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Abstract— As the prevailing technique of software-defined 
networking (SDN), open flow introduces significant programma- 
bility, granularity, and flexibility for many network applications 
to effectively manage and process network flows. However, open 
flow only provides a simple “match-action” paradigm and lacks 
the functionality of stateful forwarding for the SDN data plane, 
which limits its ability to support advanced network applications. 
Heavily relying on SDN controllers for all state maintenance 
incurs both scalability and performance issues.  In  this  paper, 
we propose a novel stateful data plane architecture (SDPA) for the 
SDN data plane. A co-processing unit, forwarding processor (FP), 
is designed for SDN switches to manage state information through 
new instructions and  state  tables.  We design  and  implement 
an extended open flow protocol to support the communication 
between the controller and FP. To demonstrate the practicality 
and feasibility of our approach, we implement  both  software 
and hardware prototypes of SDPA switches, and develop a 
sample network function chain with stateful firewall, domain 
name system (DNS) reflection defense, and heavy hitter detection 
applications in one SDPA-based switch. Experimental results 
show that the SDPA architecture can effectively improve the 
forwarding efficiency with manageable processing overhead for 
those applications that need stateful forwarding in SDN-based 
networks. 

Index Terms— SDN, stateful forwarding, data plane. 
 

I. INTRODUCTION 

OFTWARE Defined Networking (SDN) is an emerging 
network architecture that provides unprecedented pro- 

grammability, automation, and network control by decoupling 
the  control  plane  and  the  data  plane.  In  SDN architecture, 
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network intelligence and state are logically centralized, and 
the underlying network infrastructure is abstracted for network 
applications. As a representative technique of SDN, Open- 
Flow [20] introduces a “match-action” paradigm for the SDN 
data plane where programmers could specify a flow through a 
header matching rule along with processing actions applied to 
matched packets. OpenFlow switches remain simple and are 
only in charge of forwarding packets according to flow tables 
issued by the controller, while all the intelligence is placed at 
the controller side. 

In traditional networks, network functions, such as fire- 
walls, WAN optimizers, and load-balancers, are generally 
implemented by on-path  or  off-path  proprietary  appli-  
ances or  middleboxes.  However,  middleboxes  usually  lack 
a general programming interface, and their versatility and 
flexibility are also poor [24], [25]. A primary goal of SDN is 
to enable a controller to run various applications and manage 
the entire network by configuring packet-handling mechanisms 
in underlying devices. Although OpenFlow significantly helps 
manage and process network flows and is effective for many 
applications running on top of the controller, OpenFlow’s sim- 
ple “match-action” abstraction also introduces great challenges 
in building key network services, such as stateful firewalls, 
heavy hitter detection, etc., which require advanced packet 
handling. 

On the one hand, OpenFlow focuses solely on L2/L3 net- 
work transport. Its data plane provides limited support for 
stateful packet processing and is unable to monitor flow states 
without the involvement of the controller [27].  OpenFlow 
may impliedly support partial stateful forwarding in the data 
plane through instructions and counters, but it still lacks the 
capability to actively maintain state information in the data 
plane. For instance, a heavy hitter detection application needs 
to alert the system when a flow packet counter exceeds a 
specific threshold. However, in OpenFlow, even if a flow 
counter can be maintained in the data plane, the flow table 
cannot react differently when the counter exceeds the thresh- 
old. The controller has to pull the counter from switches 
regularly. But a large pulling interval will result in untimely 
reaction, while a small interval will consume more network 
bandwidth. Besides, flow entries are aggregated and usually 
unable to provide flow-level monitoring, which may not be 
able to support applications like heavy hitter detection. Even 
though the recent OpenFlow switch specification introduces 
OpenFlow pipeline, which contains multiple flow tables, in the 
data plane, the lack of state-relevant tables and primitives 
preserves the incapability of supporting advanced stateful 
network applications. 

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
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On the other hand, heavily relying on the controller to 
maintain all packet states could give rise to both scalability 
and performance issues due to the associated processing delay 
and the control channel bottleneck between  the  controller  
and switches [18], [28]. In addition, OpenFlow targets fixed- 
function switches that recognize a pre-determined set of header 
fields and processes packets using a small set of predefined 
actions. The header fields and actions cannot be extended 
flexibly to meet diverse application requirements. The limited 
expressivity of OpenFlow compromises the programmability 
and capability of the SDN data plane [7], [9]. 

