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Abstract This paper defines the research area of Diversity-enhanced Autonomy
in Robot Teams (DART), a novel paradigm for the creation and design of policies
for multi-robot coordination. While current approaches to multi-robot coordination
have been successful in structured, well understood environments, they have not
been successful in unstructured, uncertain environments, such as disaster response.
The reason for this is not due to limitations in robot hardware, which has advanced
significantly in the past decade, but in how multi-robot problems are solved. Even
with significant advances in the field of multi-robot systems, the same problem-
solving paradigm has remained: assumptions are made to simplify the problem, and
a solution is optimized for those assumptions and deployed to the entire team. This
results in brittle solutions that prove incapable if the original assumptions are inval-
idated. This paper introduces a new multi-robot problem-solving paradigm which
relies on a diverse set of control policies that work together synergistically to make
multi-robot systems more resilient in unstructured and uncertain environments.

1 Introduction

The field of multi-robot systems (MRS) is growing at a rapid pace. Research in MRS
spans many different areas, including automated delivery [1–3], surveillance [4],
and disaster response [5,6]. There have also been many successful demonstrations of
increasing numbers of robots [7–12]. MRS have also been successfully deployed in
the field including in warehousing [13], manufacturing [14], and entertainment [15].
While these outcomes show the promise of MRS, the environments in which MRS
have been successful are highly controlled, and some are highly instrumented, en-
abling precise tuning of controllers and nearly perfect knowledge of environmental
conditions.
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Many environments where MRS could be beneficial are not highly controlled or
equipped with the extensive infrastructure often necessary to coordinate large teams
of robots with state-of-the-art algorithms. For example, containing wildfires, search-
ing collapsed buildings, patrolling borders, monitoring infrastructure, and contain-
ing oil spills all occur in highly dynamic and unique environments (no two collapsed
buildings are the same), with high uncertainty and little control over other non-robot
agents in the environment. One of the most desirable benefits of MRS is robustness,
wherein robots can compensate for loss of capabilities by relying on other robots in
the team. However, the uncertainty of many real-world environments renders cur-
rent algorithms, even those designed for robustness, ineffectual. The reason for this
is not due to limitations in robot hardware, but in how multi-robot problems are
solved. Many controllers are so specialized and optimized for specific capabilities
and conditions that they cannot cope with uncertainty. Thus, the true benefits of
robustness in teams of robots have yet to be achieved.

2 Motivation

In disaster response alone, the potential impact of autonomous MRS is substan-
tial: 60,000 people die each year in natural disasters [16]. This makes robots an
ideal tool for disaster response. In fact, DJI announced that one properly equipped
drone can find a missing person more than five times faster than traditional search
methods [17]. However, most robots used in search and rescue today are teleoper-
ated [18], requiring trained operators which may not be nearby. Disaster response
that is autonomous, without the need for an expert operator, can reduce response
time and save more lives, especially when a trained operator may be hours away.

The potential applications of autonomous MRS go well beyond disaster response,
including military, agriculture, transportation, manufacturing, and fulfillment ap-
plications. However, current solutions for MRS have not successfully transitioned
from controlled environments such as laboratories or warehouse facilities to the
inherently high uncertainty in these complex environments. Without infrastructure
that provides communication and localization, and without knowledge of or control
over the environment, current state-of-the-art methods fail.

While the field of MRS has advanced significantly, the same problem-solving
paradigm has remained. First, the problem is defined. Next, complexity is reduced
by making several assumptions to simplify the problem, such as terrain and commu-
nication range. Finally, an optimal solution to that specific problem is designed and
applied to all the robots in the team. This paradigm (Fig. 1a) limits the capability
of MRS to cope with real-world environments. The solutions are brittle, as the as-
sumptions made are easily invalidated and the optimized controller is not designed
for real environments. In the best case, the controller is able to overcome these chal-
lenges, but it is not a good solution to the problem. In the worst case, the controller
cannot cope, causing mission failure, loss of high-value assets, and casualties; after
all, if the same failed controller is applied to all robots, all of them will fail.
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Fig. 1: (a) The current MRS problem-solving paradigm is linear, applying the same
solution to all robots. (b) The proposed novel paradigm takes advantage of diversity
in controllers to handle various scenarios

