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ABSTRACT

Data structure synthesis is the task of generating data structure
implementations from high-level specifications. Recent work in
this area has shown potential to save programmer time and reduce
the risk of defects. Existing techniques focus on data structures for
manipulating subsets of a single collection, but real-world programs
often track multiple related collections and aggregate properties
such as sums, counts, minimums, and maximums.

This paper shows how to synthesize data structures that track
subsets and aggregations of multiple related collections. Our tech-
nique decomposes the synthesis task into alternating steps of query
synthesis and incrementalization. The query synthesis step imple-
ments pure operations over the data structure state by leveraging
existing enumerative synthesis techniques, specialized to the data
structures domain. The incrementalization step implements imper-
ative state modifications by re-framing them as fresh queries that
determine what to change, coupled with a small amount of code
to apply the change. As an added benefit of this approach over
previous work, the synthesized data structure is optimized for not
only the queries in the specification but also the required update op-
erations. We have evaluated our approach in four large case studies,
demonstrating that these extensions are broadly applicable.
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1 INTRODUCTION

Many programming tasks can be framed as data structure prob-
lems, especially in domains like user interfaces or web services
where software must manage some internal state and also handle
asynchronous events. Manually implementing complex application-
specific data structures can be time-consuming and error-prone.
Recent research seeks to automatically synthesize data structure
implementations from high-level specifications, thus ensuring cor-
rectness and run-time efficiency with minimum programmer ef-
fort [11, 12, 16]. Existing techniques can synthesize only a narrow
range of data structures—those that retrieve a subset of a single
collection. Such a simple API limits their applicability, as real-world
software often has more complex requirements.

For example, the chat server Openfire [13] uses a custom in-
memory data structure to represent a many-to-many relationship
between users and groups. This data structure needs to answer
many different kinds of queries efficiently, such as which users
belong to a given group or whether any two users share a group. It
also needs to keep itself up-to-date as users and groups are added,
removed, and renamed. Despite its complex implementation, Open-
fire’s user management code has a simple specification. In general,
data structure specifications are much smaller than their imple-
mentations because they do not need to manage memory or be
algorithmically efficient.

This paper presents a new technique for data structure synthesis
that overcomes many of the limitations of previous work. Our tool
Cozy can synthesize implementations for complex multi-collection
data structures—including those found in Openfire—from high-level
specifications. Like previous work, a Cozy specification declares the
abstract state (wWhat information the data structure stores), queries
(methods that perform pure computations on the state), and updates
(methods that modify the state) that the data structure must support.
Cozy then produces source code that developers can use right away.

In previous work, implementations for update methods were
hard-coded [16] or derived using a set of hand-written rules [11].
In Cozy, update methods are synthesized rather than hardcoded.
This enables Cozy to discover more specialized data representations
than previous work, since Cozy can choose different representations
depending on what kinds of updates appear in the specification.

Our technique iteratively improves the data structure specifica-
tion using two cooperating components: a query synthesizer that
selects a better representation and implementation for each query
method and an incrementalization step that ensures the new rep-
resentation is kept up-to-date when an update method is called.
Crucially, the incrementalization step can produce specifications
for new query operations to help implement the update procedure.



ICSE ’18, May 27—June 3, 2018, Gothenburg, Sweden

Calvin Loncaric, Michael D. Ernst, and Emina Torlak

Spec ﬁ

Implementation

—

Implementation

Construct initial
implementation

U Stop on timeout

Find an improvement

. Incomplete : ;
Implementation - Implementation Implementation
Implementation
st () Sty =Ci(...) sty =Ci(...) St ty =Ci(...)
s to =Co..) So it =Co...) Soito =Co...) s3:t3 = Cs(...)
s3:ts = Cy(...) s3:ts = Cy(...)
_’ - qi(...) = implnew
Query Incremental- qi(...) = implnew Dead code as...) = impl
Synthesis qz(...) = impl elimination
Uw(..b)d;e . ui(...) = ui(...) =
u s . -
update_sz; update st/ new code ul-)= "/ ypdate code update_st;
uses s1, Sz update_sz; update_sq; update_ss;
uses s, S3 update_sz; calls g2 .
update_sz3;

Figure 1: Architecture of Cozy. Each iteration through the loop performs query synthesis, incrementalization, and dead code
elimination. Figure 2a shows example input, and Figures 2b and 3 show the corresponding output.

Cozy thus uses the query synthesizer to implement both pure query
operations and imperative updates. Our technique is agnostic to the
exact implementations of the query synthesizer and incremental-
ization step; Section 3 gives a detailed explanation of the concrete
choices we made for Cozy.

The query synthesizer and incrementalization step interact using
concretization functions. A concretization function expresses a data
structure’s representation—its concrete state—as a function of its ab-
stract state. For example, the following concretization function rep-
resents the count of elements in an abstract set S: C(S) = Y ,es 1 -
Concretization functions allow Cozy to reason about the effects
of updates in pure mathematical terms. The imperative opera-
tion S. remove (e) —which removes an instance of e from S if any is
present—causes a change to the data representation. The new value
of the count thus becomes C(S”) = C(S — {e}) = Xye(s—fe1) 1 -

Cozy’s query synthesis step outputs both an efficient implemen-
tation for each query and a set of concretization functions indicating
how the data should be represented. The incrementalization step
then uses the concretization functions to produce a specification
of the change to the concrete state as a result of each update. For
the case of S.remove(e), the change specification is the amount by
which the count changes: C(S”) — C(S). These change specifications
are queries over the abstract state of the data structure, and to
implement them Cozy repeats the query synthesis step. The tool
proceeds in this loop until exhausting its time budget—three hours
for our evaluation.

Contributions

o A high-level data structure synthesis algorithm with alter-
nating steps of query synthesis and incrementalization (§2).

