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THE MULTILINEAR POLYTOPE FOR ACYCLIC HYPERGRAPHS∗
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Abstract. We consider the multilinear polytope defined as the convex hull of the set of binary
points z satisfying a collection of equations of the form ze =

∏
v∈e zv , e ∈ E, where E denotes

a family of subsets of {1, . . . , n} of cardinality at least two. Such sets are of fundamental impor-
tance in many types of mixed-integer nonlinear optimization problems, such as 0 − 1 polynomial
optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of
the multilinear polytope in conjunction with the acyclicity degree of the underlying hypergraph.
We provide explicit characterizations of the multilinear polytopes corresponding to Berge-acylic and
γ-acyclic hypergraphs. As the multilinear polytope for γ-acyclic hypergraphs may contain exponen-
tially many facets in general, we present a strongly polynomial-time algorithm to solve the separation
problem, implying polynomial solvability of the corresponding class of 0−1 polynomial optimization
problems. As an important byproduct, we present a new class of cutting planes for constructing
tighter polyhedral relaxations of mixed-integer nonlinear optimization problems with multilinear
subexpressions.
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mixed-integer nonlinear optimization
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1. Introduction. Consider a hypergraph G = (V,E), where V = V (G) is the
set of nodes of G, and E = E(G) is a set of subsets of V of cardinality at least two,
called the edges of G. The rank r of G is defined as the maximum cardinality of an
edge in E. With any hypergraph G, and cost vector c ∈ RV +E , we associate a 0−1
multilinear optimization problem of the form

max
∑
v∈V

cvzv +
∑
e∈E

ce
∏
v∈e

zv

s.t. zv ∈ {0, 1} ∀v ∈ V.
(MO)

Without loss of generality we can assume that ce is nonzero for every e ∈ E. We
refer to the objective function of (MO) as a multilinear function and each product
term

∏
v∈e zv as a multilinear term. Problem (MO) is a well-known NP-hard op-

timization problem. Since (zv)p = zv for any zv ∈ {0, 1} and any positive integer
p, problem (MO) is equivalent to unconstrained 0−1 polynomial optimization. In
particular, if r = 2, then we obtain the well-studied unconstrained 0−1 quadratic
optimization (QP) which is equivalent to the max-cut problem (see, e.g., [5, 25]).
Moreover, it is simple to show that the maximum value of a multilinear function over
a box is attained at a vertex of the box [28]. Clearly, multilinear functions are closed
under scaling and shifting of variables. It then follows that (MO) is equivalent to
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1050 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

maximizing a multilinear function over a box. The latter problem has been studied
extensively by the global optimization community [1, 27, 31, 29, 24, 33, 23, 3].

It is common practice to linearize the objective function of problem (MO) by
introducing a new variable for every multilinear term and obtain an equivalent opti-
mization problem in a lifted space:

max
∑
v∈V

cvzv +
∑
e∈E

ceze

s.t. ze =
∏
v∈e

zv ∀e ∈ E,

zv ∈ {0, 1} ∀v ∈ V.

(MO′)

Subsequently, a convex relaxation of the feasible region of problem (MO′) is con-
structed and the resulting problem is solved to obtain an upper bound on the optimal
value of problem (MO′). In this paper, we study the problem of constructing sharp
polyhedral relaxations for the feasible region of problem (MO′). More precisely, we
consider the multilinear set SG defined as

(1) SG =

{
z ∈ {0, 1}V +E : ze =

∏
v∈e

zv ∀e ∈ E
}
.

Throughout the paper, we assume that each zv, v ∈ V , appears in at least one multilin-
ear term. In fact, if zv does not appear in any multilinear term, then the set SG can be
written as the cartesian product S(V \{v},E)×{0, 1}. We refer to the convex hull of SG
as the multilinear polytope MPG. Moreover, we refer to the rank r of the hypergraph
G as the degree of the corresponding multilinear set SG. Building convex relaxations
for multilinear sets has been a subject of extensive research by the mathematical pro-
gramming community [1, 25, 13, 27, 31, 29, 24, 4, 23, 16, 15, 14, 7]. If all multilinear
terms in SG are bilinears, i.e., r = 2, the corresponding multilinear polytope coincides
with the Boolean quadric polytope QPG first defined by Padberg [25] in the context
of unconstrained 0−1 QPs. We should remark that for the Boolean quadric poly-
tope, our hypergraph representation simplifies to the graph representation defined
by Padberg [25]. In [16], we introduce the hypergraph representation framework for
higher degree multilinear sets and study the facial structure of their convex hull. In
particular, we develop the theory of various types of lifting operations, giving rise to
many types of facet-defining inequalities in the space of the original variables. A great
simplification in studying the facial structure of the multilinear polytope is possible
when the corresponding multilinear set SG is decomposable into simpler multilinear
sets SGj , j ∈ J ; namely, the convex hull of SG can be obtained by convexifying each
SGj , separately. In [15], we study the decomposability properties of multilinear sets.

1.1. Explicit characterization of MPG and tractability of (MO). In this
paper, we are interested in characterizing sufficient conditions under which the mul-
tilinear polytope admits a “desirable” explicit description. More precisely, for hyper-
graphs G with certain “degrees of acyclicity,” we derive an explicit characterization of
the polytope MPG. In addition, we prove that for the same class of hypergraphs, this
convex hull characterization enables us to solve problem (MO) in polynomial time.

In [25], Padberg derives a closed-form description of the Boolean quadric polytope
QPG, provided that the underlying graph G is acyclic or is series-parallel. Moreover,
in those cases, given any objective function coefficient vector c ∈ RV +E , the cor-
responding unconstrained 0−1 QP is polynomially solvable [5]. However, for higher
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degree multilinear optimization problems, similar tractability results are rather scarce.
The explicit characterization of the multilinear polytope MPG is available for the spe-
cial case where r = n and the edge set E(G) contains all subsets of V of cardinality
at least two (see, e.g., [32, 26]). In addition, in [14], the closed-from description of
MPG is given for a hypergraph G consisting of two edges that intersect in at least two
nodes. Motivated by the existing results for the Boolean quadric polytope, in this
paper we provide explicit characterizations of higher degree multilinear polytopes.
Our new characterizations will be given in terms of easily verifiable assumptions on
the structure of the corresponding hypergraph and serve as generalizations of those
for unconstrained 0−1 QPs.

We start by defining a well-known tractable relaxation of the multilinear polytope.

1.2. Standard linearization of multilinear sets. A valid polyhedral relax-
ation of the multilinear set SG can be obtained by replacing each multilinear term
ze =

∏
v∈e zv, by its convex hull over the unit hypercube:

MPLP
G =

{
z : zv ≤ 1 ∀v ∈ V,

ze ≥ 0, ze ≥
∑
v∈e

zv − |e|+ 1 ∀e ∈ E,(2)

ze ≤ zv ∀e ∈ E ∀v ∈ e
}
.

The above relaxation has been used extensively in the literature and is often re-
ferred to as the standard linearization of the multilinear set (see, e.g., [20, 13]). It
is well-known that the Boolean quadric polytope QPG coincides with its standard
linearization QPLP

G if and only if the graph G is acyclic [25]. To generalize this result
to higher degree multilinear polytopes, it is natural to look into the notion acyclic-
ity for hypergraphs. Interestingly, unlike graphs for which there is a single natural
notion of acyclic graphs, there are several nonequivalent definitions of acyclicity for
hypergraphs which collapse to graph acyclicity for the special case of ordinary graphs.
In fact, the notion of graph acyclicity has been extended to several different degrees
of acyclicity of hypergraphs [18]. Next, we briefly review the concept of cycles in
hypergraphs, as it plays a crucial role in our subsequent developments.

1.3. Cycles in hypergraphs. Let G = (V,E) be a hypergraph. The most
restrictive type of acyclicity in hypergraphs is Berge-acyclicity. A hypergraph is Berge-
acyclic when it contains no Berge-cycles, defined as follows (see [6, Chapter 5] for more
details).

Definition 1. A Berge-cycle in G of length t for some t ≥ 2 is a sequence
C = v1, e1, v2, e2, . . . , vt, et, v1 with the following properties:

• v1, v2, . . . , vt are distinct nodes of G,
• e1, e2, . . . , et are distinct edges of G,
• vi, vi+1 ∈ ei for i = 1, . . . , t− 1, and vt, v1 ∈ et.

Note that Berge-cycles of length two are present only when two edges intersect
in at least two nodes (see Figure 1(a)).

The next class of acyclic hypergraphs, in increasing order of generality, is the class
of γ-acyclic hypergraphs. We first recall the notion of a γ-cycle (see, e.g., [17, 8] for
more details).
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Fig. 1. Examples of hypergraphs with different degrees of acyclicity: (a) γ-acyclic but
not Berge-acyclic, since v1, e1, v2, e2, v1 is a Berge-cycle; (b) β-acyclic but not γ-acyclic, since
v1, e1, v2, e2, v3, e3, v1 is a γ-cycle; (c) not β-acyclic, since v1, e1, v2, e2, v3, e3, v1 is a β-cycle.
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Fig. 2. Examples of γ-acyclic hypergraphs containing Berge-cycles of length two and three.

generalization of Berge-acyclic hypergraphs and may contain Berge-cycles of arbitrary124

length, in general (see Figure 2). There exist several equivalent characterizations for125

γ-acyclic hypergraphs. In the following we present an alternative characterization126

which will be used to prove our results in Section 4. First, we define a β-cycle [17].127

Definition 3. A β-cycle in G is a γ-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such128

that the node v1 belongs to e1, et and no other ej.129

See Figure 1(c) for an example of a β-cycle. A hypergraph is called β-acyclic if it130

does not contain any β-cycles. In the literature, β-acyclic hypergraphs have been131

also called totally balanced hypergraphs [22] and β-cycles have been also referred to132

as special cycles [2]. Using the notion of β-acyclicity, in [8] the author characterizes133

γ-acyclic hypergraphs as follows:134

Proposition 4. A hypergraph G = (V,E) is γ-acyclic if and only if it satisfies135

the following properties:136

(i) G is β-acyclic,137

(ii) there do not exist distinct nodes v1, v2, v3 such that {{v1, v2}, {v1, v3}, {v1, v2, v3}} ⊆138

{e ∩ {v1, v2, v3} : e ∈ E}.139

Throughout this paper, given any cycle C = v1, e1, v2, e2, . . . , vt, et, v1, we denote by140

V (C) = {v1, . . . , vt} the nodes of the cycle C, and by E(C) = {e1, . . . , et} the edges141

of C.142

1.4. Our contribution. In this paper, we present new explicit characteriza-143

tions of Multilinear polytopes corresponding to acyclic hypergraphs. As an important144

byproduct, we introduce a new class of cutting planes, to construct tighter polyhedral145

relaxations of general Multilinear sets. As we detail later, the separation problem for146

the proposed cutting planes can be solved efficiently for γ-acyclic hypergraphs, and147

for general hypergraphs with fixed rank.148

The remainder of this paper is organized as follows. In Section 2, we present149

a technical result regarding the decomposability of Multilinear sets, which will be150

used to prove our main results. Namely, we show that under certain assumptions151

the Multilinear set is decomposable into a collection of simpler Multilinear sets for152

which closed-form descriptions of convex hulls can be derived. In Section 3, we prove153

4
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Fig. 2. Examples of γ-acyclic hypergraphs containing Berge-cycles of length two and three.

Definition 2. A γ-cycle in G is a Berge-cycle C = v1, e1, v2, e2, . . . , vt, et, v1

such that t ≥ 3, and the node vi belongs to ei−1, ei and no other ej for all i = 2, . . . , t.

See Figure 1(b) for an example of a γ-cycle. A hypergraph is called γ-acyclic if it
contains no γ-cycles. Clearly, a Berge-acyclic hypergraph is also γ-acyclic, while the
converse is not true (see Figure 1(a)). In fact γ-acyclic hypergraphs are a significant
generalization of Berge-acyclic hypergraphs and may contain Berge-cycles of arbitrary
length, in general (see Figure 2). There exist several equivalent characterizations for
γ-acyclic hypergraphs. In the following we present an alternative characterization
which will be used to prove our results in section 4. First, we define a β-cycle [17].

Definition 3. A β-cycle in G is a γ-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such
that the node v1 belongs to e1, et and no other ej.

See Figure 1(c) for an example of a β-cycle. A hypergraph is called β-acyclic if
it does not contain any β-cycles. In the literature, β-acyclic hypergraphs have been
also called totally balanced hypergraphs [22] and β-cycles have been also referred to
as special cycles [2]. Using the notion of β-acyclicity, in [8] the author characterizes
γ-acyclic hypergraphs as follows.