The limitation of the OpenFlow data plane has been recog- 
nized by the research community. Some recent efforts have 
been devoted to enhance the programmability of the SDN data 
plane [9], [27]. Among them, P4 [9] is a typical language that 
allows flexible definition of protocol header fields, parsers, 
and tables. Although P4 could maintain information in the 
data plane during runtime based on its register data structure, 
it aims to enhance the data plane programmability. Therefore, 
it proposes an abstraction for low-level general data plane 
behaviors, without particular focus on the paradigm or abstrac- 
tion for high-level stateful applications. Despite its strong pro- 
grammability in the data plane, P4 could not support intuitive 
programming of stateful applications. Furthermore, P4 lacks 
corresponding control plane that can interact with data plane 
applications to dynamically issue data plane configurations. 

To address the above challenges, we introduce an innovative 
Stateful Data Plane Architecture (SDPA) to enable intuitive 
programming and high performance processing of stateful 
applications in the SDN data plane. In contrast to the simple 
“match-action” paradigm of OpenFlow, we propose a new 
“match-state-action” paradigm for the SDN data plane. In this 
paradigm, state information can be maintained in the data 
plane without heavy involvement of controllers. Based on the 
SDPA paradigm, we propose a generic stateful switch design 
for both software and hardware. A variety of complicated 
stateful applications, such as stateful firewalls and DNS reflec- 
tion defense, can be implemented in this platform. The rules  
in the data plane devices can be configured by the controller 
and efficiently enforced by specially optimized data structures 
and stateful processing modules, which can especially support 
network function chains on software or hardware. 

The paper makes the following contributions: 
• We propose a novel stateful data plane architecture, 

SDPA, which supports a new “match-state-action” par- 
adigm in the SDN data plane. This architecture has the 
generality to support various network applications that 
need to process state information in the data plane. 

• We design and implement an extended OpenFlow proto- 
col to support SDPA. Through this protocol, the SDN 
controller can communicate with the state processing 
module FP, short for Forwarding Processor, in switches 
to manipulate the state information in the data plane. 

• We implement both software and  hardware  prototypes 
of SDPA switches and develop a sample network func- 
tion chain composed of stateful firewall, DNS  reflec- 
tion defense, and heavy hitter detection applications in 
SDPA-based software and hardware switches. 

• We evaluate our approach with extensive experiments. 
Results show that the SDPA can  tremendously reduce 
the forwarding latency of stateful applications with man- 
ageable processing overhead in SDN-based networks. 

The rest of this paper is organized as follows. We overview 
the concept of state and SDPA paradigm in Section II. SDPA 
design is articulated in Section III. We present the implementa- 
tion in Section IV, and evaluations in Section V. We summarize 
related works in Section  VI.  We  present  some  discussions 
in Section VII, and conclude this paper in Section VIII. 

 
II. MOTIVATION AND SDPA PARADIGM 

A. Motivation 
In this section, we first introduce the stateful firewall 

application, based on which we elaborate our motivation of 
maintaining state in the SDN data plane. 

The term “state” in networking is defined as historical 
information that needs to be stored as input for processing of 
future packets in the same flow. A stateful firewall is a type of 
firewall that keeps track of the state of network connections 
and determines packet handling according to the associated 
state information [23]. The states of TCP connections and 
UDP pseudo connections are maintained in a state table, where 
an entry is created when a connection is detected. Then, when 
a packet comes in, the firewall matches the packet to the state 
table to determine whether it belongs to a legitimate session.  
If the packet obeys state transition policies of TCP/UDP 
protocol, it is allowed to pass through the firewall. 

