

149:2 James Bornholt and Emina Torlak

Building and applying solver-aided automation used to be the province of experts, who would
invest years of work to obtain an e#cient symbolic evaluator for a new application domain. This
barrier to entry is now greatly reduced by the availability of solver-aided languages (e.g., [Torlak
and Bodik 2014; Uhler and Dave 2014]) and frameworks (e.g., [Bucur et al. 2014; Sen et al. 2013]),
which provide reusable symbolic evaluation engines for programmers to target. These platforms
have made it possible for a broader population of programmers, from high-school students to
professional developers, to rapidly create solver-aided tools for many new domains (e.g., Table 1).

But scaling solver-aided programs to real problems, either as a developer or a user, remains chal-
lenging. As with classic programming, writing code that performs well (under symbolic evaluation)
requires the programmer to be able to identify and diagnose performance bottlenecks—which parts
of the program are costly to evaluate (symbolically) and why. For example, if a program synthesis
tool is timing out on a given task, the tool’s user needs to know whether the bottleneck is in the
problem speci!cation or the solution sketch [Solar-Lezama et al. 2006]. Similarly, if neither the spec-
i!cation nor the sketch is the bottleneck, then the tool’s developer needs to know where and how to
improve the interpreter that speci!es the semantics of the tool’s input language. Yet unlike classic
runtimes, which employ an execution model that is familiar to programmers and amenable to time-
and memory-based pro!ling, symbolic evaluators employ an unfamiliar execution model (i.e., evalu-
ating all paths through a program) that de!es standard pro!lers. As a result, programmers currently
rely on hard-won intuition and ad-hoc experimentation to diagnose and optimize solver-aided code.

This paper presents symbolic pro!ling, a systematic new approach to identifying and diagnosing
code that performs poorly under symbolic evaluation. Our contribution is three-fold. First, we
develop SymPro, a new (and only) pro!ling technique that can identify root causes of performance
bottlenecks in solver-aided code. Here, we use the term ‘solver-aided code’ to generically refer
to any program (in any programming language) that is being evaluated symbolically to produce
logical constraints. Second, to help programmers diagnose these bottlenecks, we develop a catalog
of the most common programming anti-patterns for symbolic evaluation. Third, we conduct an
extensive empirical evaluation of symbolic pro!ling, showing it to be an e"ective tool for !nding
and !xing performance problems in real applications.

Symbolic Pro!ling. What characterizes the behavior of programs under symbolic evaluation?
The fundamental challenge for symbolic pro!ling is to answer this question with a performance
model of symbolic evaluation that is general, explainable, and actionable. A general model applies
to all solver-aided platforms and must therefore encompass all forms of symbolic evaluation, from
symbolic execution [Clarke 1976; King 1976] to bounded model checking [Biere et al. 1999]. An
explainable model provides a conceptual framework for programmers to understand what a sym-
bolic evaluator is doing, without having to understand the details of its implementation. Finally, an
actionable model enables pro!ling tools to precisely identify root causes of performance bottlenecks
in symbolic evaluation. Developing a model of symbolic evaluation that satis!es all three of these
goals is the core technical contribution of this paper.

To illustrate the symbolic pro!ling challenge, consider applying a standard time-based pro!ler to
the toy program in Figure 1a. The program checks that the sum of any n ≤ N even integers is also
even. Under symbolic evaluation for N = 20, the take call (line 5) takes an order of magnitude more
time than filter (line 4), so a time-based pro!ler identi!es take as the location to optimize. The
source of the problem, however, is the call to filter, which generatesO(2N) paths when applied to
a symbolic list of length N (Figure 1c). The take procedure, in contrast, generates O(N) paths. A
time-based pro!ler incorrectly blames take because it is evaluated 2N times, once for each path
generated by filter. The correct !x is to avoid calling filter (Figure 1d). This repair location is
missed not only by time-based pro!ling but also by models that rely on common concepts from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:3

1 (define (sum-of-even-integers-is-even N)

2 (define-symbolic* xs integer? [N]) ; xs = list of N symbolic integers

3 (define-symbolic* n integer?) ; n = single symbolic integer

4 (define ys (filter even? xs)) ; ys = even integers from xs

5 (define zs (take ys n)) ; zs = first n elements of ys

6 (assert (even? (apply + zs)))) ; Check that the sum of zs is even

(a) A program that checks that the sum of any n ≤ N even

integers is even.

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

0

500

1000

1500

0 10 20 30 40 50

N

T
im

e
(m

s) ● Original
Repaired

(b) The original program (a) per-

forms poorly as N grows.

(x1 x2)

(x1 x2) (x1) (x2) ()

() (x1) (x1 x2) () (x1) () (x2) ()

xs =

ys =

zs =

(filter even? xs)

(take ys n)

(even? x1) ¬ (even? x1)

(even? x2) ¬ (even? x2) (even? x2) ¬ (even? x2)

n = 0 1 2 n = 0 1 n = 0 1 n = 0

(c) The original program (a) creates O(N 2N) paths (here, N = 2).

1 (define (sum-of-even-integers-is-even N)

2 (define-symbolic* xs integer? [N])

3 (define-symbolic* n integer?)

4 (define zs (take xs n))

5 (when (andmap even? zs)

6 (assert (even? (apply + zs)))))

(d) Repairing (a) to obtain asymp-

totically be!er performance.

Fig. 1. A toy solver-aided program that performs poorly under symbolic evaluation.

the symbolic evaluation literature, such as path condition size or feasibility. For instance, a simple
model that counts the total number of paths generated by a call will also blame take. It is, of course,
possible to design more sophisticated time- and path-based models that can handle our toy example,
and we examine such designs in Section 4.1, but they fall short on real code.
Symbolic pro!ling employs a new performance model of symbolic evaluation that is based

on the following key insight: e"ective symbolic evaluation involves maximizing (opportunities
for) concrete evaluation while minimizing path explosion. Classic concrete execution is thus a
special, ideal case of symbolic evaluation—all operations are evaluated on concrete values along
a single path of execution. Since this ideal cannot be achieved in the presence of symbolic values,
symbolic evaluators choose which goal to prioritize at a given point by basing their evaluation
strategy on either symbolic execution (SE) or bounded model checking (BMC). As illustrated in
Figure 4, SE maximizes concrete evaluation but su"ers from path explosion, while BMC avoids
path explosion but a"ords few opportunities for concrete evaluation. Performant solver-aided code
elicits a practical balance between SE- and BMC-style evaluation in the underlying engine. The
challenge for a symbolic pro!ler is therefore to help programmers identify the parts of their code
that deviate most from concrete evaluation by generating excessive symbolic state or paths.

SymPro. We address this challenge with SymPro, a new pro!ling technique that tracks two ab-
stract resources, the symbolic heap and the symbolic evaluation graph, which form our performance
model. The symbolic heap consists of all symbolic values (constants, terms, etc.) created by the
program, while the symbolic evaluation graph re%ects the engine’s evaluation strategy (which
paths were explored individually, which were merged, etc.). In concrete execution, the symbolic
heap is empty, and the evaluation graph consists of a single path. In symbolic evaluation, these
resources evolve depending on the evaluation strategy. For example, the evaluation graph is a
tree for SE engines, a DAG for BMC engines, and a mix of sub-trees and sub-DAGs for hybrid
engines. The symbolic heap and graph are implicit in every forward symbolic evaluation engine,
making our model general. They also capture the full spectrum of symbolic evaluation behaviors
in an implementation-independent way, making our model explainable and actionable. SymPro
tracks the evolution of the symbolic heap and graph, identifying where new symbolic values are
created, which values are frequently accessed, which values are eventually used in queries sent to a
satis!ability solver, and how evaluation paths are merged at control-%ow joins. It ranks procedure

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:4 James Bornholt and Emina Torlak

calls by these metrics to present the most expensive calls to the programmer. Given our motivating
example from Figure 1a, SymPro correctly identi!es the call to filter as the bottleneck.

Anti-Patterns. To help the programmer diagnose the identi!ed bottlenecks, we present a catalog
of the most common performance anti-patterns in solver-aided code. These include algorithmic, rep-
resentational, and concreteness problems. For example, the program in Figure 1a su"ers from irregular

representation. It constructs a symbolic representation ofn ≤ N even integers that describesO(N 2N)
concrete lists. The repaired program in Figure 1d, in contrast, constructs a symbolic representation
of n ≤ N integers that describes O(N) concrete lists; this representation is then combined with
a precondition (that all of its elements are even) before checking the desired property. We present
a canonical example of each kind of anti-pattern, along with a repair the programmer could make.

Evaluation. We have implemented SymPro for the Rosette solver-aided language [Torlak and
Bodik 2013, 2014], which extends Racket [Racket 2017] with support for veri!cation and synthesis.
Our implementation is open-source and integrated into Rosette [Torlak 2018]. To evaluate the
e"ectiveness of our pro!ler, we performed a literature survey of recent programming languages
research, gathering 15 tools built using Rosette. Applying SymPro to these tools, we found 8
previously unknown bottlenecks. Repairing these bottlenecks improved the tools’ performance by
orders of magnitude (up to 290×), and several developers accepted our patches.
To demonstrate that SymPro pro!les are actionable, we present detailed case studies on three

of these Rosette-based tools, describing how a programmer can use SymPro to iteratively improve
the performance of such a tool using language constructs a"orded by Rosette and algorithmic
changes guided by pro!le data. To show that SymPro is explainable, we conduct a small user study
with Rosette programmers, showing that SymPro helps them identify performance bottlenecks
in Rosette programs more e#ciently than with standard (time-based) pro!ling tools. Finally, to
show that symbolic pro!ling is general, we build a prototype symbolic pro!ler for Jalangi [Sen
et al. 2013], a JavaScript program analysis framework with a symbolic execution pass [Sen et al.
2015], and show that it !nds bottlenecks in JavaScript programs that a time pro!ler misses.

In summary, this paper makes the following contributions:

• Symbolic pro!ling. A new technique, SymPro, for identifying performance bottlenecks in
solver-aided code. SymPro is based on a new performance model of symbolic evaluation that
tracks the evolution of the symbolic heap and the symbolic evaluation graph.