Proposition 4. A hypergraph G = (V,E) is γ-acyclic if and only if it satisfies
the following properties:

(i) G is β-acyclic,
(ii) there do not exist distinct nodes v1, v2, v3 such that {{v1, v2}, {v1, v3}, {v1, v2,

v3}} ⊆ {e ∩ {v1, v2, v3} : e ∈ E}.
Throughout this paper, given any cycle C = v1, e1, v2, e2, . . . , vt, et, v1, we denote

by V (C) = {v1, . . . , vt} the nodes of the cycle C, and by E(C) = {e1, . . . , et} the
edges of C.

1.4. Our contribution. In this paper, we present new explicit characteriza-
tions of multilinear polytopes corresponding to acyclic hypergraphs. As an important
byproduct, we introduce a new class of cutting planes, to construct tighter polyhedral
relaxations of general multilinear sets. As we detail later, the separation problem for
the proposed cutting planes can be solved efficiently for γ-acyclic hypergraphs, and
for general hypergraphs with fixed rank.
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Fig. 3. An example of a hypergraph G for which by Theorem 5 the Multilinear set SG is
decomposable into the sets SG1

and SG2
.

that the standard linearization of a Multilinear set coincides with the Multilinear154

polytope if and only if the corresponding hypergraph is Berge-acyclic. Subsequently,155

in Section 4, we introduce a new class of valid inequalities for Multilinear sets, re-156

ferred to as flower inequalities, and show that the polytope obtained by their addition157

to the standard linearization of SG coincides with the Multilinear polytope MPG if158

and only if G is γ-acyclic. Finally, as the number of facet-defining flower inequal-159

ities of the Multilinear polytope for γ-acyclic hypergraphs may grow exponentially160

in the rank of the hypergraph, in Section 5, we present a strongly polynomial-time161

separation algorithm for flower inequalities, when the underlying hypergraph is γ-162

acyclic. Polynomial-time algorithms for determining acyclicity degree of hypergraphs163

are available [18]. Together with our results in Sections 3–5, this implies that for164

Berge-acyclic and γ-acyclic hypergraphs, recognition and solution of problem (MO)165

can be done efficiently.166

2. A sufficient condition for decomposability of Multilinear sets. In this167

section, we derive a technical result on decomposability of Multilinear sets that will168

be used to obtain our convex hull characterizations in Sections 3 and 4. We refer the169

reader to [15] for an in-depth study of decomposability properties of Multilinear sets.170

However, we should remark that our result in this section does not follow from our171

previous work in [15].172

Let G = (V,E) be a hypergraph. A hypergraph G′ = (V ′, E′) is a partial hyper-173

graph of G, if V ′ ⊆ V and E′ ⊆ E. Given a subset V ′ of V , the section hypergraph of G174

induced by V ′ is the partial hypergraph G′ = (V ′, E′), where E′ = {e ∈ E : e ⊆ V ′}.175

Given hypergraphs G1 = (V1, E1) and G2 = (V2, E2), we denote by G1∩G2 the hyper-176

graph (V1∩V2, E1∩E2), and we denote by G1∪G2, the hypergraph (V1∪V2, E1∪E2).177

Now consider the hypergraph G, and let G1, G2 be section hypergraphs of G such178

that G1∪G2 = G. We say that the set SG is decomposable into the sets SG1 and SG2 ,179

if180

convSG = convS̄G1 ∩ convS̄G2 ,181182

where S̄Gj , j = 1, 2 is the set of all points in the space of SG whose projection in the183

space defined by Gj is SGj . Next, in Theorem 5, we provide a sufficient condition for184

decomposability of Multilinear sets. Figure 3 illustrates a simple hypergraph G for185

which by Theorem 5 the set SG is decomposable into SG1 and SG2 .186

Theorem 5. Let G be a hypergraph, and let G1, G2 be section hypergraphs of G187

such that G1∪G2 = G. Denote by p̄ := V (G1)∩V (G2). Suppose that p̄ ∈ V (G)∪E(G),188

and that for every edge e of G containing nodes in V (G1) \ V (G2) either e ⊃ p̄, or189

e ∩ p̄ = ∅. Then the set SG is decomposable into SG1 and SG2 .190

Proof. Clearly the inclusion convSG ⊆ convS̄G1 ∩ convS̄G2 holds, since SG ⊆191

S̄G1 ∩S̄G2 . Thus, it suffices to show the reverse inclusion. If either G1 or G2 coincides192

5

This manuscript is for review purposes only.

Fig. 3. An example of a hypergraph G for which by Theorem 5 the multilinear set SG is
decomposable into the sets SG1

and SG2
.

The remainder of this paper is organized as follows. In section 2, we present
a technical result regarding the decomposability of multilinear sets, which will be
used to prove our main results. Namely, we show that under certain assumptions the
multilinear set is decomposable into a collection of simpler multilinear sets for which
closed-form descriptions of convex hulls can be derived. In section 3, we prove that the
standard linearization of a multilinear set coincides with the multilinear polytope if
and only if the corresponding hypergraph is Berge-acyclic. Subsequently, in section 4,
we introduce a new class of valid inequalities for multilinear sets, referred to as flower
inequalities, and show that the polytope obtained by their addition to the standard
linearization of SG coincides with the multilinear polytope MPG if and only if G is
γ-acyclic. Finally, as the number of facet-defining flower inequalities of the multilinear
polytope for γ-acyclic hypergraphs may grow exponentially in the rank of the hyper-
graph, in section 5, we present a strongly polynomial-time separation algorithm for
flower inequalities, when the underlying hypergraph is γ-acyclic. Polynomial-time al-
gorithms for determining acyclicity degree of hypergraphs are available [18]. Together
with our results in sections 3–5, this implies that for Berge-acyclic and γ-acyclic hy-
pergraphs, recognition and solution of problem (MO) can be done efficiently.

2. A sufficient condition for decomposability of multilinear sets. In this
section, we derive a technical result on decomposability of multilinear sets that will
be used to obtain our convex hull characterizations in sections 3 and 4. We refer the
reader to [15] for an in-depth study of decomposability properties of multilinear sets.
However, we should remark that our result in this section does not follow from our
previous work in [15].

Let G = (V,E) be a hypergraph. A hypergraph G′ = (V ′, E′) is a partial hyper-
graph of G if V ′ ⊆ V and E′ ⊆ E. Given a subset V ′ of V , the section hypergraph of G
induced by V ′ is the partial hypergraph G′ = (V ′, E′), where E′ = {e ∈ E : e ⊆ V ′}.
Given hypergraphs G1 = (V1, E1) and G2 = (V2, E2), we denote by G1∩G2 the hyper-
graph (V1∩V2, E1∩E2), and we denote by G1∪G2, the hypergraph (V1∪V2, E1∪E2).

Now consider the hypergraph G, and let G1, G2 be section hypergraphs of G such
that G1 ∪G2 = G. We say that the set SG is decomposable into the sets SG1 and SG2

if

convSG = convS̄G1
∩ convS̄G2

,

where S̄Gj
, j = 1, 2 is the set of all points in the space of SG whose projection in the

space defined by Gj is SGj
. Next, in Theorem 5, we provide a sufficient condition for

decomposability of multilinear sets. Figure 3 illustrates a simple hypergraph G for
which by Theorem 5 the set SG is decomposable into SG1 and SG2 .

Theorem 5. Let G be a hypergraph, and let G1, G2 be section hypergraphs of G
such that G1∪G2 = G. Denote by p̄ := V (G1)∩V (G2). Suppose that p̄ ∈ V (G)∪E(G)
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1054 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

and that for every edge e of G containing nodes in V (G1) \ V (G2) either e ⊃ p̄, or
e ∩ p̄ = ∅. Then the set SG is decomposable into SG1

and SG2
.

Proof. Clearly the inclusion convSG ⊆ convS̄G1
∩ convS̄G2

holds, since SG ⊆
S̄G1
∩S̄G2

. Thus, it suffices to show the reverse inclusion. If either G1 or G2 coincides
with G, then the statement is trivial. Henceforth, we assume that both G1 and G2 are
different from G, implyingG\G1 andG\G2 are nonempty. Let z̃ ∈ convS̄G1

∩convS̄G2
.

We will show that z̃ ∈ convSG. Let z̄ contain those components of z̃ corresponding to
nodes and edges that are both in G1 and in G2. In particular, z̄p̄ is a component of
z̄. Let z1 be the vector containing the components of z̃ corresponding to nodes and
edges in G1 but not in G2, and let z2 be the vector containing the components of z̃
corresponding to nodes and edges in G2 but not in G1. Using these definitions, we
can now write, up to reordering variables, z̃ = (z1, z̄, z2).

By assumption, the vector (z1, z̄) is in convSG1 . Thus, it can be written as a
convex combination of points in SG1 ; i.e., there exists µ ≥ 0 with

∑
(r,s)∈SG1

µr,s = 1

such that (
z1, z̄

)
=

∑
(r,s)∈SG1

µr,s(r, s),(3)

where the r vectors contain the components corresponding to nodes and edges in G1

but not in G2, and the s vectors contain the components corresponding to nodes and
edges that are both in G1 and in G2.

Symmetrically, the vector (z̄, z2) is in convSG2
. Thus, it can be written as a

convex combination of points in SG2
; i.e., there exists ν ≥ 0 with

∑
(s′,t)∈SG2

νs′,t = 1

such that (
z̄, z2

)
=

∑
(s′,t)∈SG2

νs′,t(s
′, t),

(4)

where the s′ vectors contain the components corresponding to nodes and edges that
are both in G1 and in G2, and the t vectors contain the components corresponding to
nodes and edges in G2 but not in G1.

By considering the component of (3) and of (4) corresponding to p̄ we obtain

z̄p̄ =
∑

(r,s)∈SG1
:sp̄=1

µr,s =
∑

(s′,t)∈SG2
:s′p̄=1

νs′,t,

1− z̄p̄ =
∑

(r,s)∈SG1
:sp̄=0

µr,s =
∑

(s′,t)∈SG2
:s′p̄=0

νs′,t.

We claim that for every (r, s) ∈ SG1 and every (s′, t) ∈ SG2 with sp̄ = s′p̄ we have
(r, s′, t) ∈ SG. This is clearly true if sp̄ = s′p̄ = 1, as in this case all components of the
two vectors s and s′ are equal to one. Now, assume sp̄ = s′p̄ = 0. In this case we show
that (r, s′) ∈ SG1

, which implies (r, s′, t) ∈ SG. Consider a component of r which
corresponds to an edge, say, ē, of G1 containing nodes in V (G2). By assumption
ē ⊃ p̄, and since sp̄ = 0, if follows that rē = 0. Since s′p̄ = 0 as well, we conclude that
(r, s′) ∈ SG1 .

Next, for every (r, s) ∈ SG1
and (s′, t) ∈ SG2

with sp̄ = s′p̄, we define

τr,s,s′,t :=

{
µr,s · νs′,t/z̄p̄ if sp̄ = s′p̄ = 1,

µr,s · νs′,t/(1− z̄p̄) if sp̄ = s′p̄ = 0.
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The multipliers τr,s,s′,t are nonnegative and satisfy

∑
(r,s)∈SG1

,(s′,t)∈SG2
:sp̄=s′p̄

τr,s,s′,t

=

∑
(r,s)∈SG1

:sp̄=1

µr,s

∑
(s′,t)∈SG2

:s′p̄=1

νs′,t

z̄p̄
+

∑
(r,s)∈SG1

:sp̄=0

µr,s

∑
(s′,t)∈SG2

:s′p̄=0

νs′,t

1− z̄p̄
= z̄p̄ + (1− z̄p̄) = 1.

To prove that z̃ ∈ convSG, it suffices to show that

(5)
∑

(r,s)∈SG1
,(s′,t)∈SG2

:sp̄=s′p̄

τr,s,s′,t(r, s
′, t) =

(
z1, z̄, z2

)
.

The restriction of (5) to the variables corresponding to nodes and edges in G1

but not in G2 can be shown as follows:

∑
(r,s)∈SG1

,(s′,t)∈SG2
:sp̄=s′p̄

τr,s,s′,tr

=

∑
(r,s)∈SG1

:sp̄=1

µr,sr
∑

(s′,t)∈SG2
:s′p̄=1

νs′,t

z̄p̄
+

∑
(r,s)∈SG1

:sp̄=0

µr,sr
∑

(s′,t)∈SG2
:s′p̄=0

νs′,t

1− z̄p̄
=

∑
(r,s)∈SG1

:sp̄=1

µr,sr +
∑

(r,s)∈SG1
:sp̄=0

µr,sr

=
∑

(r,s)∈SG1

µr,sr = z1.

