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This technical brief revisits the method outlined in Tasora and
Anitescu 2011 [“A Matrix-Free Cone Complementarity Approach
for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,”
Comput. Methods Appl. Mech. Eng., 200(5–8), pp. 439–453],
which was introduced to solve the rigid multibody dynamics prob-
lem in the presence of friction and contact. The discretized equa-
tions of motion obtained here are identical to the ones in Tasora
and Anitescu 2011 [“A Matrix-Free Cone Complementarity
Approach for Solving Large-Scale, Nonsmooth, Rigid Body
Dynamics,” Comput. Methods Appl. Mech. Eng., 200(5–8), pp.
439–453]; what is different is the process of obtaining these equa-
tions. Instead of using maximum dissipation conditions as the
basis for the Coulomb friction model, the approach detailed uses
complementarity conditions that combine with contact unilateral
constraints to augment the classical index-3 differential algebraic
equations of multibody dynamics. The resulting set of differential,
algebraic, and complementarity equations is relaxed after time
discretization to a cone complementarity problem (CCP) whose
solution represents the first-order optimality condition of a quad-
ratic program with conic constraints. The method discussed
herein has proven reliable in handling large frictional contact
problems. Recently, it has been used with promising results in
fluid–solid interaction applications. Alas, this solution is not per-
fect, and it is hoped that the detailed account provided herein will
serve as a starting point for future improvements.
[DOI: 10.1115/1.4037415]

1 Notation: Problem setup

The time-evolution of a collection of nb rigid bodies interacting
through friction and contact is described herein using Cartesian

coordinates. The array of generalized coordinates q ¼ ½rT
1 ; e

T
1 ;…;

rT
nb
; eT

nb
�T 2 R7nb , and its time derivative _q ¼ ½ _rT

1 ; _e
T
1 ;…;

_rT
nb
; _eT

nb
�T 2 R7nb , is used to represent the state of the system,

where for body j, 1 � j � nb, rj and ej are the absolute position of
the center of mass and the body orientation Euler parameters,

respectively. The time derivative of the Euler parameters _e can
be replaced with a different set of unknowns, i.e., the angular

velocity in local coordinates �x. The unknown velocity v ¼
½ _rT

1 ; �x
T
1 ;…; _rT

nb
; �xT

nb
�T 2 R6nb is tied to _q via a linear transforma-

tion [1]

_q ¼ LðqÞv (1)

With the ground assigned by convention index 0, assume two
bodies of index A and B, 0 � A < B are in contact. As in Fig. 1,
let i identify this contact event. A collision detection process pro-
duces the point of contact P, a signed distance function Ui, and a
set of three orthonormal vectors: ni; ui, and wi. By convention,
the normal vector ni is oriented from the body of lower index to
the body of higher index.

Any two bodies that are closer than a prescribed dK � 0 are
considered to produce an active contact event. The gap function
Ui is negative if the two bodies share more than one point; it is
zero, if they share one point; it is greater than zero, if they share
no point. The geometry of the bodies is assumed to be convex in a
neighborhood of the contact area.

In each configuration qðtÞ, the collection of NK contact events
is denoted by AðqðtÞ; dKÞ. The rotation matrices associated
with bodies A and B are AA ¼ AAðe1ðtÞÞ and AB ¼ ABðe1ðtÞÞ,
respectively. The force acting on body B at point P is
Fi;B ¼ ĉi;nni þ ĉi;uui þ ĉi;wwi � Aiĉi. The location of point P on
body B is rP

B ¼ rB þ AB�si;B and its virtual displacement is
drP

B ¼ drB � AB~�si;Bd�pB, where rB is the location of the center of
mass of body B; a three-dimensional vector quantity with an over-
bar, such as �si;B, indicates a representation of a geometric vector
in the local (body-attached) centroidal and principal reference
frame; the tilde operator produces the skew symmetric matrix
associated with the vector it is used in conjunction with; and, the
vector d�pB is the virtual rotation associated with body B. The vir-
tual work associated with the frictional contact force Fi;B is

dW i;B ¼ ½drP
B�

T
Fi;B ¼ drT

BAiĉi þ d�pT
B
~�si;BA

T
BAiĉi

Fig. 1 Bodies A and B in contact; a local reference frame
{ni ; ui ; wi} is generated at the contact point based on contact
detection information. The contact point is located in the cen-
troidal and principal reference frames via the �s i ;A and �s i ;B
vectors.
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Similarly, the virtual work for body A is

dW i;A ¼ ½drP
A�

T ð�Fi;BÞ ¼ �drT
AAiĉ i � d�pT

A
~�si;AA

T
AAiĉi

The virtual work that the presence of the frictional contact force
Fi;B imparts is

dW i ¼ W i;A þW i;B ¼ drTDiĉi

where

dr ¼

dr1

d�p1

�

drnb

d�pnb

2
6666664

3
7777775
2 R6nb Di ¼

03�3

�

03�3

�Ai

�~�si;AA
T
AAi

03�3

�

03�3

Ai

~�si;BA
T
BAi

03�3

�

03�3

2
6666666666666666666666666664

3
7777777777777777777777777775

2 R6nb�3

and therefore the generalized force associated with the frictional
contact force is Dici.

