet space yields the following Floquet Hamiltonian (summation over repeated indices):

H F = J0

�

Jm−l (x) c†
j,σ,mc j+1,σ,l + h.c.

�

+ Un j,↑,mn j,↓,m + mωc†
j,σ,mc j,σ,m ≡ HJ + HU + Hω,

(12)
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Jeff

ω

Figure 1: Spinful particles in a 2D shaken (driven) optical lattice. The particles’ dy-
namics is governed by Eq. (10). In the presence of the drive, single particles become
localized while doublons become stable and mobile units, with an effective hopping
constant Je f f .

where the operator c†
j,σ,m creates a dressed state of m photons and a fermion with spin σ on

site j, nj,σ,m =
∑

l c†
j,σ,l c j,σ,m+l and Jm is the m-th order Bessel function of the first kind.

While both formulations are equally hard to analyze, the form of Eq. (12) allows a better
understanding of the allowed processes and relevant energy scales. The first term in Eq. (12),
HJ , describes a process where a fermion hops to a nearest neighbor site while emitting or
absorbing m−l photons. The amplitude for these processes is given by J0Jm−l

� A
ω

�
. The second

and the third terms in Eq. (12), HU and Hω, can be thought of, respectively, as the energy cost
for having doubly occupied sites (doublons) and photons in the system. We denote their sum
by H0. Notice that H0 is diagonal in the configuration basis, i.e., |{nj,σ,m}〉.

Eq. (12) will serve as the starting for analyzing which entities are mobile in the system.

3 Controlling the mobile units

3.1 Eliminating single particles

Let us begin by scrutinizing the motion of single particles. Are they dynamically localized also
in the presence of interactions?

By setting the ratio A
ω = x0 to the first zero of the zeroth-order Bessel function, i.e.,

J0(x0) = 0, we eliminate single particle processes that do not involve the emission or ab-
sorption of photons. The relevant energy scales in the problem are ω/J0 and U/J0, and the
only necessary requirement for single particle elimination is that ω is the largest energy scale
in the problem.

In particular, for ω/J0 � 1, we may treat the hopping term, HJ , as a perturbation to H0.
The energy of a state under H0 is given by the total number of photons and doublons in the
system. Since ω is the largest scale in the problem, we expect the system to evolve within a
photon number sector. We identify the photon number sector of the initial state as the zero-
photons sector, and will now derive the effective Hamiltonian in that sector up to second order
in perturbation theory. The derivation of the effective Hamiltonian follows the guidelines in
Ref. [25]. A related derivation in the context of time-periodic Hamiltonians may be found in
Ref. [26].
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Figure 2: On the left, we show the density evolution of a single doublon (panel a)
and of a single neighboron (panel b) initialized in the middle (site j = 0) of a 1D
lattice. As time progresses, the probability for the doublon to remain at j = 0 or
hop to the neighboring sites j = ±1 and j = ±2 follows the corresponding Bessel
functions |J j(2tJeff)|2 (shown in black). This indicates that the doublons behave as
single free units that do not break up into single particles, and validates the theo-
retical value of Jeff. A similar analysis can be performed for the neighborons, which
shows that neighborons’ mobility depends on their spin structure (see appendix 1).
Panel (c) shows the analytical result for the effective velocity of neighborons (curve)
in a spinless model with nearest-nieghbor interactions, in addition to the diffusion
coefficient (divided by the mean-free-path) obtained in Ref. [24] (black dots).

Single particle states may be labeled by the occupied site and the number of photons, i.e.,
|Sj,N 〉. With the notation 〈Sj′,N |HJ |Sj,0〉 ≡ Vj, j′,N , the effective 1-particle Hamiltonian is given
by:

〈Sj′,0|H1p
eff |Sj,0〉= 〈Sj′,0|H0|Sj,0〉+ Vj, j′,0 −

∑
N , j′′

V ∗j′, j′′,N Vj, j′′,N

�
1

Ei − EN
+

1
Ef − EN

�

∝
∞∑

N=−∞
2(−1)N |J0JN (x0)|2

Nω
= 0,

where Ei , Ef and EN are the energies (under H0) of the initial, final and intermediate states
respectively. Similarly, the third order processes for single particles are identically zero, and
hence we find that up to that order in J0/ω the effective Hamiltonian for them is zero. In other
words, single particle dynamics is completely frozen (dynamical localization, c.f. section 2.1.