3 A Potential Solution

Instead of applying the same controller to all robots, a new approach leveraging
diversity in policies within the robot team can allow MRS to better cope with un-
certain environments. Using an ensemble of diverse control policies to accomplish
a coordinated task within a single team of robots can enable the team to adjust to
different conditions. For example, with two unmanned aerial vehicles (UAV) on a
large security task, a natural result of using an ensemble of controllers is for one
UAV to position itself high, to view the entire area, while the other UAV takes a
closer look at areas of interest.

Diversity is well established as a way to improve the performance of human
workgroups: studies have shown repeatedly that diverse groups outperform homoge-
neous groups [19–22]. Thus, the current problem-solving paradigm in MRS does not
reflect an effective approach to working in groups. Instead of the current paradigm
of solving problems and uniformly applying the solution to all robots as in Fig. 1a,
several solutions to the problem under different assumptions and different styles of
interaction should be developed and the best approaches combined to take advantage
of their strengths under different conditions, as in Fig. 1b.

4 Current State of the Art

While diversity of robots with different physical embodiment or capabilities has
previously been studied [23–26], there has been relatively little exploration into di-
versity in control policies within a single team of robots. Most research in this area
is a result of studying ants that take different roles in foraging and house hunt-
ing [27–29] or collective transport [30], and applied to similar problems in robotics.
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Unfortunately, in trying to model ant algorithms closely, these works do not take ad-
vantage of robot capabilities, including communication, sensing, and computation.

In Tang and Parker’s ASyMTRe, robots take different roles depending on envi-
ronmental conditions [31, 32], but the robots are all programmed to react the same.
This leaves them vulnerable to unforeseen changes in capabilities or the environ-
ment, and does not enable robots to individually adjust their approaches.

A majority of work exploring control diversity in robots exists in behavior-based
systems, most notably Balch’s work in learning behavioral specialization for robot
teams [33, 34]. Goldberg and Matarić evaluate multi-robot controllers based on the
amount of interference and describe caste arbitration, where all robots have the same
capabilities, but have different conditions for activating behaviors [35].

More recently, evolutionary robotics and agent-based systems have been appear-
ing as a method for encouraging behavioral diversity and plasticity (individuals
changing roles over time). Mouret and Doncieux review and benchmark published
approaches to behavioral diversity, and show that fostering behavioral diversity sub-
stantially improves the evolutionary process in the investigated experiments, regard-
less of task [36]. Pugh et al. review quality diversity algorithms, which have re-
sulted in a new class of algorithms that return an archive of diverse, high-quality
behaviors in a single run [37]. Vassiliades and Christodoulou design behaviorally
plastic agents (capable of switching between different behaviors in response to en-
vironmental changes) [38] and Umedachi et al. attempt to understand the under-
lying mechanism of the behavioral diversity of animals, then use the findings to
build truly adaptive robots [39]. However, all of these approaches focus on training
agents to act independently in the environment, and thus are not directly applicable
to multi-robot problems where task completion relies on tight coordination, such
as box-pushing, shape formation, wildfire containment, cooperative transport, etc.
Furthermore, agents are trained in the environments where they will be used, which,
especially in natural disasters, may not be possible.