The equations of motion assume the form [1]

M _v ¼ Fðq; v; tÞ þGk̂
B þ DĉK (2)

where M ¼ diag m1I3�3; �J1;…;mnb
I3�3; �Jnb

� �
is the constant

mass matrix, Fðq; v; tÞ is the generalized applied and Coriolis

forces, Gk̂
B

is the constraint reaction force associated with bilat-

eral constraints, and DĉK is the frictional contact force associated

with the presence of NK contact events. In terms of notation D�
½D1…DNK

�2R6nb�3NK ;G�½G1…GNB
�2R6nb�NB ; ĉK�½ĉT

1 ;…;ĉT
NK
�T

2R3NK , and k̂
B�½k̂T

1 ;…;k̂
T

NB
�T2RNB .

The bilateral constraint reaction forces are associated with the
presence of bilateral constraints. These can be holonomic or non-
holonomic; without loss of generality, they are assumed here to be
holonomic and expressed as

gjðq; tÞ ¼ 0 (3a)

where 1 � j � NB. Their time derivative yields

_gj q; v; tð Þ � GT
j vþ

@gj

@t
¼ 0 (3b)

Finally

DT
i v ¼ �AT

i _rA þ AT
i _rB þ AT

i AA~�si;A �xA � AT
i AB~�si;B �xB

¼ AT
i _rB þ AB ~�xB ~�si;A � _rA � AA ~�xA ~�si;A

� �
¼ AT

i _ri;B � _ri;Að Þ � ½vi;n; vi;u; vi;w�T

represents the relative velocity at the contact point between the
two bodies expressed in the local reference frame {ni; ui; wi}.

2 Frictional Contact Model

Herein, all impacts are considered inelastic; i.e., the restitution
coefficient is zero. A contact event i is captured as a nonpenetra-
tion condition posed as a complementarity equation. Friction fac-
tors in via the Coulomb dry friction model. Accordingly, for
contact event i, the frictional contact model requires that the fol-
lowing three conditions hold simultaneously:

0 � Ui?ĉi;n � 0 (4a)

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i;u þ v2
i;w

q
? liĉi;n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ2

i;u þ ĉ2
i;w

q� �
� 0 (4b)

9 ai � 0 :
vi;u ¼ �aiĉ i;u

vi;w ¼ �aiĉ i;w
;

	
(4c)

where li � 0 is the friction coefficient.

3 The Discretized Equations of Motion

The discretization scheme adopted is a half-implicit symplectic
Euler method; see Ref. [2]. It is used to discretize the kinematic
differential equations in Eq. (1), the Newton–Euler equations of
motion in Eq. (2), and the Coulomb friction model stated in Eq.
(4). This yields the following nonlinear complementarity
problem:

qðlþ1Þ
zfflffl}|fflffl{generalized positions

¼ qðlÞ þ Dt
z}|{step size

LðqðlÞÞ|fflfflffl{zfflfflffl}
velocity transformation matrix

vðlþ1Þ (5a)

Mð vðlþ1Þ
zffl}|ffl{gen: speeds

�vðlÞÞ ¼ fðlÞ þ GðlÞkB;ðlþ1Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{reaction impulse

þ DðlÞcK;ðlþ1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
frict: contact impulse

(5b)

0 ¼ 1

Dt
g lð Þ

|fflffl{zfflffl}
stabilization term

þG lð Þ;Tv lþ1ð Þ þ g lð Þ
t (5c)

and, 8 i 2 AðlÞ
dK

,

0 � c lþ1ð Þ
i;n ?ð 1

Dt
U lð Þ

i

zfflfflffl}|fflfflffl{stabilization term

þv lþ1ð Þ
i;n �liv

lþ1ð Þ
i;T

zfflfflfflfflffl}|fflfflfflfflffl{relaxation term

Þ � 0

0 � v lþ1ð Þ
i;T ? lic

lþ1ð Þ
i;n � c lþ1ð Þ

i;F

� �
� 0

9 ai � 0 :
v lþ1ð Þ

i;u ¼ �aic
lþ1ð Þ

i;u

v lþ1ð Þ
i;w ¼ �aic

lþ1ð Þ
i;w

8><
>:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(5d)