3.2 Effective Hamiltonian for two particles

Next, we wish to find the effective Hamiltonian for two-particle states with no net spin (i.e.
the particles have opposite spin). There are three types of such two-particle states: doublon
states where the two particles share the same site, denoted |Dj,N 〉; neighboron states where
the particles reside in adjacent sites j and j + 1, denoted |Gj,N 〉, and singlon states, denoted
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|S j′, j,N 〉, where the two particles are separated by a distance | j − j′| > 1. In all notations, N
denotes the number of photons in the states with respect to the initial state.

The doublon-doublon matrix elements of the effective Hamiltonian are given by:

〈Dj′,0|H
2p
eff |Dj,0〉= Ueffδ j, j′ + Jeff(δ j, j′−1 +δ j, j′+1),

with Ueff = (1+ 2η+)U and Jeff = η−U , where the dimensionless quantities η± are given by:

η± =
�

J0

ω

�2 ∑

N>0

(±1)N (2JN (x0))
2

(U/ω)2 − N2
. (13)

Neighboron-neighboron hopping is allowed with an effective hopping matrix element similar
to the doublon case, and with zero on-site contribution. However, their spin structure affects
their dynamics in an interesting way. Namely, their singlet component is completely localized
while the triplet component is free to diffuse (see Appendix 1 for a more detailed discussion).
For the remaining singlon-singlon case, we find that the matrix elements are all zero up to
second order, i.e., 〈S j̃, j̃′,0|H

2p
eff |S j, j′,0〉= 0. The same is true for the the neighboron-singlon and

neighboron-doublon matrix elements.
The singlon-doublon matrix elements are not all zero up to second order. Assuming K sites

with periodic boundary conditions, each doublon state has non-vanishing matrix elements with
six singlon states out of the total K2−K non-doublon states. However, starting with a doublon
state, the probability of finding any of the non-doublon states at a later time t, for finite U ,
is bounded by ∼ η−0/U

2, where η−0 is the value of η− for U = 0 and U is in units of J0. In
particular, the cumulative probability is given by,

t
∫

0

d t ′P(D→ S, t ′) =

t
∫

0

d t ′
∑

j′, j′′

�

�

�〈S j′, j′′,N |e
iH2p

e f f t |Dj,0〉
�

�

�

2
®
η−0

U2
t ≡

t
τ

, (14)

where we defined the stability time τ = η−0/U
2. In the relevant parameter regime, the sta-

bility time is long. For example, for ω/J0 = 20, η−0 ∼ 10−3 and thus, for 5 < U/J0 < 20
the stability time is τ ∼ 105/J0. Hence, for times t � τ, we can neglect the singlon-doublon
matrix elements. Additionally, at long times, the contribution of these rare processes to the
diffusion and transport properties is negligible compared to the fast process of doublon motion.

To summarize this part, we find that, up to second order, single particles are frozen while
doublons and neighborons are two decoupled stable excitations that evolve non-trivially.

Beside the constraint forbidding two doublons from residing on the same site, doublons
behave as free particles and the frozen single particles are transparent to the doublons (see
Appendix 3 for a pathological case in which the doublon is trapped). Both the doublons and
neighborons otherwise behave as free hard-core particles. For simplicity, we focus on the
doublons dynamics from now on. As mentioned, neighborons behave in a slightly different
way (c.f. Appendix 1).

The effective doublon Hamiltonian is thus

Heff =
∑

j

(JeffD
†
j Dj+1 + h.c.) + UeffD

†
j Dj , (15)

where D†
j creates a doublon on site j. The doublon operators fulfill the hard-core-boson rela-

tions, i.e., [D†
j , D†

j′] = [Dj , Dj′] = 0 and [Dj , D†
j′] = (1− 2N D

j )δ j, j′ with N D
j being the number

of doublons in site j.
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Employing a similar procedure to a square-wave-drive (rather than cosine) with amplitude
A and frequency ω leads to similar results with only quantitative differences. The condition
for single-particle localization becomes A/ω = I , where I is an even integer, and the doublon
Hamiltonian is identical to the cosine case up to the replacement of both η± by ηsw, which
for a given I is,

ηsw =
�

J0

ω

�2 2
Tπ2

∑

N∈PI

�

N
N2 − I2

�2 1
(U/ω)2 − N2

, (16)

where PI is the set of all positive even integers for odd I/2 and positive odd integers for
even I/2.

4 Discussion

4.1 Diffusion in the system

In the previous section we concluded that single particles are frozen while doublons are free
to move, independently of the exact form of the drive.

