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This technical brief revisits the method outlined in Tasora and
Anitescu 2011 [“A Matrix-Free Cone Complementarity Approach
for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,”
Comput. Methods Appl. Mech. Eng., 200(5-8), pp. 439—453],
which was introduced to solve the rigid multibody dynamics prob-
lem in the presence of friction and contact. The discretized equa-
tions of motion obtained here are identical to the ones in Tasora
and Anitescu 2011 [“A Matrix-Free Cone Complementarity
Approach for Solving Large-Scale, Nonsmooth, Rigid Body
Dynamics,” Comput. Methods Appl. Mech. Eng., 200(5-8), pp.
439-453]; what is different is the process of obtaining these equa-
tions. Instead of using maximum dissipation conditions as the
basis for the Coulomb friction model, the approach detailed uses
complementarity conditions that combine with contact unilateral
constraints to augment the classical index-3 differential algebraic
equations of multibody dynamics. The resulting set of differential,
algebraic, and complementarity equations is relaxed after time
discretization to a cone complementarity problem (CCP) whose
solution represents the first-order optimality condition of a quad-
ratic program with conic constraints. The method discussed
herein has proven reliable in handling large frictional contact
problems. Recently, it has been used with promising results in
fluid—solid interaction applications. Alas, this solution is not per-
fect, and it is hoped that the detailed account provided herein will
serve as a starting point for future improvements.

[DOI: 10.1115/1.4037415]

1 Notation: Problem setup

The time-evolution of a collection of 7, rigid bodies interacting
through friction and contact is described herein using Cartesian
coordinates. The array of generalized coordinates q = [rT, !, ...,
T el T e R™, and its time derivative = [¢],&],...,

np? “ny
. .T 1T .
r:b,s};] € R™ is used to represent the state of the system,

where for body j, 1 < j < ny, r; and g are the absolute position of
the center of mass and the body orientation Euler parameters,
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respectively. The time derivative of the Euler parameters & can
be replaced with a different set of unknowns, i.e., the angular

velocity in local coordinates @. The unknown velocity v =

T T T 11T 6np :o g: O I
[F1,@f,...,F,,@,] € R is tied to q via a linear transforma-
tion [1]

q=L(q)v (€]

With the ground assigned by convention index 0, assume two
bodies of index A and B, 0 < A < B are in contact. As in Fig. 1,
let 7 identify this contact event. A collision detection process pro-
duces the point of contact P, a signed distance function ®;, and a
set of three orthonormal vectors: n;, u;, and w;. By convention,
the normal vector n; is oriented from the body of lower index to
the body of higher index.

Any two bodies that are closer than a prescribed dx > 0 are
considered to produce an active contact event. The gap function
@; is negative if the two bodies share more than one point; it is
zero, if they share one point; it is greater than zero, if they share
no point. The geometry of the bodies is assumed to be convex in a
neighborhood of the contact area.

In each configuration q(7), the collection of Nx contact events
is denoted by .A(q(r),0k). The rotation matrices associated
with bodies A and B are Ay = As(g;(¢)) and Ap = Ap(& (1)),
respectively. The force acting on body B at point P is
Fig =79;,m + 9; 0 + 7;,W; = A;7;. The location of point P on
body B is rh =rp+ Aps;p and its virtual displacement is
5r§ = 0rg — ApS; pdTp, where 1y is the location of the center of
mass of body B; a three-dimensional vector quantity with an over-
bar, such as §; z, indicates a representation of a geometric vector
in the local (body-attached) centroidal and principal reference
frame; the tilde operator produces the skew symmetric matrix
associated with the vector it is used in conjunction with; and, the
vector 07 is the virtual rotation associated with body B. The vir-
tual work associated with the frictional contact force F; 5 is