The restriction of (5) to the remaining variables is shown below.

∑
(r,s)∈SG1

,(s′,t)∈SG2
:sp̄=s′p̄

τr,s,s′,t(s
′, t)

=

∑
(s′,t)∈SG2

:s′p̄=1

νs′,t(s
′, t)

∑
(r,s)∈SG1

:sp̄=1

µr,s

z̄p̄

+

∑
(s′,t)∈SG2

:s′p̄=0

νs′,t(s
′, t)

∑
(r,s)∈SG1

:sp̄=0

µr,s

1− z̄p̄
=

∑
(s′,t)∈SG2

:s′p̄=1

νs′,t(s
′, t) +

∑
(s′,t)∈SG2

:s′p̄=0

νs′,t(s
′, t)

=
∑

(s′,t)∈SG2

νs′,t(s
′, t) =

(
z̄, z2

)
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3. The multilinear polytope for Berge-acyclic hypergraphs. In this sec-
tion, we characterize multilinear sets for which the standard linearization defined
by (2) is equivalent to the multilinear polytope. Namely, we show that MPLP

G = MPG

if and only if the hypergraph G is Berge-acyclic. We start by establishing a property
of MPG and MPLP

G which enables us to identify conditions under which MPG ⊂ MPLP
G

by examining the relative strength of such relaxations corresponding to hypergraphs
with much simpler structures than G.

Given a hypergraph G = (V,E) and V̄ ⊆ V , we define the subhypergraph of G
induced by V̄ as the hypergraph GV̄ with node set V̄ and with edge set {e ∩ V̄ :
e ∈ E, |e ∩ V̄ | ≥ 2}. For every edge e of GV̄ , there may exist several edges e′ of
G satisfying e = e′ ∩ V̄ ; we denote by e′(e) one such arbitrary edge of G. For ease
of notation, we often identify an edge e of GV̄ with an edge e′(e) of G. Denote by
R a relaxation of the multilinear set; namely, R is a function that associates to each
hypergraph G a set RG containing all points in SG. Define

(6) LV̄ :=
{
z ∈ RV +E : zv = 1 ∀v ∈ V \ V̄

}
.

Denote by projGV̄
(RG ∩ LV̄ ) the set obtained from RG ∩ LV̄ by projecting out all

variables zv for all v ∈ V \ V̄ , and zf for all f ∈ E\{e′(e) : e ∈ E(GV̄ )}. The following
lemma establishes that for the multilinear polytope and the standard linearization the
two sets RGV̄

and projGV̄
(RG ∩ LV̄ ) are in fact identical.

Lemma 6. Let G = (V,E) be a hypergraph and let LV̄ be a set defined by (6) for
some V̄ ⊆ V . Then

(i) MPGV̄
= projGV̄

(MPG ∩ LV̄ ),

(ii) MPLP
GV̄

= projGV̄
(MPLP

G ∩ LV̄ ).

Proof. (i) The set MPG∩LV̄ is a face of MPG; hence MPG∩LV̄ = conv(SG∩LV̄ ).
Moreover, since the operations of taking the convex hull and taking the projection
commute, we have projGV̄

(conv(SG ∩ LV̄ )) = conv(projGV̄
(SG ∩ LV̄ )). Finally from

the definition of the subhypergraph GV̄ it follows that projGV̄
(SG∩LV̄ ) = SGV̄

, which
in turn implies that projGV̄

(MPG ∩ LV̄ ) = MPGV̄
.

(ii) From (2) and (6), it follows that

MPLP
G ∩ LV̄ =

{
z : zv ≤ 1 ∀v ∈ V̄ , zv = 1, ∀v ∈ V \ V̄ ,

ze ≥ 0, ze ≥
∑

v∈e∩V̄
zv − |e ∩ V̄ |+ 1 ∀e ∈ E,

ze ≤ zv ∀e ∈ E ∀v ∈ e ∩ V̄ , ze ≤ 1 ∀e ∈ E, ∀v ∈ e \ V̄
}
.

First notice that in the above system, each variable zv, v ∈ V \ V̄ only appears in
the equality zv = 1. Hence, projecting out these variables from MPLP

G ∩ LV̄ simply
amounts to dropping the corresponding equalities from the above system. Now con-
sider a variable zf for some f ∈ E\Ē, where we define Ē := {e′(e) : e ∈ E(GV̄ )}. The
variable zf appears in the following inequalities: zf ≥ 0, zf ≥

∑
v∈f∩V̄ zv−|f∩V̄ |+1,

zf ≤ zv for all v ∈ f ∩ V̄ and zf ≤ 1 for all v ∈ f \ V̄ . By projecting out zf from
these inequalities using Fourier–Motzkin elimination, we obtain a system of inequali-
ties that are implied by the following system: 0 ≤ zv ≤ 1 for all v ∈ f ∩ V̄ and zv = 1
for all v ∈ f \ V̄ . Consequently, by projecting out all variables zv for v ∈ V \ V̄ , and
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ze for e ∈ E \ Ẽ, we obtain

projV̄
(
MPLP

G ∩ LV̄

)
=

{
z : zv ≤ 1 ∀v ∈ V̄ ,

ze ≥ 0, ze ≥
∑

v∈e∩V̄
zv − |e ∩ V̄ |+ 1 ∀e ∈ Ē,

ze ≤ zv ∀e ∈ Ē ∀v ∈ e ∩ V̄
}
.

Finally, from the definitions of the standard linearization and the subhypergraph GV̄

it follows that projGV̄
(MPLP

G ∩ LV̄ ) = MPLP
GV̄

.

Now consider a hypergraph G for which we would like to show that MPG ⊂
MPLP

G . Since MPG ⊆ MPLP
G , it suffices to show that for some V̄ ⊆ V (G) we have

projGV̄
(MPG ∩LV̄ ) ⊂ projGV̄

(MPLP
G ∩LV̄ ). By Lemma 6, the latter inclusion can be

established by showing that MPGV̄
⊂ MPLP

GV̄
. Indeed, a careful selection of the subset

V̄ and employing the above technique is a key step in the proof of Theorem 7.
Let QPLP

G denote the standard linearization of the Boolean quadric polytope QPG.
In [25], Padberg shows that QPLP

G = QPG if and only if G is an acyclic graph. The
following theorem generalizes the above result to higher degree multilinear sets using
the notion of hypergraph acyclicity introduced in section 1. We remark that this
result has been discovered independently in [9] using a different proof technique.

Theorem 7. MPLP
G = MPG if and only if G is a Berge-acyclic hypergraph.

Proof. “⇒” We first show that if the hypergraph G contains a Berge-cycle C
of length two, then MPLP

G does not coincide with MPG. Let E(C) = {e1, e2} with
|e1 ∩ e2| ≥ 2. It then follows that the inequality

(7)
∑

v∈e2\e1

zv + ze1
− ze2

≤ |e2 \ e1|

is valid for SG. To see this, observe that the value of
∑

v∈e2\e1
zv +ze1

does not exceed

the right-hand side of inequality (7), unless zv = 1 for all v ∈ e2 \ e1 and ze1 = 1;
however, this in turn implies that ze2 = 1. Thus, inequality (7) is valid for SG. (See
also [14], wherein the validity of inequalities (7) for SG is established.) Now, consider
the point z̃ defined as follows: z̃v = 1 for all v ∈ e2 \ e1, z̃v = 1/2 for all v ∈ e1, z̃v = 0
for the remaining nodes in G, ze1

= 1/2, ze2
= 0, ze = 1 for all e ⊆ e2 \ e1, ze = 0 for

all e * e1 ∪ e2, and ze = 1/2 for all remaining edges in G. Clearly, this point does not
satisfy inequality (7), as |e2 \ e1|+ 1/2−0 � |e2 \ e1|. However, it can be checked that

z̃ belongs to MPLP
G , provided that |e1 ∩ e2| ≥ 2. Hence, if the hypergraph G contains

a Berge-cycle of length two, we have MPG ⊂ MPLP
G .

Now, consider a hypergraph G with |e1 ∩ e2| ≤ 1 for all e1, e2 ∈ E(G); that is,
G does not contain any Berge-cycle of length two. We show that if G contains a
Berge-cycle of length greater than or equal to three, then MPG ⊂ MPLP

G . Denote
by C a Berge-cycle of minimum length t, where t ≥ 3. We claim that the subhyper-
graph GV (C) is a graph that consists of a chordless cycle of length t. To obtain a
contradiction, suppose that GV (C) is not a chordless cycle. Since C is a Berge-cycle
of minimum length, it follows that there exists an edge ē in E(GV (C)) containing at
least three nodes in V (C). Denote by ẽ an edge of G with ē = ẽ ∩ V (C). Since by
assumption |ei ∩ ej | ≤ 1 for all ei, ej ∈ E(G), there exist no two nodes in ē that are
also present in another edge of G. Define C = v1, e1, v2, . . . , vt, et, v1. Without loss
of generality, suppose that v1 ∈ ē and v2 /∈ ē. Let vk be the next node of V (C) after
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the first node v1 that is present in ē. Clearly, k < t since by assumption ē contains at
least three nodes of C. It then follows that the sequence v1, e1, v2, . . . , ek−1, vk, ẽ, v1 is
a Berge-cycle of length k. However, this contradicts the assumption that C is Berge-
cycle of minimum length. Therefore, the graph GV (C) consists of a chordless cycle.

By Lemma 6, to prove MPG ⊂ MPLP
G , it suffices to show that MPGV (C)

⊂ MPLP
GV (C)

.

The polytope MPGV (C)
is clearly integral. However, it is well-known that MPLP

GV (C)
is

not integral, since the graph GV (C) consists of a chordless cycle [25]. Consequently,

if the hypergraph G contains a Berge-cycle, we have MPG ⊂ MPLP
G .

“⇐” Conversely, let G be a Berge-acyclic hypergraph. We show that MPLP
G =

MPG. The proof is by induction on the number of edges of G. In the base case G
has only one edge and it is well-known that in this case MPLP

G = MPG. To prove the
inductive step, we assume that G has at least two edges. We first show that there exists
at least one edge ẽ of G such that ẽ∩(∪e∈E(G)\ẽe) = {ṽ} for some ṽ ∈ V (G). To obtain
a contradiction, suppose that such an edge does not exist. By Berge-acyclicity, every
two edges of G intersect in at most one node, as otherwise, they form a Berge-cycle of
length two. It then follows that every edge of G intersects with at least two other edges
in two distinct nodes. In particular, G has at least three edges. However, this implies
that we can always find a Berge-cycle, which is in contradiction with the assumption
that G is Berge-acyclic. Hence, G has an edge ẽ with ẽ∩ (∪e∈E(G)\ẽe) = {ṽ} for some
ṽ ∈ V (G). We now define G1 as the section hypergraph of G induced by ẽ, and G2

as the section hypergraph of G induced by ∪e∈E(G)\ẽe. Clearly, G1 ∪ G2 = G and
G1 ∩G2 = {ṽ}. Thus, by Theorem 5, the set SG is decomposable into SG1 and SG2 .
Both hypergraphs G1 and G2 have fewer edges than G and are Berge-acyclic since
they are section hypergraphs of G. Therefore, by the induction hypothesis we have
MPLP

G1
= MPG1

and MPLP
G2

= MPG2
, implying MPLP

G = MPG.

Clearly, for a rank-r hypergraph G = (V,E), the standard linearization MPLP
G

has at most |V | + (r + 2)|E| linear inequalities. Therefore, by Theorem 7, for a
Berge-acyclic hypergraph G, problem (MO) can be solved via linear optimization in
polynomial time, i.e., in a number of iterations bounded by a polynomial in |V |, |E|,
and in the size of the vector c. (See [30] for more details.)

4. The multilinear polytope for γ-acyclic hypergraphs. As we detailed
in section 1, Berge-acyclicity is the most restrictive type of hypergraph acyclicity.
Indeed, by Theorem 7, the multilinear polytope for Berge-acyclic hypergraphs has a
very simple structure; that is, MPG = MPLP

G . In this section, we study the structure
of the multilinear polytope for the next class of acyclic hypergraphs, in increasing
order of generality, namely, the class of γ-acyclic hypergraphs. As we described in
section 1, γ-acyclic hypergraphs represent a significant generalization of Berge-acyclic
hypergraphs and may contain Berge-cycles of arbitrary lengths, in general.