In particular, since the doublons dynamics obey a simple tight-binding Hamiltonian, if a
doublon is initially prepared in site j = 0, the probability of finding the doublon in site j is
P( j, t) = |J j(2Jeff t)|2. For a square drive, this means that the system becomes ballistic with
an effective velocity 2Jeff = 2ηswU t. For U/ω � 1, the function ηsw is approximately U-
independent, thus, the effective velocity is linear in U . As shown in Figures 2a and 2b, this
theoretical prediction fits perfectly with the simulated doublon (with η− instead of ηsw) and
neighboron dynamics.

Next, we compare our analytical results for the effective hopping (velocity) of neighborons
with the time-dependent diffusion-coefficient obtained in Ref. [24], where it was calculated
from the mean-square displacement (MSD) in a system of 15 spinless fermions on a 31 site
chain. In this case we repeat our analysis for spinless model where the neighborons behave
as mobile and stable particles with an effective hopping amplitude as above. Unlike in the
spinful case, neighborons are interacting particles. While in dilute systems we expect the
ballistic dynamics to last for long times, in dense systems a diffusive behavior is expected to
arise at times much shorter than the stability time τ. In a half-filled system of particles with
nearest neighbor interactions, the average mean-free-path is expected to be of the order of
a single lattice site, and hence we expect a good quantitative match between D in Ref. [24]
and the effective hopping calculated in our model. Indeed as is shown in Fig. 2c we find an
excellent match between the analytical result v = 2Jeff as computed for the neighborons and
the diffusion coefficient extracted from the MSD in Ref. [24].

The analysis above is based on perturbation theory. However, the qualitative results holds
to any order for times shorter than τ. While the single-particle localization length depends on
the parameters, the actual single-particle localization survives up to long times t � τ. Similar
statements can be made for the doublons. While the actual value of the effective parameters
and the stability time τ depend on J0/ω and U/ω, the qualitative results remain unchanged as
long as U is not an integer multiple of ω. Higher order processes lead to non-trivial evolution
of singlon states, however, these processes affect the dynamics only for times much longer
than τ. It is safe therefore to neglect their effect on diffusion in the system. The effect of these
higher order processes is addressed in Appendix 2.
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Figure 3: The density evolution of a single doublon initialized at site 10 and a single-
particle initialized at site 18. In addition to the AC drive (lattice shaking) there is a
small DC drive (lattice tilt), E0 = J0/40. While the single particles remain frozen the
doublon performs Bloch oscillations with half the period of that of a single particle
(indicated by the white line), due to its effective double charge/mass.

4.2 Doublon localization

We found that for any U > 0, dynamical localization is ruined and the system becomes delocal-
ized due to the free motion of doublons. One may wonder whether the doublons themselves
may be localized. Since the doublons in 1D are non-interacting, it is possible to both dynam-
ically localize them by an alternating field, or ‘Bloch localize’ them by a uniform field. Both
procedures destroy neighboron motion and high order singlon processes as well.

The second option can be achieved by adding to the original Hamiltonian, Eq. (10), a
uniform force term, i.e.,

∑
j F0 jnj,σ. While single particles experience a uniform force of F0,

doublons experience a uniform force of 2F0 and are expected to Bloch oscillate with double
the frequency. Indeed, this is the case as shown in Fig. 3.

Dynamical localization may be achieved by driving the interaction term in Eq. (10), i.e.,
U → U0 + A2 j cos (ω2 t). This translates to the following effective doublon Hamiltonian,
Heff =

∑
j(JeffD

†
j Dj+1 + h.c.) + (Ueff + A2 j cos (ω2 t))D†

j Dj , which displays dynamical local-
ization if x2 = A2/ω2 is tuned to a zero of J0. We have confirmed numerically that indeed
this is the case.

We hence find that in both cases (uniform field and alternating field) the original interact-
ing system does not support diffusion as long as the effective doublon-Hamiltonian is a valid
description of the system, i.e., for t � τ. At least for the uniform field case, the last statement
is true to all orders in perturbation theory since the doublons become localized (due to the
Stark-effect). Since the doublon stability is not exact, the absence of diffusion is not complete
even in the presence of a uniform field. However, for times t � τ, we expect the deviations
from the non-diffusive states to be small.