• Symbolic evaluation anti-patterns. A catalog of common performance anti-patterns in solver-
aided code, to help with the diagnosis and repair of the identi!ed bottlenecks.

• Pro!ler implementations. To demonstrate generality, we have built both a full-featured im-
plementation of SymPro for Rosette [Torlak and Bodik 2013, 2014], integrated into the latest
Rosette release, and a proof-of-concept implementation for Jalangi [Sen et al. 2013].

• Empirical evaluation. An extensive empirical evaluation of SymPro’s e"ectiveness on real-
world benchmarks, including three detailed case studies showing symbolic pro!les are
actionable, and a small user study with Rosette programmers showing they are explainable.

The rest of this paper is organized as follows. Section 2 introduces symbolic pro!ling by working
through a small example. Section 3 provides background on symbolic evaluation and catalogs
common performance anti-patterns in solver-aided code. Section 4 presents symbolic pro!ling and
our implementations. Section 5 describes three case studies showing SymPro pro!les are actionable.
Section 6 performs a detailed evaluation of SymPro’s explainability, generality, and performance.
Section 7 describes related work, and Section 8 concludes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:6 James Bornholt and Emina Torlak

synthesis. Programs written in Rosette behave like Racket programs when executed on concrete
values, but Rosette lifts their semantics, via symbolic evaluation, to also operate on unknown sym-

bolic values. These symbolic values are used to formulate solver-aided queries, such as searching for
inputs on which a program violates its speci!cation (veri!cation), or searching for a program that
meets a given speci!cation (synthesis). The example implements a tool that veri!es optimizations
for a toy calculator language.
The calculate procedure (lines 4–16) de!nes the semantics of the calculator language with a

simple recursive interpreter. A calculator program is a list of instructions that manipulate a single
4-bit storage cell, acc. An instruction consists of a 2-bit opcode and, optionally, a 4-bit argument. The
language includes instructions for adding to, subtracting from, and squaring the value in the acc cell.
The toy calculator language is also equipped with procedures for optimizing calculator pro-

grams. One such procedure, sub->add (lines 25-29), takes as input a program and an index, and if the
instruction at that index is a subtraction, sub->add replaces it with an equivalent addition instruction.

To check that these optimizations are correct, we implement a tiny veri!cation tool, verify-xform
(lines 31–41), using Rosette’s verify query. The tool !rst constructs a symbolic calculator program
P (lines 32–36) that represents all syntactically correct concrete programs of length N . This is done
using Rosette’s (define-symbolic* id type) form, which creates a fresh symbolic constant of the
given type and binds it to the variable id every time the form is evaluated. Next, the tool applies
the (verify expr) form to check that the input optimization xform preserves the semantics of P for
all values of acc and the application index idx. This form searches for a concrete interpretation of
the symbolic constants that violates an assertion encountered during the (symbolic) evaluation of
expr. As expected, no such interpretation, or counterexample, exists for the sub->add optimization
and programs of length N ≤ 5.

Performance Bottlenecks. Verifying sub->add for larger values of N produces no counterexamples
either, but the performance of the verify-xform tool begins to degrade, from less than a second for
N = 5 to a dozen seconds for N = 20. While such degradation is inevitable given the computational
complexity of the underlying satis!ability query, we have the (usual) practical goal of extracting
as much performance as possible from our tool. With this goal in mind, we would like to !nd out
what parts of the code in Figure 2 are responsible for the degradation and how to improve them.

A !rst step in investigating the program’s performance might be to use Racket’s existing pro!ling
support [Barzilay 2017], or any other time-based pro!ler. The Racket pro!ler reports that most
time is spent in verify-xform. It also cannot elide the internal implementation details of Rosette
from the pro!le, and so reports many spurious function calls that do not exist in the program as
written. But even a Rosette-aware time-based pro!ler (essentially, the Time column in Figure 3)
reports verify-xform as the hot spot in this program, with the majority of the execution time spent
directly in this procedure—speci!cally, calling an SMT solver from within the verify form. While
useful, this information is not actionable, since it does not tell us where to attempt optimizations.
When the solver is taking most of the time, what we want to know is the following: are there are
any ine#ciencies in the program that are causing the symbolic evaluator to emit a hard-to-solve
(e.g., unnecessarily large) encoding?

Symbolic Pro!ling. To help answer this question, our symbolic pro!ler, SymPro, produces the
output in Figure 3 for N = 20. The table at the bottom of Figure 3 identi!es list-set as the main
bottleneck, highlighting it in red and ranking it highest in the Score column. The score is computed
(as Section 4 describes) from !ve statistics that quantify the e"ect of a procedure on the symbolic
heap and evaluation graph:

• Time is the exclusive wall-clock time spent in a call;
• Term Count is the number of symbolic values created during a call;

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:7

• Unused Terms is the number of those values that do not appear in the query sent to the solver
(i.e., the symbolic equivalent of garbage objects);

• Union Size is the sum of the out-degrees of all nodes added to the evaluation graph; and,
• Merge Cases is the sum of the in-degrees of those nodes.

The chart at the top of Figure 3 visualizes the evolution of the call stack over time. Given this pro!le,
it is easy to see that list-set has the largest e"ect on the heap and the evaluation graph, as well as
the size of the !nal encoding, even though both verify-xform and calculate are slower. Running the
pro!ler on this benchmark has only minimal overhead: 4% slowdown and 19% additional memory.

Diagnosis and Repair. But why does list-set perform poorly under symbolic evaluation, and
how can we repair it? The output in Figure 3 shows that list-set creates many terms and per-
forms many state merges. As noted by Uhler and Dave [2014] and described in Section 3, the core
issue is algorithmic. In particular, the recursive call to list-set is guarded by a short-circuiting
condition (= idx 0) that is symbolic when idx is unknown. The symbolic evaluation engine must
therefore explore both branches of this conditional, leading to quadratic growth in the symbolic
representation (i.e., the term count in Figure 3) of the output list:
> (define-symbolic* i integer?)
> (list-set '(1 2 3) i 4)
(list (ite (= 0 i) 4 1)

(ite (= 0 i) 2 (ite (= 0 (- i 1)) 4 2))
(ite (= 0 i) 3 (ite (= 0 (- i 1)) 3

(ite (= 0 (- i 2)) 4 3))))

The solution is to revise list-set to recurse unconditionally:
(define (list-set lst idx val)
(match lst
[(cons x xs)

(cons (if (= idx 0) val x)
(list-set xs (- idx 1) val))]

[_ lst]))

> (list-set '(1 2 3) i 4)
(list (ite (= 0 i) 4 1)

(ite (= 0 (- i 1)) 4 2)
(ite (= 0 (- i 2)) 4 3))

With this revision, calls to list-set add at most O(N) values to the symbolic heap, and the solving
time for our veri!cation query is cut in half for N = 20.

3 SYMBOLIC EVALUATION ANTI-PATTERNS

At the core of every symbolic evaluator is a strategy for reducing a program’s semantics to con-
straints, and knowing what programming patterns are well or ill suited to an evaluator’s strategy is
the key to writing performant solver-aided code. This section presents three common anti-patterns

that lead to poor performance under most evaluation strategies. We review the space of strategies
!rst, followed by an illustration of each anti-pattern and a potential repair for it.

3.1 Strategies for Reducing Programs to Constraints

Symbolic evaluation engines rely on two basic strategies for reducing programs to constraints:
symbolic execution (SE) [Clarke 1976; King 1976] and bounded model checking (BMC) [Biere et al.
1999]. There are engines that use just SE [Cadar et al. 2008; Godefroid et al. 2005, 2008] or just
BMC [Babić and Hu 2008; Clarke et al. 2004; Xie and Aiken 2005] or a hybrid of the two [Ganai and
Gupta 2008; Kuznetsov et al. 2012; Sen et al. 2015; Torlak and Bodik 2014]. We illustrate both SE and
BMC on the program in Figure 4a, and brie%y review a hybrid approach [Torlak and Bodik 2014].
For a more complete survey, we refer the reader to Torlak and Bodik [2014] or Cadar and Sen [2013].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:8 James Bornholt and Emina Torlak

1 (define-symbolic* a boolean?)

2 (define-symbolic* b boolean?)

3
4 (define x (if a 1 0))

5 (define y (if b 1 0))

6
7 (assert (> (+ x y) 0))

(a) A program with a simple invalid assertion.

s1
a #→ A
b #→ B

s2
a #→ A
b #→ B
x #→ 1

s3
a #→ A
b #→ B
x #→ 0

s4
a #→ A
b #→ B
x #→ 1
y #→ 1

s5
a #→ A
b #→ B
x #→ 1
y #→ 0

s6
a #→ A
b #→ B
x #→ 0
y #→ 1

s7
a #→ A
b #→ B
x #→ 0
y #→ 0

A ∧ B ∧ ⊤
⇒ 1 + 1 > 0

A ∧ ¬B ∧ ⊤
⇒ 0 + 1 > 0

¬A ∧ B ∧ ⊤
⇒ 1 + 0 > 0

¬A ∧ ¬B ∧ ⊤
⇒ 0 + 0 > 0

A, 4 ¬A, 4

B, 5 ¬B, 5 B, 5 ¬B, 5

⊤, 7 ⊤, 7 ⊤, 7 ⊤, 7

(b) Symbolic execution explores each control flow

path through a program separately, resulting in a

tree-shaped symbolic evaluation graph.

s1
a #→ A b #→ B

s2
a #→ A b #→ B
x #→ 1

s3
a #→ A b #→ B
x #→ 0

s4
a #→ A b #→ B
x #→ ite(A, 1, 0)

s5
a #→ A b #→ B
x #→ ite(A, 1, 0) y #→ 1

s6
a #→ A b #→ B
x #→ ite(A, 1, 0) y #→ 0

s7
a #→ A b #→ B
x #→ ite(A, 1, 0) y #→ ite(B, 1, 0)

⊤ ⇒ ite(A, 1, 0) + ite(B, 1, 0) > 0

A, 4 ¬A, 4

⊤, 4 ⊤, 4

B, 5 ¬B, 5

⊤, 5 ⊤, 5

⊤, 7

(c) Bounded model checking merges states from

di"erent paths at every control-flow join, result-

ing in a symbolic evaluation DAG.