® Query synthesis and incrementalization algorithms (§3).

e An implementation, called Cozy (https://cozy.uwplse.org).

e Four real-world case studies that evaluated Cozy’s effect on
development time, correctness, and efficiency (§4).

2 OVERVIEW

This section illustrates Cozy’s high-level algorithm using a simpli-
fied example of a real-world data structure from Openfire. The data
structure that manages users’ contacts has been a frequent source of
bugs (Section 4.4). Cozy can synthesize a complete implementation
for Openfire’s data structure given its specification.

Cozy uses the algorithm shown in Figure 1. It takes as input
an executable specification of the data structure (Section 2.1), con-
structs an initial implementation (Section 2.2), and then iteratively
improves its implementation using alternating steps of query syn-
thesis (Section 2.3) and incrementalization (Section 2.4). A dead
code elimination step (Section 2.5) prunes dead code as synthesis
progresses.

2.1 Specification

Figure 2a shows a complete Cozy specification for part of the Open-
fire contact management data structure. It would be used as the
input to Figure 1. In the specification, state declarations describe
the abstract state of the data structure, query declarations spec-
ify methods that compute values using the abstract state, and op
declarations specify methods that alter the abstract state. Methods
may also include assumptions (preconditions) about their inputs. In
some cases, Cozy can produce better implementations by leveraging
these assumptions, but they are optional for specification writers.
Callers must ensure that the assumptions hold at each call site.

In Opentfire, users’ contact lists are implicit and are computed
based on the groups that each user belongs to. The data structure
must be able to efficiently answer the question “should user u;
appear in the contacts of user u2?” for any u; and uy. The query
method visible in Figure 2a defines this relationship: u; is visi-
ble to (i.e. appears in the contacts of) uy if there exists a group
g of which u; is a member and either g has been made visible to
everyone (g.visibility == Everyone) or uy is also a member of g.
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// Abstract state

state users : Set<User>

state groups : Set<Group>

state members : Set<(User, Group)>

// Query definition
query visible(u;, u;
assume u; € Users
assume u; € users
return (exists [ g | g < groups,

(uy, g) € members and (
g.visibility == Everyone or

(uz, g) € members) ])

: User):

// Update operation definition
op join(u : User, g : Group)
assume u € users
assume g € groups
assume (u, g) ¢ members
members.add((u, g))

(2)
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// Users who are € some group whose
// visibility is "Everyone"
state s1 : Map<User, Bool>

// Map from users to the groups of
// which each one is a member
state s2 : Map<User, Bag<Group>>

// Map from (user, group) tuples to
// boolean indicating whether that
// user is a member of that group

state s3 : Map<(User, Group), Bool>

// Now-unused state

state vl : Set<User>

state v2 : Set<Group>

state v3 : Set<(User, Group)>
// New code

query visible(u;, uy : User):
return (sl[u;] or

exists Filteray s3j(uy.g) S2[wil)

(b)

Csi(users, groups, members) =
MakeMapy users
where
f = Au . exists Filter,(, members
p(u) = Av,g9) . u == o and
g.visibility == Everyone

Csz(users, groups, members) =
MakeMap, users
where
g = Au . Filtergy) members
q(u) = Mv,9) . u == v and
g.visibility # Everyone

Css(users, groups, members) =
MakeMap i, true members

Cyi(users, groups, members) = users

Cyz(users, groups, members) = groups
Cy3(users, groups, members) = members

(©

Figure 2: (a) An example input to Figure 1 that specifies the Openfire user and group management data structure. (b) New
implementation of visible after several query synthesis steps. Cozy does not produce the comments, which we added for
clarity. Since incrementalization and dead code elimination have not yet run, the implementation does not properly update
the new state variables si, s2, and s3 and still contains some unused state variables. (c) Concretization functions for the new

implementation.

This example has been simplified; our experiments (Section 4) use
a full specification of the data structure that also includes explicit
contacts and additional visibility modes for groups.

As specified, visible runs in O(|groups| X |members|) time. Cozy
creates a more efficient implementation for visible (Figure 2b) that
runs in O(g) time, where g is the maximum number of groups that
any one user is a member of.

2.2 Initial Implementation

Whenever Cozy chooses a data representation, it also creates, for
each field in the representation, a concretization function that com-
putes the field’s representation from the abstract state. Since Cozy
specifications are executable, they can be converted to implementa-
tions whose concrete state is the same as the abstract state. For the
specification in Figure 2a, Cozy’s initial implementation has the
variables v1, vy, and v3 and trivial concretization functions:

Cyi(users, groups, members) = users
Cyz(users, groups, members) = groups
Cys(users, groups, members) = members

Each query and update operation can be rewritten in terms of vy,

vy, and v3 by simple substitution. The visible method becomes
query visible(u;, us : User):

assume u; € vl

assume uy; € vl

return (exists [ g | g < v2,

(u1, g) € v3 and (

g.visibility == Everyone or
(uz, g) € v3) 1)

While renaming the abstract members to vy, v2, v3 does not func-
tionally change the specification, it creates initial concretization
functions for later steps to consume.

2.3 Query Synthesis

Cozy synthesizes an implementation by iteratively finding improve-
ments to the data structure. The query synthesis step in Figure 1
makes an improvement to some non-deterministically chosen query
operation on the data structure. Section 3.2 discusses how Cozy
makes the choice and the improvement.

Figure 2 shows output from one of the query synthesis steps, i.e.,
an improvement to the query visible that uses a new representa-
tion and has associated concretization functions.

The query synthesis step may introduce new state variables, but
it does not drop unused ones. In Figure 2, the red state variables sq,
sy, and s3 are new; v1, vy, and v3 are now unused. The dead code
elimination pass will eliminate the unused variables later.