5Wl;3 = [51‘ng Fi,B = 5[‘;Al"f)i + 57?; §,‘}BAZAI")A)I-

Body
i-th contact B

Fig. 1 Bodies A and B in contact; a local reference frame
{n;, uj, w;} is generated at the contact point based on contact
detection information. The contact point is located in the cen-
troidal and principal reference frames via the s;4 and §;p
vectors.
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Similarly, the virtual work for body A is
Wi = [0rh]" (—Fip) = —Or Ad; — 07154 ALA,
The virtual work that the presence of the frictional contact force
F; p imparts is
Wi = Wia +Wip = or'Dyj;
where

033

033
7AI'
ory —5iaA%A;
033
Sr— . c RO
033
Oy, A;
i:BAEAI-

033

03x3

and therefore the generalized force associated with the frictional
contact force is D;y;.
The equations of motion assume the form [1]

MY = F(q,v,7) + G~ + Dj¥ @)

where M = diag{ml13><3,j1, ...,mnbl3><3,jnh} is the constant
mass matrix, F(q,v,7) is the generalized applied and Coriolis
forces, GEB is the constraint reaction force associated with bilat-
eral constraints, and DX is the frictional contact force associated
with the presence of Ng contact events. In terms of notation D=
[D;...Dy € RN G=[Gy...Gy, | e RN 35 =51, 3%, "

€ R and /AlBE[ZlT,...,Z;B]TERNB.

The bilateral constraint reaction forces are associated with the
presence of bilateral constraints. These can be holonomic or non-
holonomic; without loss of generality, they are assumed here to be
holonomic and expressed as

gi(q,1) =0 (3a)
where 1 < j < Np. Their time derivative yields
og;
. — QT .
g;(q,v,1) :GjV—I—E—O (3b)

Finally
D;[V = *A;I‘I;A + A;rl'B + A;FAAEI'VA(I)A — A;FAB;;,‘YB(I)B
= Al (fg + Ap@p Sipg — Fa — Ay 5;4)
= Al (Fip = Fi) = i, viws viwl"

represents the relative velocity at the contact point between the
two bodies expressed in the local reference frame {n;, u;, w;}.

2 Frictional Contact Model

Herein, all impacts are considered inelastic; i.e., the restitution
coefficient is zero. A contact event / is captured as a nonpenetra-
tion condition posed as a complementarity equation. Friction fac-
tors in via the Coulomb dry friction model. Accordingly, for
contact event 7, the frictional contact model requires that the fol-
lowing three conditions hold simultaneously:
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0<®;Ly;,>0 (4a)
0 S \/ V%u + Vime- (:uiq}i‘n - \/ ijiu + ?iw) 2 0 (4b)
3o, >0 { Viu = TV (4c)

Viw = _O(iyi,w

where 1; > 0 is the friction coefficient.

3 The Discretized Equations of Motion

The discretization scheme adopted is a half-implicit symplectic
Euler method; see Ref. [2]. It is used to discretize the kinematic
differential equations in Eq. (1), the Newton—Euler equations of
motion in Eq. (2), and the Coulomb friction model stated in Eq.

(4). This yields the following nonlinear complementarity
problem:
generalized positions step size
gty =q" + "Ar L(q") vHD - (5q)
——
velocity transformation matrix
gen. speeds reaction impulse
——
M( v —yD) = g L GOZEE Ok (5b)
———
frict. contact impulse
1
0= Y g(l) 4GOI+ gfl) (5¢)
——
stabilization term
and,Vi e Ag,z,
stabilization term relaxation term
o<y Law ) T Y s
= Vin ( A Vin T THVir ) >
0 <5 L (il =30 ) >0 (5d)
Ho; >0 VE,IJI) = —ai%(,l;])
o = :
v = —aigir?
In Eq. (5), 0 = AtF(:0, q) vD); yK0H0 = Ar5F0HD; ang,
B = A 3P0, Moreover, G =G(q",/), and DV
=D(q", V). In Eq. o), g =gq?,®) and g

= (9g(q",1")/0r). Finally, in Eq. (5d), ®\" = 0;(q"), v//") =

(V([+l))2 + (V(H'l))2 is the magnitude of the tangential velocity

iu iw
(I+1)

at the point of contact, y; (Y2 Uy

= (Vi,u Viw )2 is the mag-
nitude of the friction impulse associated with the contact event 7,
and AE)Q represents the set of active contact events A(q(t), ox) at
time /) and in configuration q(*).