Fig. 4. An example of basic symbolic evaluation strategies. Symbolic execution and bounded model checking

result in evaluation graphs of di"erent shapes. Edge labels indicate the additional guard and the line of code

that caused the transition.

Symbolic Execution. Symbolic execution (SE) reduces a program’s semantics to constraints by
evaluating and encoding individual paths through the program. Figure 4b shows the symbolic

evaluation graph (de!ned in Section 4) created by applying SE to the sample program in Figure 4a.
The nodes in the graph are program states, and the edges are transitions between states. Each edge
is labeled with a guard and a program location that indicate where, and under what constraint,
the transition is taken. The conjunction of all guards along a given path is called a path condition.
The encoding of the program’s semantics is the conjunction of the formulas pc ⇒ ϕ at the leaves
of the symbolic evaluation tree, where pc is the path condition and ϕ is the assertion at the end of
that path. This encoding is worst-case exponential in program size, which is the key disadvantage
of SE. The crucial advantage of SE is that it maximizes opportunities for concrete evaluation (e.g.,
line 7 is evaluated concretely along each path), leading to simpler and easier-to-solve queries.

Bounded Model Checking. Bounded model checking (BMC) avoids the exponential explosion of SE
bymerging program states at each control %ow join, as shown in Figure 4c. The resulting encoding of
the program’s semantics (i.e., the conjunction of the formulas at the leaves of the symbolic evaluation
DAG) is polynomial in program size. The disadvantage of BMC, however, is the loss of opportunities
for concrete evaluation. In our example, line 7 is evaluated symbolically, producing an encoding that
requires reasoning about symbolic integers; the corresponding SE encoding, in contrast, uses only
propositional logic. So while BMC encodings are compact, they are also harder to solve in practice.

Hybrid Approaches. Recent symbolic evaluation engines [Sen et al. 2015; Torlak and Bodik 2014]
employ a hybrid of SE and BMC to o"set the disadvantages of using either strategy on its own.
These hybrid approaches generally prefer SE, applying BMC selectively to merge some paths and
their corresponding states. For example, Rosette [Torlak and Bodik 2014] performs BMC-style

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:9

merging for values of the same primitive type; structural merging for values of the same shape
(e.g., lists of the same length); and union-based merging (i.e., SE) for all other values:

(define-symbolic* b boolean?)

> (if b 1 0) ; BMC-style merging
(ite b 1 0)

> (if b '(1 2) '(3 4)) ; structural merging
(list (ite b 1 3) (ite b 2 4))

> (if b 1 #f) ; union-based merging (SE)
{[b 1] [(! b) #f]}

This evaluation strategy produces a compact encoding, like BMC, while creating more opportu-
nities for concrete evaluation, like SE. But careful programming is still needed to achieve good
performance, as we show next.

3.2 Three Anti-Pa!erns in Solver-Aided Programs

This section presents three kinds of anti-patterns in solver-aided code that lead to poor performance
during symbolic evaluation. For each, we show an example of the issue and suggest potential repairs.

AlgorithmicMismatch. As observed by Uhler andDave [2014], small algorithmic changes can have
a large impact on the e#ciency of symbolic evaluation. Consider, for example, the list-set algorithm
in Figure 2 and the revised version presented in Section 2. The revised version is asymptotically bet-
ter for engines that merge lists (e.g., [Torlak and Bodik 2014; Uhler and Dave 2014]). Yet the original
version is asymptotically better when no merging of lists is performed (e.g., [Sen et al. 2015]). Such
a mismatch between the algorithm and the underlying evaluation strategy can often be remedied
with small changes to the algorithm’s control %ow. Symbolic pro!ling helps make these changes by
informing the programmer of an algorithm’s e"ect on the symbolic heap and the evaluation graph.

Irregular Representation. Poor choice of data structures is another frequent source of perfor-
mance problems in solver-aided programs. Some common programming patterns, such as tree
manipulations, require careful data structure design (see, e.g., [Chandra and Bodik 2018]) to yield
an e"ective symbolic encoding. In general, performance issues arise when the representation of
a data type is irregular (e.g., a list of length one or two), increasing the number of paths that need
to be evaluated to operate on a symbolic instance of that type.

To illustrate, consider the instruction data type for the calculator language from Figure 2. Because
an instruction is a list of the form '(op) or '(op arg), applying cadr to a symbolic instruction at
lines 13–14 involves evaluating two paths: one feasible (when the argument is present) and one
infeasible (otherwise). Once the algorithmicmismatch in list-set is !xed, SymPro identi!es this rep-
resentational issue as the bottleneck by ranking calculate and cadr highest in the pro!le. Making the
representation more regular—in our case, by replacing line 36 with (list op arg)—!xes the problem
and leads to an additional 30% improvement in solving time. As this example illustrates, a less space-
e#cient but more uniform data representation is usually the better choice for symbolic evaluation.

Missed Concretization. In addition to employing careful algorithmic and representational choices,
performant solver-aided code is also structured to provide as much information as possible about
the feasible choices for symbolic values. Failing to make this information explicit is a common
cause of bottlenecks that manifest as large evaluation graphs with many infeasible paths.
For example, consider the following toy procedure:

(define (maybe-ref lst idx) ; Return lst[idx]

(if (<= 0 idx 1) ; if idx is 0 or 1,
(list-ref lst idx) ; otherwise return -1.
-1))

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:10 James Bornholt and Emina Torlak

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

0

10

20

30

40

50

0 50 100 150 200 250

Input size

T
im

e
(m

s)
Procedure
● calculate

list−set

(a) Calculator (Figure 2)

●● ●●●●●●

●

●● ●●●●●●

●

1

10

100

1000

10000

0 1000 2000 3000 4000

Input size

T
im

e
(m

s)

Procedure
● take

vector−set!

(b) Ferrite (§5.1; note logarithmic y-axis)

Fig. 5. Results from our input-sensitive profiling [Coppa et al. 2012] prototype applied to two programs with

known bo!lenecks. In (a), the outlier results for calculate promote it to be themost computationally complex

procedure. In (b), the profiler cannot fit a good function for take, and so identifies vector-set! instead.

Applying this procedure to a list of size N and a symbolic index results in an evaluation graph with
O(N) paths, only three of which are feasible. Refactoring the code to make explicit the concrete
choices for idx leads to an asymptotically smaller evaluation graph and encoding:

(define (maybe-ref-alt lst idx)
(cond [(= idx 0) (list-ref lst 0)]

[(= idx 1) (list-ref lst 1)]
[else -1]))

(define-symbolic* idx integer?)
> (maybe-ref '(1 2 3 4 5 6) idx) ; O(N) encoding
(ite (&& (<= 0 idx) (<= idx 1))

(ite* (⊢ (= 0 idx) 1) . . . (⊢ (= 5 idx) 6))
-1)

> (maybe-ref-alt '(1 2 3 4 5 6) idx) ; O(1) encoding
(ite (= 0 idx) 1 (ite (= 1 idx) 2 -1))

In practice, this anti-pattern shows up in a more subtle form, where the feasible choices for a
symbolic value are only known at run time. The !x then relies on the host platform to provide a
facility for expressing the set of feasible choices to the symbolic evaluator. We show an example
of this more subtle issue and the corresponding !x in Section 5.1.

4 SYMBOLIC PROFILING

This section presents symbolic pro!ling, a new approach to identifying and diagnosing performance
bottlenecks in programs under symbolic evaluation. As with any pro!ler, the key choice is what data
tomeasure andwhere.We !rst review the space of alternative designs and then present our approach.
We de!ne the key parts of our performance model, the symbolic heap and evaluation graph; describe
how a symbolic pro!ler analyzes them; and present two implementations of symbolic pro!ling.

4.1 Designing a Symbolic Profiler

To help programmers identify performance bottlenecks in the symbolic evaluation of their code, a
pro!ler must satisfy three key objectives. First, its output must be explainable: it must provide a few
key concepts that programmers can use to understand the behavior of their code under symbolic
evaluation, without understanding the implementation details of the underlying engine. Second, its
output must be actionable, pointing programmers to the root cause of any discovered bottleneck—
a location in the code that needs to be repaired to improve performance. Finally, a symbolic
pro!ling technique should ideally be general, to handle the wide variety of symbolic evaluation
strategies (from SE to BMC) and applications (e.g., bug !nding, veri!cation, and synthesis). Drawing
on existing pro!ling and symbolic evaluation research, we evaluated several potential symbolic
pro!ler designs against these criteria before settling on our approach.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:11

Input-Sensitive Pro!ling. Our !rst design was based on input-sensitive pro!ling [Coppa et al.
2012]. For each procedure in a program, input-sensitive pro!ling estimates its computational com-
plexity as a function of its input size by !tting a function to its observed behavior. For example,
such a pro!ler can determine that a linked-list traversal takes O(n) time. Our intuition was that
poor symbolic evaluation performance often comes from program locations that experience high
complexity due to path explosion; a symbolic pro!ler could apply input-sensitive pro!ling and
report the procedures with the worst computational complexity.

We implemented a prototype input-sensitive symbolic pro!ler to explore this hypothesis. How-
ever, we found that the correlation between input size and performance is often poor for code
using symbolic evaluation. Minor perturbations in the input can cause the underlying engine to
change its evaluation strategy, causing drastic changes in performance that make the estimated
computational complexity inaccurate and noisy. For example, Figure 5 shows the results from
applying our prototype to the calculator program in Figure 2 and the Ferrite case study in Section 5.1.
For the calculator (a), the strati!ed results for calculate identify it as the most computationally
complex function, even though list-set is the true bottleneck. For Ferrite (b), there is no good
function to !t for take, and so the pro!ler prefers functions such as vector-set!with more available
data. In both cases, noise obscures the true bottlenecks.