We start by establishing a key connection between γ-acyclic and laminar hyper-
graphs. By building upon a result concerning balanced matrices and integral polyhe-
dra, in section 4.1, we show that the multilinear polytope for laminar hypergraphs has
a simple structure. Subsequently, in section 4.2, we introduce a generalization of the
inequalities defined by (7), which we will refer to as flower inequalities. We introduce
a new polyhedral relaxation of the multilinear set, obtained by addition of all flower
inequalities to its standard linearization. Finally, using our decomposability results of
section 2 together with our convex hull characterization for laminar hypergraphs, in
section 4.3, we prove that this new relaxation coincides with the multilinear polytope
if and only if the underlying hypergraph is γ-acyclic.
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4.1. Laminar hypergraphs. Recall that a hypergraph G is laminar if for any
two edges e1, e2 ∈ E(G), one of the following is satisfied: (i) e1 ∩ e2 = ∅, (ii) e1 ⊂ e2,
(iii) e2 ⊂ e1. The following proposition establishes a key connection between laminar
hypergraphs and γ-acyclic hypergraphs.

Proposition 8. Let G = (V,E) be a γ-acyclic hypergraph, and let e′ ∈ E. Then
the subhypergraph Ge′ is laminar.

Proof. Assume by contradiction that Ge′ is not laminar. Then there exist nodes
v1, v2, v3 ∈ V (Ge′) and edges ei, ej ∈ E(Ge′) such that v1, v2 ∈ ei, v1, v3 ∈ ej , v2 /∈ ej ,
v3 /∈ ei. Note that e′ ∈ E(Ge′) contains all three nodes v1, v2, v3. Let ẽi, ẽj ∈ E such
that ei = ẽi ∩ e′, ej = ẽj ∩ e′. Then {{v1, v2}, {v1, v3}, {v1, v2, v3}} = {e∩{v1, v2, v3} :
e ∈ {ẽi, ẽj , e′}}. As G is γ-acyclic, this contradicts property (ii) of Proposition 4.

In particular, Proposition 8 implies that if a γ-acyclic hypergraph G has an edge
that contains all nodes of G, then G is laminar. In our next result, we characterize the
multilinear polytope for laminar hypergraphs. To do so, we make use of a fundamen-
tal result due to Conforti and Cornuéjols regarding the connection between integral
polyhedra and balanced matrices. We recall that a 0,±1 matrix is balanced if, in
every square submatrix with exactly two nonzero entries per row and per column, the
sum of the entries is a multiple of 4.

Theorem 9 (see [12, Theorem 6.13]). Let A be a balanced 0,±1 matrix with
rows ai, i ∈ S, and let S1, S2, S3 be a partition of S. For each ai, let n(ai) denote the
number of elements equal to −1. Then

R(A) = {x ∈ Rn : aix ≥ 1− n(ai) for i ∈ S1,

aix = 1− n(ai) for i ∈ S2,

aix ≤ 1− n(ai) for i ∈ S3,

0 ≤ x ≤ 1}

is an integral polytope.

Given a laminar hypergraph G = (V,E), and an edge e ∈ E, we define I(e) :=
{p ∈ V ∪ E : p ⊂ e, p 6⊂ e′ for e′ ∈ E, e′ ⊂ e}. Given a p ∈ V ∪ E that is strictly
contained in at least one edge of E, there exists a unique edge ē of G that satisfies
p ∈ I(ē). To obtain a contradiction, assume that there exist two distinct edges ē1, ē2

with p ∈ I(ē1)∩I(ē2). It then follows that p ⊂ ē1 and p ⊂ ē2. Since p ∈ I(ē1), we have
ē2 6⊂ ē1. Symmetrically, since p ∈ I(ē2), we have ē1 6⊂ ē2. However, this contradicts
the laminarity of G. The next theorem characterizes the multilinear polytope for
laminar hypergraphs.

Theorem 10. Let G = (V,E) be a laminar hypergraph. Then MPG is described
by the following system:

zv ≤ 1 ∀v ∈ V,(8)

−ze ≤ 0 ∀e ∈ E such that e 6⊂ f for f ∈ E,(9)

−zp + ze ≤ 0 ∀e ∈ E, ∀p ∈ I(e),(10) ∑
p∈I(e)

zp − ze ≤ |I(e)| − 1 ∀e ∈ E.(11)D
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1060 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

Proof. Let Q be the polyhedron described by inequalities (8)–(11). In the follow-
ing, we first show that the integer points in Q coincide with those of MPG. To do
so, it suffices to prove that MPG ⊆ Q ⊆ MPLP

G . Subsequently, we show that Q is an
integral polytope, which together with the first claim implies Q = MPG.

We start by showing that Q is a valid relaxation of SG, i.e., MPG ⊆ Q. Clearly,
inequalities (8) and (9) are present in the description of MPLP

G . In addition, inequali-
ties (10), if p is a node, and inequalities (11), if I(e) only consists of nodes, are present
in MPLP

G . The validity of the remaining inequalities in (10) as well as inequalities (11)
follows from the fact that for any e ∈ E, we have ze = 1 if and only if zp = 1 for all
p ∈ I(e). Hence, MPG ⊆ Q.

We now show that Q ⊆ MPLP
G . Let us consider the inequalities in the description

of MPLP
G given by (2). Inequalities zv ≤ 1 for every v ∈ V are given by (8). Inequalities

ze ≥ 0 for every e such that e is not contained in any other edge are given by (9).
For every other edge e0, let e1, . . . , et be a maximal sequence of edges such that
ei−1 ∈ I(ei) for every i = 1, . . . , t. Then inequality ze0

≥ 0 can be obtained by
summing inequalities zei−1 ≥ zei in (10) for every i = 1, . . . , t, and inequality zet ≥ 0
in (9). Inequalities ze ≥

∑
v∈e zv−|e|+1 for every e such that e does not contain any

other edge are given by (11). For every other edge e, inequality ze ≥
∑

v∈e zv−|e|+1
can be obtained by summing inequalities zf ≥

∑
p∈I(f) zp−|I(f)|+1 in (11) for every

f ⊆ e. Inequalities ze ≤ zv for every edge e ∈ E and node v ∈ I(e) are given by (10).
Now let e0 be any edge and let v be a node not in I(e0). Let e1, . . . , et be a maximal
sequence of edges such that ei ∈ I(ei−1) for every i = 1, . . . , t, and such that v ∈ et.
Then inequality ze0

≤ zv can be obtained by summing inequalities zei−1
≤ zei in (10)

for every i = 1, . . . , t, and inequality zet ≤ zv in (10).
We now show that Q is an integral polytope. Clearly, inequalities (8)–(11) are of

the form defined in the statement of Theorem 9. Thus by this theorem, it suffices to
show that the constraint matrix of system (8)–(11) is balanced. In fact, by definition
of a 0,±1 balanced matrix, we can equivalently show that the constraint matrix A
corresponding to the system (10)–(11) is balanced as inequalities (8) and (9) introduce
singleton rows in the constraint matrix. Assume by contradiction that there exists a
square submatrix of A with exactly two nonzero entries per row and per column, such
that the sum of the entries is congruous to 2 modulus 4. Let B be a square submatrix
of this type with the minimum number of rows.

We show that no column of B corresponds to a node of G. By contradiction
assume that a column of B corresponds to a node v̄ ∈ V . Let ē be the unique
edge of G that satisfies v̄ ∈ I(ē). Then zv̄ has a nonzero coefficient only in the
following two inequalities from the system (10)–(11): −zv̄ + zē ≤ 0 defined by (10),
and

∑
p∈I(ē) zp−zē ≤ |I(ē)|−1 defined by (11). Since the column of B corresponding

to v̄ has two nonzero entries, these two inequalities must correspond to two rows
of B. The first inequality has only one more nonzero coefficient, namely, the one
corresponding to ē. Therefore, a column of B must correspond to ē. Now, let B′ be
obtained from B by removing the rows corresponding to the above two inequalities,
and the columns corresponding to v̄ and ē. The nonzero entries of B present in the
removed rows and columns are a −1 and a +1 in the first inequality, and a +1 and
a −1 in the second inequality, which implies that the sum of the entries of B′ is
congruous to 2 modulus 4. It follows that B′ is a square submatrix of A with fewer
rows than B, contradicting the minimality of B.

Since the sum of the entries of B is congruous to 2 modulus 4, there is at least
one row of B with two entries of the same sign. This row then corresponds to an
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inequality in (11), say, the one corresponding to an edge e0 ∈ E. Since no column
of B corresponds to a node of G, the two entries of the same sign must correspond
to two edges, say, e1 and e′1 in I(e0). In particular, two columns of B correspond to
e1 and e′1. Since each row contains only two nonzero entries, we also argue that no
column of B corresponds to e0.

We now show that there is at least one edge in I(e1), and that a column of B
corresponds to it. As B has two nonzeros per column, there is another inequality
among (10), (11) that corresponds to a row of B with a nonzero corresponding to e1.
If this inequality is in (10), then we claim that it is −zp +ze1

≤ 0 for p ∈ I(e1). If not,
since e0 is the unique edge with e1 ∈ I(e0), it must be −ze1 + ze0 ≤ 0. But then the
corresponding row of B has only one nonzero entry since no column of B corresponds
to e0. If this inequality is in (11), since e0 is the unique edge with e1 ∈ I(e0), then it
must be

∑
p∈I(e1) zp − ze1

≤ |I(e1)| − 1. As no column of B corresponds to a node of
G, in both cases we argue that a column of B must correspond to an edge, say, e2, in
I(e1).

Similarly, we show that there is at least one edge in I(e2), and that a column
of B corresponds to it. There is another inequality among (10), (11) corresponding
to a row of B with a nonzero corresponding to e2. This inequality cannot have a
nonzero coefficient corresponding to e1, as otherwise we would obtain a column of B
with three nonzero entries. Therefore, such inequality is either −zp + ze2

≤ 0 in (10)
for p ∈ I(e2), or

∑
p∈I(e2) zp − ze2 ≤ |I(e2)| − 1 in (11). In both cases we argue that

a column of B must correspond to an edge, say, e3, in I(e2).
By repeating the latter argument, we can show the existence of an edge et ∈

I(et−1) in G for any positive integer t, which contradicts the finiteness of G.

Before proceeding further, we remark that our proof of Theorem 10 relies on the
balancedness of the constraint matrix of the minimal system defining the polytope
MPG, which does not hold for γ-acyclic hypergraphs, in general. The following ex-
ample demonstrates that if we relax the laminarity assumption of G, the constraint
matrix of the minimal system defining MPG is no longer balanced.

Example 1. Consider the γ-acyclic hypergraph G with V (G) = {v1, v2, v3, v4}
and E(G) = {e123, e234}, where edge eI contains the nodes with indices in I. It can
be checked that the following inequalities define facets of MPG:

−zv2
+ ze123

≤ 0,

−zv3
+ ze123

≤ 0,

+zv2
+ zv3

+ zv4
− ze234

≤ 2.

Let B be the constraint matrix of the above system. The square submatrix B′ of B
obtained by selecting columns corresponding to nodes v2, v3 and edge e123 has exactly
two nonzero entries per row and per column, and the sum of the entries is congruous
to 2 modulus 4. Therefore the constraint matrix of the minimal system defining MPG

is not balanced.

4.2. Flower inequalities. In what follows, we define the support hypergraph of
a valid inequality az ≤ α for MPG, as the hypergraph G(a), where V (G(a)) = {v ∈
V : av 6= 0} ∪ (∪e∈E:ae 6=0e), and E(G(a)) = {e ∈ E : ae 6= 0}. Let us revisit the
valid inequalities for MPG defined by (7). Clearly, the support hypergraph of these
inequalities contains Berge-cycle of length two. In [14], the authors show that for a
hypergraph G consisting of two edges intersecting in more than one node, the addition
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1062 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

of these inequalities to the standard linearization yields the corresponding multilinear
polytope. In this section, we present a significant generalization of this result.

Consider a hypergraph G = (V,E). We say that two edges of G are adjacent if
their intersection is not empty. Let e0 be an edge of G and let ek, k ∈ K, be the set
of all edges adjacent to e0 with |e0 ∩ ek| ≥ 2. Let T be a nonempty subset of K such
that ei ∩ ej = ∅ for all i, j ∈ T with i 6= j. Then the flower inequality centered at e0

with neighbors ek, k ∈ T , is given by

(12)
∑

v∈e0\∪k∈T ek

zv +
∑
k∈T

zek − ze0 ≤ |e0 \ ∪k∈T ek|+ |T | − 1.