There are two notable aspects tied to the discretization of the
differential variational inclusion problem above.

(1) The bilateral kinematic constraint equations, see Eq. (3a),
are not used. Instead, we use the velocity-level set of kine-
matic constraints in Eq. (3b). However, the latter are modi-
fied in two respects. First, to account for violation in
satisfying the kinematic constraints at position level, a
“stabilization term” is considered in the discretized form of
the equation [3-6]. Second, since the method is half-
implicit, we chose to evaluate the partial time derivate g, in
the configuration (q*), #).
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(2) When discretizing the expression of the signed gap function
in Eq. (5d), there are two approximations involved in the
process. First, the complementarity conditions are imposed
using an approximation of the signed gap function at

A1 That is, (I)E[“) gy v,[;rl ,Vie AE)Q Given
that Az > 0, the condition that the gap between two bodies
at the next time step can be at most zero translates into the

inequality

!

St =0 ©)
Second, in order to render the nonlinear complementarity problem
obtained upon time discretization tractable, a relaxation of the
approximation above is introduced via the term — ,u,-vi; . As
shown in Sec. 4, this change enables one to pose the problem in
Eq. (5) as a cone complementarity problem (CCP).

The “stabilization term” in Eqgs. (5¢) and (5d) leads to a numeri-
cal penalty force that penalizes the constraint violation. This pen-
alty force is devoid of physical meaning; for instance, it is not tied
to the stiffness of the bodies participating in the contact event. To
better understand the implications of the stabilization and relaxa-
tion performed, we focus next on the unilateral constraints; i.e.,
bullet 2 above. Note that Eq. (6) effectively places a lower bound
on the new velocity. Indeed, to enforce nonpenetration, the veloc-
ity should be at least larger than —(®; ! / Ar). Note that a negative
gap represents penetration and the numerlcal method will produce
a solution that seeks to enforce a non-negative gap ®;’. Could
then the gap ever become negative in this method? There are three
situations when this can happen: (i) the choice of initial conditions
leads to bodies penetrating; (i7) discretization errors lead to a neg-
ative gap—the approximation that led to Eq. (6) is a first-order
Taylor expansion and large values of Az impact the quality of the
approximation; and (ii7) bodies that come at each other very fast
and are on a penetration course. In all these three cases though,
the solution descrlbed seeks to correct the wrong, i.e., move from
a negative gap <I) to a non-negative gap, in one time step, i.e.,
from ¢ to (1), This can be a problem under (i), since one can
have large penetrations that will lead to large corrections forces
needed to correct the penetration in one time step. This is particu-
larly problematic when the step size Af, which divides the gap
cI)fl), is very small. Then, in one small time step, the method
attempts to correct the penetration gap, which could lead to large
normal forces. In practice, one might place an upper bound on the
value of the resulting normal velocity, effectively capping the
value of the normal force that attempts to address the gap viola-
tion in one step. For (ii), large negative gaps are unlikely. For (iii),
a scenario that can lead to large penetration is one in which two
bodies moving very fast toward each other and are on a collision
course are not colliding yet but are about to. At the next time step,
the penetration will be large, and as such a large normal force will
subsequently correct the large penetration in one step. This situa-
tion can be mitigated by selecting the active set .A(SQ in Eq. (5d) to
include not only bodies that are in contact at the current time step,
but also bodies that are close to each other at /), i.e., choosing a
strictly positive dox > 0.