In Eq. (5), fðlÞ � DtFðtðlÞ;qðlÞ; vðlÞÞ; cK;ðlþ1Þ � Dt ĉK;ðlþ1Þ; and,

kB;ðlþ1Þ � Dt k̂
B;ðlþ1Þ

. Moreover, GðlÞ � GðqðlÞ; tðlÞÞ, and DðlÞ

� DðqðlÞ; tðlÞÞ. In Eq. (5c), gðlÞ � gðqðlÞ; tðlÞÞ and g
ðlÞ
t

� ð@gðqðlÞ; tðlÞÞ=@tÞ. Finally, in Eq. (5d), UðlÞ
i � UiðqðlÞÞ; v

ðlþ1Þ
i;T �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvðlþ1Þ
i;u Þ2 þ ðvðlþ1Þ

i;w Þ2
q

is the magnitude of the tangential velocity

at the point of contact, cðlþ1Þ
i;F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcðlþ1Þ

i;u Þ2 þ ðcðlþ1Þ
i;w Þ2

q
is the mag-

nitude of the friction impulse associated with the contact event i,

and AðlÞ
dK

represents the set of active contact events AðqðtÞ; dKÞ at

time tðlÞ and in configuration qðlÞ.
There are two notable aspects tied to the discretization of the

differential variational inclusion problem above.

(1) The bilateral kinematic constraint equations, see Eq. (3a),
are not used. Instead, we use the velocity-level set of kine-
matic constraints in Eq. (3b). However, the latter are modi-
fied in two respects. First, to account for violation in
satisfying the kinematic constraints at position level, a
“stabilization term” is considered in the discretized form of
the equation [3–6]. Second, since the method is half-
implicit, we chose to evaluate the partial time derivate gt in
the configuration ðqðlÞ; tðlÞÞ.
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(2) When discretizing the expression of the signed gap function
in Eq. (5d), there are two approximations involved in the
process. First, the complementarity conditions are imposed
using an approximation of the signed gap function at

tðlþ1Þ. That is, Uðlþ1Þ
i � UðlÞ

i þ Dt v
ðlþ1Þ
i;n ; 8 i 2 AðlÞ

dK
. Given

that Dt > 0, the condition that the gap between two bodies
at the next time step can be at most zero translates into the
inequality

U lð Þ
i

Dt
þ v lþ1ð Þ

i;n � 0 (6)

Second, in order to render the nonlinear complementarity problem
obtained upon time discretization tractable, a relaxation of the
approximation above is introduced via the term �liv

ðlþ1Þ
i;T . As

shown in Sec. 4, this change enables one to pose the problem in
Eq. (5) as a cone complementarity problem (CCP).

The “stabilization term” in Eqs. (5c) and (5d) leads to a numeri-
cal penalty force that penalizes the constraint violation. This pen-
alty force is devoid of physical meaning; for instance, it is not tied
to the stiffness of the bodies participating in the contact event. To
better understand the implications of the stabilization and relaxa-
tion performed, we focus next on the unilateral constraints; i.e.,
bullet 2 above. Note that Eq. (6) effectively places a lower bound
on the new velocity. Indeed, to enforce nonpenetration, the veloc-
ity should be at least larger than �ðUðlÞ

i =DtÞ. Note that a negative
gap represents penetration and the numerical method will produce
a solution that seeks to enforce a non-negative gap UðlÞ

i . Could
then the gap ever become negative in this method? There are three
situations when this can happen: (i) the choice of initial conditions
leads to bodies penetrating; (ii) discretization errors lead to a neg-
ative gap—the approximation that led to Eq. (6) is a first-order
Taylor expansion and large values of Dt impact the quality of the
approximation; and (iii) bodies that come at each other very fast
and are on a penetration course. In all these three cases though,
the solution described seeks to correct the wrong, i.e., move from
a negative gap UðlÞ

i to a non-negative gap, in one time step, i.e.,
from tðlÞ to tðlþ1Þ. This can be a problem under (i), since one can
have large penetrations that will lead to large corrections forces
needed to correct the penetration in one time step. This is particu-
larly problematic when the step size Dt, which divides the gap
UðlÞ

i , is very small. Then, in one small time step, the method
attempts to correct the penetration gap, which could lead to large
normal forces. In practice, one might place an upper bound on the
value of the resulting normal velocity, effectively capping the
value of the normal force that attempts to address the gap viola-
tion in one step. For (ii), large negative gaps are unlikely. For (iii),
a scenario that can lead to large penetration is one in which two
bodies moving very fast toward each other and are on a collision
course are not colliding yet but are about to. At the next time step,
the penetration will be large, and as such a large normal force will
subsequently correct the large penetration in one step. This situa-
tion can be mitigated by selecting the active set AðlÞ

dK
in Eq. (5d) to

include not only bodies that are in contact at the current time step,
but also bodies that are close to each other at tðlÞ, i.e., choosing a
strictly positive dK > 0.

