
Generalized Data Structure Synthesis

Calvin Loncaric
loncaric@cs.washington.edu

Paul G. Allen School of Computer
Science & Engineering

University of Washington
Seattle, WA, USA

Michael D. Ernst
mernst@cs.washington.edu

Paul G. Allen School of Computer
Science & Engineering

University of Washington
Seattle, WA, USA

Emina Torlak
emina@cs.washington.edu

Paul G. Allen School of Computer
Science & Engineering

University of Washington
Seattle, WA, USA

ABSTRACT

Data structure synthesis is the task of generating data structure

implementations from high-level specifications. Recent work in

this area has shown potential to save programmer time and reduce

the risk of defects. Existing techniques focus on data structures for

manipulating subsets of a single collection, but real-world programs

often track multiple related collections and aggregate properties

such as sums, counts, minimums, and maximums.

This paper shows how to synthesize data structures that track

subsets and aggregations of multiple related collections. Our tech-

nique decomposes the synthesis task into alternating steps of query

synthesis and incrementalization. The query synthesis step imple-

ments pure operations over the data structure state by leveraging

existing enumerative synthesis techniques, specialized to the data

structures domain. The incrementalization step implements imper-

ative state modifications by re-framing them as fresh queries that

determine what to change, coupled with a small amount of code

to apply the change. As an added benefit of this approach over

previous work, the synthesized data structure is optimized for not

only the queries in the specification but also the required update op-

erations. We have evaluated our approach in four large case studies,

demonstrating that these extensions are broadly applicable.

CCS CONCEPTS

· Theory of computation→Data structures design and anal-

ysis; · Software and its engineering → Source code genera-

tion;

KEYWORDS

Program synthesis, automatic programming, data structures

ACM Reference Format:

Calvin Loncaric, Michael D. Ernst, and Emina Torlak. 2018. Generalized Data

Structure Synthesis. In ICSE ’18: 40th International Conference on Software

Engineering, May 27śJune 3, 2018, Gothenburg, Sweden. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180211

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27śJune 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180211

1 INTRODUCTION

Many programming tasks can be framed as data structure prob-

lems, especially in domains like user interfaces or web services

where software must manage some internal state and also handle

asynchronous events. Manually implementing complex application-

specific data structures can be time-consuming and error-prone.

Recent research seeks to automatically synthesize data structure

implementations from high-level specifications, thus ensuring cor-

rectness and run-time efficiency with minimum programmer ef-

fort [11, 12, 16]. Existing techniques can synthesize only a narrow

range of data structuresÐthose that retrieve a subset of a single

collection. Such a simple API limits their applicability, as real-world

software often has more complex requirements.

For example, the chat server Openfire [13] uses a custom in-

memory data structure to represent a many-to-many relationship

between users and groups. This data structure needs to answer

many different kinds of queries efficiently, such as which users

belong to a given group or whether any two users share a group. It

also needs to keep itself up-to-date as users and groups are added,

removed, and renamed. Despite its complex implementation, Open-

fire’s user management code has a simple specification. In general,

data structure specifications are much smaller than their imple-

mentations because they do not need to manage memory or be

algorithmically efficient.

This paper presents a new technique for data structure synthesis

that overcomes many of the limitations of previous work. Our tool

Cozy can synthesize implementations for complex multi-collection

data structuresÐincluding those found in OpenfireÐfrom high-level

specifications. Like previous work, a Cozy specification declares the

abstract state (what information the data structure stores), queries

(methods that perform pure computations on the state), and updates

(methods that modify the state) that the data structure must support.

Cozy then produces source code that developers can use right away.

In previous work, implementations for update methods were

hard-coded [16] or derived using a set of hand-written rules [11].

In Cozy, update methods are synthesized rather than hardcoded.

This enables Cozy to discover more specialized data representations

than previouswork, since Cozy can choose different representations

depending on what kinds of updates appear in the specification.

Our technique iteratively improves the data structure specifica-

tion using two cooperating components: a query synthesizer that

selects a better representation and implementation for each query

method and an incrementalization step that ensures the new rep-

resentation is kept up-to-date when an update method is called.

Crucially, the incrementalization step can produce specifications

for new query operations to help implement the update procedure.

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Calvin Loncaric, Michael D. Ernst, and Emina Torlak

q1(…) = implnew

q2(…) = impl

u1(…) =

 update_s1;

 update_s2;

 update_s3;

Implementation

q1(…) = implnew

Spec

Find an improvement

Implementation

s1 : t1
s2 : t2

q1(…) = impl

= C1(…)
= C2(…)

Implementation Implementation

Stop on timeout
Construct initial

implementation

Incomplete

Implementation

s1 : t1

s2 : t2

s3 : t3

= C1(…)

= C2(…)

= C3(…)

Implementation

Query

Synthesis
u1(…) =

 update_s1;

 update_s2;

u1(…) =

 update_s1;

 update_s2;

Incremental-

ization

Dead code

elimination

s1 : t1

s2 : t2

s3 : t3

= C1(…)

= C2(…)

= C3(…)

u1(…) =

 update_s1;

 update_s3;

s1 : t1

s3 : t3

= C1(…)

= C3(…)

q1(…) = implnew

q2(…) = impl

new code

uses s1, s3
uses s1, s2

update code

calls q2

Figure 1: Architecture of Cozy. Each iteration through the loop performs query synthesis, incrementalization, and dead code

elimination. Figure 2a shows example input, and Figures 2b and 3 show the corresponding output.

Cozy thus uses the query synthesizer to implement both pure query

operations and imperative updates. Our technique is agnostic to the

exact implementations of the query synthesizer and incremental-

ization step; Section 3 gives a detailed explanation of the concrete

choices we made for Cozy.

The query synthesizer and incrementalization step interact using

concretization functions. A concretization function expresses a data

structure’s representationÐits concrete stateÐas a function of its ab-

stract state. For example, the following concretization function rep-

resents the count of elements in an abstract set S : C(S) =
∑

x ∈S 1 .

Concretization functions allow Cozy to reason about the effects

of updates in pure mathematical terms. The imperative opera-

tion S.remove(e)Ðwhich removes an instance of e from S if any is

presentÐcauses a change to the data representation. The new value

of the count thus becomes C(S ′) = C(S − {e}) =
∑

x ∈(S−{e }) 1 .

Cozy’s query synthesis step outputs both an efficient implemen-

tation for each query and a set of concretization functions indicating

how the data should be represented. The incrementalization step

then uses the concretization functions to produce a specification

of the change to the concrete state as a result of each update. For

the case of S.remove(e), the change specification is the amount by

which the count changes: C(S ′)−C(S). These change specifications

are queries over the abstract state of the data structure, and to

implement them Cozy repeats the query synthesis step. The tool

proceeds in this loop until exhausting its time budgetÐthree hours

for our evaluation.

Contributions

• A high-level data structure synthesis algorithm with alter-

nating steps of query synthesis and incrementalization (ğ2).