4.3 Dynamical pairing

The elimination of single-particles and the emergent stability of the doublons acts as a con-
trollable dynamical pairing mechanism. As we showed previously, for relatively long times,
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the dynamics in the interacting fermionic system may be described solely by a hopping Hamil-
tonian of hard-core bosons. We show in the next section that the above statement holds also
in higher dimensions. Unlike repulsive fermions (in the absence of phonons), hard-core par-
ticles in dimensions d > 1 are expected to show superfluid transition at low temperature. In
particular, the critical temperature is expected to be of the order of Je f f . Below that tempera-
ture, one may expect to observe a buildup of superfluid correlation in the system. This type of
physics may be realized in cold atomic setups where the buildup of superfluid correlations be-
low T = Jeff may be observed. The value of Jeff may be controlled by the drive. In particular, it
can be made of the order of 10% of the bare single particle hopping amplitude J0. For shallow
optical lattices, the hopping amplitude may exceed 50nK . Thus, superfluid correlations may
appear at T ∼ 5nK , which is within the current experimental capabilities.

5 Extensions to general Hamiltoninas

In this section we highlight three different possible extensions: higher spatial dimensions,
longer range hopping terms beyond nearest neighbors and a longer range of interactions.

5.1 Higher dimension

The above model can be trivially extended to higher dimensions. Starting with the d-
dimensional version of Eq. (10),

H =
∑

j,`,σ

J0(c
†
j,σcj+r`,`,σ + h.c.) +

U
2

nj,↑nj,↓ + Aj cos (ωt)njσ, (17)

where j is a d-dimensional vector denoting the lattice sites, r` are the nearest neighbors vectors
and the alternating force has an equal component along each lattice direction. Repeating
the same procedure as in the 1D case, we find that for A/ω = x0 and up to second order in
J0/ω, single particles are frozen while doublons behave as hard-core bosons with the following
effective Hamiltonian,

H =
∑

j,`

JeffD
†
j Dj+r` + UeffD

†
j Dj, (18)

where Jeff and Ueff are identical to one-dimensional case. Similar to the 1D case, the addition
of a uniform force or linear field leads to single-doublon localization. Yet, unlike the 1D case,
hard-core bosons in d > 1 cannot be mapped to spinless fermions and cannot be considered
non-interacting. While we expect a non-diffusive behavior in the dilute limit, at finite densities
a diffuse behavior may arise due to the presence of interactions.

The most promising experimental candidates for observing the above effects are cold atom
experiments. Hamiltonians such as Eq. (17), in 1 − 3D, may be realized by means of opti-
cal lattices. The linear potential is then a tilt in the optical lattice and the oscillating force is
equivalent to shaking the lattice. Shaking frequencies may exceed 20KHz, which for typical
hopping amplitudes lead to ω/J0 ∼ 20. In these systems we expect to see single-particle lo-
calization in all dimensions. In particular, if doublons are the only mobile degree of freedom
in the problem, buildup of superfluid correlations at low temperatures are expected. A mea-
surement of such correlations in a Fermionic system is clear evidence of both pairing and the
ability to generate a highly controllable dynamical pairing mechanism.

5.2 Longer range hopping

In the above examples we consider a simple cosine band. However, more complicated
band-structures may also be considered. For example, longer range hopping terms such as
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∑

j,mχmc†
j c j+m + h.c. with m ≥ 1 may be added to the original Hamiltonian. For a cosine

drive, in order to dynamically localize single particles a multi-frequency drive is then needed.
The hopping of range m is localized by a drive of the form Ag cos (ωg t) where mAg/ωg = x0
with x0 a zero of J0. In presence of different hopping terms, a combination of the above drives
is needed. On the other hand, for a square-wave drive, it is possible to dynamically localize
different hopping terms with a single frequency drive.

5.3 Longer range interaction

Consider the Fermi-Hubbard model with both on-site interactions and nearest-neighbor (NN)
interactions,

H =
∑

j,σ

(J0c†
j,σc j+1,σ + h.c.) + A0 j cos (ω0 t)n j,σ + (U0 + A1 j cos (ω1 t))n j,↑n j,↓ + V n jn j+1,

(19)

where n j = n j,↑+n j,↓. For V = 0, single particles and doublons may be localized by setting both
X i = Ai/ωi to be a zero of J0, leaving no mobile excitation in the model. Turning on V leads to
the emergence of new mobile excitations in the problem. The new composite particles, neigh-
borons, are composed of two particles that reside on neighboring sites. Unlike the neighborons
in the previous section, these neighborons are completely diffusive. Higher numbers of parti-
cles that reside on neighboring sites can be understood in terms of the simple neighborons, and
hence we do not consider them as new particles. The calculation of the effective Hamiltonian
is identical to the calculation of the doublon effective Hamiltonian. The neighborons have an
on-site energy of V and a finite hopping amplitude that is proportional to V (for small V/ω0).
Unlike the doublons however, neighborons have NN interactions. Therefore, they can not be
dynamically localized without generating other mobile composite particles. Indeed, driving
the V term, i.e., V → V0 + A2 j cos (ω2 t) leads to neighborons localization if A2/ω2 is tuned
to a zero of J0. However, since neighborons are interacting, neighboring neighborons then
become mobile.