The discussion covering the penetration cases (i) through (iii)

above was built around the UðlÞ
i gap value. There is a clear

intuition behind this quantity that facilitates a better grasp of
the arguments put forth. However, Eq. (5d) makes it clear that
the numerical method works with the modified gap
~Ui � UðlÞ

i � liDtv
ðlþ1Þ
i;T . Qualitatively, little changes when replac-

ing UðlÞ
i by ~Ui. Quantitatively though, the use of ~Ui might lead to

a subtle numerical artifact. If relative to the size of UðlÞ
i , the term

liDtv
ðlþ1Þ
i;T becomes large, then its size will play a role in the econ-

omy of the numerical solution. By and large, li is small and so is

Dt. The quantity v
ðlþ1Þ
i;T represents the tangential relative velocity at

the contact point. If it is large enough, then the net effect of

liDtv
ðlþ1Þ
i;T is to make the penetration more negative, i.e., deeper

penetration. Indeed, if one bowling ball would slide fast without
rolling on the floor and there would be no physical penetration,
the numerical solution nevertheless registers a numerical gap

equal in size to �liDtv
ðlþ1Þ
i;T . As such, the numerical scheme will

produce an excess normal force whose purpose is to compensate
for this nonphysical gap. This artifact has been demonstrated/
discussed in Ref. [7]; see Figs. 2 and 3 therein. Indeed, when the
bowling ball slides fast on the floor, there is a vertical force

caused by the non-negligible sinkage �liDtv
ðlþ1Þ
i;T . Once the value

of the term �liDtv
ðlþ1Þ
i;T becomes small, so does the values of this

force. Note that once the bowling ball rolls without slip, this
“numerical artifact” force vanishes. Moreover, this force is zero if
li ¼ 0; i.e., in the absence of friction.

Finally, note that the solution methodology outlined here leads
to an inelastic treatment of impact. The use of AðlÞ

dK
dictates that

two bodies that are dK-close to each other lead to a contact event.
As such, the complementarity condition ð~Ui=DtÞ þ v

ðlþ1Þ
i;n � 0 will

enforce the condition that the numerical solution produce a veloc-
ity that leads to no penetration at tðlþ1Þ. Bar small penetrations that
are due to numerical approximations, the numerical solution will
maintain this zero gap until the forces applied lead to a “lift-off”
condition at which point the two bodies separate. Ways to change
this behavior from inelastic to elastic are not discussed here—the
focus of this contribution is exclusively on handling of frictional
contact, which is ubiquitous. To the best of our knowledge, deriv-
ing a general purpose elastic impact scheme for rigid bodies of
arbitrary shape that experience simultaneous impacts remains an
open problem. One approach that is promising is described in Ref.
[8], albeit therein the authors resort to a decoupling of the impact
computation from contact computation, as well as the computa-
tion of the friction force from the normal force.

4 The Cone Complementarity Problem

4.1 Posing the Problem

4.1.1 The “Unilateral Constraints” Component. The friction
cone Ki associated with contact event i is defined as Ki

� f½x; y; z�T 2 R3 : 0 � x � lix �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
� 0g. Similarly,

the polar cone K	

i associated with the friction cone Ki is defined

as K	

i � f½a; b; c�T 2 R3 : ax þ by þ cz � 0 8½x; ; y; z�T 2 Kig.

Based on Eq. (5), c
ðlþ1Þ
i � ½cðlþ1Þ

i;n ; cðlþ1Þ
i;u ; cðlþ1Þ

i;w �T 2 Ki. Define next

di � 1
DtU

ðlÞ
i þ v

ðlþ1Þ
i;n ; v

ðlþ1Þ
i;u ; v

ðlþ1Þ
i;w �T 2 R3

h
. Then, using Eq. (5)

dT
i 
 c lþ1ð Þ

i ¼ c
lþ1ð Þ

i

1

Dt
U lð Þ

i þ v lþ1ð Þ
i;n

� �
þ c lþ1ð Þ

i;u v lþ1ð Þ
i;u þ c lþ1ð Þ

i;w v lþ1ð Þ
i;w

¼ lic
lþ1ð Þ

i;n v lþ1ð Þ
i;T þ v lþ1ð Þ

i;u c lþ1ð Þ
i;u þ v lþ1ð Þ

i;w c lþ1ð Þ
i;w

¼ c lþ1ð Þ
i;F v lþ1ð Þ

i;T þ v lþ1ð Þ
i;u c lþ1ð Þ

i;u þ v lþ1ð Þ
i;w c lþ1ð Þ

i;w

¼ ai c
lþ1ð Þ

i;F � ai c
lþ1ð Þ

i;F ¼ 0

and therefore c
ðlþ1Þ
i ? di.

Next, we show that �di 2 K	

i , i.e., that dT
i 
 p � 0; 8 p

¼ ½x y z�T 2 Ki. If x¼ 0, then y ¼ z ¼ 0 and dT
i 
 p � 0. If x> 0,

then we can scale p by a constant b > 0 such that x ¼ cðlþ1Þ
i;n . Note

that this scaling does not change the sign of the dot product dT
i 
 p.