• Query synthesis and incrementalization algorithms (ğ3).

• An implementation, called Cozy (https://cozy.uwplse.org).

• Four real-world case studies that evaluated Cozy’s effect on

development time, correctness, and efficiency (ğ4).

2 OVERVIEW

This section illustrates Cozy’s high-level algorithm using a simpli-

fied example of a real-world data structure from Openfire. The data

structure that manages users’ contacts has been a frequent source of

bugs (Section 4.4). Cozy can synthesize a complete implementation

for Openfire’s data structure given its specification.

Cozy uses the algorithm shown in Figure 1. It takes as input

an executable specification of the data structure (Section 2.1), con-

structs an initial implementation (Section 2.2), and then iteratively

improves its implementation using alternating steps of query syn-

thesis (Section 2.3) and incrementalization (Section 2.4). A dead

code elimination step (Section 2.5) prunes dead code as synthesis

progresses.

2.1 Specification

Figure 2a shows a complete Cozy specification for part of the Open-

fire contact management data structure. It would be used as the

input to Figure 1. In the specification, state declarations describe

the abstract state of the data structure, query declarations spec-

ify methods that compute values using the abstract state, and op

declarations specify methods that alter the abstract state. Methods

may also include assumptions (preconditions) about their inputs. In

some cases, Cozy can produce better implementations by leveraging

these assumptions, but they are optional for specification writers.

Callers must ensure that the assumptions hold at each call site.

In Openfire, users’ contact lists are implicit and are computed

based on the groups that each user belongs to. The data structure

must be able to efficiently answer the question łshould user u1
appear in the contacts of user u2?ž for any u1 and u2. The query

method visible in Figure 2a defines this relationship: u1 is visi-

ble to (i.e. appears in the contacts of) u2 if there exists a group

д of which u1 is a member and either д has been made visible to

everyone (д.visibility == Everyone) or u2 is also a member of д.

Generalized Data Structure Synthesis ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

// Abstract state

state users : Set<User>

state groups : Set<Group>

state members : Set<(User, Group)>

// Query definition

query visible(u1, u2 : User):

assume u1 ∈ users

assume u2 ∈ users

return (exists [д | д ← groups,

(u1, д) ∈ members and (

д.visibility == Everyone or

(u2, д) ∈ members)])

// Update operation definition

op join(u : User, д : Group):

assume u ∈ users

assume д ∈ groups

assume (u, д) < members

members.add((u, д))

(a)

// Users who are ∈ some group whose

// visibility is "Everyone"

state s1 : Map<User, Bool>

// Map from users to the groups of

// which each one is a member

state s2 : Map<User, Bag<Group>>

// Map from (user, group) tuples to

// boolean indicating whether that

// user is a member of that group

state s3 : Map<(User, Group), Bool>

// Now-unused state

state v1 : Set<User>

state v2 : Set<Group>

state v3 : Set<(User, Group)>

// New code

query visible(u1, u2 : User):

return (s1[u1] or

exists Filterλд .s3[(u2,д)] s2[u1])

(b)

Cs1(users, groups, members) =

MakeMapf users

where

f = λu . exists Filterp(u) members

p(u) = λ(v, д) . u == v and

д.visibility == Everyone

Cs2(users, groups, members) =

MakeMapд users

where

д = λu . Filterq(u) members

q(u) = λ(v, д) . u == v and

д.visibility , Everyone

Cs3(users, groups, members) =

MakeMapλm .true members

Cv1(users, groups, members) = users

Cv2(users, groups, members) = groups

Cv3(users, groups, members) = members

(c)

Figure 2: (a) An example input to Figure 1 that specifies the Openfire user and group management data structure. (b) New

implementation of visible after several query synthesis steps. Cozy does not produce the comments, which we added for

clarity. Since incrementalization and dead code elimination have not yet run, the implementation does not properly update

the new state variables s1, s2, and s3 and still contains some unused state variables. (c) Concretization functions for the new

implementation.

This example has been simplified; our experiments (Section 4) use

a full specification of the data structure that also includes explicit

contacts and additional visibility modes for groups.

As specified, visible runs inO(|groups| × |members|) time. Cozy

creates a more efficient implementation for visible (Figure 2b) that

runs in O(д) time, where д is the maximum number of groups that

any one user is a member of.

2.2 Initial Implementation

Whenever Cozy chooses a data representation, it also creates, for

each field in the representation, a concretization function that com-

putes the field’s representation from the abstract state. Since Cozy

specifications are executable, they can be converted to implementa-

tions whose concrete state is the same as the abstract state. For the

specification in Figure 2a, Cozy’s initial implementation has the

variables v1, v2, and v3 and trivial concretization functions:

Cv1(users, groups, members) = users

Cv2(users, groups, members) = groups

Cv3(users, groups, members) = members

Each query and update operation can be rewritten in terms of v1,

v2, and v3 by simple substitution. The visible method becomes

query visible(u1, u2 : User):

assume u1 ∈ v1

assume u2 ∈ v1

return (exists [д | д ← v2,

(u1, д) ∈ v3 and (

д.visibility == Everyone or

(u2, д) ∈ v3)])

While renaming the abstract members to v1, v2, v3 does not func-

tionally change the specification, it creates initial concretization

functions for later steps to consume.

2.3 Query Synthesis

Cozy synthesizes an implementation by iteratively finding improve-

ments to the data structure. The query synthesis step in Figure 1

makes an improvement to some non-deterministically chosen query

operation on the data structure. Section 3.2 discusses how Cozy

makes the choice and the improvement.

Figure 2 shows output from one of the query synthesis steps, i.e.,

an improvement to the query visible that uses a new representa-

tion and has associated concretization functions.

The query synthesis step may introduce new state variables, but

it does not drop unused ones. In Figure 2, the red state variables s1,

s2, and s3 are new; v1, v2, and v3 are now unused. The dead code

elimination pass will eliminate the unused variables later.

The new variables’ concretization functions are more complex

than the trivial ones introduced for the initial implementation. The

state variable s1, for instance, has the concretization function Cs1,

which uses the MakeMap primitive to construct a new map from

users to Booleans. The MakeMap primitive takes a collection of

keys (users) and a value function (f) and builds a map where each

key u ∈ users is associated with value f (u). For s1, the value is true

if the user is a member of a group with visibility set to łEveryonež.