The discussion covering the penetration cases (i) through (iif)

above was built around the <I)l<-1) gap value. There is a clear

intuition behind this quantity that facilitates a better grasp of
the arguments put forth. However, Eq. (5d) makes it clear that
the numerical method works with the modified gap

O, = (Dfl) u,vAtvf-? b, Qualitatively, little changes when replac-

ing (I)I@ by ;. Quantitatively though, the use of ®; might lead to

0]

a subtle numerical artifact. If relative to the size of ®;, the term

u,-Atvf?f Y becomes large, then its size will play a role in the econ-

omy of the numerical solution. By and large, g, is small and so is

(I+1)

At. The quantity v;; ' represents the tangential relative velocity at
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the contact point. If it is large enough, then the net effect of
,u,»AtvE‘l;f Y is to make the penetration more negative, i.e., deeper
penetration. Indeed, if one bowling ball would slide fast without
rolling on the floor and there would be no physical penetration,
the numerical solution nevertheless registers a numerical gap

equal in size to —,u,-AtvE.IT+ " As such, the numerical scheme will
produce an excess normal force whose purpose is to compensate
for this nonphysical gap. This artifact has been demonstrated/
discussed in Ref. [7]; see Figs. 2 and 3 therein. Indeed, when the
bowling ball slides fast on the floor, there is a vertical force

caused by the non-negligible sinkage — ul-AtvE_I; Y Once the value

(1+1)

of the term ,u,Atv ) becomes small, so does the values of this

force. Note that once the bowling ball rolls without slip, this
“numerical artifact” force vanishes. Moreover, this force is zero if
u; = 0; i.e., in the absence of friction.

Finally, note that the solution methodology outlined here leads
to an inelastic treatment of impact. The use of A(IK dictates that
two bodies that are dx-close to each other lead to a contact event.
As such, the complementarity condition (®;/Ar) + V(M) >0 will
enforce the condition that the numerical solution produce a veloc-
ity that leads to no penetration at #/*!). Bar small penetrations that
are due to numerical approximations, the numerical solution will
maintain this zero gap until the forces applied lead to a “lift-off”
condition at which point the two bodies separate. Ways to change
this behavior from inelastic to elastic are not discussed here—the
focus of this contribution is exclusively on handling of frictional
contact, which is ubiquitous. To the best of our knowledge, deriv-
ing a general purpose elastic impact scheme for rigid bodies of
arbitrary shape that experience simultaneous impacts remains an
open problem. One approach that is promising is described in Ref.
[8], albeit therein the authors resort to a decoupling of the impact
computation from contact computation, as well as the computa-
tion of the friction force from the normal force.

4 The Cone Complementarity Problem
4.1 Posing the Problem

4.1.1 The “Unilateral Constraints” Component. The friction
cone K; associated with contact event i is defined as K;
={[,y, 2" e R 0<x A px—+/y>+22>0}. Similarly,
the polar cone IC? associated with the friction cone K; is defined
as K, ={[a, b, " e R*:ax+by+cz <0V, ,y, 2" ek}
Based on Eq. (5), y?”l) = [/1(1:1)’ y([“) (1) ] € K. Define next

Lu VLM

d; = [i(l)lw + 1(‘1:1)7 vffl), (D) } € R3. Then, using Eq. (5)
1
G 1) = (00 I )
_Hlyl(ljl) 1(.,[+1)+ z([;”“/z(l;l)“’"1(1;1)%(,‘4“)
_”/1(1H> I(1+1)+ (I+1)vl(1u+1)_‘_ ’UH)%(IMH)
— 'J),(I;:l) —o l(/;:l) 0

and therefore yf V1d,.
Next we show that —d; € ICI, i.e., that dl-T -p>0,Vp

:xyz ek If x=0,theny=z=0and d; -p>0. If x>0,
Ki. If x=0, th 0 and d 0.1f x>0

then we can scale p by a constant 5 > 0 such that x = yf[; Y Note

that this scaling does not change the sign of the dot product dl-T p

We assume y,(n D

Then, using the

Wi 2 VB

is trivial.
and that

>0 since the case yf’: V=0
Cauchy—Schwartz  inequality
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d p= yf[n“) (iq’z@ +V5,[y,+l>) 1+1 b—|— (1+1)