Based on the stateful firewall use case, we summarize the 
following motivations to maintain state in the SDN data plane. 
Firstly, some applications need to record the state information 
of each packet for advanced handling. If the state is maintained 
in the controller, there  will  be  considerable Packet-Ins sent 
to the controller. The forwarding efficiency would be sig- 
nificantly affected because it incurs extra forwarding latency 
and the bottleneck between the controller and the switches. 
Moreover, relying on the controller to process state would 
exert heavy load on the controller and degrade its efficiency. 
Secondly, existing SDN techniques provide limited support  
for stateful processing in the data plane. OpenFlow’s simple 
“match-action” paradigm is almost stateless [27]. The data 
plane cannot maintain state and react differently when the 
state changes. Therefore, it is challenging to fully support 
stateful applications in SDN. Thirdly, although some advanced 
applications can be implemented in middleboxes, middleboxes 
usually lack  a  general  programming  interface  [14],  [24].  
A network filled with various middleboxes is hard to manage. 
Consequently, it is critical to design a systematic mechanism 
for supporting stateful processing in the SDN data plane. 

 
B. SDPA Paradigm 

Although OpenFlow’s “match-action” paradigm is simple 
and capable enough to support many applications, it  pro- 
vides limited support for stateful processing due to the  lack  
of state-related modules in the pipeline of OpenFlow data 
plane. In essence, the limited “match-action” paradigm seems 
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to be an involuntary outcome of being amenable to high- 
performance and low-cost implementations, without consid- 
ering a rich set of complicated network functions (such as 
stateful firewalls, load balancing, FTP monitoring, heavy hitter 
detection, etc.). 

We propose a new “match-state-action” paradigm for the 
SDN data plane as shown in Fig. 1. In this paradigm, we add 
state fields to keep the state of flows, and extend actions to 
manipulate state fields. It is a general paradigm and can be 
implemented through a diversity of software and hardware 
platforms, such as CPU, NPU, NetFPGA, ASIC, etc. When 
implementing stateful applications, such as stateful firewalls, 
input packets are processed according to related state infor- 
mation. Then, the state information is updated according to 
incoming packets or internal/external events. With this new 
paradigm, state processing can be programmed and the state 
information can be maintained in the SDN data plane without 
conveying all packets to the controller for state maintaining. 

In stateful SDN data plane, the inputs can be divided into 
two categories: incoming packets and states of flows. They are 
under the control of the transfer function. The outputs include 
both packets and states. We define S as a nonempty finite set 
of states in the SDN data plane. Σ is defined as the input 
packet set of SDN data  plane. We  define  A as  a  collection 
of actions for the data plane, including forward, modify, drop, 
etc. Δ is defined as a transfer matrix issued by the controller. 
s0 is defined as the start state. It is the state  when a switch  
has not processed any input packets. F  is defined as  the set  
of final states. F is a subset of S. Then the data plane can be 
abstracted as a five-tuple model (S, Σ, Δ, s0,F ). 

In the paradigm of traditional SDN data plane, the transition 
matrix can be expressed  as  formula  1.  In  this  paradigm,  
the input of this  transition  matrix Δ is  the input packet set   
Σ alone and the output is simply the powerset of Σ, which 
represents both unicast and multicast traffic. 

Δ : Σ →A  P(Σ) (1) 

In SDPA paradigm, the input packet set  Σ and  the  state  
set S in the data plane convert to the output packet set  (Σ)  
and state set S. The transition matrix can be expressed as: 

Δ : Σ × S →A  P(Σ) × S (2) 

In this new paradigm, state information of flows is main- 
tained in the data plane. Stateful processing can be supported 
with higher performance. Detailed design to support this new 
paradigm will be elaborated in the following section. 

III. DESIGN 

In the OpenFlow architecture, packets are simply forwarded 
based on flow tables in switches. Through adding intelligence 

to switches, we can maintain state information in the data 
plane in  SDPA.  Concretely,  we  design  a  co-processing 

unit in SDN switches named Forwarding Processor (FP), 
which can be implemented using CPU, NPU, NetFPGA, etc. 
To reserve the compatibility with current OpenFlow architec- 

ture, we design extended OpenFlow instructions to direct pack- 
ets between the flow table and FP. FP realizes more complex 
processing of flows according to previously introduced state 

transition matrixes, or state machines of stateful applications. 
As depicted in Fig. 2, we design a State Transition Table for 

FP to describe the state machine of each stateful application. 
We add State Tables in FP  to  maintain  the  state of flows 
and Action Tables to record actions under different states. 