The new variables’ concretization functions are more complex
than the trivial ones introduced for the initial implementation. The
state variable s1, for instance, has the concretization function Cs;y,
which uses the MakeMap primitive to construct a new map from
users to Booleans. The MakeMap primitive takes a collection of
keys (users) and a value function (f) and builds a map where each
key u € users is associated with value f(u). For s1, the value is true
if the user is a member of a group with visibility set to “Everyone”.
In Cozy, maps are total. Lookups on missing keys return a default
value: false for booleans, the empty set for sets, and so on. Thus,
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op join(u : User, g : Group):
join_sl(u, g)
join_s2(u, g)
join_s3(u, g)
join_vl(u, g)
join_v2(u, g)
join_v3(u, g)

private op join_sl(u : User, g : Group):
for k € altered_keys_sl(u, g):
s1[k] = new_value_for_key_sl(k, u, g)

// The join_s2 and join_s3 implementations have
// been omitted for brevity.

private op join_vl(u : User, g : Group): // no-op

private op join_v2(u : User, g : Group): // no-op
private op join_v3(u : User, g : Group): v3.add((u, g))

(@)
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// Find keys of map sl whose values
// change when user u joins group g.
private query altered_keys_sl(u : User, g : Group):
assume u € users
assume g € groups
assume (u, g) ¢ members
return [ k | k < MapKeys(sl) U MapKeys(sl’),
sllk]l # sl'[k] 1
// Compute a new value at key k € sl when user u joins group g.
private query new_value_for_key sl(k, u : User, g : Group):
assume u € users
assume g € groups
assume (u, g) ¢ members
assume sl[k] # sl'[k]
return sl’[k]

// Sub-queries for s2 and s3 have been omitted for brevity.

(b)

Figure 3: (a) Implementation of the join update operation and (b) new sub-queries that need to be synthesized. The variable
sl is defined as the new value of sl after join is called: Cs1(users’, groups’, members’).

the expression s1[u;] efficiently determines whether user u; is a
member of a group with visibility set to “Everyone”.

The concretization functions shown in Figure 2c will become
the implementation of the constructor for the data structure. The
constructor takes the abstract state as input and initializes the
concrete state. Furthermore, the concretization functions enable
incrementalization.

2.4 Incrementalization

The query synthesis step creates an incorrect data structure: the
new state variables s1, sz, and s3 are not kept up-to-date when join
is called. The incrementalization step restores correct functioning
by adding code to join that updates the new state variables. The
new code must preserve the concretization functions in Figure 2c.

A simple but inefficient solution would be to recompute the value
of each concrete state variable from scratch. Because an update
usually makes a small change to the abstract state, Cozy produces
an incremental update that makes small changes to the concrete
state in response to a small change to the abstract state.

To incrementally update the concrete state, Cozy rephrases the
update procedure as a set of queries that compute what changes
should take place, plus a simple hardcoded snippet that applies
those computed changes. A previous approach applied this same
idea to synthesize remove operations [11], but with concretization
functions it can be generalized to insertions and other updates as
well. Our approach also allows for more complex update procedures
like those that apply multiple changes at once or only make a change
under certain conditions.

Figure 3a shows the code that Cozy produces to update the
concrete state as a result of a user joining a group. Each concrete

state variable gets its own update procedure (e.g. join_s1 for s1).

The code for join_s1 is not synthesized; it comes from a lookup
table (Section 3.3). However, the new code uses two fresh query
operations altered_keys_s1 and new_value_for_key_s1 (Figure 3b)
that determine what changes to apply. The former computes the

set of map keys whose values change, and the latter computes the
new value for each key. These two queries are added to the data
structure specification, and thus they will be optimized by the query
synthesizer on subsequent iterations.

The definitions of the fresh queries make use of both the old
value of s1 and the new value s1’. The new value is computed
using the specification of join and the concretization functions.
Mathematically, join sets the abstract state to

users’ = users; groups’ = groups; members’ = members U {(u, g)}

and thus the new value s1’ must be

s1’ = Cg(users’, groups’, members’) =
MakeMapy users
where
f = Au . exists Filter,, (members U {(u, g)})
p(u) = Av,g9) . u ==o and g.visibility == Everyone

Figure 3b shows the specifications for altered_keys_s1 and new_-
value_for_key_s1, which are inefficient. On later iterations, Cozy’s
query synthesizer discovers efficient implementations for both.
Specifically, Cozy implements altered_keys_s1 to return the sin-
gleton set {u} if g has visibility Everyone and u is not already in such
a group, or () otherwise. Cozy implements new_value_for_key_sl
to simply return true.

The implementations of altered_keys_s1 and new_value_for_-
key_s1 do not require additional concrete state. In general, however,
new concrete state might be generated for the fresh queries in later
iterations, requiring another phase of incrementalization.

2.5 Dead Code Elimination

At each iteration, Cozy cleans up unused state variables and opera-
tions. For instance, the state variable v2 can be eliminated since it
is never read. All code that keeps v, up-to-date can be eliminated
as well. Cozy also deduplicates state variables and fresh queries.
Duplicates happen in cases where the same concrete state is useful
to multiple different query operations.
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spec = name: specifications
$1,82, ...
invariant e
mi,mo,...
s = x:T abstract state
r = Int | Bool | String basic types
| Enum {casey, casez, ...} enumerations
| (71, 72,...) tuples
| {fi:n,fi:12,.} records
| Bag(r) bags (multisets)
m = query q(args...): queries
assume e;
return e;
|  opu(args...): updates
assume e;
stmt;
stmt = x¢<e assignment
| x.add(e) insertion
| x.rm(e) deletion
| ife:stmt conditional
| stmt; stmt sequencing
e = Xx variables
| e==e|e<e] .. comparisons
| ene | eve | —e bool operations
| e?e :e conditionals
| e+e| e—e arithmetic
| (ee..) | en tuples
| {f:e,f:e,..} | ef records
| 0| {e} | eVe | e—e bag operations
| Map e | Filtery e map and filter
| FlatMapf e map union
| e sum
| Distinct e remove duplicates
| ArgMing e | ArgMax; e min and max
f = Axe lambda abstraction

Figure 4: Core specification language spec.