It is simple to check that the support hypergraph of flower inequalities contains Berge-
cycles of length two only. We first show that inequalities (12) are valid for MPG.
Clearly, for any given nonempty subset T of K, the left-hand side of these inequalities
could exceed the right-hand side, only if zv = 1 for all v ∈ e0 \ ∪k∈T ek and zek = 1
for all k ∈ T . However, this in turn implies that ze0

= 1. It then follows that
inequalities (12) are valid for MPG. We refer to the inequalities of the form (12) for
all nonempty T ⊆ K satisfying ei ∩ ej = ∅ for all i, j ∈ T , as the system of flower

inequalities centered at e0. We define the flower relaxation MPF
G as the polytope

obtained by adding the system of flower inequalities centered at each edge of G to
MPLP

G .
Clearly, inequalities (8)–(11) in the statement of Theorem 10 are either flower

inequalities or are present in (2): inequalities (8) and (9) are present in the description
of MPLP

G , and inequality (10) is present in the description of MPLP
G for all p ∈ V , and is

a flower inequality for all p ∈ E. Finally, inequality (11) corresponds to an inequality
in MPLP

G provided that I(e) contains no edge of G; otherwise it is a flower inequality.
Thus, we have the following result.

Corollary 11. Let G be a laminar hypergraph. Then MPG = MPF
G.

Consider a hypergraph G with E(G) = {ek : k ∈ {1, . . . ,K}} such that e1 ⊃ e2 ⊃
· · · ⊃ eK−1 ⊃ eK . Clearly, this hypergraph is laminar. The multilinear polytope for
this special class of laminar hypergraphs is characterized in [19, 14].

4.3. γ-acyclic hypergraphs. Our main result in this section states that MPF
G

coincides with MPG if and only if the underlying hypergraph G is γ-acyclic. To this
end, in the following two lemmata, we establish some basic properties of the polytope
MPF

G.

Lemma 12. Let G̃ be a partial hypergraph of the hypergraph G. Then all inequal-
ities defining MPF

G̃
are also present in the system defining MPF

G.

Proof. Clearly, the description of MPLP
G contains all inequalities present in the

description of MPLP
G̃

, since the latter is obtained by replacing each multilinear term

ze =
∏

v∈e zv by its convex hull over the unit hypercube for all e ∈ E(G̃) and we have

E(G̃) ⊆ E(G). In addition, from the definition of flower inequalities it follows that
every flower inequality for SG̃ is also a flower inequality for SG, as again E(G̃) ⊆ E(G).

Consequently, all inequalities defining MPF
G̃

are also present in the system defining

MPF
G.

Lemma 13. Let G = (V,E) be a hypergraph, let V̄ ⊆ V, and let LV̄ be a set
defined by (6). Then

MPF
GV̄
⊆ projGV̄

(
MPF

G ∩ LV̄

)
.
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Proof. We prove the statement by showing that every nonredundant inequality in
projGV̄

(MPF
G ∩LV̄ ) is also present in MPF

GV̄
. First, let us characterize the projection

operation projGV̄
(·) for the set MPF

G ∩ LV̄ . As before we define Ē := {e′(e) : e ∈
E(GV̄ )}. Consider an edge e ∈ E \ Ē; based on the cardinality of e ∩ V̄ , three cases
arise:

(i) e ∩ V̄ = ∅: since zv = 1 for all v ∈ e , in this case the inequality ze ≥∑
v∈e zv − |e|+ 1 simplifies to ze ≥ 1, which together with ze ≤ zv, v ∈ e implies that

ze = 1.
(ii) e ∩ V̄ = {v̄} for some v̄ ∈ V̄ : since zv = 1 for all v ∈ e \ {v̄}, in this case the

inequality ze ≥
∑

v∈e zv − |e| + 1 simplifies to ze ≥ zv̄, which together with ze ≤ zv,
v ∈ e implies that ze = zv̄.

(iii) |e∩ V̄ | ≥ 2: by definition of Ē, for any e ∈ E \ Ē with |e∩ V̄ | ≥ 2, there exists
an edge ē ∈ Ē such that ē ∩ V̄ = e ∩ V̄ . Clearly, the following two flower inequalities
are present in MPF

G: ∑
v∈e\ē

zv + zē − ze ≤ |e \ ē|

and ∑
v∈ē\e

zv + ze − zē ≤ |ē \ e|.

Since by assumption ē∩ V̄ = e∩ V̄ , it follows that zv ∈ V \ V̄ for all v ∈ (ē\e)∪(e\ ē).
Hence, substituting zv = 1 for v ∈ V \ V̄ in the above inequalities yields ze = zē.

Hence, projGV̄
(MPF

G ∩LV̄ ) can be obtained from MPF
G by substituting zv = 1 for

all v ∈ V \ V̄ , ze = 1 for all e ∈ E \ Ē with e ∩ V̄ = ∅, ze = zv̄ for all e ∈ E \ Ē with
e ∩ V̄ = {v̄} for some v̄ ∈ V̄ , and ze = zē for all e ∈ E \ Ē with e ∩ V̄ = ē ∩ V̄ for
some ē ∈ Ē, and dropping out all variables zv, v ∈ V \ V̄ and ze for all e ∈ E \ Ē from
the description of MPF

G. It is then simple to verify that all nonredundant inequalities
in projGV̄

(MPF
G ∩ LV̄ ) corresponding to the standard linearization of SG are present

in MPLP
GV̄

and hence are also present in MPF
GV̄

. Hence, it suffices to show that the

same statement holds for the remaining inequalities in projGV̄
(MPF

G ∩LV̄ ), i.e., those

corresponding to the flower inequalities in MPF
G.

Consider a flower inequality for SG centered at e0 with neighbors ek, k ∈ T , as
defined by (12). Substituting zv = 1 for all v ∈ V \ V̄ in inequality (12), we obtain

(13)
∑

v∈(e0\∪k∈T ek)∩V̄
zv +

∑
k∈T

zek − ze0 ≤ |(e0 \ ∪k∈T ek) ∩ V̄ |+ |T | − 1.

We would like to show that if inequality (13) is nonredundant for MPF
G∩LV̄ , then the

corresponding inequality in projGV̄
(MPF

G ∩ LV̄ ) is also present in MPF
GV̄

. We claim

that without loss of generality we can assume that |e0 ∩ ek ∩ V̄ | ≥ 2 for all k ∈ T .
To see this, suppose that |e0 ∩ ek ∩ V̄ | ≤ 1 for all k ∈ T ′, where T ′ is a nonempty
subset of T . We now show that in this case inequality (13) is implied by a number of
inequalities present in the description of MPF

G∩LV̄ . Consider the following inequality:

(14)
∑

v∈e0∩(∪k∈T ′ek)

zv+
∑

v∈e0\∪k∈T ek

zv+
∑

k∈T\T ′
zek−ze0 ≤ |e0\∪k∈T\T ′ek|+|T \T ′|−1.

Clearly, the above inequality is a flower inequality for SG centered at e0 with neighbors
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1064 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

ek, k ∈ T \ T ′, if T \ T ′ is nonempty and simplifies to
∑

v∈e0
zv − ze0

≤ |e0| − 1,

otherwise. Notice that the latter inequality is present in the description of MPLP
G

and hence is present in MPF
G. For each k ∈ T ′, consider the inequality zek − zv̄ ≤ 0

if e0 ∩ ek ∩ V̄ = {v̄}, and zek ≤ 1 if e0 ∩ ek ∩ V̄ = ∅. Substituting zv = 1 for all
v ∈ V \ V̄ in these inequalities together with inequality (14) and summing up the
resulting inequalities, we obtain inequality (13). Henceforth, we can assume that
in (13) we have |e0 ∩ ek ∩ V̄ | ≥ 2 for all k ∈ T .

Denote by ẽ0 the edge of G in Ē with ẽ0 ∩ V̄ = e0 ∩ V̄ . Note that if e0 ∈ Ē, then
we have ẽ0 = e0. Similarly, for each k ∈ T , denote by ẽk the edge of G in Ē with
ẽk ∩ V̄ = ek ∩ V̄ . As we detailed before, by projecting out all variables zv, v ∈ V \ V̄ ,
and ze, e ∈ E \ Ē, from inequality (13), we obtain

(15)
∑

v∈(ẽ0\∪k∈T ẽk)∩V̄
zv +

∑
k∈T

zẽk − zẽ0 ≤ |(ẽ0 \ ∪k∈T ẽk) ∩ V̄ |+ |T | − 1.

Now define e′0 = ẽ0 ∩ V̄ and e′k = ẽk ∩ V̄ for all k ∈ T . Since ẽ0 ∈ Ē and ẽk ∈ Ē
for all k ∈ T , it follows that e′0 ∈ E(GV̄ ) and e′k ∈ E(GV̄ ) for all k ∈ T . Moreover,
since ẽ0 ∩ V̄ = e0 ∩ V̄ , ẽk ∩ V̄ = ek ∩ V̄ for all k ∈ T , |e0 ∩ ek ∩ V̄ | ≥ 2 for all
k ∈ T , and ei ∩ ej = ∅ for all i, j ∈ T , we have |e′0 ∩ e′k| ≥ 2 for all k ∈ T and

e′i ∩ e′j = ∅ for all i, j ∈ T . Hence, the hypergraph G̃ with E(G̃) = ∪k∈T e′k ∪ e′0 is
the support hypergraph of a flower inequality of the form (15). This implies that all
nonredundant inequalities present in projGV̄

(MPF
G ∩ LV̄ ) are also present in MPF

GV̄

and this completes the proof.

Recall that in Theorem 7, in order to show that for certain hypergraphs G, we have
MPG ⊂ MPLP

G , by Lemma 6, we proved that MPGV̄
⊂ MPLP

GV̄
for some V̄ ⊂ V (G).

The above lemma enables us to utilize a similar technique to prove that MPG ⊂ MPF
G

for some hypergraph G. That is, since by part (i) of Lemma 6, we have MPGV̄
=

projV̄ (MPG ∩LV̄ ) and by Lemma 13, we have MPF
GV̄
⊆ projV̄ (MPF

G ∩LV̄ ), it follows

that if MPGV̄
⊂ MPF

GV̄
for some V̄ ⊂ V , then projV̄ (MPG∩LV̄ ) ⊂ projV̄ (MPF

G∩LV̄ ),

which in turn implies that MPG ⊂ MPF
G. We are now ready to prove our main result.

Theorem 14. MPG = MPF
G if and only if G is a γ-acyclic hypergraph.

Proof. “⇒” First, we show that if G is not γ-acyclic, then we have MPG ⊂ MPF
G.

To do so, we make use of Proposition 4. To obtain a contradiction, first suppose
that G violates condition (ii) in Proposition 4. That is, suppose that there exist
nodes v1, v2, v3 ∈ V (G) such that {{v1, v2}, {v1, v3}, {v1, v2, v3}} ⊆ {e ∩ {v1, v2, v3} :
e ∈ E(G)}. Let V̄ := {v1, v2, v3}, and denote by e12 := {v1, v2}, e13 := {v1, v3},
e23 := {v2, v3}, e123 := {v1, v2, v3}. By part (i) of Lemma 6 and Lemma 13, to
prove MPG ⊂ MPF

G, it suffices to show that MPGV̄
⊂ MPF

GV̄
. Note that E(GV̄ ) =

{e12, e13, e123} if e23 /∈ {e ∩ {v1, v2, v3} : e ∈ E(G)} and E(GV̄ ) = {e12, e13, e23, e123},
otherwise. It is simple to verify that the inequality −zv1

+ ze12
+ ze13

− ze123
≤ 0

defines a facet of MPGV̄
. However, this inequality is not implied by the inequalities in

MPF
GV̄

, as its support hypergraph corresponds to a Berge-cycle of length three, while

the support hypergraph of all inequalities in MPF
GV̄

correspond to a single edge, or
a Berge-cycle of length two. Hence, if condition (ii) in Proposition 4 is violated, we
have MPG ⊂ MPF

G.
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Next, suppose that condition (ii) in Proposition 4 is satisfied but G contains at
least one β-cycle. Denote by C a β-cycle of minimum length. We claim that the
subhypergraph GV (C) is a graph that consists of a chordless cycle of length at least

three. First note that by Definition 3, the set Ẽ := {e ∩ V (C) : e ∈ E(C)} is the
edge set of a chordless cycle in GV (C). We would like to show that E(GV (C)) = Ẽ.

Observe that Ẽ ⊆ E(GV (C)). To obtain a contradiction, assume that Ẽ ⊂ E(GV (C)).
Since by assumption C is a β-cycle of minimum length, it follows that E(GV (C)) has
an edge ē with |ē| ≥ 3. Denote by ẽ an edge of G with ē = ẽ∩V (C). Two cases arise:

Case 1. If {v1, v2, v3} ⊆ ē, where v1, v2, and v3 are consecutive nodes in C, it
follows that {{v1, v2}, {v1, v3}, {v1, v2, v3}} ⊆ {e ∩ {v1, v2, v3} : e ∈ E(G)}, which
contradicts the assumption that condition (ii) in Proposition 4 is satisfied.