Since different applications vary in state transition policies, 
each application possesses its own table set. For initialization, 
the controller issues the entire state transition table and formats 

of state table and action table to the data plane. During 
runtime, the first packet of a flow is sent to the controller to 
determine which applications should process this flow. Then, 
a flow entry is issued to direct the flow into FP. At the same 
time, the controller sends corresponding stateful table entries 
to FP. The state of this flow is maintained in the data plane. The 
controller can also issue table entries proactively before flow 
arrival. We will introduce each module and elaborate SDPA’s 

support for stateful applications in this section. 
 

A. Forwarding Processor 
FP maintains the state of flows and processes packets 

according to the current state and  state  transition  policies. 
We add a GOTO_ST(n) instruction in the data plane, which is 
used to direct packets from the OpenFlow pipeline to the state 
table n in FP. After FP processes the packet, it sends the packet 
back to the source flow table in the OpenFlow pipeline. In sit- 
uations where packets are requested to be processed by several 
applications sequentially inside one switch, the controller can 
issue several GOTO_ST instructions to direct packets to the 
corresponding applications respectively. 

We design actions for stateful processing in FP. These 
actions can be flexibly extended to meet application 
requirements. The actions can be divided into following cate- 
gories: Control actions: they are used to direct packets between 
the flow tables and FP, such as GOTO_ST. Processing actions: 
they are used for FP to process flows, including SET_FIELD, 
OUTPUT, DROP, etc. State operating actions: they are used  
to operate the state table, such as STATE_UPDATE. Arith- 
metic actions: they are used to perform arithmetic operations. 
Logical actions: they are used to perform logical operations. 

 
B. State Manipulation 

In order to maintain state information in the SDN data 
plane, we design three kinds of tables: State Table (ST), State 
Transition Table (STT), and Action Table (AT). Since different 
applications may need to maintain different state information, 
each application may have a unique corresponding table set. 

1) State Table (ST): State tables are used to maintain states 
in the SDN data plane. STs can be initiated by the controller 
dynamically. When an application requires stateful processing, 
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the controller sends a message to FP to initiate its ST. The 
message contains information about all fields of the ST. 

The state is maintained in the data plane and updated 
according to incoming packets or internal/external events. The 

state information can be uploaded to  the  controller, so that 
the controller can keep the global state information of the 

network. The controller can decide how often switches send 
the update messages according to application requirements. 

For example, switches may be configured to inform the 
controller periodically instead of one message for each change. 
Fig. 2 shows the structure of state tables. The “Match Fields” 

domain in a  state  table  refers  to  the  match  fields of 
packets. It is flexible and extensible. For example, it can store 

connections possibly represented by both source and 
destination addresses. In accordance with traditional Open- 

Flow match fields, we also include an equally long match 
field mask domain in state tables. The “State” domain in a 

state table is used to  explicitly record  the state information 
of flows with no mask. The realization of state tables can be 
based on TCAM or SRAM. The controller may actively add, 

modify, or remove state table entries by sending state operating 
messages. 

2) State Transition Table (STT): We design a state transition 
table to support the specification of state update policies with 
respect to a specific connection-oriented protocol. A state 
transition table specifies the transition policies that indicate 
how the states transfer according to the protocol. A state 
transition table contains three different domains, including 
State, Event, Next State, as shown in Fig. 2. The STT is issued 
to the FP by the controller only once during initialization. 

The State domain possesses an equally long mask domain, 
enabling a wildcard match on the current state for different 
events. The mask is essential for advanced stateful applica- 
tions. For instance, in the heavy hitter detection, the current 
counter state should be compared against a threshold, no mat- 
ter what the counter value is. Without the mask, there will be 
innumerable table entries. 