Path-Based Pro!ling. Our second design was inspired by the heuristics used in symbolic eval-
uation engines (e.g., [Kuznetsov et al. 2012]) to control path explosion. The resulting prototype
symbolic pro!ler ranked functions based on the number of infeasible paths they explored and the to-
tal size of the path conditions generated during evaluation. Our intuition was that poorly performing
procedures would generate many large, infeasible paths, and be likely candidates for repair.
However, this approach fell short in several ways. First, infeasible paths are not always the

source of performance degradation. Applications such as program synthesis intentionally generate
many large, feasible paths (e.g., to encode a sketch [Solar-Lezama et al. 2006]), making this analysis
ine"ective. Second, when they are required, feasibility checks must be discharged by a constraint
solver and so are extremely expensive; we observed pro!ler overheads of 100× on even simple
benchmarks. Finally, a path-based pro!ler does not generalize to BMC-style evaluation, where
performance bottlenecks manifest in the creation of large symbolic values during state merging,
as illustrated in Section 2 for the list-set procedure.

With these experiences in mind, we sought to identify a performance model for symbolic pro!ling
that would o"er actionable advice in terms of a few abstract concepts, and accommodate the full spec-
trum of symbolic evaluation approaches. The remainder of this section describes our chosen design;
our case studies in Section 5 and evaluation in Section 6 measure its success against these objectives.

4.2 Instrumenting Symbolic Evaluation

Our key insight is that every symbolic evaluator can be understood in terms of its interaction with
two abstract data structures, the symbolic heap and the symbolic evaluation graph, which form our
performance model for symbolic pro!ling. While explicit in our presentation, these data structures
are usually implicit in an evaluator’s implementation. We therefore also de!ne a simple interface
that any evaluator can implement to enable a symbolic pro!ler to reconstruct both data structures
on the %y. The next section shows how to analyze these structures to produce actionable pro!le data.

Symbolic Heap. As an evaluator creates new symbolic values to re%ect the program’s semantics,
it implicitly constructs a symbolic heap. For pro!ling purposes, the symbolic heap is analogous to
the concrete heap: procedures that allocate many values on the heap are candidate bottlenecks.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:12 James Bornholt and Emina Torlak

1 (define-symbolic* x y integer?)

2 (define dist ; squared dist from <x, y> to <1, 1>
3 (+ (* (- x 1) (- x 1))
4 (* (- y 1) (- y 1))))

(a) A program that computes the squared distance between a

symbolic and concrete point.

+

* *

- -

x 1 y

(b) The symbolic heap for the program.

Fig. 6. The symbolic heap of a program tracks the structure of allocated symbolic values.

Definition 1 (Symbolic heap). A symbolic heap is a directed acyclic graph (V ,E) where each

vertex v ∈ V is a term. A term is either a concrete constant, or a symbolic constant, or an expression.
Constants have no outgoing edges. Expressions are labeled with an operator, and have an outgoing

edge to each of their subterms. Each symbolic constant and expression is annotated with a program

location l(v) that created the term.

For example, consider the program in Figure 6a. The !rst line allocates two new symbolic con-
stants x and y of type integer and binds them to the variables x and y. The second line constructs
expressions out of these symbolic constants and the concrete constant 1. The resulting symbolic
heap, shown in Figure 6b, comprises !ve expressions and three constants. The symbolic constants
x and y have locations l(x) = l(y) = 1, while the expressions have locations l(·) = 3. Most symbolic
evaluators use canonicalization (e.g., [Ershov 1958]) to improve sharing of symbolic terms, so only
one instance of the terms (− x 1) and (− y 1) is usually constructed.

Symbolic Evaluation Graph. Where the symbolic heap re%ects the %ow of data during symbolic
evaluation, the symbolic evaluation graph captures the control %ow. This graph re%ects the engine’s
evaluation strategy—where it explored multiple paths separately, and where those paths were
merged together. By analyzing the symbolic evaluation graph, a symbolic pro!ler can identify
candidate bottlenecks with signi!cant branching or merging activity.

Definition 2 (Symbolic evaluation graph). A symbolic evaluation graph is a directed acyclic

graph (V ,E) in which each vertex s ∈ V is a state of the program. Each edge (si , sj) ∈ E is a transition

between two program states, and is annotated with a location l(si , sj) re"ecting the point in the program
that caused the transition, and a guard constraint guard(si , sj) re"ecting the condition under which

the transition was taken.

As an example, consider again the program in Figure 4a. Di"erent evaluation strategies will produce
di"erent symbolic evaluation graphs for this program. In symbolic execution (Figure 4b), each if

statement will cause execution to diverge into two paths that never meet, and so the de!nition of y
(line 5) will execute twice and the assertion (line 7) four times. On the other hand, bounded model
checking (Figure 4c) will immediately merge the two paths generated by each if, and so both the
de!nition of y and the assertion will execute only once, on merged states.

Symbolic Pro!ling Interface. Most symbolic evaluators create the symbolic heap and evaluation
graph only implicitly—the heap is implicit in a canonicalization cache, and the graph in the
evaluator’s control %ow. To enable a symbolic pro!ler to track the evolution of these data structures,
we de!ne a generic symbolic pro!ler interface that engines should implement at important points
in symbolic evaluation. A symbolic pro!ler can construct the symbolic heap and evaluation graph
by instrumenting calls to this interface. In practice, these calls are often already implemented by

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:13

symbolic evaluators, simplifying adoption. Section 4.4 describes implementations of the interface
in two di"erent symbolic evaluators.

Definition 3 (Symbolic profiler interface). The symbolic pro!ler interface comprises !ve

instrumentation points that a symbolic evaluator should implement to expose pro!ling data:

• new(x , l) Allocate a fresh symbolic constant named x at program location l .

• new(op,x1, . . . ,xn , l) Allocate a new expression op(x1, . . . , xn) at program location l , where each

xi is a concrete constant or a previously allocated symbolic term.

• step(s0, ⟨д1, e1⟩, . . . , ⟨дn , en⟩) Starting from program state s0, evaluate each program expression

ei (annotated with a corresponding program location li) under the guard дi . Return a list of the

resulting states s1, . . . , sk , where k ≥ n.

• merge(s1, . . . , sm , l) Merge the states s1, . . . , sm at program location l using the evaluator’s

merging strategy, returning a new list of states s ′1, . . . , s
′
j , where 1 ≤ j ≤ m.

• solve(x , l) Call a constraint solver at program location l to determine the satis!ability of the

expression x .

The two new calls in the pro!ler interface construct the symbolic heap. The symbolic evaluator
invokes new each time it allocates a new symbolic term—either a fresh symbolic constant or an
expression. The pro!ler adds the corresponding new node to the symbolic heap, with edges to the
relevant (immediate) subterms if the new term is an expression.

The step andmerge calls in the pro!ler interface reconstruct the symbolic evaluation graph. The
symbolic evaluator calls step to evaluate a set of expressions (e.g., two branches of a conditional)
under disjoint and exhaustive guards. It callsmerge to merge a set of states, usually at a control-%ow
join point. For example, at line 4 in Figure 4a, the evaluator invokes step(s1, ⟨a, 1⟩, ⟨¬a, 0⟩), which
adds the edges ⟨s1, s2⟩ and ⟨s1, s3⟩, with the guards a and¬a, to the evaluation graph. From this point,
di"erent evaluation strategies result in di"erent calls to the pro!ler interface. A symbolic execution
engine (Figure 4b) never calls merge, instead evaluating each path separately by calling step twice
for line 5 (once per path). A bounded model checker (Figure 4c) immediately calls merge(s2, s3, 4)

to merge the two states at line 4, producing a single new state s4. In either case, by instrumenting
the step and merge calls, a symbolic pro!ler can reify the (otherwise implicit) evaluation graph.

Finally, the solve call in the interface allows a pro!ler to determine which parts of the symbolic
heap %ow to a constraint solver. The symbolic evaluator invokes solve(x , l) whenever it solves a
constraint x , either to check the feasibility of a path condition or to discharge a solver-aided query.
In the next section, we use this data to analyze the symbolic heap for terms unseen by the solver,
which can indicate wasted allocations.

4.3 Analyzing a Symbolic Profile

Our symbolic pro!ler, SymPro, analyzes the symbolic heap (De!nition 1) and evaluation graph (De!-
nition 2) in three ways to present suggestions to users: computing summary statistics about each pro-
cedure in the program; determining data "ow through the program to identifywasted allocations and
work; and ranking procedures based on these two analyses to identify the most likely bottlenecks.

Summary Statistics. SymPro computes four summary statistics about each procedure call:

• Time is the exclusive wall-clock time spent in the call;
• Term count is the number of symbolic terms added to the symbolic heap;
• Union size is the sum of the out-degrees of all nodes added to the symbolic evaluation graph;
• Merge cases is the sum of the in-degrees of those nodes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:14 James Bornholt and Emina Torlak

These statistics summarize the key aspects of symbolic evaluation: the time spent in each procedure;
the size of the symbolic state allocated; how many times path splitting (symbolic execution) was
performed; and how many times merging (bounded model checking) occurred.

Data Flow. In addition to computing the summary statistics, SymPro uses the symbolic heap and
the solve instrumentation to determine which terms in the heap are “used” by the program. To a
!rst approximation, terms in a solver-aided program are not useful if they are never sent to the
underlying constraint solver as part of a feasibility check or a solver-aided query. SymPro exploits
this observation to produce an analysis of unused terms in the program. For each solve(x , l) call
made by the symbolic evaluator, SymPro computes the set of all terms in the symbolic heap that
are transitively reachable from x . Any term y that is in none of these transitive closures is unused:
it is not part of any constraint sent to the solver.

Unused terms indicate either dead code (terms that were created but never used) or simpli!cation
by the symbolic evaluator. For example, consider the following program:
(define-symbolic* x boolean?) ; add x to the heap

(define A (or x (not x))) ; add ¬x to the heap
> A ; but simplify x ∨ ¬x
#t
> (solve (assert A)) ; both x and ¬x unused

SymPro would report the terms x and ¬x as unused, because the evaluator simpli!ed them out
of the query sent to the solver. Both causes of unused terms represent optimization opportunities:
dead code should be removed, while excessive simpli!cation suggests redundancy that a better
algorithm or encoding could eliminate.