In Cozy, maps are total. Lookups on missing keys return a default

value: false for booleans, the empty set for sets, and so on. Thus,

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Calvin Loncaric, Michael D. Ernst, and Emina Torlak

op join(u : User, д : Group):

join_s1(u, д)

join_s2(u, д)

join_s3(u, д)

join_v1(u, д)

join_v2(u, д)

join_v3(u, д)

private op join_s1(u : User, д : Group):

for k ∈ altered_keys_s1(u, д):

s1[k] = new_value_for_key_s1(k, u, д)

// The join_s2 and join_s3 implementations have

// been omitted for brevity.

private op join_v1(u : User, д : Group): // no-op

private op join_v2(u : User, д : Group): // no-op

private op join_v3(u : User, д : Group): v3.add((u, д))

(a)

// Find keys of map s1 whose values

// change when user u joins group g.

private query altered_keys_s1(u : User, д : Group):

assume u ∈ users

assume д ∈ groups

assume (u, д) < members

return [k | k ← MapKeys(s1) ∪ MapKeys(s1′),

s1[k] , s1′[k]]

// Compute a new value at key k ∈ s1 when user u joins group g.

private query new_value_for_key_s1(k, u : User, д : Group):

assume u ∈ users

assume д ∈ groups

assume (u, д) < members

assume s1[k] , s1′[k]

return s1′[k]

// Sub-queries for s2 and s3 have been omitted for brevity.

(b)

Figure 3: (a) Implementation of the join update operation and (b) new sub-queries that need to be synthesized. The variable

s1′ is defined as the new value of s1 after join is called: Cs1(users
′
, groups′, members′).

the expression s1[u1] efficiently determines whether user u1 is a

member of a group with visibility set to łEveryonež.

The concretization functions shown in Figure 2c will become

the implementation of the constructor for the data structure. The

constructor takes the abstract state as input and initializes the

concrete state. Furthermore, the concretization functions enable

incrementalization.

2.4 Incrementalization

The query synthesis step creates an incorrect data structure: the

new state variables s1, s2, and s3 are not kept up-to-date when join

is called. The incrementalization step restores correct functioning

by adding code to join that updates the new state variables. The

new code must preserve the concretization functions in Figure 2c.

A simple but inefficient solution would be to recompute the value

of each concrete state variable from scratch. Because an update

usually makes a small change to the abstract state, Cozy produces

an incremental update that makes small changes to the concrete

state in response to a small change to the abstract state.

To incrementally update the concrete state, Cozy rephrases the

update procedure as a set of queries that compute what changes

should take place, plus a simple hardcoded snippet that applies

those computed changes. A previous approach applied this same

idea to synthesize remove operations [11], but with concretization

functions it can be generalized to insertions and other updates as

well. Our approach also allows for more complex update procedures

like those that applymultiple changes at once or onlymake a change

under certain conditions.

Figure 3a shows the code that Cozy produces to update the

concrete state as a result of a user joining a group. Each concrete

state variable gets its own update procedure (e.g. join_s1 for s1).

The code for join_s1 is not synthesized; it comes from a lookup

table (Section 3.3). However, the new code uses two fresh query

operations altered_keys_s1 and new_value_for_key_s1 (Figure 3b)

that determine what changes to apply. The former computes the

set of map keys whose values change, and the latter computes the

new value for each key. These two queries are added to the data

structure specification, and thus they will be optimized by the query

synthesizer on subsequent iterations.

The definitions of the fresh queries make use of both the old

value of s1 and the new value s1′. The new value is computed

using the specification of join and the concretization functions.

Mathematically, join sets the abstract state to

users′ = users; groups′ = groups; members′ = members ∪ {(u, д)}

and thus the new value s1′ must be

s1′ = Cs1(users
′, groups′, members′) =

MakeMapf users

where

f = λu . exists Filterp(u) (members ∪ {(u, д)})

p(u) = λ(v, д) . u == v and д.visibility == Everyone

Figure 3b shows the specifications for altered_keys_s1 and new_-

value_for_key_s1, which are inefficient. On later iterations, Cozy’s

query synthesizer discovers efficient implementations for both.

Specifically, Cozy implements altered_keys_s1 to return the sin-

gleton set {u} ifд has visibility Everyone andu is not already in such

a group, or ∅ otherwise. Cozy implements new_value_for_key_s1

to simply return true.

The implementations of altered_keys_s1 and new_value_for_-

key_s1 do not require additional concrete state. In general, however,

new concrete state might be generated for the fresh queries in later

iterations, requiring another phase of incrementalization.

2.5 Dead Code Elimination

At each iteration, Cozy cleans up unused state variables and opera-

tions. For instance, the state variable v2 can be eliminated since it

is never read. All code that keeps v2 up-to-date can be eliminated

as well. Cozy also deduplicates state variables and fresh queries.

Duplicates happen in cases where the same concrete state is useful

to multiple different query operations.

Generalized Data Structure Synthesis ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

spec F name : specifications

s1, s2, ...

invariant e

m1,m2, ...

s F x : τ abstract state

τ F Int | Bool | String basic types

| Enum {case1, case2, ...} enumerations

| ⟨τ1,τ2, ...⟩ tuples

| { f1 : τ1, f1 : τ2, ...} records

| Bag⟨τ ⟩ bags (multisets)

m F query q(args...) : queries

assume e;

return e;

| op u(args...) : updates

assume e;

stmt;

stmt F x ← e assignment

| x .add(e) insertion

| x .rm(e) deletion

| if e : stmt conditional

| stmt; stmt sequencing

e F x variables

| e == e | e < e | ... comparisons

| e ∧ e | e ∨ e | ¬e bool operations

| e ? e : e conditionals

| e + e | e − e arithmetic

| (e, e, ...) | e .n tuples

| { f : e, f : e, ...} | e . f records

| ∅ | {e} | e ∪ e | e − e bag operations

| Mapf e | Filterf e map and filter

| FlatMapf e map union

| Σ e sum

| Distinct e remove duplicates

| ArgMinf e | ArgMaxf e min and max

f F λx .e lambda abstraction

Figure 4: Core specification language spec.

3 DETAILS

Cozy iteratively improves a specification (Section 3.1) to produce

an implementation. At each iteration Cozy attempts to find an

improvement to some query (Section 3.2). The improvement may

require new concrete state, which must be properly maintained in

each update method (Section 3.3). Finally, unused state and code

are removed (Section 3.4).

3.1 Specification and Output Languages

Figure 4 shows the core specification language. All input specifica-

tions are desugared to this core language (Figure 5). Cozy’s output

language is a superset of its input language that includes additional

constructs for maps:

τ ::= Map⟨τ ,τ ⟩

e ::= MakeMapf e | MapKeys e | e[e]

len(X) → Σ Mapλx .1 X

empty(X) → len(X) = 0

areUnique(X) → X = Distinct X

∀x ∈ X ,p(x) → empty(Filter¬p X)

∃x ∈ X ,p(x) → ¬empty(Filterp X)

x ∈ X → ∃y ∈ X ,y = x

[f (x) | x ∈ X ,p(x)] → Mapf Filterp X

[f (x ,y) | x ∈ X ,y ∈ Y] → FlatMapλx .Mapλy .f (x,y) Y
X

Figure 5: Expressions that Cozy accepts in input specifica-

tions but desugars into simpler forms. Cozy supports ar-

bitrary list comprehensions, though only two examples of

desugaring list comprehensions are shown.