We assume cðlþ1Þ
i;n > 0 since the case cðlþ1Þ

i;n ¼ 0 is trivial.

Then, using the Cauchy–Schwartz inequality and that

lic
ðlþ1Þ
i;n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p

Journal of Computational and Nonlinear Dynamics JANUARY 2018, Vol. 13 / 014503-3

Downloaded From: https://computationalnonlinear.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dT
i 
 p ¼ c lþ1ð Þ

i;n

1

Dt
U lð Þ

i þ v lþ1ð Þ
i;n

� �
þ v lþ1ð Þ

i;u b þ v lþ1ð Þ
i;w c

¼ lic
lþ1ð Þ

i;n v lþ1ð Þ
i;T þ v lþ1ð Þ

i;u b þ v lþ1ð Þ
i;w c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
v lþ1ð Þ

i;T þ v lþ1ð Þ
i;u b þ v lþ1ð Þ

i;w c

� 0

We thus conclude that we can equivalently express the conditions
in Eq. (5) as the following CCP:

Ki�c
ðlþ1Þ
i ?� di 2 K	

i (7)

4.1.2 The “Bilateral Constraints” Component. Let 0 � j
� NB. For each bilateral kinematic constraint equation j, define

bj �
1

Dt
g lð Þ

j þG
lð Þ;T

j v lþ1ð Þ þ
@g lð Þ

j

@t

In the light of Eq. (5c), one has 0 ¼ bj?kðlþ1Þ
j 2 R. Following

in the steps of the argument made for the unilateral constraints,
one can define the cone Bj � R and the polar cone
B	

j � fy : x 
 y � 0 8 x 2 Bjg. Note that this polar cone set has
only one element: B	

j ¼ f0g. Therefore, we can reformulate the
condition in Eq. (5c) as

Bj�kðlþ1Þ
j ?� bj 2 B	

j (8)

which is the “bilateral constraint” CCP analog of the condition in
Eq. (7).

4.2 Reformulating the CCP. The next goal is to eliminate
any dependency on the unknown velocity vðlþ1Þ in the cone com-
plementarity problems of Eqs. (7) and (8). To this end, using the
force balance condition stated in Eq. (5b), one has that

vðlþ1Þ ¼ vðlÞ þM�1 fðlÞ þM�1 GðlÞkB;ðlþ1Þ þM�1 DðlÞcK;ðlþ1Þ

(9)

Let di;0 � ½ð1=DtÞUðlÞ
i ; 0; 0 �T 2 R3; di;1 � di;0 þ D

ðlÞ;T
i ðvðlÞ þ

M�1 fðlÞÞ 2 R3, and bj;0 � 1=Dtð Þ g
ðlÞ
j þ @g

ðlÞ
j =@t þG

ðlÞ;T
j ðvðlÞ þ

M�1 fðlÞÞ 2 R. Therefore, di ¼ di;0 þ D
ðlÞ;T
i vðlþ1Þ ¼ di;1 þ D

ðlÞ;T
i

M�1 GðlÞkB;ðlþ1Þ þD
ðlÞ;T
i M�1 DðlÞcK;ðlþ1Þ, and bj ¼ bj;0 þG

ðlÞ
j

M�1 GðlÞkB;ðlþ1Þ þG
ðlÞ
j M�1 DðlÞcK;ðl þ1Þ.

Next, define P � ½DðlÞ GðlÞ� 2 R 6nb � ð3NK þ NBÞ; mðlþ1Þ

� ½cK;ðlþ1Þ;T; kB;ðlþ1Þ;T�T 2 R3NKþNB , and p � ½dT
1;1;…; dT

NK ;1
;

b1;0;…; bNB;0�
T 2 R3NKþNB . The terms entering the CCPs both for

unilateral and bilateral constraints can then be expressed without

any recourse to the velocity vðlþ1Þ: di ¼ di;1 þ D
ðlÞ;T
i M�1Pmðlþ1Þ

and bj ¼ bj;0 þG
ðlÞ
j M�1Pmðlþ1Þ. Therefore, we have a collection

of CCPs that can be generically represented as

Ck�m
ðlþ1Þ
k ?� ðpþ Nmðlþ1ÞÞk 2 C	

k (10)

where N � PTM�1P; C � K1 � … �KNK
� B1 � … � BNB

, and
C	 � K	

1 � … �K	

NK
� B	

1 � … � B	

NB
.