The Event domain is the trigger of state transitions. For 
instance, the TCP flag carried in each packet triggers the 
TCP state transition. We standardize events into Param1+ 
Comparison_Operator + Param2 format. FP can fetch 
Param1 and Param2 from packets, tables, the switch, and 
the controller. The two params can come from the same source, 

 
 
 

 

 
 

 

 
 
 
 
 
 

such as Packet Source IP Address and Packet Destination 
IP Address from packet headers. The Comparison operator 
is restricted to <, >, =,  or  .  Events  may  vary  in  
different applications. We judge that an event is detected if 
this (in)equality is satisfied, which can trigger a state transition 
according to relevant STT entry. For instance, if the TCP flag 
of a packet = FIN, the state of this connection will be triggered 
from ESTABLISH to CLOSING. 

The Next State domain can be directly and explicitly 
assigned or calculated through an arithmetic or logical oper- 
ation. We define the Next State domain as type+parameter. 
Currently we support two types of Next State domain, includ- 
ing DIRECT_ASSIGN, in which case the Next State domain is 
directly assigned by the controller, and ADD_ONE, in which 
case the Next State field will be the result of State+1. 

3) Action Table (AT): The action table (AT) is used to 
record the actions under different states. The structure of AT is 
shown in Fig. 2. “Match Fields” and “State” domains are the 
same as the domains in ST. The “Actions” domains describe 
the corresponding actions. We classify the functions of actions 
into several categories as discussed above. An action is defined 
in ActionT ype + Parameter form. Actions can be flexibly 
extended as long as we assign their execution methods and 
necessary parameters in both the control and data plane. 

 
C. SDPA’s Support for Stateful Applications 

Many network applications can be abstracted into state 
machines defined over a flow or an aggregation of flows. When 
a packet enters FP, it first looks up the ST for the current state. 
Using the current state and event (if any), the FP will look up 
the STT and find or calculate a new state.  Then the  packet 
and the new state will be sent into the AT to be processed 
accordingly, while the new state will be updated into the State 
Table. Finally, the packet will be sent back to the OpenFlow 
pipeline for further processing. 

We exemplify some  stateful  applications  in  TABLE  I. 
We classify the abstraction of stateful applications into two 
types: finite state machine and infinite state machine. 

1) Finite State Machine: Some stateful applications monitor 
states that can be abstracted into finite state  machines, such  
as the TCP connection state. Let us consider the case of 
stateful firewalls that monitor flow TCP states. The states of 
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Fig. 4. Table design for heavy hitter detection. 
 

   

 
 

 
 

   
 

 

 
 

 
 

  

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
Fig. 3. Table design for stateful firewall. 

 
 
 

TCP connection include SYN, SYN_ACK, ESTABLISHED, 
FIN_WAIT, CLOSING, and CLOSED. They are updated 
according to the events specified by TCP flags in the headers 
of TCP packets. Fig. 3 shows the ST, STT, and AT design for 
the stateful firewall. The match field domain in ST and AT are 
accompanied by masks and can be assigned as wildcards. The 
Next State field in STT is directly and explicitly assigned by 
the controller. When illicit packets come, they can be easily 
identified through the invalid transitions and dropped. 

2) Infinite State Machine: Many network applications need 
to count packets and react to different counter states, such as 
heavy hitter detection, flow size monitoring, load balancing, 
DDoS detection, etc. As for the case of heavy hitter detection, 
to detect heavy hitters on a server or a subnet with traditional 
SDN switches, the controller  should  install  counting  rules 
on flow tables, then periodically query the counter statistics 
from switches. This approach has two major limitations: 
(1) Frequent queries from the controller bring severe overhead 
to the controller. (2) Fetching all of the counter statistics from 
switches consumes significant bandwidth between controller 
and switches. Such limitations call for a mechanism to handle 
state changes without frequent communications between the 
switches and the controller. Now we introduce the support for 
heavy hitter detection under the SDPA architecture. 

The definition of the table fields is shown in Fig. 4. SDPA 
uses the state field of ST to  maintain flow counters. When     
a packet arrives, we first extract certain fields  that  identify 
the flow (e.g. source IP field for heavy hitter detection), then 
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← { } 

lookup the counter statistics (state field) stored in the ST. The 
STT is responsible for increasing  the  counter and checking  
if the counter is larger than a threshold. We configure a 
wildcard rule on  the  state  field  of  STT,  and  the  event  
field to compare the current state with the  threshold.  Here, 
the param1 of event is extracted from the state in ST, and the 
param2 is assigned by the controller. If the counter is larger 
than the threshold, the state  of the flow will be updated as  
OV ER_THRESHOLD, otherwise the counter  is  increased 
by 1. The AT  specifies  actions depending on the new state   
of the flow.  If  the  new  state  is  OV ER_THRESHOLD, 
the switch sends the packet to the controller to inform the 
detection of a heavy hitter. Otherwise, the packet is passed to 
the next stages. 