The above procedure may be extended to a general interaction range. At each stage, it is
possible to localize the relevant composite particle by driving the appropriate interaction term.
The dynamical localization of interacting composite particles leads to higher order composite
particles that become the mobile particles in the system. However, if at some stage the com-
posite particles are non-interacting, c.f. the doublons in the 1D Fermi-Hubbard model, they
may be localized without generating higher order mobile excitations. Notice that if a compos-
ite particle contains R+1 elementary particles, the leading order in the hopping amplitude of
that composite excitation scales as (J0/ω)R. Hence, even if the diffusion can not be eliminated
completely, it may be made parametrically small.

6 Summary

In this work we employed Flouquet engineering to generic many-body systems. We presented
a driving scheme that allows control over the nature of mobile excitations and control the
amount of diffusion in the system. In particular, we showed that for the standard Fermi-
Hubbard model in d dimensions, the application of a single drive leads to single-particle local-
ization, rendering doublons and neighborons the mobile excitations in the system. We find that
the diffusion in the system may be understood, quantitatively, solely by the doublon dynamics.
Moreover, the elimination of single-particles and the emergent stability of the doublons acts
as a controllable dynamical pairing mechanism which may be realized in cold atomic setups.
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We concluded by generalizing to models with M -range interactions, showing that a hierarchy
of excitations exists. By systematic driving, the mobile units can be localized rendering higher
order composite particles the mobile units in the system. In particular, if at some stage the
composite particles are non-interacting, such as in the 1D Fermi-Hubbard model, the compos-
ite particles may be localized without generating other mobile units. These lead to a generic
(non fine-tuned) many-body system that does not support diffusion.

It has not escaped our attention that a complete absence of diffusion in generic many-body
systems is closely related to many-body-localization. It is beyond the scope of this work to de-
termine whether the driving scheme we proposed retains integrability in generic d dimensional
clean many-body case.
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A Appendix

A.1 Appendix 1: Neighborons effective Hamiltonian

Unlike doublons, the neighborons dynamics is less trivial. While neighborons hopping is not
zero, half of their degrees of freedom are localized, and there is a trace of their initial condition
also in the limit t →∞. To understand that phenomenon, we derive the neighborons effective
Hamiltonian up to second order. We denote a neighboron state |G j,σ,N 〉 to be a spin σ particle
in site j and an opposite spin, σ̄, particle in site j + 1. Where N is the number of photons.
Up to second order, the matrix elements between neighborons and singlons or doublons are
zero, hence, the neighborons space is a closed space. The non-zero neighborons-neighborons
matrix elements are:

〈G j,σ,0|He f f |G j,σ,0〉= 〈G j,σ,0|He f f |G j,σ̄,0〉= 2ξ+. (20)

〈G j±1,σ,0|He f f |G j,σ,0〉= 〈G j±1,σ,0|He f f |G j,σ̄,0〉= ξ−,

where

ξ± =
∑

N

(±1)NJ 2
N (x0)

U + Nω
. (21)

The neighborons Hamiltonian may be transformed to momentum space to yield a momentum
dependent 2× 2 matrix (spin space):

He f f (k) = 2(ξ+ + ξ− cos k)(I +σx)≡ f (k)(I +σx), (22)

where I and σx are the identity and x Pauli matrices respectively. Since ξ+ > ξ− for every U ,
the function f is always positive, thus, the eigenvalues of He f f are ε− = 0 and ε+ = 2 f with
the corresponding eigenvectors are V− = (1 − 1)/

p
2 and V+ = (1 1)/

p
2. Next, we initialize

a neighboron with a given spin configuration in site j = 0, e.g., spin up in site j = 0 and spin
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down in site j = 1. The evolution of that initial state is given by:

Ψ(t, j) =

∫

dk
2π

1
p

2

�

V−e−iε− t + V+e−iε+ t
�

eik j (23)

=
1
2

�

1
−1

�

δ j,0 +
1
2

�

1
1

�

e−4iξ+ tJ j(4ξ− t).