Ranking. Based on the summary statistics and data %ow analysis, SymPro ranks each procedure
in the program to suggest the most likely bottlenecks to the user. It !rst normalizes each statistic
(time, term count, union size, merge count, and unused terms) to the range 0–1. Then it assigns each
procedure a score by summing the normalized statistics. This score, a number between 0 and the
number of statistics, is a simple ranking of which procedures do the most symbolic work. Our case
studies in Section 5 and evaluation in Section 6 show this ranking is highly e"ective for navigating
symbolic pro!les. We also experimented with a machine-learned ranking scheme, training a binary
classi!er (a support vector machine) to identify bottlenecks using some of the benchmarks from
Table 2 as training data. The resulting classi!er had high recall but poor precision, identifying
many false positive bottlenecks. For that reason, and because our manual ranking scheme is easier
to explain, SymPro uses that scheme as the default.

4.4 Implementation

We have implemented the symbolic pro!ler interface (De!nition 3) in two di"erent symbolic
evaluators—a fully featured implementation for Rosette [Torlak and Bodik 2013, 2014], and a proof
of concept one for the Jalangi JavaScript analysis framework [Sen et al. 2013, 2015].

Rosette. Our Rosette pro!ler instruments several key points in Rosette’s evaluation engine, most
of which are directly analogous to the calls in the pro!ler interface. To implement the new interface,
we instrument Rosette’s term creation cache, which performs hash-consing to canonicalize terms.
To implement step, we record the creation of symbolic unions, which Rosette uses to track the multi-
ple possible values of a variable during symbolic evaluation. Finally, to implementmerge and solve,
we instrument Rosette’s corresponding merge and solver-check procedures. This instrumentation
changes only 21 lines of the Rosette engine implementation. The code for the SymPro analyses
comprises 1,000 lines of Racket and 1,400 lines of TypeScript. The Rosette pro!ler is open-source
and integrated into the latest Rosette release [Torlak 2018].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:15

Jalangi. Jalangi [Sen et al. 2013] uses a symbolic execution engine called MultiSE [Sen et al. 2015]
to provide concolic test generation for JavaScript. We modi!ed MultiSE to implement the symbolic
pro!ler interface as follows. To implement new, we track calls to the constructors of symbolic term
objects (strings, numbers, and booleans). MultiSE rewrites JavaScript programs with additional
control %ow to implement step, and so we track each time a new path is generated from a branch
in the program. To instrument merge, we modify MultiSE’s implementation of value summaries,
which are lists of guard-value pairs re%ecting the possible values of each variable. Section 6.4
presents our results with this proof-of-concept pro!ler.

4.5 Discussion

Two kinds of performance issues are outside the scope of symbolic pro!ling, which focuses on
analyzing the behavior of symbolic evaluation. First, if the bottleneck is in constraint solving, a
symbolic pro!ler can report that solving is taking the most time, but it cannot identify the cause of
the issue. Second, while bottlenecks in concrete execution can be identi!ed by symbolic pro!ling
(which includes a measure of execution time), they will be ranked below symbolic evaluation
bottlenecks because they cause no activity in the symbolic heap and evaluation graph.

Some bottlenecks can be repaired in multiple ways at di"erent locations within a program; when
symbolic pro!ling identi!es such a bottleneck, it may not suggest the easiest location to repair. For
example, consider this program, with a symbolic boolean input b passed to outer:
(define (outer b)
(when b
(inner)))

(define (inner)
...)

Suppose the inner function has side e"ects (e.g., mutating global variables) that result in a bottleneck.
Symbolic pro!ling will identify outer as the bottleneck, but the issue could be repaired by modifying
either outer (to not call inner under a symbolic path condition) or inner (by mutating less global
state). As another example, irregular data representations (Section 3.2), such as the one on line 36
of Figure 2, are most easily repaired where the data is constructed, even though symbolic pro!ling
will identify the location the data is used (lines 13–14 of Figure 2) as the bottleneck.

5 ACTIONABILITY: CASE STUDIES

To demonstrate that SymPro produces actionable pro!les, we performed a series of case studies
on real-world Rosette programs. We collected a suite of benchmarks by performing a literature
survey of all papers citing Rosette [Torlak and Bodik 2014]. This suite, shown in Table 1, comprises
all 15 tools that were open source (or that the authors made available to us) and that ran on the
latest Rosette release.
We applied SymPro to each benchmark and used it to identify 8 performance bottlenecks

summarized in Table 2. This section presents our results, with three in-depth case studies and brief
overviews of four other !ndings. In each case study, we highlight a bottleneck found by SymPro,
relate it to the anti-patterns of Section 3, and present repairs. Six of the eight bugs we found were
in code bases with which we were not previously familiar. Section 6 evaluates SymPro against our
other design criteria, explainability and generality.

5.1 File System Crash-Consistency

Ferrite [Bornholt et al. 2016] is a tool for reasoning about crash safety of programs running on
modern !le systems, which o"er only weak consistency semantics. It consists of a veri!er and a
synthesizer. Given a litmus test program (i.e., a small, straight-line sequence of system calls), and
a speci!cation of crash safety for it, the veri!er checks whether the program satis!es the safety

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:16 James Bornholt and Emina Torlak

Table 1. Rose!e benchmarks used in our evaluation. LoC is lines of code. Performance results show the

overhead of SymPro’s analysis as the average of five runs; 95% confidence intervals for overhead are < 5 pp.

Time Peak Memory

Benchmark LoC Time (sec) Slowdown Memory (MB) Overhead

Bagpipe [Weitz et al. 2016] 3317 16.1 51.1% 314 30.9%

Bonsai [Chandra and Bodik 2018] 641 55.1 22.1% 341 128.7%

Cosette [Chu et al. 2017b] 2709 12.8 7.4% 296 17.6%

Ferrite [Bornholt et al. 2016] 350 21.5 2.7% 690 5.0%

Fluidics [Willsey et al. 2018] 145 17.7 5.7% 198 18.9%

GreenThumb [Phothilimthana et al. 2016] 934 2358.5 0.1% 2258 0.0%

IFCL [Torlak and Bodik 2014] 574 96.4 0.7% 248 28.7%

MemSynth [Bornholt and Torlak 2017] 3362 24.0 45.7% 349 33.5%

Neutrons [Pernsteiner et al. 2016] 37317† 45.3 14.8% 1702 98.4%

Nonograms [Butler et al. 2017] 6693 15.1 3.1% 300 18.6%

Quivela [Amazon Web Services 2018] 5946 78.6 1.4% 496 20.0%

RTR [Kazerounian et al. 2018] 2007 374.6 12.6% 822 35.5%

SynthCL [Torlak and Bodik 2014] 3732 27.7 61.2% 445 133.2%

Wallingford [Borning 2016] 3866 7.9 2.4% 618 86.3%

WebSynth [Torlak and Bodik 2014] 2057 14.2 47.7% 467 122.8%

† Includes a 36,847-line Racket !le automatically generated from the software being veri!ed, which SymPro must instrument.

speci!cation under the relaxed semantics of a !le system such as ext4, even in the face of crashes.
If not, the synthesizer attempts to repair the program by inserting barriers (i.e., calls to fsync).
Ferrite represents !les as a backing store (a list of bytes) together with the length of the !le:

(struct file (contents length) #:transparent)

(define BLOCK_SIZE 4096)

(define F (file (make-list BLOCK_SIZE #x00) 0))

To model a write to the !le F, which persists only if the system does not crash, Ferrite introduces a
symbolic boolean value crash? to represent a non-deterministic crash:
(define N 2)

(define-symbolic* crash? boolean?)
(unless crash? ; If not crashed

(match-define (file contents length) F)

(define new-contents ; write 0x1 to first N bytes
(append (make-list N #x01) (drop contents N)))

(set! F (file new-contents (+ length N))))

To check the safety speci!cation, Ferrite retrieves the !nal contents of the !le:
(define cnts (take (file-contents F) (file-length F)))
(assert (or (equal? cnts '()) (equal? cnts '(1 1))))

This implementation is su#cient to verify crash safety at small block sizes (e.g., 32 bytes). But
since many crash consistency bugs rely on boundary conditions around the size of disk blocks,
Ferrite sets BLOCK_SIZE to a realistic value for a modern device (here, 4 kB). With this block size,
even simple litmus tests cannot be veri!ed (or repaired) in reasonable time.

Identifying the Bottleneck. SymPro identi!es the call to take in the !nal step above as the source
of poor performance. It ranks take high based on its large number of created symbolic terms and
the fact that almost none of those terms reach the solver. In contrast, a time-based pro!ler ranks
the subsequent equal? call as the hottest method.

Diagnosing the Bottleneck. The root cause of this issue is a missed concretization. Rosette merges
the second input to take, representing the length of the !le, into a symbolic term of the form
(ite crash? 0 2). When take receives a symbolic length argument, it performs symbolic execution,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:17

Table 2. Summary of performance bo!lenecks found by applying SymPro to the benchmarks in Table 1,

together with the speedups obtained by repairing them.

Program Anti-Pattern Description Speedup

Bonsai Irregular representation Shape of tree data structure is enumerated multiple times (§5.4) 1.35×

Cosette Missed concretization Possible table sizes are enumerated in a nested loop (§5.2) > 6×†

Algorithmic mismatch Ine#cient reduction builds a complex intermediate list (§5.2) 75×

Ferrite Missed concretization Length of an array is merged despite few feasible values (§5.1) 24×

Fluidics Irregular representation Grid data structure implemented with nested mutable vectors (§5.4) 2×

Neutrons Irregular representation Log of possible paths is maintained symbolically (§5.3) 290×

Quivela Missed concretization Object references are merged and obscure dynamic dispatch (§5.4) 29×

RTR Algorithmic mismatch Unnecessary fold over list of symbolic length (§5.4) 6×

† Without the repair, Cosette does not terminate within one hour.

generating one path per potential length of the returned list. Since the input list (file-contents F)

has length BLOCK_SIZE = 4096, the take call generates 4097 distinct paths, each with a path condition
of the form (ite crash? 0 2) = n for 0 ≤ n ≤ 4096. All but two of these paths are infeasible.

Repairing the Bottleneck. To repair the program, we recover the feasible concrete values for the
!le’s length in two steps. First, we remove the #:transparent annotation from the de!nition of the
file data type, to prevent structural (!eld-wise) merging of !les. Instead, Rosette will use symbolic
unions (Section 3.1) to merge !les. Second, we use Rosette’s for/all annotation to evaluate the
take call separately for each value in the symbolic union F:
(define contents
(for/all ([f F])
(take (file-contents f) (file-length f))))

The for/all annotation is Rosette’s symbolic re"ection facility [Torlak and Bodik 2014], which
allows programmers to control path splitting and merging. By default, Rosette evaluates the argu-
ments to take !rst, merges the results, and then applies take once to the merged value. The for/all

annotation tells Rosette to instead apply take to each possible value of F separately and then merge
the results. This repair speeds up Ferrite by 24×, enabling it to replicate—in just a few minutes—a
complex ext4 delayed allocation bug in Google Chrome [Boichat 2015].