Case 2. Suppose that ē does not contain three consecutive nodes in C. Let the
β-cycle C be given by the sequence v1, e1, v2, e2, . . . , vt, et, v1. Suppose that v1 ∈ ē and
v2 /∈ ē. Note that this assumption is without loss of generality, since ē does not contain
three consecutive nodes of C. Let vk be the next node of V (C) after the first node v1

for which vk ∈ ē. Clearly, k ≥ 3 since by assumption v2 /∈ ē. In addition k < t, since by
assumption ē contains at least three nodes of C. Finally, by construction we have ē∩
{v1, . . . , vk} = {v1, vk}. It then follows that the sequence v1, e1, v2, . . . , ek−1, vk, ẽ, v1

is a β-cycle of length k, where k < t. However, this contradicts the assumption that
C is β-cycle of minimum length.

Hence, we conclude that GV (C) is a graph that consists of a chordless cycle. To

show that MPG ⊂ MPF
G, by part (i) of Lemma 6 and Lemma 13, it is sufficient

to prove that MPGV (C)
⊂ MPF

GV (C)
. The latter inclusion is valid as the odd-cycle

inequalities are facet-defining for MPGV (C)
[25] and are clearly not present in MPF

GV (C)
.

Consequently, if the hypergraph G contains a γ-cycle, we have MPG ⊂ MPF
G.

“⇐” Conversely, let G be a γ-acyclic hypergraph. We show that MPG = MPF
G. In

the following, we say that an edge of a hypergraph G is maximal if it is not contained in
any other edge of G. The proof is by induction on the number of maximal edges of G.
First, consider the base case; that is, suppose that G has one maximal edge e′ = V (G) .
In this case, by Proposition 8, we conclude that G is a laminar hypergraph. Hence, by
Corollary 11, we have MPG = MPF

G. We now proceed to the inductive step; namely,
we assume that MPG = MPF

G, for any γ-acyclic hypergraph G with κ maximal edges.
We would like to show that the same statement holds if G is a γ-acyclic hypergraph
with κ+ 1 maximal edges.

Lifting and decomposition. Consider a maximal edge e′ of G, and define E′

to be the set of edges contained in e′, and V̄ := e′ ∩ (∪e∈E\E′e). Clearly, E \E′ 6= ∅,
as by assumption G contains at least two maximal edges. We say that e′ is a leaf of
G if V̄ ⊂ ẽ for some, ẽ ∈ E \ E′. We claim that G contains a leaf e′. To obtain a
contradiction, suppose that G does not contain any leaves. It then follows that for
every maximal edge e′, and every maximal edge e′′ adjacent to e′, there exists another
maximal edge adjacent to e′, say, e′′′, such that neither of the two sets e′ ∩ e′′ and
e′ ∩ e′′′ is a subset of another. From Proposition 8, it follows that the sets e′ ∩ e′′ and
e′ ∩ e′′′ are disjoint. We now show that G contains a β-cycle, which violates property
(i) of Proposition 4. Let e1 denote a maximal edge of G. Denote by e2 a maximal edge
of G adjacent to e1 and let e3 denote a maximal edge of G adjacent to e2 such that
e2 ∩ e3 is disjoint from e1 ∩ e2. Recursively, let ei be a maximal edge of G adjacent
to ei−1 such that ei−1 ∩ ei is disjoint from ei−2 ∩ ei−1. Eventually, there exists an
index i such that ei intersects some ej for j ≤ i− 1. Let t be the first such index, and
let s ≤ t− 2 be the largest index such that es intersects et. Now let vs be a node in

D
ow

nl
oa

de
d 

12
/1

3/
18

 to
 1

28
.1

04
.1

53
.4

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1066 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

es ∩ et, and, for every i = s+ 1, . . . , t, let vi be a node in ei−1 ∩ ei. Then the sequence
vs, es, vs+1, es+1, . . . , vt, et, vs is a β-cycle of length t− s+ 1 ≥ 3.

Now, let e′ be a leaf of G and, as before, let V̄ := e′ ∩ (∪e∈E\E′e). We define G+

as the hypergraph obtained by adding the edge V̄ to G if V̄ /∈ V ∪ E, and G+ := G,
otherwise. Subsequently, we define G1 as the section hypergraph of G+ induced by e′,
and G2 as the section hypergraph of G+ induced by ∪e∈E\E(G1)e. Clearly, both G1

and G2 are different from G+. In addition, we have G1 ∪G2 = G+ and G1 ∩G2 = V̄ .
By Proposition 8, the subhypergraph Ge′ of G is laminar. Moreover, the hypergraph
G1 is a partial hypergraph of Ge′ , and thus G1 is laminar as well. As G1 contains
the edge V̄ , this implies that every edge e′′ of G1 containing nodes in V (G1) \ V (G2)
satisfies either e′′ ⊃ V̄ or e′′∩ V̄ = ∅. Thus all assumptions of Theorem 5 are satisfied
and the set SG+ is decomposable into SG1

and SG2
.

Since G1 is laminar, by Corollary 11 we have MPG1
= MPF

G1
. Now, consider

the hypergraph G2. This hypergraph has κ maximal edges which are the κ maximal
edges of G that are different from e′. In addition, the hypergraph G2 is γ-acyclic.
To see this, suppose that G2 contains a γ-cycle C. Then V̄ must be an edge of G2

and E(C) must contain the edge V̄ , as otherwise C is a γ-cycle of G as well. Since
e′ ∩V (G2) = V̄ , it follows that by replacing V̄ with e′ in C, we obtain a γ-cycle of G,
which is in contradiction with the assumption that G is γ-acyclic. Therefore, by the
induction hypothesis we have MPG2

= MPF
G2

, which together with MPG1
= MPF

G1

and the decomposability of SG+ into SG1
and SG2

implies MPG+ = MPF
G+ .

If G = G+, that is, if V̄ ∈ V (G) ∪ E(G), we obtain MPG = MPF
G and this

completes the proof. Henceforth, we assume that V̄ /∈ V (G)∪E(G). To obtain MPG,
it suffices to project out the auxiliary variable zV̄ from the facet-description of MPG+ .
In the following, we perform this projection using Fourier–Motzkin elimination.

Projection. First consider an inequality in the description MPF
G+ that does

not contain zV̄ . Clearly, the support hypergraph of such an inequality is a partial
hypergraph of G. Thus, by Lemma 12, this inequality is also present in the description
MPF

G. Thus to complete the proof, we need to show that by projecting out zV̄ from
the remaining inequalities of MPG+ , we obtain valid inequalities for MPF

G.
First, consider MPG1 ; denote by ē the edge of G1 containing V̄ such that there

exists no other edge e ∈ E(G1) with e ⊃ V̄ and e ⊂ ē. Note that the edge ē is
well-defined by the laminarity of G1. Then, by Theorem 10, the auxiliary variable zV̄
appears in the following inequalities, which we will refer to as system (I) in the rest
of the proof:

−zp + zV̄ ≤ 0 ∀p ∈ I(V̄ ),(16)

−zV̄ + zē ≤ 0,(17) ∑
p∈I(V̄ )

zp − zV̄ ≤ |I(V̄ )| − 1,(18)

∑
p∈I(ē)

zp − zē ≤ |I(ē)| − 1.(19)

Note that by definition of ē we have V̄ ∈ I(ē).
Now consider the polytope MPG2

= MPF
G2

. Let Ē contain all edges of G2 that

are adjacent to V̄ and let Ẽ be the set containing all subsets Ẽ of Ē with ei ∩ ej = ∅
for all ei, ej ∈ Ẽ. Observe that Ẽ contains the empty set. For each ê ∈ Ē, let Uê be
the set containing all subsets of adjacent edges to ê denoted by Uê such that V̄ ∈ Uê
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and ei ∩ ej = ∅ for all ei, ej ∈ Uê. Then, the inequalities in the description of MPF
G2

containing the auxiliary variable zV̄ are the following:

−zp + zV̄ ≤ 0 ∀p ∈ I(V̄ ),(20) ∑
v∈V̄ \∪e∈Ẽe

zv +
∑
e∈Ẽ

ze − zV̄ ≤ |V̄ \ ∪e∈Ẽe|+ |Ẽ| − 1 ∀Ẽ ∈ Ẽ ,(21)

∑
v∈ê\∪e∈Uê

e

zv +
∑
e∈Uê

ze − zê ≤ |ê \ ∪e∈Uê
|+ |Uê| − 1 ∀ê ∈ Ē, ∀Uê ∈ Uê.(22)

We should remark that inequalities (21) are flower inequalities provided that Ẽ 6=
∅ and amount to the inequality

∑
v∈V̄ zv − zV̄ ≤ |V̄ | − 1 present in the standard

linearization of SG2
, otherwise. In the remainder of the proof, we will refer to the

inequalities (20)–(22) as system (II).
Now consider the system of linear inequalities (I)–(II). We eliminate zV̄ from this

system using Fourier–Motzkin elimination. First consider the case where we select
two inequalities from system (I). Denote by G′1 the hypergraph obtained by removing
the edge V̄ from G1. It then follows that the inequality az ≤ α obtained as a result
of such projection is valid for the multilinear polytope MPG′1

. Since G′1 is a laminar

hypergraph, by Corollary 11, we have MPG′1
= MPF

G′1
. Finally, since G′1 is a partial

hypergraph of G, by Lemma 12, az ≤ α is a valid inequality for MPF
G. Similarly,

we can show that by projecting out zV̄ from two inequalities present in system (II),
we obtain an inequality that is valid for MPF

G . This is due to the fact that the
hypergraph G′2 obtained by removing V̄ from G2 is a γ-acyclic hypergraph with κ
maximal edges for which by the induction hypothesis we have MPG′2

= MPF
G′2

. Note

that G′2 is γ-acyclic as it is a partial hypergraph of the γ-acyclic hypergraph G2.
Hence, it suffices to show that the remaining inequalities obtained by projecting out
zV̄ are valid for MPF

G as well. Therefore, it suffices to examine inequalities obtained
by projecting out zV̄ starting from two inequalities one of which is only present in
system (I) while the other one is only present in system (II).

We start by selecting one inequality in (16) from system (I). Clearly, this in-
equality is identical to inequality (20) present in system (II). Hence, by the above
discussion, we do not need to consider inequalities (16). Next, consider inequal-
ity (17) from system (I). Since the coefficient of zV̄ in (17) is negative, it suffices
to consider inequalities (20) and (22) from system (II). In addition, we do not need
to consider (20) since it is already present system (I). By summing inequalities (17)
and (22), we obtain∑

v∈ê\∪e∈Uê
e

zv +
∑

e∈Uê\V̄
ze + zē − zê ≤ |ê \ ∪e∈Uê

e|+ |Uê| − 1 ∀ê ∈ Ē, ∀Uê ∈ Uê.

To show that the above system represents a system of flower inequalities for MPG,
it suffices to show that the set (Uê \ V̄ ) ∪ ē satisfies two properties: (i) all edges in
(Uê \ V̄ ) ∪ ē are adjacent to ê and (ii) ei ∩ ej = ∅ for all ei, ej ∈ (Uê \ V̄ ) ∪ ē. By
construction, all edges in Uê are adjacent to ê, and ei ∩ ej = ∅ for all ei, ej ∈ Uê. It
in addition, we have ê ∩ V̄ = ê ∩ ē for all ê ∈ Ē. It then follows that for each ê ∈ Ē
the above system is contained in the system of flower inequalities for MPG, centered
at ê.
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1068 ALBERTO DEL PIA AND AIDA KHAJAVIRAD

Next, we select inequalities (18) from system (I). Define a partition of I(V̄ ) =
Iv(V̄ )∪ Ie(V̄ ), where Iv(·) and Ie(·) contain the nodes and edges of I(·), respectively.
It then follows that Ie(V̄ ) ∈ Ẽ , as the section hypergraph of G induced by V̄ is laminar.
Consequently, inequalities (18) are implied by inequalities (21), which in turn imply
that we do not need to consider these inequalities and proceed with inequalities (19)
from system (I). Since the coefficient of zV̄ in (19) is positive, it suffices to consider
inequalities (21) from system (II). By summing inequalities (19) and (21), we get

(23)
∑

p∈I(ē)\V̄
zp +

∑
v∈V̄ \∪e∈Ẽe

zv +
∑
e∈Ẽ

ze−zē ≤ |V̄ \∪e∈Ẽ |+ |Ẽ|+ |I(ē)|−2 ∀Ẽ ∈ Ẽ .