3 DETAILS

Cozy iteratively improves a specification (Section 3.1) to produce
an implementation. At each iteration Cozy attempts to find an
improvement to some query (Section 3.2). The improvement may
require new concrete state, which must be properly maintained in
each update method (Section 3.3). Finally, unused state and code
are removed (Section 3.4).

3.1 Specification and Output Languages

Figure 4 shows the core specification language. All input specifica-
tions are desugared to this core language (Figure 5). Cozy’s output
language is a superset of its input language that includes additional
constructs for maps:

T Map(r, )

MakeMapfe | MapKeys e | e[e]

e
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len(X) — XMap;, ;X
empty(X) — len(X)=0
areUnique(X) — X = Distinct X
Vx € X,p(x) —  empty(Filter-p X)
Ix e X,p(x) — —empty(Filtery X)
xeX — yeX,y=x
[fx) | xeX,p(x)] — Map ¢ Filter, X
[fry lxeXyeY] —

FlatMap/lx_MapAy_f(x’y) vy X

Figure 5: Expressions that Cozy accepts in input specifica-
tions but desugars into simpler forms. Cozy supports ar-
bitrary list comprehensions, though only two examples of
desugaring list comprehensions are shown.

Maps could be included in the input language, but they are not
needed: a comprehension can group and look up values in a declar-
ative rather than procedural manner. This clarifies what each ex-
pression computes and reduces the number of invariants that pro-
grammers need to maintain. In the output language, the MakeMap
primitive takes an expression e representing the keys of the map
and a projection f that gives the value at each key. MapKeys re-
turns the keys of a map. The map index operator e[e] returns the
value of a given key in the given map. If the key is not in the map,
this operator returns a default value; e.g. false for booleans and the
empty set for bags.

We plan to extend Cozy with additional primitives for heaps,
trees, and other efficient data structures in the future. For the case
studies we examined, maps alone are sufficient to discover efficient
implementations.

3.2 Synthesis

Cozy attempts to synthesize a better implementation for each query
method in the specification, in parallel, with one thread per query.
A static cost model (Figure 6) defines “better” Whenever a thread
discovers a better implementation: (1) That implementation is im-
mediately passed through the incrementalization step, and new
queries it produces get new threads. (2) The whole specification
undergoes dead code elimination, and any old queries that were
eliminated have their threads terminated.

Each thread synthesizes improvements for its query using enu-
merative synthesis, an optimized form of brute-force search. The
core algorithm described here was pioneered by previous work [3,
28, 31], but Cozy employs several novel improvements. We describe
the core algorithm first, followed by our extensions.

Enumerative synthesis explores every possible expression in
Cozy’s output grammar, in order of size from smallest to largest.
For each expression, a verifier (e.g. Z3 [6]) checks whether the
expression satisfies the specification—that is, they always produce
the same result. If so, the expression is emitted. Then the search
continues to look for an even better solution. Since Cozy employs
bounded verification (described below), the verifier always produces
a result and never times out or returns unknown.

To make the search feasible, Cozy employs equivalence class
deduplication [16, 31], an optimization that skips most expressions
in the search space. The skipping is done safely so that Cozy never



ICSE ’18, May 27—June 3, 2018, Gothenburg, Sweden

State Expressions
costs(e) = number of AST nodes in e

Query Expressions

costp(e) | e is a state expression = 1

costp(x) = 1

costp(er op ez) = 1+ costp(er) + costplez)

costp(Filtery e) = 1 + costp(e) + card(e) X costo(p(x))
(x is a fresh variable)

costo(Z e) = 1+ costp(e) + card(e)

Facts About Cardinalities

Ve, card(e) > 0

Vx, card(x) > 1000 (if x is an abstract state variable)
card(0) =0

card({e}) =1

card(ey + e2) = card(e1) + card(ez)

unsat(|e1| > |e2|) — card(e1) < card(ez)

Partial Order on Costs

sat(c1 < c2) A —sat(ca < c1) > c1 <c2
(subject to the provable facts about all
cardinalities in formulas ¢; and c3)

Figure 6: Static cost model. In Cozy, costs are represented as
symbolic formulas over the cardinalities of various collec-
tions. Cozy uses a solver (sat and unsat functions) to order
costs.

misses a solution, if one exists. Equivalence class deduplication
requires a list of example inputs. In Cozy, an example input consists
of values for both the abstract state of the data structure and the
query arguments. The example inputs are produced by the veri-
fier: every time an expression fails verification, the verifier yields
a new example input. Cozy caches built expressions. Whenever
two expressions produce the same output on every example, Cozy
consults a static cost model (described below) to decide which to
keep. In this way, an expression’s set of outputs on the examples
puts it in an equivalence class, and only one representative of each
equivalence class is cached at any given time. Larger expressions
are only built out of those that survive this deduplication. Further-
more, Cozy only tries to verify expressions that produce correct
output on every example, reducing the number of calls to the ver-
ifier. Since the skipping is so aggressive, the search must restart
every time a new example is discovered to ensure that no solutions
are missed.

Cozy includes three novel additions to the core enumerative syn-
thesis algorithm: query-time distinction, a symbolic cost model, and
diversity injection. Additionally, since verification is undecidable for
our specification language, Cozy uses bounded verification instead
of full functional verification. This technique was also employed
by previous work [26].