T 0

> /b2+c2 (1+1) 11u+1)b+ (1+1)

>0

We thus conclude that we can equivalently express the conditions
in Eq. (5) as the following CCP:

K3yl —d ek, 7

4.1.2 The *“Bilateral Constraints” Component. Let 0 <j
< Njp. For each bilateral kinematic constraint equation j, define

0
1 g0 Oroe , 98
b; v +G; v + o

In the light of Eq. (5¢), one has 0 = b; J_/l D) e R. Following
in the steps of the argument made for the umlateral constraints,
one can define the cone B; =R and the polar cone
B ={y: x-y<0VxeB} Note that this polar cone set has
only one element: B = {0}. Therefore, we can reformulate the
condition in Eq. (5¢) as

B4 L —beB; (8)

which is the “bilateral constraint” CCP analog of the condition in
Eq. (7).

4.2 Reformulating the CCP. The next goal is to eliminate
any dependency on the unknown velocity v("'") in the cone com-
plementarity problems of Eqgs. (7) and (8). To this end, using the
force balance condition stated in Eq. (5b), one has that

VD — 3O L MO M GO D M DOy D

©

Let dip = [(1/A0®", 0,0 |" eR* [l_d,0+Df” (v +
M 'f?) € R3, and b,o = (1/A0) g + 05" /o + GT (v +
M~! ) ¢ R. Therefore, d; = d;o + DS) vt = d 1+ D,U)T

M- GO B+ +D(1)‘TM‘1 D(1)y1(,(/+1), b/ _ b,.o + Gj

lG A.B (1+1) + G D([)'}/'K’U +1)

Next, define P = [D D) e R 6m, x 3Nk + Np), v
= [T GEEDTT ¢ R3NetNs - and p=1[dT,, ..., dY |,

s K>
b1oy .-y bNB’O]T € R¥™N«*tVs The terms entering the CCPs both for
unilateral and bilateral constraints can then be expressed without
any recourse to the velocity v(*D: d; = d;; +D() M~ 'PyUtD
and b; = bjo + G\'"M ™' Py(+1).
of CCPs that can be generically represented as

and

(1+1)

Therefore, we have a collection

coav{ L — (p+ M), e ¢ (10)
where N=P'™M'P,C=K,® ... @ Ky, ® B @ ... ® By,, an
C=K®.. ®ICNK®B® ®BN

5 The Quadratic Problem Angle

We show next that the CCP stated in Eq. (10) represents the
first-order optimality conditions [9] for the convex quadratic opti-
mization problem with conic constraints

v = minlvTNv +pTy
vo2 (11)

subjectto vy € Cy

014503-4 / Vol. 13, JANUARY 2018

To that end, formulate the Karush—Kuhn-Tucker (KKT) optimal-
ity conditions via the Lagrangian [9]

1
E(V, .//7 d)) = EVTNV + pTV

Nk
+Zl//l(~/ })Iu /1\4 ut/ln)+z¢/ﬂl
i=1

where Y and ¢ are dummy Lagrange multipliers. The first-order
optimality conditions assume the form

VL = O3ng 1n,
0 < wi J—ﬂi?i,n -\ yiz.u + V?,w 2 0

1<i<Ng: (12)
¢4 =0

1 <j<Ng:

The first condition earlier leads to two sets of equalities. First, for
1 <i < Nk, the gradient with respect to y; yields