Maps could be included in the input language, but they are not

needed: a comprehension can group and look up values in a declar-

ative rather than procedural manner. This clarifies what each ex-

pression computes and reduces the number of invariants that pro-

grammers need to maintain. In the output language, the MakeMap

primitive takes an expression e representing the keys of the map

and a projection f that gives the value at each key. MapKeys re-

turns the keys of a map. The map index operator e[e] returns the

value of a given key in the given map. If the key is not in the map,

this operator returns a default value; e.g. false for booleans and the

empty set for bags.

We plan to extend Cozy with additional primitives for heaps,

trees, and other efficient data structures in the future. For the case

studies we examined, maps alone are sufficient to discover efficient

implementations.

3.2 Synthesis

Cozy attempts to synthesize a better implementation for each query

method in the specification, in parallel, with one thread per query.

A static cost model (Figure 6) defines łbetter.ž Whenever a thread

discovers a better implementation: (1) That implementation is im-

mediately passed through the incrementalization step, and new

queries it produces get new threads. (2) The whole specification

undergoes dead code elimination, and any old queries that were

eliminated have their threads terminated.

Each thread synthesizes improvements for its query using enu-

merative synthesis, an optimized form of brute-force search. The

core algorithm described here was pioneered by previous work [3,

28, 31], but Cozy employs several novel improvements. We describe

the core algorithm first, followed by our extensions.

Enumerative synthesis explores every possible expression in

Cozy’s output grammar, in order of size from smallest to largest.

For each expression, a verifier (e.g. Z3 [6]) checks whether the

expression satisfies the specificationÐthat is, they always produce

the same result. If so, the expression is emitted. Then the search

continues to look for an even better solution. Since Cozy employs

bounded verification (described below), the verifier always produces

a result and never times out or returns unknown.

To make the search feasible, Cozy employs equivalence class

deduplication [16, 31], an optimization that skips most expressions

in the search space. The skipping is done safely so that Cozy never

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Calvin Loncaric, Michael D. Ernst, and Emina Torlak

State Expressions

costS(e) = number of AST nodes in e

Query Expressions

costQ(e) | e is a state expression = 1

costQ(x) = 1

costQ(e1 op e2) = 1 + costQ(e1) + costQ(e2)

costQ(Filterp e) = 1 + costQ(e) + card(e) × costQ(p(x))

(x is a fresh variable)

costQ(Σ e) = 1 + costQ(e) + card(e)

...

Facts About Cardinalities

∀e, card(e) ≥ 0

∀x , card(x) ≥ 1000 (if x is an abstract state variable)

card(∅) = 0

card({e}) = 1

card(e1 + e2) = card(e1) + card(e2)

unsat(|e1 | > |e2 |) → card(e1) ≤ card(e2)

Partial Order on Costs

sat(c1 < c2) ∧ ¬sat(c2 < c1) → c1 ≺ c2
(subject to the provable facts about all

cardinalities in formulas c1 and c2)

Figure 6: Static cost model. In Cozy, costs are represented as

symbolic formulas over the cardinalities of various collec-

tions. Cozy uses a solver (sat and unsat functions) to order

costs.

misses a solution, if one exists. Equivalence class deduplication

requires a list of example inputs. In Cozy, an example input consists

of values for both the abstract state of the data structure and the

query arguments. The example inputs are produced by the veri-

fier: every time an expression fails verification, the verifier yields

a new example input. Cozy caches built expressions. Whenever

two expressions produce the same output on every example, Cozy

consults a static cost model (described below) to decide which to

keep. In this way, an expression’s set of outputs on the examples

puts it in an equivalence class, and only one representative of each

equivalence class is cached at any given time. Larger expressions

are only built out of those that survive this deduplication. Further-

more, Cozy only tries to verify expressions that produce correct

output on every example, reducing the number of calls to the ver-

ifier. Since the skipping is so aggressive, the search must restart

every time a new example is discovered to ensure that no solutions

are missed.

Cozy includes three novel additions to the core enumerative syn-

thesis algorithm: query-time distinction, a symbolic cost model, and

diversity injection. Additionally, since verification is undecidable for

our specification language, Cozy uses bounded verification instead

of full functional verification. This technique was also employed

by previous work [26].

Query-Time Distinction. Cozy’s query synthesis algorithm must

solve two intertwined problems: choosing a good representation for

the data and choosing a good algorithm that exploits that represen-

tation. Our solution is to tag each node in a synthesized expression

as either a state expression or a query expression. The data structure

stores each state expression as a member and incrementally main-

tains it at each update operation. A query expression is evaluated

each time the query is called.

For instance, an expression to compute the length of a list could

be implemented in several different ways, depending on which

parts are tagged as state expressions:

Σ Mapλx .1 S
︸ ︷︷ ︸

state

or Σ Mapλx .1 S
︸︷︷︸

state

.

The first case indicates that the data structure stores the length

of S as a member and returns the stored value when the query is

called. The second case indicates that the data structure stores S

as a member and computes the length on-demand. Since these two

expressions are equivalent, only the lower-cost oneÐin this case,

the firstÐis kept during deduplication. Cozy’s cost model does not

account for the cost of maintaining the state; instead, that job is

delegated to the sub-queries generated during incrementalization.

Expressions that contain query arguments may not be tagged as

state expressions, since those values will not be available until the

query is executed.

Symbolic Cost Model. Figure 6 shows Cozy’s novel static cost

model. The cost model compares state expressions based on their

complexity in terms of the number of AST nodes (costS). It compares

query-time expressions based on their expected run time (costQ).

Cozy represents costs as symbolic formulas involving the cardi-

nalities of various collections. For example, the cost of performing a

filter includes the cost of evaluating the predicate on every element

of the collection being filtered.

To determine the ordering between two costs c1 and c2, Cozy

first makes solver calls to establish as many facts as possible about

all the cardinalities (i.e., calls to card) in each expression. Each call

to card can then be replaced by a fresh real-type variable. Using

these assumptions, Cozy then makes more solver calls. If there are

cases where c1 is less than c2 (sat(c1 < c2)) and no cases where c1
is more than c2 (¬sat(c2 < c1)), then the expression having cost c1
should always be preferred over the expression having cost c2.

Diversity Injection. In practice, the enumerative synthesis algo-

rithmmay take a long time to discover good solutions, especially for

languages like ours where expression size is not strongly correlated

with cost (that is, larger expressions may have lower cost). When

the syntax tree for the best solution is of size fifteen or twenty, stan-

dard enumerative synthesis may take many centuries to discover

it! For comparison, the syntax tree for the efficient implementation

of visible in Figure 2 requires 45 nodes.