 
D. SDPA APIs 

In order to  support  flexibly  defined  stateful  functions,  
we design north bound APIs on top of the controller and south 
bound APIs between the controller and the FP. North bound 
API is mainly used for operators to program applications, 
which includes the determination of its processing logic and 
table structures. South bound APIs are mainly used for com- 
munication between the controller and the FP. The controller 
initializes and modifies STs, STTs, and ATs in the FP through 
the south bound APIs. We elaborate the API design as follows. 

1) Key Components in SDPA APIs: The SDPA APIs include 
the following key components. (1) Match field: A match field 
definition describes the identification of each flow, such as the 
five tuples of a TCP connection. Match fields can be flexibly 
extended according to application requirements. We extend 
current match fields in OpenFlow flow tables by assigning  
the position and length of some new fields such  as  TCP  
flags. (2) State: A state can be defined as an enumeration 
variable  expressed  as:  enum  state   1,   2,  3,   . . . ,   n , 
since switches need not understand the meaning of each state. 
The controller can construct the state table and the state 
transition table using the enumeration values of a state and 
send them to the switches. (3) Event: An event is the trigger  
of state transition. For instance, the TCP flag carried in each 
packet triggers the TCP state transition. (4) Action: We specify 
actions to process packets under different states. Actions can 
be flexibly extended as long as we assign their execution 
methods and parameters in both the control and the data 
planes. Actions supported in SDPA are listed in Section III-A. 

2) South Bound API: The controller and FP communicate 
with each other through the south bound APIs, an extension of 
traditional OpenFlow protocol. The APIs are mainly used for 
the operation of state information in the data plane, such as 
initialization and modification of the table entries from the 
controller to the FP, and status report from the FP to the 
controller. The controller has full control over the FP. 

With the above four key components, we design two 
message types, Controller-to-FP messages and asynchronous 
messages for SDPA south bound APIs. Controller-to-FP mes- 
sages are initiated by the  controller  to  manage  or  inspect 
the state of the FP. They include (1) Table initialization 
message: this function is used to initialize the tables inside 

 
Fig. 5. SDN switch architecture supporting SDPA. 

 
 

the FP. (2) Entry modification message: They are used to add, 
modify, or remove state and action table entries. (3) Switch 
configuration message: They are used for the controller to 
configure data plane properties, such as state  report  inter- 
val. Note that Controller-to-FP messages may or may not 
require a response from the FP. Asynchronous messages are 
initiated by the FP and used to update the controller of state 
changes. They are sent without a controller soliciting them 
from the FP. The FP sends asynchronous messages to the 
controller to denote the state changes or other events, including 
STATE_ENTRY_REMOVE   and STATE_ENTRY_MODIFY. 
STATE_ENTRY_REMOVE messages are triggered when the 
state table entry is removed because of timeout or other 
reasons. STATE_ENTRY_MODIFY messages are used for the 
FP to notify the controller for the changes of state table entries. 

3) North Bound API: The north bound APIs are provided 
for operators to program stateful applications. They can be 
divided into three types of functions. (1) Table formation func- 
tion: Users call this interface to define table fields including 
match fields, state, event and action. We provide a fixed set of 
field choices in current implementation. However, this set can 
be  flexibly  extended  according  to  application requirements. 
(2) Message construction  function:  This  function  is  used 
to build messages transmitted  between  the  controller  and 
the switch, including table initialization or modification and 
switch configuration. (3) Message transmission function: This 
function is used to transmit messages to the switch. 