—H;
A))i.,u

2 2
DTM Py 4+ diy + ;| Vi T Vi | = 05

yi,w

\/ vlzu + ’yzz,w
Vi {—m (/ [+ v%w)
<“/l-‘,w / N y,z_w) } Therefore, using the first set of comple-

mentarity conditions in Eq. (12)

which leads to dl.T =

2 2
Yiut Viw
d,‘TVi ==V —myin+ %
yi,u + Vi‘w
=y (.UiVi,n - V,%u + /,ZM)
=0

Next, let a vector a =[a b C]T € K;. We want to show that
—ald; <0, or equivalently, «'d; > 0. First, note that if a=0,
then b =c¢ =0, and therefore a'd; = 0. Otherwise, a >0, and
then

a
b"iu_’_c iw
da’- | b 20(=>a,u,~+/‘7y’20
. N R

= a7+ v+ iy 2 0

As pa > /b>+ 2, using the Cauchy-Schwartz inequality,
wia \/ yl’%u + Vi%w + b’yi,u + C'yi,w Z v b2 + C2 \/ Ytzu + ylz,w + b'yi,u + CVi,w

>0, which proves that as far as y; is concerned,
K2y, L —d; € K;. In other words, if y; satisfies the KKT condi-
tions in Eq. (12), it is also a solution of the CCP problem in

Eq. (7).
A similar result can be obtained in the bilateral constraints case.
Indeed, in this case b; = —¢;. Using the last complementarity

condition in Eq. (12), one has that whenever 4; # 0, necessarily
b;=0. In other words, we have that B;3/;1 —b; € B which
mdlcates that a /; that satisfies the ﬁrst KKT condmons in Eq.
(12) is a solution of the CCP problem in Eq. (8).

Note that the dynamics step if essentially done once vi’“) is
computed. Indeed, the new velocity is evaluated using Eq. (9),
while the new position is obtained via Eq. (5a).

6 Conclusions and Future Work

A differential inclusion approach is used to formulate the rigid
multibody dynamics problem in the presence of mutual contact
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and friction. Its salient attribute is reliance on complementarity
conditions to pose both the contact non-penetration condition and
the Coulomb dry friction model. Time discretization of the result-
ing differential, algebraic, and complementarity equations yields a
nonlinear complementarity problem. In the discretization process,
the unilateral and bilateral kinematic constraints are imposed at
the velocity level. Drift in the position-level constraints is pre-
vented in Eq. (5) via “stabilization terms.” Moreover, the nonpe-
netration unilateral constraint, formulated at the velocity level, is
further modified via a “relaxation term” to morph what would oth-
erwise be a nonlinear complementarity problem into a cone com-
plementarity problem. The latter has a solution that is produced
by solving of a convex quadratic optimization problem with conic
constraints. The same numerical method is proposed in Ref. [1]
but following a different set of intermediate steps. As such, this
contribution does not focus on the numerical method, but rather
on the steps to obtain this numerical method. It is hoped that this
presentation is detailed enough to reveal the strengths and weak-
nesses of the solution methodology.

There are three aspects in which the method described can be
improved. First, a better approach would enforce the unilateral
and bilateral constraints at the position level to impose a tight and
numerically robust control on constraint drift. Second, the relaxa-
tion in Eq. (5d) was shown to lead to “lift-off forces™ at high slid-
ing speed, an artifact that can introduce noise in the solution.
Third, the rigid body assumption leads to scenarios in which, due
to the presence of redundant constraints, the matrix N in Eq. (11)
is symmetric positive semi-definite. As such, a solution of the con-
vex optimization problem with conic constraints, while global, is
not unique. There are early indications that these three limitations
can be addressed. A discussion of this issue falls outside the scope
of this document.