To bias the search toward useful expressions, Cozy employs a

small number of handwritten diversity rules that inject new expres-

sions into the search procedure. Whenever Cozy considers a new

candidate expression, it also applies these rules and considers the

resulting expressions. The diversity rules do not need to be uni-

versally correct or efficient: incorrect expressions will be rejected

by the verifier, and inefficient expressions will be rejected by the

cost model. However, incorrect expressions are still cached to help

Generalized Data Structure Synthesis ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

Map Introduction

Filterλx .f (x)=y X → (MakeMap(λk .Filterλx .f (x)=k X)
Mapλx .f (x)X)[y]

Cleaners

Filterλx .P1(x)∧P2(x) X → Filterλx .P1(x) Filterλx .P2(x) X

Filterλx .a(x)?b(x):c (x) X → Filterλx .a(x)∧b(x)X + Filterλx .¬a(x)∧c (x) X

Relevant Subset

X , v | v is a state variable→ Filterλx .x∈vX

Instantiation

e1, e2 | v is free in e1 → e1[v 7→ e2]

Figure 7: Cozy’s diversity rules.

build larger expressions, as they might appear as subexpressions of

correct solutions later on.

Cozy uses the five diversity rules shown in Figure 7. These di-

versity rules are specialized to Cozy’s domain and are intended to

capture some intuitions human programmers might apply. łMap

introductionž converts some linear-time filter operations into effi-

cient map lookups. łCleanersž put expressions into normal form,

which helps Cozy identify potential map lookups on later iterations.

The łrelevant subsetž rule converts a collection into the subset that

is already stored on the data structure. Finally, the łinstantiationž

rule helps transfer insights about a variable to insights about other

expressions. For example, if Cozy has discovered the expressions

x ∈ S and y, then y ∈ S might also be important.

In practice, Cozy’s enumerative search machinery does not func-

tion well without the diversity rules and vice-versa. If the diversity

rules are disabled, Cozy does not find a good solution to any specifi-

cation for any of our subject programs within a three hour timeout.

Similarly if the diversity rules are applied without the rest of Cozy’s

enumerative search machinery, the search quickly runs out of new

expressions and stalls without ever finding a good solution.

Bounded Verification. It is undecidable to determine whether an

expression in Cozy’s language satisfies a specification. Thus, Cozy

employs bounded verification: collection-type variables are limited

to a fixed number of elements. In our experiments, we found a

limit of four to be sufficient to ensure correct solutions. This may

be thanks to the small-scope hypothesis [14], which proposes that

most program bugs can be exhibited with small inputs. There is

some evidence that the small scope hypothesis is true for simple

programs [4], and we found it to be true in our domain as well.

3.3 Incrementalization

After query synthesis picks a new representation for the data, the

incrementalization step restores proper functioning by adding code

to keep that representation up-to-date as the data structure changes.

Cozy’s incrementalize procedure accomplishes that goal by lever-

aging the existing query synthesis procedure.

In join from Section 2.4, Cozy updated s1 using the code

for k ∈ altered_keys_s1(u, д):

s1[k] = new_value_for_key_s1(k, u, д)

Figure 8 shows the rules for Cozy’s incrementalize procedure. Since

s1 has a map type, Cozy uses the update sketch shown in the figure

for maps. An update sketch is a small snippet of imperative code

that updates the variable. An update sketch may require new query

incrementalize(x ,Cx):

Input: old abstract state σ and new abstract state σ ′

Output: code to update concrete state x

Type Update Sketch New Queries

Int x ← x + q(...) q(...) = Cx (σ
′) − Cx (σ)

Bag

for elem ∈ q1(...) :

x .del(elem)

for elem ∈ q2(...) :

x .add(elem)

q1(...) = Cx (σ) − Cx (σ
′)

q2(...) = Cx (σ
′) − Cx (σ)

Map

for k ∈ q(...) :

incrementalize(

x[k],

λσ .Cx (σ)[k])

q(...) = {k |

k ∈ MapKeys(Cx (σ)) ∪

MapKeys(Cx (σ
′)),

Cx (σ)[k] , Cx (σ
′)[k]}

other x ← q(...) q(...) = Cx (σ
′)

Figure 8: Rules for incrementalize(x ,Cx). Cx is the concret-

ization function for x . To update a map-type variable,

incrementalize is called recursively to determine how to up-

date the value at each changed key.

operations in order to function. In the case of maps, the update

sketch finds the keys whose values have changed and updates each

one in the map. Cozy introduces the new query altered_keys_s1

to compute which keys have changed.

Since the values in s1 are booleans, Cozy uses the fallback sketch

for łotherž types to update each value. This rule uses a new query

new_value_for_key_s1 to computeÐfrom scratchÐa new value for

s1[k]. As discussed in Section 2.4, the new value for s1[k] is simply

true. In practice, new queries generated by incrementalize often

have short and efficient implementations.

3.4 Dead Code Elimination

When a better query implementation is found, some state variables

may go unused. The imperative operations that keep these variables

up-to-date are unnecessary, as are any queries required only by

those imperative operations, and so forth. The dead code elimina-

tion procedure is important; it frequently eliminates variables in

this manner as better query solutions are found.

To clean up unused state and operations, Cozy uses mark-and-

sweep. User-specified query operations start as roots. Any state

that they use is marked as relevant, and code to update that state

is also marked. Queries used by the update code are then marked,

and so on until fixed point. Finally any unmarked state, queries, or

update code can be safely removed.

3.5 Termination

The query synthesis procedure (Section 3.2) has no formal termina-

tion guarantees, and as a result, neither does Cozy itself. But since

the input specification is executable, Cozy always has a correct

solution and the synthesis process can be stopped at any time. Our

experiments used a fixed timeout of three hours for synthesis.

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Calvin Loncaric, Michael D. Ernst, and Emina Torlak

4 EVALUATION

Cozy has three goals: to reduce programmer effort, to produce bug-

free code, and to match the performance of handwritten code. We

found that using Cozy requires an order of magnitude fewer lines of

code than manual implementation (Section 4.3), makes no mistakes

even when human programmers do (Section 4.4), and often matches

the performance of handwritten code (Section 4.5).

4.1 Methodology

For each of four real-world programs (Section 4.2), we

(1) identified an important, complex, handwritten data structure,

(2) manually wrote a Cozy specification,

(3) allowed Cozy a three-hour timeout to synthesize a new im-

plementation, and

(4) replaced the original data structure by the synthesized one.

Replacing handwritten code with Cozy-synthesized code required

some light refactoring in each program. For example, some program-

mers intertwine data structure code with I/O code. We disentangled

these, because Cozy does not synthesize I/O code. This refactoring

was only necessary because these projects did not use Cozy from

day one. Furthermore, we believe it results in better code style and

easier-to-understand abstractions.

We ran our experiments on amachinewith 96 cores and 512 Gb of

memory. Cozy spawns one thread for each query in the specification

and runs fastest on amachine with at least that many cores, but does

not require it. The Openfire specification, our largest, has 12 query

operations, thus requiring 12 cores for fastest operation. Memory

usage steadily climbs the longer Cozy runs; we have observed it

reach 32 Gb in the worst case.