Query-Time Distinction. Cozy’s query synthesis algorithm must
solve two intertwined problems: choosing a good representation for
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the data and choosing a good algorithm that exploits that represen-
tation. Our solution is to tag each node in a synthesized expression
as either a state expression or a query expression. The data structure
stores each state expression as a member and incrementally main-
tains it at each update operation. A query expression is evaluated
each time the query is called.

For instance, an expression to compute the length of a list could
be implemented in several different ways, depending on which
parts are tagged as state expressions:

>Map), ;S or XMap,,; S
—_ ——

state state

The first case indicates that the data structure stores the length
of S as a member and returns the stored value when the query is
called. The second case indicates that the data structure stores S
as a member and computes the length on-demand. Since these two
expressions are equivalent, only the lower-cost one—in this case,
the first—is kept during deduplication. Cozy’s cost model does not
account for the cost of maintaining the state; instead, that job is
delegated to the sub-queries generated during incrementalization.
Expressions that contain query arguments may not be tagged as
state expressions, since those values will not be available until the
query is executed.

Symbolic Cost Model. Figure 6 shows Cozy’s novel static cost
model. The cost model compares state expressions based on their
complexity in terms of the number of AST nodes (costs). It compares
query-time expressions based on their expected run time (cost).

Cozy represents costs as symbolic formulas involving the cardi-
nalities of various collections. For example, the cost of performing a
filter includes the cost of evaluating the predicate on every element
of the collection being filtered.

To determine the ordering between two costs c; and ¢z, Cozy
first makes solver calls to establish as many facts as possible about
all the cardinalities (i.e. calls to card) in each expression. Each call
to card can then be replaced by a fresh real-type variable. Using
these assumptions, Cozy then makes more solver calls. If there are
cases where ¢ is less than ¢; (sat(c1 < ¢2)) and no cases where ¢1
is more than ¢ (=sat(cz < c1)), then the expression having cost ¢;
should always be preferred over the expression having cost c;.

Diversity Injection. In practice, the enumerative synthesis algo-
rithm may take a long time to discover good solutions, especially for
languages like ours where expression size is not strongly correlated
with cost (that is, larger expressions may have lower cost). When
the syntax tree for the best solution is of size fifteen or twenty, stan-
dard enumerative synthesis may take many centuries to discover
it! For comparison, the syntax tree for the efficient implementation
of visible in Figure 2 requires 45 nodes.

To bias the search toward useful expressions, Cozy employs a
small number of handwritten diversity rules that inject new expres-
sions into the search procedure. Whenever Cozy considers a new
candidate expression, it also applies these rules and considers the
resulting expressions. The diversity rules do not need to be uni-
versally correct or efficient: incorrect expressions will be rejected
by the verifier, and inefficient expressions will be rejected by the
cost model. However, incorrect expressions are still cached to help
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Map Introduction

Filterpx f(x)=y X — (MakeMap(ﬂ.k.Filter}Lx.f(x):kX)Map/lxj'(x)X)[y]
Cleaners

Fi]tergx_pl (X)APy(x) X — Filtergx_pl(x) Filtergx_pﬂx) X

Filter 1. a(x)2b(x):c(x) X — Filterax. a(x)abx) X + Filterax —a(x)nc(x) X
Relevant Subset

X, v | v is a state variable — Filter ) x yeo X
Instantiation

e1, ey | visfreeine; — ej[v i e;]

Figure 7: Cozy’s diversity rules.

build larger expressions, as they might appear as subexpressions of
correct solutions later on.

Cozy uses the five diversity rules shown in Figure 7. These di-
versity rules are specialized to Cozy’s domain and are intended to
capture some intuitions human programmers might apply. “Map
introduction” converts some linear-time filter operations into effi-
cient map lookups. “Cleaners” put expressions into normal form,
which helps Cozy identify potential map lookups on later iterations.
The “relevant subset” rule converts a collection into the subset that
is already stored on the data structure. Finally, the “instantiation”
rule helps transfer insights about a variable to insights about other
expressions. For example, if Cozy has discovered the expressions
x € S and y, then y € S might also be important.

In practice, Cozy’s enumerative search machinery does not func-
tion well without the diversity rules and vice-versa. If the diversity
rules are disabled, Cozy does not find a good solution to any specifi-
cation for any of our subject programs within a three hour timeout.
Similarly if the diversity rules are applied without the rest of Cozy’s
enumerative search machinery, the search quickly runs out of new
expressions and stalls without ever finding a good solution.

Bounded Verification. It is undecidable to determine whether an
expression in Cozy’s language satisfies a specification. Thus, Cozy
employs bounded verification: collection-type variables are limited
to a fixed number of elements. In our experiments, we found a
limit of four to be sufficient to ensure correct solutions. This may
be thanks to the small-scope hypothesis [14], which proposes that
most program bugs can be exhibited with small inputs. There is
some evidence that the small scope hypothesis is true for simple
programs [4], and we found it to be true in our domain as well.

3.3 Incrementalization

After query synthesis picks a new representation for the data, the
incrementalization step restores proper functioning by adding code
to keep that representation up-to-date as the data structure changes.
Cozy’s incrementalize procedure accomplishes that goal by lever-
aging the existing query synthesis procedure.
In join from Section 2.4, Cozy updated s1 using the code
for k € altered_keys_sl(u, g):
sl[k] = new_value_for_key_sl(k, u, g)

Figure 8 shows the rules for Cozy’s incrementalize procedure. Since
s1 has a map type, Cozy uses the update sketch shown in the figure
for maps. An update sketch is a small snippet of imperative code
that updates the variable. An update sketch may require new query
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incrementalize(x, Cy ):
Input: old abstract state o and new abstract state o’
Output: code to update concrete state x

Type ‘ Update Sketch New Queries

q(...) = Cx(0’) = Cx(0)

Int xe—x+q(..)

for elem € q1(...) :

Ba x.del(elem) q1(...) = Cx(0) = Cx(d”)
& for elem € q(...) : q2(...) = Cx(c’) = Cx(0)
x.add(elem)
forkeq(...): q(...)=A{k|
M incrementalize( k € MapKeys(Cx(0)) U
P x[k], MapKeys(Cx(c”)).