5.2 SQL "ery Equivalence Verification

Cosette [Chu et al. 2017a,b] is an automated prover for deciding the equivalence of two SQL queries.
It uses Rosette to search for small counterexamples to equivalence, and Coq to construct proofs
of equivalence if no counterexample is found.

Cosette’s counterexample !nder works by constructing a symbolic representation of a SQL table
as a bag of tuples. Both the multiplicity of each tuple and its constituent elements are symbolic
values. To execute a query against a table, Cosette constructs a new table in which the multiplicity
of each tuple re%ects the semantics of the query. For example, the result of executing the query
SELECT A FROM table WHERE C="a" on a table is another table:

A B C #

e0 e1 e2 c0
e3 e4 e5 c1

=⇒

A #

e0 (if (= e2 "a") c0 0)

e3 (if (= e5 "a") c1 0)

To check if two queries are equivalent, Cosette executes each query on the same symbolic table, con-
structs a constraint asserting the two resulting tables are di"erent, and solves this constraint using
Rosette. Cosette makes extensive use of advanced Rosette features, including eval of dynamically
generated code, making manual reasoning about performance particularly challenging.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:18 James Bornholt and Emina Torlak

A recent change to Cosette adjusted its encoding of SQL WHERE clauses to accommodate a richer
subset of SQL’s !lter syntax. Previously, Cosette implemented !ltering by removing the appropri-
ate tuples from the bag; the change instead !lters by setting those tuples’ multiplicities to zero.
After making this change, a Cosette benchmark that previously returned in under 15 seconds no
longer returned within an hour. Our initial investigation showed the SMT solver was never called,
suggesting the bottleneck was in symbolic evaluation, but o"ered no further details.

Identifying the Bottleneck. To identify the source of this bottleneck, we used SymPro’s support
for streaming pro!le data during execution. The streaming pro!ler applies the analyses in Section 4
incrementally as the symbolic heap and symbolic evaluation graph evolve, and periodically sends
the resulting data to the pro!ler interface. For Cosette, the pro!ler implicated the following call
to the filter function:
(map (lambda (t)

(sum (filter (lambda (r) (eq? t r)) table)))
table)

The pro!ler ranked these filter calls far above any other calls in the program due to their high
number of new terms allocated on the symbolic heap and large numbers of merges in the symbolic
evaluation graph.

Diagnosing the Bottleneck. This bottleneck is caused by a combination of two issues, a missed

concretization and an algorithmic mismatch, whichmanifest as two distinct sources of path explosion.
The missed concretization is due to table being a symbolic union, re%ecting the table’s value

along several control-%ow paths generated by symbolic execution. The nested use of table thus
creates quadratic path explosion—for each path in table explored when calling map, the evaluator
explores every path in table when evaluating the inner filter.
The algorithmic mismatch is due to using filter to create an intermediate list just to sum its

contents. The predicate used by filter depends on symbolic state, and so there are O(2N) paths
for the return value of filter, as in the toy example from Figure 1. The sum procedure must then
run once for each such path.

Repairing the Bottleneck. An easy repair for the missed concretization is to apply symbolic
re%ection:
(for/all ([table table])
(map (lambda (t)

(sum (filter (lambda (r) (eq? t r)) table)))
table))

Here, the for/all evaluates its body once for each path in table. During each such evaluation,
table is bound to a single concrete value rather than a union, avoiding the !rst source of path
explosion. With this repair, the problematic benchmark completes within 10 minutes—better than
non-termination but still worse than the original version of Cosette.

To repair the algorithmic mismatch, we avoid building the intermediate list with filter. Instead,
the procedure passed to map performs a fold over table to sum the values that satisfy the filter pred-
icate. With this additional repair, the problematic benchmark completes in 8 seconds—faster than
even the original Cosette implementation. We reported the regression to the Cosette developers,
and they accepted our patch.

5.3 Safety-Critical System Verification

Neutrons [Pernsteiner et al. 2016] is a tool for verifying the safety of a radiotherapy system in clinical
use. The system is controlled by a large program written in the EPICS data%ow language [EPICS
2017]. Neutrons provides a symbolic interpreter for EPICS programs, and a veri!er (built with

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:19

Rosette) to check that EPICS programs satisfy key safety properties. The Neutrons veri!er is used
for active development of the system’s software, so its performance is important for developer use.

Identifying and Diagnosing the Bottleneck. We used SymPro to pro!le the Neutrons symbolic
interpreter, and found a bottleneck with the interpreter’s tracing feature. As the interpreter executes
an EPICS program, it records each executed instruction in a trace—a list of executed instructions—
which is used to visualize counterexamples:
(define (record-trace msg)
(set! trace (append trace (list msg))))

However, since this call is made with a symbolic path condition, Rosette must merge the new
and existing values of trace when performing the mutation. This leads to excessive path creation
and merging, since Rosette will track each potential length of trace separately by symbolic exe-
cution, and the length of trace depends upon the execution path. In essence, trace has an irregular

representation. SymPro identi!es this tracing procedure as the key bottleneck.

Repairing the Bottleneck. To improve this program, we observe that tracking the shape of the trace
is unnecessary for counterexample visualization. For each executed instruction, we need only record
the path condition that was true when the instruction executed, together with the instruction:
(define (record-trace msg)
(raw-set! trace (append trace (list (cons (pc) msg)))))

Here, (pc) retrieves the current path condition, and raw-set! is Racket’s unlifted implementation of
set! that overwrites tracewithout anymerging. The trace is now a list of every instruction executed
by any possible interpretation of the EPICS program. When using this trace to visualize a counterex-
ample, we simply hide any instruction whose corresponding path condition is not satis!ed by the
counterexample. This program transformation—which essentially adjusts the trace list to always
have a concrete length—improves Neutrons’ veri!cation performance by 290× on a representative
example. We reported this issue to the Neutrons developers, and they accepted our patch.

5.4 Other Findings

Our other !ndings in Table 2 include examples of all three anti-patterns presented in Section 3.2.

Type System Soundness Checking. Bonsai [Chandra and Bodik 2018] is a synthesis-based tool for
checking the soundness of type systems. It uses a novel tree representation for type checking, and
has been used to replicate a soundness bug in the Scala type system. We applied SymPro to Bonsai
and found two irregular representation issues. First, Bonsai represents trees as nested lists; since
the trees have unknown size, these lists are merged into a symbolic union. When the tree is used
multiple times during the same type checking call, the symbolic evaluator enumerates the members
of this union once per use and merges the results. Instead, we used Rosette’s for/all facility to
perform this enumeration only once, as done in the Cosette case study. Second, each (recursive)
type checking step can return either a subtree or a boolean (in case of failure), which Rosette will
always merge into a symbolic union due to their di"erent types. Instead, we used multiple return
values to separate the returned boolean failure %ag from the returned subtree. Together, these
changes improved Bonsai’s performance by 35% when checking the Scala type system.

Cryptographic Protocol Veri!cation. Quivela [Amazon Web Services 2018] is a tool for verifying
the security of cryptographic protocols. It takes as input an implementation and a speci!cation
of a cryptographic protocol, along with a series of re!nement steps between them, and checks
that each re!nement is valid. We applied SymPro to Quivela and identi!ed a missed concretization

issue. Quivela represents protocols in a simple object-oriented language in which all method calls
are virtual; each object can store references to other objects, which Quivela represents as integer

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:20 James Bornholt and Emina Torlak

addresses. Because these references are integers, the symbolic evaluator’s default strategy is to
merge them. But the merged references obscure the targets of virtual method calls forcing the engine
to evaluate many infeasible paths, as in the Ferrite case study. We modi!ed Quivela to instead track
references concretely, by wrapping references into an opaque structure type that cannot be merged.
This change improved Quivela’s veri!cation performance by up to 29× on small benchmarks, and
allowed it to quickly verify larger protocols that previously caused out-of-memory failures.

Micro"uidics Control Synthesis. Fluidics [Willsey et al. 2018] is a prototype tool for synthesizing
programs that control a digital micro%uidics array, used for executing biological wet-lab protocols.
It takes as input the initial arrangement of samples on the array, and the desired !nal arrangement
(potentially including mixtures of the samples), and synthesizes a series of movement and mixing
instructions that produce the desired outcome. We applied SymPro to Fluidics and identi!ed an
irregular representation issue. Fluidics represents the state of the array as a two-dimensional vector
of vectors, indexed by y and then x coordinates. However, this nested structure makes updates
to the array expensive: because vectors are mutable data structures, the inner vector must be
duplicated for each update to correctly track later mutations. Replacing the nested data structure
with a %at one-dimensional vector improves Fluidics’ performance by 2×, allowing it to synthesize
more complex control programs and reason about larger micro%uidics arrays.

Re!nement Type Checker for Ruby. RTR [Kazerounian et al. 2018] is a type checker for a new
re!nement type system for Ruby. It takes as input a Ruby program translated to a Rosette-based
intermediate veri!cation language, and checks that user-speci!ed re!nement types hold in the
(translated) program. The RTR veri!cation language re%ects Ruby’s object structure and control-
%ow constructs. We applied SymPro to RTR and identi!ed an algorithmic mismatch issue in the
way RTR initializes new Ruby objects. In Ruby, an array initialization supplies a length together
with an anonymous function (a “block”) de!ning the value at each index:
Array.new(5){ |i| i*2 }
#=> [0, 2, 4, 6, 8]

RTR represents arrays as a pair of a vector (holding the array’s contents) and an integer (holding the
array’s actual length). To support bounded veri!cation, array lengths can be symbolic. RTR’s array
initialization creates a separate vector/integer pair for each possible length of the array, taking
quadratic time. SymPro identi!es the array initialization procedure as the bottleneck. We repaired
this issue by initializing a concrete vector of length equal to the upper bound on the symbolic length;
since RTR already tracks each list’s length separately, the extraneous elements can simply be ignored.
This repair improved RTR’s performance on its slowest benchmark (Matrix) by 6×, from 6.1 minutes
to 61 seconds, and reduces its peak memory usage by 3×. RTR’s developers accepted our patch.