The three hour synthesis time does not slow down the edit-

compile-test cycle. Since Cozy specifications are executable, they

can be immediately translated into usable but inefficient code. Devel-

opers can code and test against the slow version to gain confidence

in their specification before running the full synthesizer. We made

use of this feature while writing specifications in our evaluation.

4.2 Subject Programs

ZTopo [32] is a topological map viewer implemented in C++. Its

cache of map tiles asynchronously loads map tiles over the network

and caches them on disk or in memory. The cache enables any other

part of the program to query for information about a given map

tile. ZTopo was also a target for previous data structure synthesis

work [11, 16]. Cozy is also able to synthesize two parts of the cache

that previous work could not. First, Cozy can synthesize the code

that accounts for the total disk and memory usage of cached map

tiles. Second, Cozy synthesizes a key operation to look up a single

element by its unique identifier. Previous tools implemented this

operation inefficiently by checking whether a computed collection

of results contained a single element or not.

Sat4j [17] is a Boolean satisfiability solver implemented in Java.

Its variable store tracks, among other things, when a guess was last

made about a variable’s value and whether any listeners are watch-

ing that variable’s state. Sat4j was also a target for previous data

structure synthesis work [16]. As with ZTopo, Cozy’s synthesized

implementation of the Sat4j data structure is a closer match to the

original than previous tools, requiring less wrapper code.

Table 1: Programmer effort. LoC measurements do not in-

clude comments or whitespace.

Hand-written Cozy

Project Span Commits LoC LoC

ZTopo 1 week 15 1024 41

Sat4j 8 years 22 195 42

Openfire 10 years 47 1992 157

Lucene 13 years 20 68 36

Openfire [13] is a large, scalable IRC server implemented in

Java. Its in-memory contact manager is extremely complex. Users’

contacts can be either explicit (added by users manually) or im-

plicit (present due to users’ group memberships). Furthermore, the

contact manager must keep its state in sync with the underlying

database as users and groups are created, modified, and deleted.

This logic has been a frequent source of bugs [30]. Openfire’s im-

plicit contacts require computing information about two distinct

collections (users and groups), and thus cannot be handled by any

previous tool.

Lucene [29] is a search engine back end implemented in Java.

Lucene uses a custom data structure that consumes a stream of

words and aggregates key statistics about them. The data structure

has an add method that is called once for each token instead of

getting the tokens as one big list. The logic for handling each token

is tricky since the data structure needs to to be queryable between

calls to its addmethod. Cozy helps avoid the logic in the addmethod

by having a clean specification that describes the abstract state as

a bag of tokens and descriptions of the queries that matter.

4.3 Programmer Effort

We do not know how much time programmers spent implement-

ing and debugging the hand-written data structures, but it was

significant. Table 1 shows the size of each implementation, in non-

comment non-blank lines of code. It also reports howmany commits

contributed to the current version of the data structure implemen-

tation, and across how much time those commits were made. The

long time periods are because Sat4j, Openfire, and Lucene are es-

tablished projects and still undergoing active maintenance. In all

three, however, bug fixes have been made to the data structure in

the last five commits, indicating that full functional correctness has

been difficult to achieve.

The Cozy specifications are an order of magnitude shorter than

the manual implementations. Most of our time was spent reverse-

engineering to understand the undocumented existing implementa-

tion; once we understood it, writing the specification was quick. For

example, writing, integrating, and testing the ZTopo and Sat4j spec-

ifications took less than a day each. The Openfire roster manager

was more challenging because we had to first formalize the implicit

contacts function, a task the developers never carried out. We

already understood the Cozy specification language (Section 3.1),

but we believe that a programmer could learn it more quickly than

it took us to reverse-engineer any one of the programs.

Because the specifications are shorter, simpler, and more abstract,

they are much easier to understand. Programmers writing speci-

fications are therefore less likely to make mistakes, and mistakes

Generalized Data Structure Synthesis ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

Table 2: Correctness results. ZTopo has no dedicated issue

tracker.

Project Issues New defects found

ZTopo n/a No

Sat4j 7 No

Openfire 25 Yes

Lucene 1 No

will be easier to discover, diagnose, and correct. The specifications

also serve as concise, unambiguous documentation.

4.4 Correctness

Cozy might produce an incorrect data structure because of its use

of bounded verification. We also might have made an error when

writing the specification. To check the correctness of the Cozy-syn-

thesized data structures, we ensured that all tests in each project still

pass. ZTopo, Openfire, and Lucene have no tests that cover the data

structure we replaced. For these projects we verified that our syn-

thesized data structure behaves identically to the original implemen-

tation during execution of the benchmarks we used in Section 4.5.

Table 2 lists how many data-structure-related issues in each

project’s respective issue tracker might have been prevented by

Cozy. Most issues relate to defective update code putting the data

structure in a bad state. Cozy is perfectly positioned to prevent those

defects: changes to a data structure’s abstract state are much easier

to specify than the code that updates an optimized representation.

We now discuss some of these issues.

Sat4j’s variable metadata storage has suffered both performance

and functional correctness issues in the past that Cozy avoids. Today

Sat4j has a test suite that achieves 89% statement coverage on the

data structure we replaced, and Cozy’s synthesized implementation

passes all tests.

Of Sat4j’s seven reported issues, five relate to update code. Sat4j’s

data structure includes several arrays of data that grow exponen-

tially as entries are added, and the logic to grow them and keep the

capacity information up-to-date proved tricky to get right. The data

structure also supports a reset() method to clear all of its internal

state, but developers did not properly revise its implementation

when they introduced new state variables. Cozy can prevent these

kinds of problems since the programmer does not need to maintain

the concrete representation.

Openfire, having a more complex data structure, has been even

more difficult to get right. Section 2 presented only a simplified

portion of the Openfire roster manager specification. The full spec-

ification has additional rules and visibility modes for groups. In

particular, a useru1 is visible to a useru2 if any one of four different

conditions are met: (1) the users have added each other as explicit

contacts, (2) u1 is in a group with visibility set to Everyone, (3) both

users share a group with visibility set to OnlyGroup, or (4) u1 is in a

group дA with visibility set to OnlyGroup and u2 is a member of a

group дB configured to have visibility onto дA.

This definition gives rise to two kinds of roster items: explicit

items due to condition 1 and implicit items due to conditions 2ś4.

The manually written implementation makes a trade-off: all explicit

items plus implicit items due to conditions 2 and 3 are held as

Table 3: Performance results. All times are in seconds.

Project Time (orig.) Time (Cozy)

ZTopo 5 5

Sat4j 53 61

Openfire 16 15

Lucene 9 9

concrete objects inmemory, but implicit items due to condition 4 are

constructed on-demand to save memory. Developers had to write

a large amount of code to keep the implicit contacts correct when

groups change visibility or when group membership changes. That

code has been a frequent source of defects, and still has open issues.