A0.Cx(a)[k]) Cx(0)[k] # Cx(a")[k]}

other x —q(..) q(...) = Cx(c’)

Figure 8: Rules for incrementalize(x,Cy). Cx is the concret-
ization function for x. To update a map-type variable,
incrementalize is called recursively to determine how to up-
date the value at each changed key.

operations in order to function. In the case of maps, the update
sketch finds the keys whose values have changed and updates each
one in the map. Cozy introduces the new query altered_keys_sl
to compute which keys have changed.

Since the values in s1 are booleans, Cozy uses the fallback sketch
for “other” types to update each value. This rule uses a new query
new_value_for_key_s1 to compute—from scratch—a new value for
s1[k]. As discussed in Section 2.4, the new value for s1[k] is simply
true. In practice, new queries generated by incrementalize often
have short and efficient implementations.

3.4 Dead Code Elimination

When a better query implementation is found, some state variables
may go unused. The imperative operations that keep these variables
up-to-date are unnecessary, as are any queries required only by
those imperative operations, and so forth. The dead code elimina-
tion procedure is important; it frequently eliminates variables in
this manner as better query solutions are found.

To clean up unused state and operations, Cozy uses mark-and-
sweep. User-specified query operations start as roots. Any state
that they use is marked as relevant, and code to update that state
is also marked. Queries used by the update code are then marked,
and so on until fixed point. Finally any unmarked state, queries, or
update code can be safely removed.

3.5 Termination

The query synthesis procedure (Section 3.2) has no formal termina-
tion guarantees, and as a result, neither does Cozy itself. But since
the input specification is executable, Cozy always has a correct
solution and the synthesis process can be stopped at any time. Our
experiments used a fixed timeout of three hours for synthesis.
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4 EVALUATION

Cozy has three goals: to reduce programmer effort, to produce bug-
free code, and to match the performance of handwritten code. We
found that using Cozy requires an order of magnitude fewer lines of
code than manual implementation (Section 4.3), makes no mistakes
even when human programmers do (Section 4.4), and often matches
the performance of handwritten code (Section 4.5).

4.1 Methodology

For each of four real-world programs (Section 4.2), we

(1) identified an important, complex, handwritten data structure,

(2) manually wrote a Cozy specification,

(3) allowed Cozy a three-hour timeout to synthesize a new im-

plementation, and

(4) replaced the original data structure by the synthesized one.
Replacing handwritten code with Cozy-synthesized code required
some light refactoring in each program. For example, some program-
mers intertwine data structure code with I/O code. We disentangled
these, because Cozy does not synthesize I/O code. This refactoring
was only necessary because these projects did not use Cozy from
day one. Furthermore, we believe it results in better code style and
easier-to-understand abstractions.

We ran our experiments on a machine with 96 cores and 512 Gb of
memory. Cozy spawns one thread for each query in the specification
and runs fastest on a machine with at least that many cores, but does
not require it. The Openfire specification, our largest, has 12 query
operations, thus requiring 12 cores for fastest operation. Memory
usage steadily climbs the longer Cozy runs; we have observed it
reach 32 Gb in the worst case.

The three hour synthesis time does not slow down the edit-
compile-test cycle. Since Cozy specifications are executable, they
can be immediately translated into usable but inefficient code. Devel-
opers can code and test against the slow version to gain confidence
in their specification before running the full synthesizer. We made
use of this feature while writing specifications in our evaluation.

4.2 Subject Programs

ZTopo [32] is a topological map viewer implemented in C++. Its
cache of map tiles asynchronously loads map tiles over the network
and caches them on disk or in memory. The cache enables any other
part of the program to query for information about a given map
tile. ZTopo was also a target for previous data structure synthesis
work [11, 16]. Cozy is also able to synthesize two parts of the cache
that previous work could not. First, Cozy can synthesize the code
that accounts for the total disk and memory usage of cached map
tiles. Second, Cozy synthesizes a key operation to look up a single
element by its unique identifier. Previous tools implemented this
operation inefficiently by checking whether a computed collection
of results contained a single element or not.

Sat4j [17] is a Boolean satisfiability solver implemented in Java.
Its variable store tracks, among other things, when a guess was last
made about a variable’s value and whether any listeners are watch-
ing that variable’s state. Sat4j was also a target for previous data
structure synthesis work [16]. As with ZTopo, Cozy’s synthesized
implementation of the Sat4j data structure is a closer match to the
original than previous tools, requiring less wrapper code.
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Table 1: Programmer effort. LoC measurements do not in-
clude comments or whitespace.

Hand-written Cozy
Project Span  Commits LoC | LoC
ZTopo 1 week 15 1024 41
Sat4j 8 years 22 195 42
Openfire | 10 years 47 1992 157
Lucene 13 years 20 68 36

Openfire [13] is a large, scalable IRC server implemented in
Java. Its in-memory contact manager is extremely complex. Users’
contacts can be either explicit (added by users manually) or im-
plicit (present due to users’ group memberships). Furthermore, the
contact manager must keep its state in sync with the underlying
database as users and groups are created, modified, and deleted.
This logic has been a frequent source of bugs [30]. Openfire’s im-
plicit contacts require computing information about two distinct
collections (users and groups), and thus cannot be handled by any
previous tool.