As before, define a partition of I(ē) = Iv(ē)∪ Ie(ē). Consider the set of edges defined
as Ẽ′ = Ẽ∪ (Ie(ē)\ V̄ ). Clearly, all edges in Ẽ′ are adjacent to ē as Ẽ represents a set
of edges adjacent to V̄ and by definition all edges in Ie(ē) are contained in ē. Also, we
have ei ∩ ej = ∅ for all ei, ej ∈ Ẽ′ since (i) G1 is a laminar hypergraph, which implies
ei ∩ ej = ∅ for all ei, ej ∈ I(ē), and in particular ei ∩ V̄ = ∅ for all ei ∈ I(ē) \ V̄ , (ii)

by definition ei ∩ ej = ∅ for all ei, ej ∈ Ẽ, and (iii) by definition ei ∩ ē ⊆ V̄ for all

ei ∈ Ẽ. It is simple to check that ē\∪e∈Ẽ′e = (V̄ \∪e∈Ẽe)∪ Iv(ē). Moreover, we have

|Ẽ′| = |Ẽ|+ |Ie(ē)| − 1. Define Ẽ ′ = {Ẽ ∪ (Ie(ē) \ V̄ ) : Ẽ ∈ Ẽ}. Hence, inequality (23)
can be equivalently written as∑

v∈ē\∪e∈Ẽ′e

zv +
∑
e∈Ẽ′

ze − zē ≤ |ē \ ∪e∈Ẽ′e|+ |Ẽ′| − 1 ∀Ẽ′ ∈ Ẽ ′.

Now it is simple to verify that for each Ẽ′ ∈ Ẽ ′, the above inequality is a flower
inequality for MPG centered at ē with the neighbors e ∈ Ẽ′. Hence, we have shown
that all inequalities obtained by projecting out zV̄ from the facet description of MPG+

are implied MPF
G. It then follows that MPG = MPF

G and this completes the proof.

5. Separation of flower inequalities. The following example demonstrates
that, even for γ-acyclic hypergraphs, the number of facets of MPF

G may not be bounded
by a polynomial in |V (G)|, |E(G)|.

Example 2. Consider the γ-acyclic hypergraph G with E(G) = {e0, e1, . . . , em},
such that ej ∩ ej′ = ∅ for all j, j′ ∈ J = {1, . . . ,m}, |e0 ∩ ej | ≥ 2 and, ej \ e0 6= ∅
for all j ∈ J . In this example, the number of flower inequalities present in MPF

G

grows exponentially with the number of edges of G; to see this, note that we can
write 2m − 1 flower inequalities centered at e0, while there exists exactly one flower
inequality centered at each ej , j ∈ J . Hence, the total number of flower inequalities

in MPF
G is 2m +m−1. We show that for this example, all flower inequalities centered

at e0 are facet-defining for MPG, implying that this polytope has exponentially many
facets. By (12), any flower inequality centered at e0 can be written as

(24)
∑

v∈e0\∪j∈T ej

zv +
∑
j∈T

zej − ze0
≤ |e0 \ ∪j∈T ej |+ |T | − 1,

where T denotes a nonempty subset of J . We start by characterizing the sets of
points in SG that satisfy the above inequality tightly. Subsequently, we show that
any nontrivial valid inequality az ≤ α for SG that is satisfied tightly at all such points
coincides with (24) up to a positive scaling. Since MPG is full dimensional [16], this
in turn implies that inequality (24) is facet-defining for MPG. It is simple to verify
that inequality (24) is satisfied tightly by the following sets of points in SG:
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(i) any point z ∈ SG with ze0
= 1 and zej = 1 for all j ∈ T ;

(ii) any point z ∈ SG with zv = 1 for all v ∈ e0 \ {v′} and zv′ = 0, where
v′ ∈ e0 \ ∪j∈T ej and zej = 1 for all j ∈ T ;

(iii) any point z ∈ SG with zv = 1 for all v ∈ (∪j∈Jej ∪ e0) \ ej′′ for some j′′ ∈ T
and zv = 0 for all v ∈ V ′′ ⊆ e0 ∩ ej′′ with V ′′ 6= ∅.

Consider the case where J \T 6= ∅ and construct a tight point of type (ii) defined
above with v′ ∈ e0 ∩ ej′ for some j′ ∈ J \ T and zv = 0 for all v ∈ (∪j∈J\T ej) \ e0.
Substituting this point in az ≤ α gives

(25)
∑

v∈e0\(∪j∈T ej∪{v′})
avzv +

∑
j∈T

aejzej = α.

Now consider another tight point of type (ii) obtained by letting zṽ = 1 for some
ṽ ∈ ej′ \ e0 in the tight point defined above. Note that if J \ T 6= ∅, then a node of
the form ṽ always exists since by assumption ej \ e0 6= ∅ for all j ∈ J . Substituting
this point in az ≤ α yields

(26)
∑

v∈e0\(∪j∈T ej∪{v′})
avzv + aṽzṽ +

∑
j∈T

aejzej = α.

From (25) and (26) it follows that

(27) av = 0 ∀v ∈ ej \ e0, ∀j ∈ J \ T.

Construct a tight point of type (i) with zv = 0 for all v ∈ ej \ e0, for all j ∈ J \T .
Subsequently, construct a new tight point of type (i) by letting ze′j = 1 for some

j′ ∈ J \ T in the previous point. Substituting these points in az = α and using (27),
we obtain

(28) aej = 0 ∀j ∈ J \ T.

Next consider a point in SG of type (iii) defined above with zv = 0 for all v ∈ ej′′ ,
where j′′ ∈ T . Clearly in this case we have V ′′ = e0 ∩ ej′′ . Subsequently, construct
a second tight point by letting zv̄ = 1 for some v̄ ∈ ej′′ in the previous tight point.
Note that the second point is also a tight point of type (iii) for any v̄ ∈ ej′′ , since
by assumption |e0 ∩ ej′′ | ≥ 2, which in turn implies V ′′ \ {v̄} 6= ∅ for all v̄ ∈ ej′′ .
Substituting these two points in az = α and subtracting the resulting relations, we
obtain

(29) av = 0 ∀v ∈ ej , ∀j ∈ T.

Now, consider a tight point of type (i) with zv = 0 for all v ∈ ej \ e0, j ∈ J \ T
and construct a tight point of type (iii) by letting zv = 0 for all v ∈ V ′′ ⊆ e0 ∩ ej′′ for
some j′′ ∈ T in the first point. Substituting these points in az = α and using (29),
we obtain

(30) aej + ae0
= 0 ∀j ∈ T.

Consider the case e0 \ ∪j∈T ej 6= ∅. Construct a tight point of type (i) defined
above with zv = 0 for all v ∈ ej \ e0, j ∈ J \ T . Now construct a new point by letting
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zv′ = 0 for some v′ ∈ e0 \ ∪j∈T ej in the first point. Clearly, the second point is a
tight point of type (ii). Substituting the two points in az = α and subtracting the
resulting equalities, we obtain

(31) av + ae0
= 0 ∀v ∈ e0 \ ∪j∈T ej .

From (27), (28), (29), (30), and (31), it follows that the inequality az ≤ α, up to
a positive scaling, can be equivalently written as

∑
v∈e0\∪j∈T ej

zv +
∑
j∈T

zej − ze0
≤ α.

Moreover by substituting a tight point of type (i) in this inequality we obtain α =
|e0 \ ∪j∈T ej |+ |T | − 1. Hence, az ≤ α coincides with inequality (24) up to a positive
scaling, implying that (24) defines a facet of MPG for any nonempty T ⊆ J . We have
shown that all flower inequalities centered at e0 are facet-defining for MPG. Since
there are a total number of 2m − 1 such inequalities present in MPF

G, we conclude
that for a γ-acyclic hypergraph G, the polytope MPF

G may have exponentially many
facets.

5.1. Separation problem. We start by defining the separation problem for
flower inequalities as follows. (See [30] more details.)

Definition 15. Given a hypergraph G and a vector z̄ ∈ RV +E, decide whether z̄
satisfies all flower inequalities or not, and in the latter case, find a flower inequality
that is violated by z̄.

Given a γ-acyclic hypergraph G, we are interested in solving the separation prob-
lem over all flower inequalities in strongly polynomial time, i.e., in a number of it-
erations bounded by a polynomial in |V | and |E|. This in turn implies that the
optimization problem (MO) is polynomially solvable over γ-acyclic hypergraphs.

We show that the separation problem over all flower inequalities centered at
a given edge of a γ-acyclic hypergraph can be equivalently stated as a minimum-
weight perfect matching problem over a related laminar hypergraph. Subsequently,
we present a strongly polynomial-time combinatorial algorithm to solve this matching
problem. Recall that a matching in a hypergraph is a set of edges M with the prop-
erty that e ∩ f = ∅ for all e, f ∈ M with e 6= f . A matching is called perfect if each
node is contained in exactly one edge of the matching. Finding a minimum-weight
perfect matching in a general hypergraph is NP-hard [21]. However, for balanced
hypergraphs, this problem can be solved in polynomial time by solving a linear op-
timization problem [10]. A hypergraph is said to be balanced if every Berge-cycle of
odd length has an edge containing three vertices of the cycle; that is, a hypergraph is
balanced if and only if it does not contain any β-cycle of odd length. As laminar hyper-
graphs are balanced, this result in particular implies that finding a minimum-weight
perfect matching in a laminar hypergraph can be done in polynomial time. Conse-
quently, the separation problem over flower inequalities for γ-acyclic hypergraphs can
be done in polynomial time. In order to attain a strongly polynomial-time separa-
tion algorithm, in the following, we present a strongly polynomial-time combinatorial
algorithm to solve the matching subproblems.
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Theorem 16. Given a γ-acyclic hypergraph G = (V,E) and a vector z̄ ∈ RV +E,
there exists a strongly polynomial-time algorithm that solves the separation problem
over all flower inequalities.

Proof. We show how to solve the separation problem over the flower inequalities
centered at an edge e0 of G. By applying the algorithm |E| times, we can then solve
the separation problem over all the flower inequalities.

Let ek, k ∈ K, be the set of all edges adjacent to e0 with |e0 ∩ ek| ≥ 2 for all
k ∈ K. There exists a flower inequality violated by the vector z̄ if and only if there
exists a nonempty subset T of K with ei ∩ ej = ∅ for all i, j ∈ T with i 6= j, such that∑

v∈e0\∪k∈T ek

z̄v +
∑
k∈T

z̄ek − z̄e0
> |e0 \ ∪k∈T ek|+ |T | − 1,

or equivalently

(32)
∑

v∈e0\∪k∈T ek

(1− z̄v) +
∑
k∈T

(1− z̄ek) < 1− z̄e0 .

Since the right-hand side of inequality (32) does not depend on T , it suffices to show
how to minimize its left-hand side over all possible sets T . More precisely, if the
minimum of the left-hand side of inequality (32) is greater than or equal to 1 − z̄e0

,
then the vector z̄ satisfies all flower inequalities centered at e0. Otherwise, any subset
T realizing the minimum value yields a flower inequality violated by z̄.

Let V̄ := e0, L̄ := {{v} : v ∈ V̄ }, Ē := L̄∪{e′∩e0 : e′ ∈ E\{e0}, |e′∩e0| ≥ 2}, and
define the hypergraph Ḡ := (V̄ , Ē). By Proposition 8, the hypergraph Ḡ is laminar.
Note that unlike G, the hypergraph Ḡ has loops, i.e., edges containing only one node.
We associate a weight to each loop {v} ∈ L̄, defined as w{v} := 1 − z̄v. For every
edge e ∈ Ē \ L̄, there may exist several edges e′ ∈ E satisfying e = e′ ∩ e0. We denote
by e′(e) an edge that maximizes z̄e′(e). We associate a weight to each edge e ∈ Ē \ L̄
defined as we := 1− z̄e′(e).

We now show that the problem of minimizing the left-hand side of (32) over all
possible sets T can be solved by finding a perfect matching M of Ḡ of minimum weight.
Indeed, given a perfect matching M of Ḡ, the set T := {e′(e) : e ∈ M \ L̄} yields
a left-hand side of (32) whose value equals the weight of the matching. Conversely,
given a subset T , the set M := {e′ ∩ e0 : e′ ∈ T} ∪ {{v} : v ∈ V̄ \ (∪e′∈T e′)} is a
perfect matching of Ḡ whose weight is no greater than the value of the left-hand side
of (32).