For example, one issue still open at time of writing reports that

when administrators delete a user without first manually removing

her from all of her groups, she remains in other users’ contact lists.1

Other issues were caused by the stored state of the roster getting

out-of-sync with the abstract state of the roster. By contrast, a Cozy

programmer does not need to write the update code; Cozy discovers

its own data representation and determines how to update it in

response to changes.

Additionally, we discovered multiple new failures while replac-

ing the original implementation.2 For example, the original imple-

mentation makes it possible to create a situation in which two users

see different views of the roster: according to one user, both are

visible to each other, while according to another, there is only a

one-way visibility. The synthesized implementation does not suf-

fer from these problems. We do not know how many source code

defects contribute to the observed failures.

Even Lucene’s small data structure has been a source of defects.

Overlapping words caused some of its internal statistics to become

corrupted because the original developers did not foresee this pos-

sibility. Our Cozy implementation handles this case gracefully; the

natural way to specify Lucene’s operations does not have the defect.

4.5 Performance

We measured the performance of the handwritten and synthesized

implementations on realistic workloads. Table 3 reports the wall-

clock time required to run each benchmark to completion. The

benchmarks are end-to-end, and include application behavior in

addition to the data structure itself; the resulting time, therefore,

represents the overall effect on each program from using the syn-

thesized data structure.

Our benchmarks for ZTopo and Sat4j are the same ones used to

evaluate an earlier iteration of Cozy [16]. The ZTopo benchmark

is a log of recorded application usage that we replay. The Cozy-

synthesized implementation of the ZTopo tile cache matches the

performance of the existing implementation almost exactly. The

handwritten and synthesized implementations are conceptually

identical: both store map tiles in linked lists grouped by tile type.

The dominant factor affecting performance is the speed of finding

tiles by unique ID, which both implementations do using a hash

table.

1https://issues.igniterealtime.org/browse/OF-1121
2https://community.igniterealtime.org/thread/60317

ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden Calvin Loncaric, Michael D. Ernst, and Emina Torlak

Sat4j’s benchmark suite consists of eleven randomly-selected in-

put files from the 2002 boolean satisfiability solver competition [18,

22]. The synthesized data structure for Sat4j under-performs the

existing implementation. The handwritten code exploits some facts

about the data that Cozy does not know: in Sat4j, variable IDs can

be used as indexes into an array since they always fall between zero

and a known maximum bound. This interacts poorly with Cozy’s

total semantics for map lookups. At code generation time, Cozy

must insert safety checks at every map lookup. In Sat4j those safety

checks are unnecessary and harm performance substantially.

Our benchmark for Openfire is a replayed sequence of actions

against its admin panel that offers direct access to the internal

roster data structure, where users, groups, and explicit contacts

can be modified. The synthesized structure improves performance

slightly. There are several contributing factors, but the dominant

one is that the synthesized data structure can avoid a number of

expensive internal representation checks. To improve correctness,

the handwritten implementation will often clean up its own state,

which imposes some overhead. By generating correct code, Cozy

avoids these internal checks.

Our benchmark for Lucene is a series of operations on artificial

data. Cozy’s synthesized data structure for Lucene is very similar

to the manually written one, leading to identical performance.

5 RELATED WORK

The data structure synthesis problem dates to the 1970s and iterator

inversion, a technique for constructing data structures to acceler-

ate iterative operations [9, 10]. Our syntax for queries is similar

to that found in Earley’s work, although our techniques are sub-

stantially more powerful. Iterator inversion required handwritten

rewrite rules, while Cozy’s exhaustive search discovers complex

transformations unaided.

The developers of the SETL language took a different approach

by splitting it into a pure language and a representation sub-language.

The sub-language specifies what structures to use when running

pure code [8, 19, 20]. More recently, researchers have investigated

dynamic techniques to achieve the same effect [21]. Beyond simply

choosing better existing implementations of an interface, Cozy can

implement more complex interfaces that require composing data

structure representations.

Modern program synthesis techniques have been applied to low-

level data structure code [23, 27]. These techniques can help to write

pointer and array manipulations but, unlike our work, require the

programmer to choose a data representation in advance.

More recently, researchers have made headway on synthesizing

complete data structures. RelC [11] constructs data structure imple-

mentations that track subsets of a collection. It was later extended

to produce safe concurrent data structures [12]. An earlier version

of Cozy [16] used a custom łoutline languagež to describe data struc-

ture implementations and was able to synthesize data structures

with richer specifications than RelC. By generalizing to arbitrary

expressions and concretization functions, Cozy can now synthesize

a far wider class of data structures, including the data structures for

Openfire and Lucene that require multiple related collections and

aggregation operators. To gain this expressiveness we have given

up decidability, relying instead on bounded verification.

RelC and earlier versions of Cozy had a tuning step that used a

user-supplied benchmark to make low-level optimizations. Cozy

no longer has this step. Its effectiveness was never fully evaluated

and our powerful symbolic cost model now fills the role. Some data

structures that Cozy originally supported have also been dropped.

These were not necessary for the case studies we explored, but we

plan to reimplement them to extend Cozy’s applicability.

Cozy’s high-level algorithm resembles programming by refine-

ment (PBR), in which programs are produced by manual iterative

modifications to an initial specification. Unlike PBR tools such as

KIDS [24], Designware [25], and Fiat [7], each refinement iteration

that Cozy makes may bear little resemblance to the implementa-

tion before it. This is because Cozy enumerates possible solutions

in a fixed order rather than transforming the input specification.

Furthermore, Cozy requires no manual effort beyond writing a spec-

ification. The cost of this simplicity is that Cozy cannot produce

many of the more complicated algorithms derived by PBR systems.

However, Cozy can automate parts of the job, specifically the łfinite

differencingž and łdata type refinementž tasks [24].

The transformations that Cozy performs are akin to the index

selection and view maintenance problems in database systems. Index

selection is the task of choosing useful indexes to speed up desired

queries. AutoAdmin [1, 5] solves the problem by enumerating many

possible indexes and using a query planner to decide which work

best. As a result, AutoAdmin is limited by the set of optimization

rules available to the query planner.

Viewmaintenance is the problem of keeping an index ormaterial-

ized view up-to-date as the data changes. Materialized views are sim-

ilar to Cozy’s concretization functions: they can be computed from

the original state of the database. DBToaster [2] implements a very

efficient view maintenance system. More recently, the same team

has worked on generalizing these ideas to collections, including

nested collections [15]. While it is possible to augment Cozy with

these techniques, Cozy’s enumerative synthesizer generally discov-

ers those same solutions without the need for manual rewrite rules.

6 CONCLUSION

Cozy is effective because incrementalization allows it to implement

both pure and imperative operations using only a query synthe-

sizer. A high-quality cost function and diversity injection make the

query synthesizer powerful and practical. As a result, Cozy does

not need clever analyses or transformation rules. Our case studies

demonstrate that data structure synthesis can improve software

development time, correctness, and efficiency.