Lucene [29] is a search engine back end implemented in Java.
Lucene uses a custom data structure that consumes a stream of
words and aggregates key statistics about them. The data structure
has an add method that is called once for each token instead of
getting the tokens as one big list. The logic for handling each token
is tricky since the data structure needs to to be queryable between
calls to its add method. Cozy helps avoid the logic in the add method
by having a clean specification that describes the abstract state as
a bag of tokens and descriptions of the queries that matter.

4.3 Programmer Effort

We do not know how much time programmers spent implement-
ing and debugging the hand-written data structures, but it was
significant. Table 1 shows the size of each implementation, in non-
comment non-blank lines of code. It also reports how many commits
contributed to the current version of the data structure implemen-
tation, and across how much time those commits were made. The
long time periods are because Sat4j, Openfire, and Lucene are es-
tablished projects and still undergoing active maintenance. In all
three, however, bug fixes have been made to the data structure in
the last five commits, indicating that full functional correctness has
been difficult to achieve.

The Cozy specifications are an order of magnitude shorter than
the manual implementations. Most of our time was spent reverse-
engineering to understand the undocumented existing implementa-
tion; once we understood it, writing the specification was quick. For
example, writing, integrating, and testing the ZTopo and Sat4j spec-
ifications took less than a day each. The Openfire roster manager
was more challenging because we had to first formalize the implicit
contacts function, a task the developers never carried out. We
already understood the Cozy specification language (Section 3.1),
but we believe that a programmer could learn it more quickly than
it took us to reverse-engineer any one of the programs.

Because the specifications are shorter, simpler, and more abstract,
they are much easier to understand. Programmers writing speci-
fications are therefore less likely to make mistakes, and mistakes
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Table 2: Correctness results. ZTopo has no dedicated issue
tracker.

Project Issues New defects found
ZTopo n/a No
Sat4j 7 No
Openfire 25 Yes
Lucene 1 No

will be easier to discover, diagnose, and correct. The specifications
also serve as concise, unambiguous documentation.

4.4 Correctness

Cozy might produce an incorrect data structure because of its use
of bounded verification. We also might have made an error when
writing the specification. To check the correctness of the Cozy-syn-
thesized data structures, we ensured that all tests in each project still
pass. ZTopo, Openfire, and Lucene have no tests that cover the data
structure we replaced. For these projects we verified that our syn-
thesized data structure behaves identically to the original implemen-
tation during execution of the benchmarks we used in Section 4.5.

Table 2 lists how many data-structure-related issues in each
project’s respective issue tracker might have been prevented by
Cozy. Most issues relate to defective update code putting the data
structure in a bad state. Cozy is perfectly positioned to prevent those
defects: changes to a data structure’s abstract state are much easier
to specify than the code that updates an optimized representation.
We now discuss some of these issues.

Sat4j’s variable metadata storage has suffered both performance
and functional correctness issues in the past that Cozy avoids. Today
Sat4j has a test suite that achieves 89% statement coverage on the
data structure we replaced, and Cozy’s synthesized implementation
passes all tests.

Of Sat4j’s seven reported issues, five relate to update code. Sat4j’s
data structure includes several arrays of data that grow exponen-
tially as entries are added, and the logic to grow them and keep the
capacity information up-to-date proved tricky to get right. The data
structure also supports a reset () method to clear all of its internal
state, but developers did not properly revise its implementation
when they introduced new state variables. Cozy can prevent these
kinds of problems since the programmer does not need to maintain
the concrete representation.

Openfire, having a more complex data structure, has been even
more difficult to get right. Section 2 presented only a simplified
portion of the Openfire roster manager specification. The full spec-
ification has additional rules and visibility modes for groups. In
particular, a user u; is visible to a user uy if any one of four different
conditions are met: (1) the users have added each other as explicit
contacts, (2) u; is in a group with visibility set to Everyone, (3) both
users share a group with visibility set to OnlyGroup, or (4) u; isin a
group g4 with visibility set to OnlyGroup and uy is a member of a
group gp configured to have visibility onto g4.

This definition gives rise to two kinds of roster items: explicit
items due to condition 1 and implicit items due to conditions 2-4.
The manually written implementation makes a trade-off: all explicit
items plus implicit items due to conditions 2 and 3 are held as
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Table 3: Performance results. All times are in seconds.

Project Time (orig.) Time (Cozy)
ZTopo 5 5
Satdj 53 61
Openfire 16 15
Lucene 9 9

concrete objects in memory, but implicit items due to condition 4 are
constructed on-demand to save memory. Developers had to write
a large amount of code to keep the implicit contacts correct when
groups change visibility or when group membership changes. That
code has been a frequent source of defects, and still has open issues.
For example, one issue still open at time of writing reports that
when administrators delete a user without first manually removing
her from all of her groups, she remains in other users’ contact lists.!
Other issues were caused by the stored state of the roster getting
out-of-sync with the abstract state of the roster. By contrast, a Cozy
programmer does not need to write the update code; Cozy discovers
its own data representation and determines how to update it in
response to changes.

Additionally, we discovered multiple new failures while replac-
ing the original implementation.? For example, the original imple-
mentation makes it possible to create a situation in which two users
see different views of the roster: according to one user, both are
visible to each other, while according to another, there is only a
one-way visibility. The synthesized implementation does not suf-
fer from these problems. We do not know how many source code
defects contribute to the observed failures.

Even Lucene’s small data structure has been a source of defects.
Overlapping words caused some of its internal statistics to become
corrupted because the original developers did not foresee this pos-
sibility. Our Cozy implementation handles this case gracefully; the
natural way to specify Lucene’s operations does not have the defect.

4.5 Performance

We measured the performance of the handwritten and synthesized
implementations on realistic workloads. Table 3 reports the wall-
clock time required to run each benchmark to completion. The
benchmarks are end-to-end, and include application behavior in
addition to the data structure itself; the resulting time, therefore,
represents the overall effect on each program from using the syn-
thesized data structure.