6 EXPLAINABILITY, GENERALITY, AND PERFORMANCE: EXPERIMENTS

To evaluate the performance, explainability, and generality of symbolic pro!ling, we sought to
answer four research questions:

(1) Is the overhead of symbolic pro!ling reasonable for development use?
(2) Is the data collected by SymPro necessary for correctly identifying bottlenecks?
(3) Are programmers more e"ective at identifying bottlenecks with SymPro?
(4) Is SymPro e"ective at pro!ling di"erent symbolic evaluation engines?

The !rst two questions address the key performance aspects of SymPro—run-time overhead and
the necessity of the collected data for generating actionable feedback. The third question evaluates
the explanatory power of SymPro’s pro!les. The fourth question assesses the generality of our
approach. We use the Rosette pro!ler to investigate the !rst three questions, and the Jalangi pro!ler
for the fourth. We !nd positive answers to all four questions.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:21

●

●

● ●

●

●

●

●

●

Bonsai Cosette Ferrite Fluidics IFC MemSynth Neutrons Quivela RTR

7

6

5

4

3

2

1

Benchmark
B

o
tt

le
n

ec
k

 r
an

k

Data used in ranking
● Time

Heap
Graph
Heap & Graph
All

Fig. 7. Sensitivity of profiler rankings to the data sources used in ranking. Each point is the rank of the

bo!leneck function in a profile of the program when using the specified data in the ranking function.

Benchmarks are those in which we found new bo!lenecks (Table 2) or had previously known bo!lenecks.

6.1 Is the overhead of symbolic profiling reasonable for development use?

Table 1 shows the time and memory overheads for SymPro on a collection of real-world Rosette
programs. All results were collected using an AMD Ryzen 7 1700 eight-core processor at 3.7 GHz
and 16GB of RAM, running Racket v6.12. For each benchmark we report the average overhead
across !ve runs; 95% con!dence intervals are below 5 percentage points for all overhead results.

Overall, SymPro slows applications by 0.1%–61.2% (geometric mean 16.9%), and increases peak
memory use by 0.0%–133.2% (geometric mean 45.6%). These overheads are reasonable for de-
velopment use, and are better than other tracing-based pro!ling tools. For example, the Racket
version of pro!le-guided metaprogramming [Bowman et al. 2015] averages 4–12× slowdown, and
input-sensitive pro!ling [Coppa et al. 2012] averages 30× slowdown for C programs. The highest
overheads occur for benchmarks with many short-lived recursive calls. It would be possible to
implement a sampling-based pro!ler if this overhead were to become unacceptable.

6.2 Is the data collected by SymPro necessary for correctly identifying bo!lenecks?

To understand the importance of the data SymPro gathers, we performed a sensitivity analysis
using all benchmarks in which we identi!ed new bottlenecks (Table 2), as well as a collection of
benchmarks with previously known bottlenecks. For each benchmark, we manually investigated its
pro!le to identify a single procedure we believe should be ranked as the primary cause of poor per-
formance. We then varied the data available to SymPro, giving it access to only wall-clock time, only
the symbolic heap, only the symbolic evaluation graph, or combinations of the three components.

Figure 7 shows the results of the sensitivity experiment. For each benchmark, they-axis measures
the ranking of the known bottleneck when using only the speci!ed source of pro!ling data. These
results have three key highlights. First, timing data ! alone (i.e., the time spent in each procedure)
identi!es only three of nine bottlenecks. Second, no single data source is su#cient to identify
the key bottleneck in every benchmark. While the symbolic heap " and evaluation graph # are
each more e"ective than time alone, both are required $ to correctly rank all bottlenecks. Third,
once both the symbolic heap and evaluation graph are available, including timing data % does not
improve the quality of the rankings. However, SymPro still includes timing data in rankings, to
help pro!le the parts of programs that do not perform symbolic evaluation.

6.3 Are programmers more e#ective at identifying bo!lenecks with SymPro?

To help understand how e"ective SymPro is in real-world use, we conducted a small user study with
Rosette programmers. Our study had eight graduate student participants, who each had previous
Rosette experience ranging from “a few hours” to multiple published papers using Rosette. We
!rst provided each participant a short tutorial on how to use both SymPro and existing Racket

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:22 James Bornholt and Emina Torlak

0

5

10

15

20

25

Calculator Ferrite Fluidics RuleSynth

T
im

e
(m

in
s)

Baseline
SymPro

Fig. 8. Average time taken for users to identify the performance issue in four benchmarks, with or without

SymPro. Error bars are 95% confidence intervals for n = 4 users.

performance tools (the time form and the built-in Racket pro!ler [Barzilay 2017]). We then asked
each participant to study four benchmarks—three realistic solver-aided tools and a simple calculator
program—and identify (but not repair) the primary performance bottleneck. For each benchmark,
each participant was randomly assigned to either the baseline group (which had access to any
tool except SymPro) or the SymPro group (which had access to SymPro as well). To help control
for learning e"ects, each participant saw the benchmarks in a random order, and had at most 20
minutes to analyze each benchmark.

Quantitative Results. Figure 8 shows the average time taken for users to identify the performance
issue in each benchmark. SymPro improves the identi!cation time for every benchmark, though
due to the small sample size (n = 4 for each treatment), we do not claim statistical signi!cance.
There were 6 cases where a user in the baseline group failed to !nd the issue in a benchmark within
the 20 minutes available; no users in the SymPro group ever reached this time limit.

Qualitative Observations. Given the limited size of our study, its main value was in the qualitative
observations reported by the participants. Users with access to SymPro said it gave “insight into
what Rosette is actually doing” which they lacked from other tools. One user said that SymPro
was “extremely useful for investigating a performance issue,” and that they could “see how I would
optimize my own code using the [symbolic] pro!ler.” Users generally reported they thought the
symbolic pro!ler would be even more successful when run against their own code, because they
“know what to ignore.”

We found that users were most successful when using SymPro to conduct an initial investigation.
SymPro’s data analysis generally directed users to fruitful locations in the code to inspect more
quickly than either manual exploration or analysis by existing performance tools. While we did not
require users to identify potential repairs to the performance issues they found, they were more will-
ing and able to do so voluntarily when using SymPro, suggesting a better understanding of the code.

6.4 Is SymPro e#ective at profiling di#erent symbolic evaluation engines?

In addition to the Rosette pro!ler evaluated above, we also built a prototype symbolic pro!ler
for the Jalangi dynamic analysis framework [Sen et al. 2013], as Section 4.4 describes. We applied
the pro!ler to the three slowest publicly available benchmarks reported by Sen et al. [2015]. For
each benchmark, we ran both the symbolic pro!ler and a traditional time-based pro!ler to identify
hotspots, and compared the results. The symbolic pro!ler added only negligible overhead (< 1%).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:23

Red-Black Tree. The red-black tree benchmark implements a self-balancing binary search tree
with integer keys. The symbolic version of the benchmark inserts !ve unknown, symbolic keys
into the binary search tree. The time-based pro!ler identi!es an internal key-comparison func-
tion as the only hotspot in the benchmark. But the symbolic pro!ler helps pinpoint why the key
comparison is slow: it identi!es the tree’s insert procedure as being responsible for the creation
of most symbolic state (due to branching), and reports that the key comparison creates very large
terms on the symbolic heap. Guided by this pro!le, we modi!ed the key comparison function to
be branch-free, which improved the benchmark’s performance by 2×. The pro!ler also suggests
that path pruning with the SMT solver is ine"ective on this benchmark: most paths are generated
by the key-comparison function, but they are always feasible. Surprisingly, we found that the tree’s
rebalancing operations were not the sources of expensive symbolic operations.

Calculator Parser. The calculator parser benchmark implements a simple grammar for arithmetic
expressions, and attempts to parse an expression from a symbolic input. The time-based pro!ler
identi!es the function getsym, which generates the next character of symbolic input, as the bottle-
neck. The symbolic pro!ler instead identi!es accept and its callers, which interpret the output of
getsym and form the core of the parser. In particular, the symbolic pro!ler identi!es the grammar’s
“factor” production as being a bottleneck due to a large number of branches. Inspecting this function,
we found most branches perform similar work, and so we refactored it to move that work outside
of the branches. This small refactoring improved the benchmark’s performance by 1.8×.

Binary Decision Diagram. The binary decision diagram (BDD) benchmark constructs a BDD with
three unknown, symbolic operations (that can be either ∧ or ∨), each of which operates on two un-
known, symbolic operands. The time-based pro!ler can only identify the top-level driver function of
this benchmark as a potential hotspot. The symbolic pro!ler is more e"ective, identifying an internal
hash table and the BDD put operation as the sources of symbolic complexity. We replaced the hash
table with a linked list, improving performance by 10%. With this repair, the pro!ler now identi!es
get as the bottleneck instead of put (as we would expect, since get must now search the list). While
a linked list is clearly less e#cient for concrete code, it is more amenable to veri!cation, and so this
transformation may be preferable for verifying clients of the BDD library. In general, we expect Sym-
Pro to be useful for developingmodels of libraries and frameworks, which are simpli!ed implementa-
tions intended for veri!cation purposes and used by automated veri!cation tools [Cadar et al. 2008].

7 RELATED WORK

Optimizing Symbolic Evaluation. A high-performance symbolic evaluation engine must make good
decisions about when to merge states from di"erent paths. Query count estimation (QCE) is a
heuristic for estimating the number of paths that will be created by merging at a given program
point [Kuznetsov et al. 2012]. A QCE engine merges states only if the “hot” variables in each branch
are the same, or are already symbolic. The “hot” variables are identi!ed heuristically; a variable v
is hot if many additional paths are likely to be generated by making v symbolic. In essence, QCE is
a heuristic for predicting the shape of the symbolic evaluation graph. SymPro, in contrast, tracks
the shape of the graph and lets the programmer use this information to guide symbolic evaluation.
In addition to improving the performance of symbolic evaluation at the engine level (through

better strategies and encodings), prior work has also proposed making improvements at the program
level. Wagner et al. [2013] advocate for a special compiler optimization mode tuned for emitting
code amenable to symbolic execution, avoiding program transformations that exhibit poor behavior
under symbolic evaluation. Cadar [2015] presents a collection of program transformations (both
semantics-preserving and -altering) designed to enable scalable symbolic execution. SymPro is an

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:24 James Bornholt and Emina Torlak

ideal companion to these approaches: when automated optimizations fail (as Cadar shows is often
the case), a pro!ler can help identify potential bottlenecks for manual repair.