Hence, the probability to find a neighboron in site j at time t is,

P(t, j) =
1
2

�

δ j,0 +
�

J j (4ξ− t)
�2�

. (24)

The particle density at site j has contributions from two different neighborons states, i.e.,
ρ(t, j) = P(t, j−1)+ P(t, j). In particular, the density in the initially occupied sites, j = 0 and
j = 1, is given by,

ρ(t, 0) = ρ(t, 1) =
1
2

�

1+ (J0 (4ξ− t))2 + (J1 (4ξ− t))2� . (25)

Both become 1/2 when t →∞. Hence, while half of the particle density diffuses, the other
half remain in the initial position. Indeed, the numerical time evolution agrees perfectly with
these results (see Fig. 2b in the main text).

In practice, the singlet part of the initial wave function remains localized while the triplet
propagates freely. Indeed, initializing a neighboron in a singlet state leads to no diffusion.
Such a phenomena may be used as a singlet filter. After preparing a generic zero-spin states,
the triplet part diffuses away leaving a singlet state on the initial position.

A.2 Appendix 2: Effect of Higher order processes

In the main text we considered all the processes up to second order. In particular, we showed
that for times smaller than the doublons stability time τ, the system is described by free
doublons. Moreover, the time scale of doublons hopping is much shorter than τ, e.g., for
U/J0 = 10 it is shorter by a factor of ∼ 3000, and hence the diffusion in the system is com-
pletely dominated by the doublons dynamics.

Singlon hopping is still not allowed in third order. The most dominant third order process
is a non-zero singlon-neighboron matrix element. However, these matrix elements are sparse
and the matrix elements themselves are extremely small (much more than a single factor of
J0/ω). For example, for U/J0 = 10 and ω/J0 = 20, the matrix elements are of the order of
10−5J0. This overall yields a typical time scale for these processes of the order of τ1 ∼ 10−8/J0.
In forth order, the most dominant processes are singlon hopping and doublon NNN hopping.
These matrix elements are not sparse, however, their magnitude is of the order of 10−8J0 which
again lead to typical time scales of τ2,3 ∼ 10−8/J0.

Overall, there is a clear separation of scales. The doublon dynamics time scale is of the
order ∼ 10−1/J0, their stability time scale is ∼ 10−5/J0 and the time scale of next relevant
processes is of the order ∼ 10−8/J0. The doublon dynamics is by far the most dominant
process. Moreover, the addition of a uniform field on top of the drive eliminates the high
order processes as well.

A.3 Appendix 3: Doublon trap

The frozen single particles are in general completely transparent to the doublons. The pro-
cess by which a doublon moves past a single particle however, results in the single particle
being displaced by two sites. In second order, this process can be illustrated on three sites
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Figure 4: In panel a, a free doublon moves past a localized single-particle, thereby
causing a displacement in the latter (it moves two sites left). In panel b we demon-
strate that a doublon can be trapped due to this, when it is tightly surrounded by two
single particles.
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Figure 5: Decay of an initial doublon due to particle loss processes in the system,
with γ= 0.01 in units of J0.

as: | ↑↓ ↑〉 → | ↑ ↑↓〉 → | ↑ ↑↓〉. A numerical evaluation of this is shown in Fig. 4a.
Hence, for the configuration in which a doublon is surrounded by two single particle states as
| ↑ ↑↓ ↑〉 (or different single particle spins for that matter), the doublon is completely trapped,
c.f. Fig. 4b.

A.4 Lindblad analysis

The dominant processes in cold atoms that cause the system to be imperfectly isolated from
the environment are particle loss and dephasing. Such processes can be effectively described
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using the Lindblad formalism for the time evolution of the density operator ρ,

ρ̇ = −i[H,ρ] +
1
2

∑

α

γα(t)
�

L†
αρLα − {LαL†

α,ρ}
�

, (26)

in which the jump operators Lα describe the system operator that is coupled to the environ-
ment, and γα(t) is the coupling rate.

We choose γα time independent, and thereby consider an effective infinite temperature en-
vironment that does not discriminate processes of different energy. In the presence of particle
loss, doublons are clearly no longer stable. The main question then turns into a comparison
of timescales, i.e. the effects we describe can be observed as long as the timescale for particle
loss is much longer than the time of the experiment. For the parameters used in the main text,
Fig. 5 shows the decay of an initial single doublon state in the presence of loss, i.e. Li = ciσ+ciσ̄
for all sites i, and γi = γ= 0.01.
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