Our benchmarks for ZTopo and Sat4j are the same ones used to
evaluate an earlier iteration of Cozy [16]. The ZTopo benchmark
is a log of recorded application usage that we replay. The Cozy-
synthesized implementation of the ZTopo tile cache matches the
performance of the existing implementation almost exactly. The
handwritten and synthesized implementations are conceptually
identical: both store map tiles in linked lists grouped by tile type.
The dominant factor affecting performance is the speed of finding
tiles by unique ID, which both implementations do using a hash
table.

!https://issues.igniterealtime.org/browse/OF-1121
Zhttps://community.igniterealtime.org/thread/60317
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Sat4j’s benchmark suite consists of eleven randomly-selected in-
put files from the 2002 boolean satisfiability solver competition [18,
22]. The synthesized data structure for Sat4j under-performs the
existing implementation. The handwritten code exploits some facts
about the data that Cozy does not know: in Sat4j, variable IDs can
be used as indexes into an array since they always fall between zero
and a known maximum bound. This interacts poorly with Cozy’s
total semantics for map lookups. At code generation time, Cozy
must insert safety checks at every map lookup. In Sat4j those safety
checks are unnecessary and harm performance substantially.

Our benchmark for Openfire is a replayed sequence of actions
against its admin panel that offers direct access to the internal
roster data structure, where users, groups, and explicit contacts
can be modified. The synthesized structure improves performance
slightly. There are several contributing factors, but the dominant
one is that the synthesized data structure can avoid a number of
expensive internal representation checks. To improve correctness,
the handwritten implementation will often clean up its own state,
which imposes some overhead. By generating correct code, Cozy
avoids these internal checks.

Our benchmark for Lucene is a series of operations on artificial
data. Cozy’s synthesized data structure for Lucene is very similar
to the manually written one, leading to identical performance.

5 RELATED WORK

The data structure synthesis problem dates to the 1970s and iterator
inversion, a technique for constructing data structures to acceler-
ate iterative operations [9, 10]. Our syntax for queries is similar
to that found in Earley’s work, although our techniques are sub-
stantially more powerful. Iterator inversion required handwritten
rewrite rules, while Cozy’s exhaustive search discovers complex
transformations unaided.

The developers of the SETL language took a different approach
by splitting it into a pure language and a representation sub-language.
The sub-language specifies what structures to use when running
pure code [8, 19, 20]. More recently, researchers have investigated
dynamic techniques to achieve the same effect [21]. Beyond simply
choosing better existing implementations of an interface, Cozy can
implement more complex interfaces that require composing data
structure representations.

Modern program synthesis techniques have been applied to low-
level data structure code [23, 27]. These techniques can help to write
pointer and array manipulations but, unlike our work, require the
programmer to choose a data representation in advance.

More recently, researchers have made headway on synthesizing
complete data structures. RelC [11] constructs data structure imple-
mentations that track subsets of a collection. It was later extended
to produce safe concurrent data structures [12]. An earlier version
of Cozy [16] used a custom “outline language” to describe data struc-
ture implementations and was able to synthesize data structures
with richer specifications than RelC. By generalizing to arbitrary
expressions and concretization functions, Cozy can now synthesize
a far wider class of data structures, including the data structures for
Openfire and Lucene that require multiple related collections and
aggregation operators. To gain this expressiveness we have given
up decidability, relying instead on bounded verification.
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RelC and earlier versions of Cozy had a tuning step that used a
user-supplied benchmark to make low-level optimizations. Cozy
no longer has this step. Its effectiveness was never fully evaluated
and our powerful symbolic cost model now fills the role. Some data
structures that Cozy originally supported have also been dropped.
These were not necessary for the case studies we explored, but we
plan to reimplement them to extend Cozy’s applicability.

Cozy’s high-level algorithm resembles programming by refine-
ment (PBR), in which programs are produced by manual iterative
modifications to an initial specification. Unlike PBR tools such as
KIDS [24], Designware [25], and Fiat [7], each refinement iteration
that Cozy makes may bear little resemblance to the implementa-
tion before it. This is because Cozy enumerates possible solutions
in a fixed order rather than transforming the input specification.
Furthermore, Cozy requires no manual effort beyond writing a spec-
ification. The cost of this simplicity is that Cozy cannot produce
many of the more complicated algorithms derived by PBR systems.
However, Cozy can automate parts of the job, specifically the “finite
differencing” and “data type refinement” tasks [24].

The transformations that Cozy performs are akin to the index
selection and view maintenance problems in database systems. Index
selection is the task of choosing useful indexes to speed up desired
queries. AutoAdmin [1, 5] solves the problem by enumerating many
possible indexes and using a query planner to decide which work
best. As a result, AutoAdmin is limited by the set of optimization
rules available to the query planner.

View maintenance is the problem of keeping an index or material-
ized view up-to-date as the data changes. Materialized views are sim-
ilar to Cozy’s concretization functions: they can be computed from
the original state of the database. DBToaster [2] implements a very
efficient view maintenance system. More recently, the same team
has worked on generalizing these ideas to collections, including
nested collections [15]. While it is possible to augment Cozy with
these techniques, Cozy’s enumerative synthesizer generally discov-
ers those same solutions without the need for manual rewrite rules.

6 CONCLUSION

Cozy is effective because incrementalization allows it to implement
both pure and imperative operations using only a query synthe-
sizer. A high-quality cost function and diversity injection make the
query synthesizer powerful and practical. As a result, Cozy does
not need clever analyses or transformation rules. Our case studies
demonstrate that data structure synthesis can improve software
development time, correctness, and efficiency.
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