5 The Quadratic Problem Angle

We show next that the CCP stated in Eq. (10) represents the
first-order optimality conditions [9] for the convex quadratic opti-
mization problem with conic constraints

m lþ1ð Þ ¼ min
m

1

2
mTNm þ pTm

subject to mk 2 Ck

(11)

To that end, formulate the Karush–Kuhn–Tucker (KKT) optimal-
ity conditions via the Lagrangian [9]

L m;w;/ð Þ ¼ 1

2
mTNm þ pTm

þ
XNK

i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
� lici;n

� �
þ
XNB

j¼1

/jki

where w and / are dummy Lagrange multipliers. The first-order
optimality conditions assume the form

rmL ¼ 03NKþNB

1 � i � NK : 0 � wi ?lici;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
� 0

1 � j � NB : /j kj ¼ 0

8><
>: (12)

The first condition earlier leads to two sets of equalities. First, for
1 � i � NK , the gradient with respect to ci yields

D
lð Þ;T

i M�1Pm þ di;1 þ wi

�li
ci;uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
i;u þ c2

i;w

q
ci;wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
i;u þ c2

i;w

q

2
66666664

3
77777775
¼ 03

which leads to dT
i ¼ wi �li ci;u

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q� �


ci;w

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q� ��
. Therefore, using the first set of comple-

mentarity conditions in Eq. (12)

dT
i ci ¼ �wi �lici;n þ

c2
i;u þ c2

i;wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
0
@

1
A

¼ wi lici;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q� �

¼ 0

Next, let a vector a � ½a b c�T 2 Ki. We want to show that

�aTdi � 0, or equivalently, aTdi � 0. First, note that if a¼ 0,

then b ¼ c ¼ 0, and therefore aTdi ¼ 0. Otherwise, a> 0, and
then

dT
i 


a

b

c

2
64

3
75 � 0 () ali þ

bci;u þ cci;wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q � 0

() lia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
þ bci;u þ cci;w � 0

As lia �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
, using the Cauchy–Schwartz inequality,

lia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
þbci;u þ cci;w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i;u þ c2
i;w

q
þbci;u þ cci;w

� 0, which proves that as far as ci is concerned,

Ki�ci?�di 2K	

i . In other words, if ci satisfies the KKT condi-
tions in Eq. (12), it is also a solution of the CCP problem in
Eq. (7).

A similar result can be obtained in the bilateral constraints case.
Indeed, in this case bj ¼ �/j. Using the last complementarity
condition in Eq. (12), one has that whenever kj 6¼ 0, necessarily
bj¼ 0. In other words, we have that Bj�kj?� bj 2 B	

j , which
indicates that a kj that satisfies the first KKT conditions in Eq.
(12) is a solution of the CCP problem in Eq. (8).

Note that the dynamics step if essentially done once m
ðlþ1Þ
k is

computed. Indeed, the new velocity is evaluated using Eq. (9),
while the new position is obtained via Eq. (5a).

6 Conclusions and Future Work

A differential inclusion approach is used to formulate the rigid
multibody dynamics problem in the presence of mutual contact
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and friction. Its salient attribute is reliance on complementarity
conditions to pose both the contact non-penetration condition and
the Coulomb dry friction model. Time discretization of the result-
ing differential, algebraic, and complementarity equations yields a
nonlinear complementarity problem. In the discretization process,
the unilateral and bilateral kinematic constraints are imposed at
the velocity level. Drift in the position-level constraints is pre-
vented in Eq. (5) via “stabilization terms.” Moreover, the nonpe-
netration unilateral constraint, formulated at the velocity level, is
further modified via a “relaxation term” to morph what would oth-
erwise be a nonlinear complementarity problem into a cone com-
plementarity problem. The latter has a solution that is produced
by solving of a convex quadratic optimization problem with conic
constraints. The same numerical method is proposed in Ref. [1]
but following a different set of intermediate steps. As such, this
contribution does not focus on the numerical method, but rather
on the steps to obtain this numerical method. It is hoped that this
presentation is detailed enough to reveal the strengths and weak-
nesses of the solution methodology.

There are three aspects in which the method described can be
improved. First, a better approach would enforce the unilateral
and bilateral constraints at the position level to impose a tight and
numerically robust control on constraint drift. Second, the relaxa-
tion in Eq. (5d) was shown to lead to “lift-off forces” at high slid-
ing speed, an artifact that can introduce noise in the solution.
Third, the rigid body assumption leads to scenarios in which, due
to the presence of redundant constraints, the matrix N in Eq. (11)
is symmetric positive semi-definite. As such, a solution of the con-
vex optimization problem with conic constraints, while global, is
not unique. There are early indications that these three limitations
can be addressed. A discussion of this issue falls outside the scope
of this document.