Heterogeneity has also been studied extensively in insect and animal behavior.
Jandt et al. study personality at multiple levels with regard to behavioral syndromes
and insect societies, discussing fitness consequences of intra-colony behavioral vari-
ation [40]. Specifically, under varying environmental conditions, maintaining a mix-
ture of individuals with different behavioral types may be more effective than in-
dividuals switching between behavioral types, which might be costly and ineffi-
cient. Slower, more accurate individuals can bring large quantities of food back to
the colony when good abundance is constant, whereas faster “sloppier” individuals
might be more efficient at exploiting resources in more frequently changing envi-
ronments [41]. Burns and Dyer [42] found that ant colonies that maintain a mixture
of different foraging types within a group allows colonies to respond more quickly
to environmental fluctuation. On the other hand, maintaining a mixture of inflexible
behavioral types can incur costs to the colony, such as overly aggressive types being
aggressive to their own nestmates [43].

These results in insect and animal behavior studies point strongly to behaviorally
heterogeneous teams having higher fitness in uncertain and dynamic environments,
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which has inspired many multi-robot approaches. However, there is a need to further
the use of diversity as a tool for MRS, especially in tightly-coordinated tasks.

5 Some Open Problems in Diversity-enhanced Autonomy for
Robot Teams

Much as human workgroups, as well as insects and animals, benefit from diversity
in composition of the group, such variation of behavior would be beneficial for
teams of robots operating in uncertain and unstructured environments. There exist
many open problems in DART; some of the challenging open problems that must be
addressed by the community are described here.

1. Learning from Humans: Humans provide a pool of diverse resources that can
be tapped to develop diverse controllers that work well together. However, due to
differences in human and robot capabilities (communication, locomotion, sens-
ing, etc.), it is difficult to learn controllers by observing human in-person inter-
action. By limiting interaction to an interface (such as a mobile phone, tablet,
or laptop), communication, locomotion, and sensing can be restricted to robot-
like capabilities [44]. A major benefit of human-inspired controllers is the abil-
ity to communicate with and easily motivate study participants, as opposed to
animal-inspired controllers. However, learning from human cooperation requires
multi-agent learning tools for many agents. This is an area that is not yet well
represented in the literature, save for several works [45–47].

2. Deep Learning for MRS: In order to learn from humans, or to learn directly
from simulations, new machine learning tools must be developed for multi-agent
systems. While some solutions exist in multi-agent learning, some focus on tasks
that can be learned and completed alone [48, 49], and those that are suitable for
tight coordination for a few (2-3) agents, are intractable for large numbers of
agents that must tightly coordinate [50–52]. Tight coordination between a large
team of agents, for example in wildfire containment, currently presents a signifi-
cant computational challenge for existing multi-agent learning tools.

3. Measures of Diversity and Fitness: Taking inspiration from the study of be-
havioral diversity in social insect colonies, there is a need for understanding the
impact of behavioral diversity on MRS in tightly coordinated tasks. To that end,
measures of diversity and fitness must be developed that apply to MRS, such as
Balch’s Hierarchic Social Entropy [34]. Such tools will likely be task-specific at
first, while the science of diversity-enhanced autonomy is established.

4. Adjusting Policies Online: To successfully utilize a diverse set of controllers,
the team of robots must collectively reason about the role that each team member
plays and automatically adjust their own roles to achieve an appropriately diverse
team with an effective skill set. To do so, they must have the ability to measure
the success of individual agents on a coordinated task, learning from their own
and others’ shortcomings and successes.
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6 Discussion

This paper proposes a new research thrust that represents a paradigm-shift in
problem-solving for multi-robot systems from a linear paradigm, where policies
are optimized for a specific set of assumptions and applied to the entire team, to
one where policies are developed with multiple sets of assumptions and exist syn-
ergistically within a team of robots. Such diversity in control policies will better
prepare the team of robots for challenging environments, much like diversity in the
knowledge base in human workgroups leads to higher quality solutions. Adoption
of this new paradigm may lead to expanded success of multi-robot systems in the
field, especially in unstructured and uncertain environments.

A small sample of open problems were discussed, but there exist many open
problems in this space. By explicitly defining Diversity-enhanced Autonomy for
Robot Teams, we hope to inspire the development of new tools for coping with
uncertain, unstructured environments such as first response, precision agriculture,
surveillance, and others.
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