Acknowledgments

David Grant assisted with the Cozy implementation and the Lucene case study.
This material is based upon work supported by the United States Air Force un-
der Contract No. FA8750-15-C-0010, and on research sponsored by Air Force Re-
search Laboratory andDARPAunder agreement number FA8750-16-2-0032. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon. This work
is supported in part by NSF grant CCF-1651225, and the Intel and NSF joint
research center for Computer Assisted Programming for Heterogeneous Archi-
tectures (CAPA).

Generalized Data Structure Synthesis ICSE ’18, May 27–June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In Proceedings of
the 26th International Conference on Very Large Data Bases (VLDB ’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 496ś505. http://dl.acm.org/
citation.cfm?id=645926.671701

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.
DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
Proceedings of the VLDB Endowment 5, 10 (June 2012), 968ś979. DOI:http:
//dx.doi.org/10.14778/2336664.2336670

[3] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2013. Syntax-Guided Synthesis. In Formal
Methods in Computer-Aided Design (FMCAD ’13). IEEE, 1ś8. http://ieeexplore.
ieee.org/document/6679385/

[4] Alexandr Andoni, Dumitru Daniliuc, and Sarfraz Khurshid. 2003. Evaluating the
łSmall Scope Hypothesisž. Technical Report. MIT.

[5] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 146ś155. http://dl.acm.org/citation.cfm?id=645923.
673646

[6] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS/ETAPS ’08). Springer-Verlag, Berlin, Heidelberg, 337ś340. DOI:http:
//dx.doi.org/10.1007/978-3-540-78800-3_24

[7] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015.
Fiat: Deductive Synthesis of Abstract Data Types in a Proof Assistant. In Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’15). ACM, New York, NY, USA, 689ś700. DOI:
http://dx.doi.org/10.1145/2676726.2677006

[8] Robert B. K. Dewar, Arthur Grand, Ssu-Cheng Liu, Jacob T. Schwartz, and Edmond
Schonberg. 1979. Programming by Refinement, As Exemplified by the SETL
Representation Sublanguage. ACM Transactions on Programming Languages and
Systems 1, 1 (Jan. 1979), 27ś49. DOI:http://dx.doi.org/10.1145/357062.357064

[9] Jay Earley. 1973. Relational Level Data Structures for Programming Lan-
guages. Acta Informatica 2, 4 (Dec. 1973), 293ś309. DOI:http://dx.doi.org/10.
1007/BF00289502

[10] Jay Earley. 1975. High Level Iterators and a Method for Automatically Designing
Data Structure Representation. Computer Languages 1, 4 (Jan. 1975), 321ś342.
DOI:http://dx.doi.org/10.1016/0096-0551(75)90019-3

[11] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2011. Data Representation Synthesis. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11). ACM,
New York, NY, USA, 38ś49. DOI:http://dx.doi.org/10.1145/1993498.1993504

[12] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2012. Concurrent Data Representation Synthesis. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’12). ACM, New York, NY, USA, 417ś428. DOI:http://dx.doi.org/10.1145/
2254064.2254114

[13] Ignite Realtime. 2016. Openfire real time collaboration server. (2016). https:
//www.igniterealtime.org/projects/openfire/ (Retrieved March 28, 2017).

[14] Daniel Jackson and Craig Damon. 1996. Elements of Style: Analyzing a Software
Design Feature with a Counterexample Detector. In ISSTA. 239ś249. DOI:http:
//dx.doi.org/10.1145/229000.226322

[15] Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View Main-
tenance For Collection Programming. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’16). ACM,

New York, NY, USA, 75ś90. DOI:http://dx.doi.org/10.1145/2902251.2902286
[16] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. 2016. Fast Synthesis of Fast

Collections. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA,
355ś368. DOI:http://dx.doi.org/10.1145/2908080.2908122

[17] Sat4j 2016. Sat4j Boolean Reasoning Library. (2016). https://www.sat4j.org
(Retrieved February 3, 2016).

[18] SatCompetition2002 2002. SAT Competition 2002. (2002). http://www.
satcompetition.org/2002/ (Retrieved February 3, 2016).

[19] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. 1981. An Automatic
Technique for Selection of Data Representations in SETL Programs. ACM Trans-
actions on Programming Languages and Systems 3, 2 (April 1981), 126ś143. DOI:
http://dx.doi.org/10.1145/357133.357135

[20] Jacob T. Schwartz. 1975. Automatic Data Structure Choice in a Language of
Very High Level. In Proceedings of the 2nd ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’75). ACM, New York, NY, USA,
36ś40. DOI:http://dx.doi.org/10.1145/512976.512981

[21] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon: Adaptive
Selection of Collections. In Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). ACM, New York,
NY, USA, 408ś418. DOI:http://dx.doi.org/10.1145/1542476.1542522

[22] Laure Simon, Daniel Le Berre, and Edward A. Hirsch. 2005. The SAT2002 Compe-
tition. Annals of Mathematics and Artificial Intelligence 43, 1 (1 Jan. 2005), 307ś342.
DOI:http://dx.doi.org/10.1007/s10472-005-0424-6

[23] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure
Manipulations from Storyboards. In Proceedings of the 19th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC/FSE ’11). ACM, New York, NY,
USA, 289ś299. DOI:http://dx.doi.org/10.1145/2025113.2025153

[24] Douglas R. Smith. 1990. KIDS: A Semiautomatic Program Development System.
IEEE Transactions on Software Engineering 16, 9 (Sept. 1990), 1024ś1043. DOI:
http://dx.doi.org/10.1109/32.58788

[25] Douglas R. Smith. 1999. Designware: Software Development by Refinement.
Electronic Notes in Theoretical Computer Science 29 (Dec. 1999), 275 ś 287. DOI:
http://dx.doi.org/10.1016/S1571-0661(05)80320-2

[26] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
University of CA at Berkeley, Berkeley, CA, USA. Advisor(s) Bodík, Rastislav.
AAI3353225.

[27] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. 2008.
Sketching Concurrent Data Structures. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’08). ACM,
New York, NY, USA, 136ś148. DOI:http://dx.doi.org/10.1145/1375581.1375599

[28] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. Operating Sys-
tems Review 40, 5 (Oct. 2006), 404ś415. DOI:http://dx.doi.org/10.1145/1168917.
1168907

[29] The Apache Software Foundation. 2016. Apache Lucene. (2016). https://lucene.
apache.org.

[30] John Toman and Dan Grossman. 2016. Staccato: A Bug Finder for Dynamic
Configuration Updates. In 30th European Conference on Object-Oriented Pro-
gramming (ECOOP ’16). Schloss Dagstuhl, Dagstuhl, Germany, 24:1ś24:25. DOI:
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.24

[31] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M. K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying Protocols with
Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’13). ACM, New York, NY,
USA, 287ś296. DOI:http://dx.doi.org/10.1145/2491956.2462174

[32] ZTopo 2015. ZTopo Topographic Map Viewer. (2015). https://hawkinsp.github.
io/ZTopo/ (Retrieved May 8, 2015).