Results of an experimental validation of the solution methodol-
ogy discussed are reported in Refs. [10-12]. This solution meth-
odology is embedded in the simulation software Chrono [13].
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Nomenclature

The list below summarizes the meaning of the main symbols
used in the manuscript. The list is not exhaustive; it includes
only the more important symbols that were used beyond the
immediate location where defined
A, B = dummy indexes for arbitrary bodies
A(q(), dx) = active contact set; two bodies contribute a contact
event to this set if they are closer than dx > 0
from each other
Agg = the set of active contact events A(q(7), dg) at
time 7 and in configuration q'’)
A, = rotation matrix associated with body A

b; = composite velocity associated with bilateral con-
straint j
B;, B; = cones associated with bilateral constraint j

Ki®.. 0Ky @B &...2 By,
= system level Eolar cone, .
Ki®..0Ky @B ®..2 By,
d; = composite velocity;
d; = [(1/A0 @ vt iy
D) = notation for D(q", t(ffq) '

i L.
C = system level friction cone,
C

, V([+1)}T c R3

iw

Journal of Computational and Nonlinear Dynamics

D=

8;€R4:

Vins Vius Viw =

(I+1)
Vir =

(I)l'ERSZ

D =

yi‘m yi,u? Yiw =

=

P —

projection matrix used to generate the set of gen-
eralized forces Dj¥ induced by the contact events
present in the system (unilateral constraints)

set of four Euler parameters associated with body
i. Provides orientation with respect to a global ref-
erence frame

notation for impulse Az F(t¥) q), v(0)

the set of generalized applied and Coriolis forces
notation for g(q, 7))

notation for (9g(q”, /") /dr)

function expression that defines the jth bilateral
constraint active in the system at time #, namely
8(q,1) =0

projection matrjx used to generate the set of general-
ized forces G4 induced by the bilateral constraints

= notation for G(q", "))
= transformation matrix that links the time derivative

of the Euler parameters to the angular velocity

= constant, system level, mass matrix

number of rigid bodies in the system

number of bilateral constraints present in the
system

unit normal vector at point of contact; oriented
from the body of lower index to the body of
higher index

n;, u;, w;; combine to form the frictional contact
vector J;

number of contact events present in the system at
a given time (explicit dependency on time
dropped for convenience)

quadratic term matrix, optimization problem;
computed as PTM~'P

system level projection matrix, defined as

[D(’) GU)]

coefficient of the linear term in the CCP

= set of generalized coordinates associated with the

n, bodies in the system

Cartesian space location of body i

vector that for contact event 7 provides the loca-
tion of the contact point expressed in the local ref-
erence frame associated with body B

time associated with the integration time step /;
also, At = (D) — 40)

two unit normal vectors at point of contact; span
the tangent contact plane; together with n; form a
orthogonal reference frame

components of the relative velocity at the contact
point between the two bodies involved in contact
event i; components associated with the local ref-
erence frame {n;, u;, w;}

magnitude of the tangential velocity at the point
(V(Hl))z + (VUII))Z

iu i,

of contact; notation for
collection of all body velocities

LT T T 6
[f,@f,...t, o] € R™
angular velocity of body i expressed in its centroi-
dal and principal reference frame

= user defined threshold value that defines when

two bodies yield an active contact event

signed gap function: negative if bodies penetrate,
positive if they don’t touch, zero if one point of
contact

Lagrange multipliers associated with the three
unknown components of the frictional contact
force for contact event i. Components expressed
in conjunction with the reference frame

set of Lagrange multipliers associated with the
unilateral constraints present in the system

notation for frictional contact impulse Az~ (1)
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yEIFH) = magnitude of the friction impulse associated with

the contact event /; notation for
(I+1)52 (I4+1)52
(yi,u ) + (yi,w )
At = numerical integration time step
JC; = friction cone associated with contact event i
KC; = polar cone associated with the friction cone K;

1
u; = friction coefficient associated with contact event i
i

o,

= set of Lagrange multipliers associated with the
bilateral constraints

JBU+1) = npotation for bilateral constraint reaction impulse
SB,(1+1
, At 4 =y
(I),( ) — notation for (I),-(q“ >); i.e., gap for contact event i
at time 1)
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