Next, we present a strongly polynomial-time combinatorial algorithm that finds a
minimum weight perfect matching of the laminar hypergraph Ḡ = (V̄ , Ē). At iteration
t of this algorithm, we start with a laminar hypergraph Ḡt = (V̄ , Ēt), which is a partial
hypergraph of Ḡ, and with a perfect matching M t of Ḡt with the additional property
that for every edge e ∈M t, no other edge e′ ∈ Ēt is contained in e. If M t = Ēt, then
M t is a minimum weight perfect matching of Ḡt, as Ḡt has no other perfect matching
and the algorithm terminates. Otherwise, we construct a laminar partial hypergraph
of Ḡt denoted by Ḡt+1 = (V̄ , Ēt+1) and a perfect matching M t+1 of Ḡt+1 with the
same property with respect to Ḡt+1; i.e., for every edge e ∈ M t+1, no other edge
e′ ∈ Ēt+1 is contained in e.

We initialize the algorithm by setting Ḡ0 = Ḡ and by setting M0 to be the
trivial perfect matching of Ḡ0 that consists of all the loops of Ḡ. By construction, all
hypergraphs Ḡt are partial hypergraphs of Ḡ with the same node set V̄ . As a result
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all intermediate perfect matchings M t of Ḡt correspond to perfect matchings of Ḡ as
well. In addition, as we detail in the following, the proposed algorithm is a greedy
algorithm in the sense that the weight of these perfect matchings decreases at every
iteration until a minimum weight perfect matching of Ḡ is found, that is Ms = Ēs

for some s ≥ 0.
We now describe the tth iteration of the proposed algorithm. We start by selecting

a minimal edge f of Ḡt that is not in M t; that is, we select an edge f in Ēt \M t

that does not contain any other edge in Ēt \M t. Note that the special property of
M t implies that f contains edges in M t. Moreover, laminarity of Ḡt implies that the
edges e ∈M t with e ⊂ f partition the nodes in f . We construct the hypergraph Ḡt+1

and its perfect matching M t+1 as follows:
Case A. If wf ≥

∑
e∈Mt:e⊂f we, we define Ēt+1 := Ēt \ {f} and M t+1 := M t.

Case B. Otherwise, if wf <
∑

e∈Mt:e⊂f we, we define Ēt+1 := Ēt \ {e ∈M t : e ⊂
f} and M t+1 := M t \ {e ∈M t : e ⊂ f} ∪ f .

We now show that M t+1 is a perfect matching of Ḡt+1 with the property that
for every edge e ∈ M t+1, no other edge e′ ∈ Ēt+1 is contained in e. In Case A, this
follows from the fact that Ḡt+1 is obtained from Ḡ by removing an edge that is not
present in M t. In Case B, M t+1 is obtained from M t by adding the new edge f , and
by removing all edges e ∈M t with e ⊂ f . Since the edges e ∈M t with e ⊂ f partition
the nodes in f , the set M t+1 is a perfect matching of Ḡt+1. Moreover, since f does
not contain any other edge in Ēt+1, the matching M t+1 satisfies the aforementioned
property.

In the following, we show that there exists a minimum weight perfect matching
of Ḡt that is also a perfect matching of Ḡt+1. Since every perfect matching of Ḡt+1

is also a perfect matching of Ḡt with the same weight, the above claim implies that
any minimum weight perfect matching of Ḡt for all t ≥ 0 is also a minimum weight
perfect matching of Ḡ. This in turn completes the proof of the correctness of the
proposed algorithm as upon termination, this algorithm returns a minimum weight
perfect matching of Ḡs for some s ≥ 0. In Case A defined above, this amounts to
showing that Ḡt contains a minimum weight perfect matching that does not include
f . Let M̃ be a minimum weight perfect matching of Ḡt. If M̃ does not contain f , we
are done. Thus, assume that M̃ contains f . Let M̃ ′ be obtained from M̃ by replacing
f with the edges e ∈M t with e ⊂ f . The set M̃ ′ is a perfect matching of Ḡt that does
not contain f , and it is of minimum weight because wf ≥

∑
e∈Mt:e⊂f we. Therefore,

the hypergraph Ḡt has a minimum weight perfect matching that does not contain f .
In Case B, we can show that a stronger property is satisfied; that is, each minimum
weight perfect matching of Ḡt does not contain any of the edges e ∈ M t with e ⊂ f .
To obtain a contradiction, assume that M̃ is a minimum weight perfect matching of
Ḡt that contains at least one of these edges. This in turn implies that M̃ does not
contain f . Since f does not contain any edge in Ēt \M t, and M̃ is a perfect matching
of the laminar hypergraph Ḡt, it must contain all the edges e ∈M t with e ⊂ f . Now
let M̃ ′ be obtained from M̃ by replacing all the edges e ∈ M t with e ⊂ f with the
edge f . The set M̃ ′ is a perfect matching of Ḡt, and its weight is strictly smaller than
that of M̃ because wf <

∑
e∈Mt:e⊂f we. This contradicts the assumption that M̃ is

a minimum weight perfect matching. Hence, no minimum weight perfect matching of
Gt contains an edge e ∈M t with e ⊂ f .

Hence, the separation problem over all flower inequalities consists of solving |E|
minimum-weight perfect matching problems for laminar hypergraphs. Since at itera-
tion t of the proposed matching algorithm (as described by Case A and Case B), at
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least one edge is removed from Ēt, we conclude that the algorithm terminates after at
most |V |+ |E| iterations. It then follows that the separation problem over all flower
inequalities can be solved in strongly polynomial time.

We now analyze the computational complexity of the separation algorithm de-
scribed in the proof of Theorem 16. For brevity, we make use of the notation intro-
duced in this proof without redefining it. In the following, we assume that a hyper-
graph is represented by an incidence-list in which edges are stored as objects, and
every edge stores its incident vertices. In order to use efficient searching algorithms,
we assume that the vertex list for each edge is sorted. Otherwise, such a sorted data
structure for a rank-r hypergraph can be obtained in O(r|E|) time by using some inte-
ger sorting algorithm such as counting sort [11]. In addition, we assume that the edges
of E are sorted in increasing cardinality, and edges of the same cardinality are sorted
lexicographically. For a rank-r hypergraph, such a sorting order can be obtained using
the least significant digit radix sort in O(r|E|) operations (see, e.g., [11]).

Proposition 17. Given a rank-r γ-acyclic hypergraph G = (V,E), the separation
problem over all flower inequalities can be solved in O(r|E|2(|V |+ |E|)) operations.

Proof. Let us first consider the separation problem over all flower inequalities
centered at e0 ∈ E. As we described in the proof of Theorem 16, this problem can be
equivalently solved by finding a minimum-weight perfect matching of a laminar hy-
pergraph Ḡ = (V̄ , Ē) defined before. We argue that the matching algorithm proposed
in the proof of Theorem 16 terminates after at most |Ē \ L̄| iterations. To see this,
consider an iteration of this algorithm in which we select a minimal edge f of Ḡt that
is not in M t. If the condition in Case A is satisfied, then Ḡt+1 is obtained by removing
f from Ḡt. Since all subsequent hypergraphs Ḡs, s > t + 1, are partial hypergraphs
of Ḡt+1, the edge f will never be selected again. Now, consider Case B; in this case,
the edge f is added to M t and it will not be reselected unless it is removed from Ms

for some s > t. However, if f is removed from Ms, then it is also removed from Ēs

and hence by the above argument it will not be selected in the subsequent iterations
of the proposed algorithm. Recall that all loops e ∈ L̄ are initially present in M0 and
hence by the above argument will not be selected in the following iterations. Again,
by the above argument, each edge f ∈ Ē \ L̄ is selected at most once throughout
the matching algorithm. Since |Ē \ L̄| ≤ |E| for all e0 ∈ E, we conclude that each
minimum weight perfect matching problem is solved in at most |E| iterations.

Next, we analyze the cost of each iteration in the matching algorithm. The first
step is to construct the laminar hypergraph Ḡ = (V̄ , Ē). As we detailed before,
we represent the hypergraph G by an incidence-list in which edges are stored as
objects, every edge stores its incident vertices, and these vertices are sorted. In
addition, edges are sorted in increased cardinality and edges of the same cardinality
are sorted lexicographically. Thus, to obtain Ḡ from G, it suffices to construct the set
{e′ ∩ e0 : e′ ∈ E \ {e0}, |e0 ∩ e′| ≥ 2}. Since the set of vertices contained in each edge
e ∈ E are sorted, for each e′ ∈ E \ {e0}, we can obtain e′ ∩ e0 in O(max(|e0|, |e′|))
time. It then follows that Ē \ L̄ can be obtained in O(r|E|) time. Subsequently, we
sort the edges Ē \ L̄ similar to those of G in O(r|E|) time. Finally, we append L̄ to
the adjacency-list in a sorted order, which can be done in O(|V |) operations. For each
e ∈ Ē, we compute and store the weight we, as defined before, which can be done
in O(|V | + |E|) operations. Finally, we remove parallel edges based on the values
of these weights in O(|E|) operations. In subsequent iterations of the algorithm,
all hypergraphs Ḡt are obtained from Ḡ by removing certain edges from this data
structure. In addition, with each edge e ∈ Ēt, we associate a label m(e) defined as
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follows: if e ∈ M t, then we let m(e) = 1; otherwise, we set m(e) = 0. We initialize
M0 by letting m(e) = 1 for all e ∈ L̄ and m(e) = 0 for all e ∈ Ē \ L̄, which takes
O(|V | + |E|) operations. As described in the proof of Theorem 16, at iteration t of
this algorithm, we select a minimal edge f ∈ Ēt \M t. Using the aforementioned data
structure for Ḡt, this can be done in O(1) time by selecting the first edge f ∈ Ēt with
m(f) = 0, in the order the edges are sorted in Ēt. This is due to the fact that at
iteration t, edges are sorted in increased cardinality in Ēt, and each time we select
a new edge f from Ēt all edges e′ ⊂ f have been already considered in a previous
iteration; that is, all such edges are either added to Ms or are removed from Es for
some s < t and as we described before, none of such edges will be present in Ēt \M t.
Now suppose that we select a minimal edge f ∈ Ēt\M t. We need to identify all edges
e′ ∈ Ēt with e′ ⊂ f and m(e′) = 1. This can be done by scanning all edges e ∈ Ēt

that are listed before f and for each of them test whether e ⊂ f ; the latter can be
solved in O(r) operations as the vertices corresponding to each edge are sorted. As a
result, we can identify all edges with e ⊂ f and e ∈M t in O(r(|V |+ |E|)) operations.
Subsequently, we compute w̃ =

∑
e⊂f, e∈Mt we in O(r) time and compare it against

wf . Two cases arise:
Case A. If wf ≥ w̃, then we remove the edge f from Ēt, which can be done in

constant time using a proper data structure.
Case B. Otherwise, if wf < w̃, we set m(f) = 1 and we remove the edges e ⊂ f

and e ∈M t from Ēt, which for a rank-r hypergraph can be done in O(r) operations.
It then follows that the cost of separation problem over all flower inequalities

centered at e0 is O(r|E|(|V |+ |E|)), which in turn implies the overall cost of solving
the separation problem over all flower inequalities for a rank-r γ-acyclic hypergraph
G is O(r|E|2(|V |+ |E|)).

As we detailed before, the polytope MPLP
G consists of at most |V | + (r + 2)|E|

inequalities. By polynomial equivalence of separation and optimization (see, e.g., [30])
and Theorem 14, the following holds.

Corollary 18. Problem (MO) is polynomially solvable over γ-acyclic hyper-
graphs.

As we mentioned before, Conforti, Cornuéjols, and Vušković [10] proved that a
minimum-weight perfect matching in balanced hypergraphs can be obtained in poly-
nomial time via solving a linear optimization problem. It is simple to show that if G is
a balanced hypergraph, then the hypergraph Ḡ defined in the proof of Theorem 16 is
balanced as well. Our proposed separation algorithm over all flower inequalities con-
sists of solving |E(G)| minimum-weight perfect matching problems for hypergraphs
of the form Ḡ. Consequently, we have the following result.

Theorem 19. Given a balanced hypergraph G = (V,E) and a vector z̄ ∈ RV +E,
the separation problem over all flower inequalities can be solved in polynomial time,
i.e., in a number of iterations bounded by a polynomial in |V |, |E|, and in the size of
the vector z̄.

It can be shown that a naive implementation of the separation problem over flower
inequalities for general hypergraphs has a time complexity of O(r3|E|br/2c+1). For
the multilinear sets that appear in MINLPs, we often have r � min{|V |, |E|}. In fact,
for all practical purposes we can assume that r < 10 and therefore it is reasonable
to assume that r is a fixed parameter, in which case we conclude that the separation
of flower inequalities over general multilinear sets can be done efficiently. In fact,
in Example 2, in which the polytope MPF

G has exponentially many facets, we have
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r ≥ 2|E|. Hence, the proposed flower inequalities can be effectively incorporated in
a branch-and-cut framework to construct tighter polyhedral relaxations of general
MINLPs containing a collection of multilinear subexpressions.
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