Results of an experimental validation of the solution methodol-
ogy discussed are reported in Refs. [10–12]. This solution meth-
odology is embedded in the simulation software Chrono [13].
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Nomenclature

The list below summarizes the meaning of the main symbols
used in the manuscript. The list is not exhaustive; it includes
only the more important symbols that were used beyond the
immediate location where defined

A, B ¼ dummy indexes for arbitrary bodies
AðqðtÞ; dKÞ ¼ active contact set; two bodies contribute a contact

event to this set if they are closer than dK � 0
from each other

AðlÞ
dK

¼ the set of active contact events AðqðtÞ; dKÞ at
time tðlÞ and in configuration qðlÞ

AA ¼ rotation matrix associated with body A
bj ¼ composite velocity associated with bilateral con-

straint j
Bj; B

	

j ¼ cones associated with bilateral constraint j
C ¼ system level friction cone,

K1 � … �KNK
� B1 � … � BNB

C	 ¼ system level polar cone,
K	

1 � … �K	

NK
� B	

1 � … � B	

NB

di ¼ composite velocity;
di � ½ð1=DtÞUðlÞ

i þ v
ðlþ1Þ
i;n ; v

ðlþ1Þ
i;u ; v

ðlþ1Þ
i;w �T 2 R3

DðlÞ ¼ notation for DðqðlÞ; tðlÞÞ

D ¼ projection matrix used to generate the set of gen-
eralized forces DĉK induced by the contact events
present in the system (unilateral constraints)

ei 2 R4 ¼ set of four Euler parameters associated with body
i. Provides orientation with respect to a global ref-
erence frame

fðlÞ ¼ notation for impulse DtFðtðlÞ; qðlÞ; vðlÞÞ
Fðq; v; tÞ ¼ the set of generalized applied and Coriolis forces

gðlÞ ¼ notation for gðqðlÞ; tðlÞÞ
g
ðlÞ
t ¼ notation for ð@gðqðlÞ; tðlÞÞ=@tÞ

gjðq; tÞ ¼ function expression that defines the jth bilateral
constraint active in the system at time t, namely
gjðq; tÞ ¼ 0

G ¼ projection matrix used to generate the set of general-
ized forces Gk̂

B
induced by the bilateral constraints

GðlÞ ¼ notation for GðqðlÞ; tðlÞÞ
LðqÞ ¼ transformation matrix that links the time derivative

of the Euler parameters to the angular velocity
M ¼ constant, system level, mass matrix
nb ¼ number of rigid bodies in the system

NB ¼ number of bilateral constraints present in the
system

ni ¼ unit normal vector at point of contact; oriented
from the body of lower index to the body of
higher index
ni; ui;wi; combine to form the frictional contact
vector ĉi

NK ¼ number of contact events present in the system at
a given time (explicit dependency on time
dropped for convenience)

N ¼ quadratic term matrix, optimization problem;
computed as PTM�1P

P ¼ system level projection matrix, defined as
½DðlÞ GðlÞ�

p ¼ coefficient of the linear term in the CCP
q 2 R7nb ¼ set of generalized coordinates associated with the

nb bodies in the system
ri 2 R3 ¼ Cartesian space location of body i

~�si;B ¼ vector that for contact event i provides the loca-
tion of the contact point expressed in the local ref-
erence frame associated with body B

tðlÞ ¼ time associated with the integration time step l;
also, Dt ¼ tðlþ1Þ � tðlÞ

ui; wi ¼ two unit normal vectors at point of contact; span
the tangent contact plane; together with ni form a
orthogonal reference frame

vi;n; vi;u; vi;w ¼ components of the relative velocity at the contact
point between the two bodies involved in contact
event i; components associated with the local ref-
erence frame {ni; ui; wi}

v
ðlþ1Þ
i;T ¼ magnitude of the tangential velocity at the point

of contact; notation for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvðlþ1Þ

i;u Þ2 þ ðvðlþ1Þ
i;w Þ2

q
v ¼ collection of all body velocities

½ _rT
1 ; �x

T
1 ;…; _rT

nb
; �xT

nb
�T 2 R6nb

�xi 2 R3 ¼ angular velocity of body i expressed in its centroi-
dal and principal reference frame

dK ¼ user defined threshold value that defines when
two bodies yield an active contact event

Ui ¼ signed gap function: negative if bodies penetrate,
positive if they don’t touch, zero if one point of
contact

ĉ i;n; ĉi;u; ĉi;w ¼ Lagrange multipliers associated with the three
unknown components of the frictional contact
force for contact event i. Components expressed
in conjunction with the reference frame

ĉK ¼ set of Lagrange multipliers associated with the
unilateral constraints present in the system

cK;ðlþ1Þ ¼ notation for frictional contact impulse Dt ĉK;ðlþ1Þ

Journal of Computational and Nonlinear Dynamics JANUARY 2018, Vol. 13 / 014503-5

Downloaded From: https://computationalnonlinear.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



cðlþ1Þ
i;F ¼ magnitude of the friction impulse associated with

the contact event i; notation forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcðlþ1Þ

i;u Þ2 þ ðcðlþ1Þ
i;w Þ2

q
Dt ¼ numerical integration time step
Ki ¼ friction cone associated with contact event i
K	

i ¼ polar cone associated with the friction cone Ki

li ¼ friction coefficient associated with contact event i

k̂
B ¼ set of Lagrange multipliers associated with the

bilateral constraints
kB;ðlþ1Þ ¼ notation for bilateral constraint reaction impulse