Pro!ler-Aided Development. Recent research has focused on how pro!ling information should be
integrated into development work%ows. For example, the optimization coach [St-Amour et al. 2012]
feature of Racket communicates successful and failed compiler optimizations to programmers,
while pro!le-guided meta-programming [Bowman et al. 2015] integrates pro!ling data into the
source-to-source transformations in Racket’s macro system. One important property of a pro!ler
is that its advice must be actionable: optimizing the functions it suggests as hot should improve
execution time. The Coz causal pro!ler [Curtsinger and Berger 2015] achieves this by perform-
ing experiments at run time. To determine if a function f is hot, Coz simulates optimizing f by
arti!cially slowing down every other function in the program. We took inspiration from all three
of these techniques when designing SymPro.

Interactive Pro!ling. Ammons et al. [2004]’s Bottlenecks tool is an interactive interface for pro!le
data. Pro!lers implement a common interface de!ned by Bottlenecks, which then layers a command-
line user interface on top of the generated data. Through that interface, Bottlenecks suggests inter-
esting pro!le points using navigation heuristics that skip over uninteresting data; for example, pro-
cedures with little exclusive time are likely less interesting than their callees, so navigation “zooms”
over these points. Ammons et al. used Bottlenecks to !nd 14 performance issues in IBM’s Web-
Sphere Application Server, and improve its throughput by 23%. SymPro’s user interface (Figure 3)
and its common symbolic evaluator interface (De!nition 3) both take in%uence from Bottlenecks.

8 CONCLUSION

This paper presented symbolic pro!ling, a new approach to identifying and diagnosing performance
bottlenecks in programs under symbolic evaluation. Symbolic pro!ling makes explicit the key
resources—the symbolic heap and evaluation graph—that programmers must manage to create
performant solver-aided applications. These resources form a new performance model of symbolic
evaluation that is actionable, explainable, and general. Our case studies show that symbolic pro!ling
produces actionable pro!les. Guided by these pro!les, we identi!ed, diagnosed, and repaired perfor-
mance bottlenecks in published, state-of-the-art solver-aided tools, obtaining orders-of-magnitude
speedups. Our experiments show that symbolic pro!les have high explanatory power, helping
programmers understand what the symbolic evaluator is doing, and that our pro!ling approach
generalizes to di"erent symbolic evaluation engines. As programmers increasingly apply solver-
aided automation to new domains, symbolic pro!ling can help them more quickly reach the scale
they need to solve real-world problems.

ACKNOWLEDGMENTS

We thank Dan Grossman, Xi Wang, and the anonymous reviewers for their feedback on this work;
Eunice Jun and Calvin Loncaric for help with user study design; and the participants in our user
study. This work was supported in part by DARPA under agreement number FA8750-16-2-0032, by
the National Science Foundation under grant CCF-1651225, by the joint Intel–NSF CAPA research
center, by the Alfred P. Sloan Foundation, and by a Facebook PhD Fellowship.

REFERENCES

Amazon Web Services. 2018. Quivela. (2018). https://github.com/awslabs/quivela

Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. 2004. Finding and Removing Performance Bottlenecks

in Large Systems. In Proceedings of the 18th European Conference on Object-Oriented Programming (ECOOP). Oslo, Norway,

170–194.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

Finding Code That Explodes under Symbolic Evaluation 149:25

Domagoj Babić and Alan J. Hu. 2008. Calysto: scalable and precise extended static checking. In Proceedings of the 30th

International Conference on Software Engineering (ICSE). Leipzig, Germany, 211–220.

Eli Barzilay. 2017. Pro!le: Statistical Pro!ler. http://docs.racket-lang.org/pro!le/. (2017).

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking Without BDDs. In

Proceedings of the 5th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).

Amsterdam, The Netherlands, 193–207.

Nicolas Boichat. 2015. Issue 502898: ext4: Filesystem corruption on panic. (June 2015). https://code.google.com/p/chromium/

issues/detail?id=502898.

James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. 2016. Specifying and

checking !le system crash-consistency models. In Proceedings of the 21st International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS). Atlanta, GA, USA, 83–98.

James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from Framework Sketches and Litmus Tests. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Barcelona,

Spain, 467–481.

Alan Borning. 2016. Wallingford: Toward a Constraint Reactive Programming Language. In Proceedings of the Constrained

and Reactive Objects Workshop (CROW). Málaga, Spain.

William J. Bowman, Swaha Miller, Vincent St-Amour, and R. Kent Dybvig. 2015. Pro!le-guided Meta-programming. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Portland,

OR, USA, 229–239.

Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping symbolic execution engines for interpreted languages.

In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Salt Lake City, UT, USA, 239–254.

Eric Butler, Emina Torlak, and Zoran Popović. 2017. Synthesizing Interpretable Strategies for Solving Puzzle Games. In

Proceedings of the 12th International Conference on the Foundations of Digital Games (FDG). Hyannis, MA, USA.

Cristian Cadar. 2015. Targeted program transformations for symbolic execution. In Proceedings of the 10th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE). Bergamo, Italy, 906–909.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. Klee: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In Proceedings of the 8th Symposium on Operating Systems Design and Implementa-

tion (OSDI). San Diego, CA, 209–224.

Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing: Three Decades Later. Commun. ACM 56, 2

(2013), 82–90.

Kartik Chandra and Rastislav Bodik. 2018. Bonsai: Synthesis-Based Reasoning for Type Systems. Proc. ACM Program. Lang.

2, POPL (Jan. 2018), 62:1–62:34.

Shumo Chu, ChenglongWang, KonstantinWeitz, and Alvin Cheung. 2017a. Cosette. (2017). http://github.com/uwdb/Cosette

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017b. Cosette: An Automated Prover for SQL. In

Proceedings of the 8th Biennial Conference on Innovative Data Systems (CIDR). Chaminade, CA, USA.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Proceedings of the 10th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Barcelona, Spain,

168–176.

Lori A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute Programs. IEEE Transactions on Software

Engineering 2, 3 (1976), 215–222.

Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-sensitive Pro!ling. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Beijing, China, 89–98.

Charlie Curtsinger and Emery D. Berger. 2015. Coz: Finding Code That Counts with Causal Pro!ling. In Proceedings of the

25th ACM Symposium on Operating Systems Principles (SOSP). Monterey, CA, USA, 184–197.

EPICS. 2017. Experimental Physics and Industrial Control System. (2017). http://www.aps.anl.gov/epics/

A. P. Ershov. 1958. On Programming of Arithmetic Operations. Commun. ACM 1, 8 (1958), 3–6.

Malay Ganai and Aarti Gupta. 2008. Tunneling and slicing: Towards scalable BMC. In Proceedings of the 45th Design

Automation Conference (DAC). Anaheim, CA, USA, 137–142.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings of the

26th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Chicago, IL, USA, 213–223.

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated Whitebox Fuzz Testing. In Proceedings of the 15th

Network and Distributed System Security Symposium (NDSS). San Diego, CA, USA.

Milod Kazerounian, Niki Vazou, Austin Bourgerie, Je"rey S. Foster, and Emina Torlak. 2018. Re!nement Types for Ruby. In

Proceedings of the 19th International Conference on Veri!cation, Model Checking, and Abstract Interpretation (VMCAI). Los

Angeles, CA, USA, 269–290.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

149:26 James Bornholt and Emina Torlak

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394.

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012. E#cient State Merging in Symbolic Execu-

tion. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Beijing, China, 89–98.

Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Jonathan Jacky. 2016.

Investigating Safety of a Radiotherapy Machine Using System Models with Pluggable Checkers. In Proceedings of the

28th International Conference on Computer Aided Veri!cation (CAV), Vol. 2. Toronto, ON, Canada, 23–41.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling Up Superopti-

mization. In Proceedings of the 21st International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS). Atlanta, GA, USA, 297–310.

Racket 2017. The Racket Programming Language. (2017). https://racket-lang.org

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In Proceedings of the 9th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE). Saint Petersburg, Russian

Federation, 488–498.

Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE: multi-path symbolic execution using value

summaries. In Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE). Bergamo, Italy, 842–853.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). San Jose, CA, USA, 404–415.

Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Optimization Coaching: Optimizers Learn to

Communicate with Programmers. In Proceedings of the 27th ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). Tuscon, AZ, USA, 163–178.

Emina Torlak. 2018. Rosette. (2018). http://github.com/emina/rosette

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with Rosette. In Proceedings of the 2013 ACM

Symposium on New Ideas in Programming and Re"ections on Software (Onward!). Indianapolis, IN, USA, 135–152.

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). Edinburgh,

United Kingdom, 530–541.

Richard Uhler and Nirav Dave. 2014. Smten with Satis!ability-Based Search. In Proceedings of the 29th ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). Portland, OR,

USA, 157–176.

Jonas Wagner, Volodymyr Kuznetsov, and George Candea. 2013. -Overify: Optimizing Programs for Fast Veri!cation. In

Proceedings of the 14th Workshop on Hot Topics in Operating Systems (HotOS). Santa Ana Pueblo, NM, USA.

Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. 2016. Scalable

Veri!cation of Border Gateway Protocol Con!gurations with an SMT Solver. In Proceedings of the 31st ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). Amsterdam,

The Netherlands, 765–780.

Max Willsey, Luis Ceze, and Karin Strauss. 2018. Puddle: An Operating System for Reliable, High-Level Programming of

Digital Micro%uidic Devices. In Proceedings of the 23rd International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Wild and Crazy Ideas Session. Williamsburg, VA, USA.

Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Using Boolean Satis!ability. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). Long Beach, CA, USA, 351–363.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 149. Publication date: November 2018.