Dt k̂
B;ðlþ1Þ

UðlÞ
i ¼ notation for UiðqðlÞÞ; i.e., gap for contact event i

at time tðlÞ

References
[1] Haug, E. J., 1989, Computer-Aided Kinematics and Dynamics of Mechanical

Systems Volume-I, Prentice Hall, Englewood Cliffs, NJ.
[2] Tasora, A., and Anitescu, M., 2011, “A Matrix-Free Cone Complementarity

Approach for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,” Com-
put. Methods Appl. Mech. Eng., 200(5–8), pp. 439–453.

[3] Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of
Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1(1), pp.
1–16.

[4] Ostermeyer, G., 1990, “On Baumgarte Stabilization for Differential Algebraic
Equations,” Real-Time Integration Methods for Mechanical System Simulation
(Nato ASI Subseries F:), Springer-Verlag, Berlin, pp. 193–207.

[5] Ascher, U. M., Chin, H., and Reich, S., 1994, “Stabilization of DAEs and Invar-
iant Manifolds,” Numer. Math., 67(2), pp. 131–149.

[6] Kikuuwe, R., and Brogliato, B., 2017, “A New Representation of Systems With
Frictional Unilateral Constraints and Its Baumgarte-Like Relaxation,” Multi-
body Syst. Dyn., 39(3), pp. 267–290.

[7] Mazhar, H., Heyn, T., Tasora, A., and Negrut, D., 2015, “Using Nesterov’s
Method to Accelerate Multibody Dynamics With Friction and Contact,” ACM
Trans. Graphics, 34(3), pp. 1–14.

[8] Smith, B., Kaufman, D. M., Vouga, E., Tamstorf, R., and Grinspun, E., 2012,
“Reflections on Simultaneous Impact,” ACM Trans. Graphics, 31(4), p. 106.

[9] Bertsekas, D. P., 1995, Nonlinear Programming, Athena Scientific, Belmont,
MA.

[10] Kwarta, M., and Negrut, D., 2016, “Using the Complementarity and Penalty
Methods for Solving Frictional Contact Problems in Chrono: Validation for the
Cone Penetrometer Test,” Simulation-Based Engineering Laboratory, Univer-
sity of Wisconsin-Madison, Madison, WI, Technical Report No. TR-2016-16.

[11] Kwarta, M., and Negrut, D., 2016, “Using the Complementarity and
Penalty Methods for Solving Frictional Contact Problems in Chrono: Vali-
dation for the Triaxial Test,” Simulation-Based Engineering Laboratory,
University of Wisconsin-Madison, Madison, WI, Technical Report No. TR-
2016-17.

[12] Kwarta, M., and Negrut, D., 2016, “Using the Complementarity and Penalty
Methods for Solving Frictional Contact Problems in Chrono: Validation for the
Shear-Test With Particle Image Velocimetry,” Simulation-Based Engineering
Laboratory, University of Wisconsin-Madison, Madison, WI, Technical Report
No. TR-2016-18.

[13] Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J.,
Taylor, M., Sugiyama, H., and Negrut, D., 2016, “Chrono: An Open Source
Multi-Physics Dynamics Engine,” High Performance Computing in Science
and Engineering (Lecture Notes in Computer Science), T. Kozubek, ed.,
Springer, Cham, Switzerland, pp. 19–49.

014503-6 / Vol. 13, JANUARY 2018 Transactions of the ASME

Downloaded From: https://computationalnonlinear.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1016/j.cma.2010.06.030
http://dx.doi.org/10.1016/j.cma.2010.06.030
http://dx.doi.org/10.1016/0045-7825(72)90018-7
http://dx.doi.org/10.1007/s002110050020
http://dx.doi.org/10.1007/s11044-015-9491-6
http://dx.doi.org/10.1007/s11044-015-9491-6
http://dx.doi.org/10.1145/2735627
http://dx.doi.org/10.1145/2735627
http://dx.doi.org/10.1145/2185520.2185602
http://sbel.wisc.edu/documents/TR-2016-16.pdf

	FD1
	s1
	1
	aff1
	l
	FD2
	FD3a
	FD3b
	s1
	s2
	FD4a
	FD4b
	FD4c
	s3
	FD5a
	FD5b
	FD5c
	FD5d
	FD6
	s4
	s4A
	s4A1
	FD7
	s4A2
	FD8
	s4B
	FD9
	FD10
	FD11
	FD12
	s5
	s6
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