 
E. SDN Switch Architecture Supporting SDPA 

We design an SDN  switch  architecture supporting SDPA 
as shown in Fig. 5. We add FP and State Table  to  SDN 
switch architecture to maintain the state information in the 
data plane. Besides, we add a policy module, which is used to 
adjust the processing policies. This module includes the STT, 
AT and state-relevant configurations discussed above. The new 
architecture consists of the following functional modules: 
• Network Interface: it is directly connected to the physical 

layer and its main functions include receiving/sending 



3300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017 
 

packets and packet processing. It works in the physical 
layer and the link layer. 

• Forwarding Engine: it is responsible for determining the 
packet forwarding paths. It parses the received packet 
headers and looks up the flow tables to obtain the 
destination ports for the forwarding operation. 

• Forwarding Processor (FP): it interacts with the controller 
and is responsible for the maintenance and management 
of state information in the data plane. 

• Flow Table: it plays the role of connecting the entire 
system. It can be updated according to the information 
issued by the controller and returns associated forwarding 
instructions to the forwarding engine. 

• State Table: it is used to maintain state information during 
the processing procedure in the data plane. 

• Policy Module: it is used to store the processing policies 
from the controller including the entire STT, AT, config- 
uration of state report interval policy, etc. 

F. Controller Enhancement in SDPA Architecture 
In traditional SDN architecture, stateful applications can be 

supported by heavily involving the controller. Each packet has 
to be sent to the controller for state maintenance. Despite the 
fact that OpenFlow data plane can support some states, such 
as counters, it cannot actively maintain state and react to dif- 
ferent states. Besides, OpenFlow switches can only track flow 
counters with the granularity of flow table entries, which are 
always aggregated to save TCAM resource and cannot meet 
the requirement of some flow-level stateful applications. Thus, 
to get flow-level state without wasting data plane resource, 
packets have to be sent to the controller for state maintenance, 
which could incur both scalability and performance issues. 

In addition to traditional centralized control functions of the 
controller, in SDPA architecture, we  enhance the  controller  
to support stateful  applications  with  higher  performance. 
We design the forwarding processor (FP) inside the switches 
for state maintenance in the data plane and use SDPA south- 
bound APIs to communicate between the controller and the 
switches. The controller is able to initialize an application 
inside a switch. During runtime, the controller can pro-actively 
add, modify, and delete table entries in FP. Besides, the con- 
troller is also able to configure switch properties, including 
state report interval, etc. From the applications’ perspective, 
the controller exposes north bound APIs for applications to 
modify ST, STT, and AT to implement stateful processing 
logics. 

The controller can receive the state report from the data 
plane periodically and update the local record for state 
synchronization. The switches do not need to inform the 
controller every time a state transition occurs to save network 
bandwidth and to relieve controller burden. The state stored 
inside the controller can be used for failure recovery. The 
controller can install the state of a failed switch  to  a  new  
one and redirect flows accordingly. As the controller might 
not possess the latest state when a switch  fails, the state to   
be installed in the new switch could be inconsistent with the 
latest state in the old switch. Enabling switch failure recovery 
with state consistency is beyond the scope of this paper. 

Note that the controller still acts as the centralized intelli- 
gence in SDPA architecture. Traditional functions such as link 
discovery, topology detection, forwarding, and so on are still 
executed by the controller. We add SDPA protocol into the 
architecture and maintain state in the data plane to enhance 
both performance and scalability for stateful applications. 

IV. IMPLEMENTATION OF SDPA SWITCH 

SDPA architecture is a generic architecture that can be 
implemented in a variety of ways. To demonstrate the feasibil- 
ity and efficiency, we implemented both software and hardware 
prototype of the SDPA switch. We also developed several 
applications such as stateful firewall, DNS reflection defense, 
and heavy hitter detection to form a network function chain 
both in SDPA software and hardware platform. 

 
A. SDPA Implementation in Software 

We extended Open vSwitch (OVS) [4] to support FP and 
used Floodlight [1] as the controller, on which we developed 
three applications including stateful firewall, DNS reflection 
defense, and heavy hitter detection. 

We introduce the workflow of packet processing in the 
controller, switch, and FP in Workflow 1. This workflow is 
implemented in both hardware and software implementations 
of SDPA. When a packet arrives, it is  matched against the 
flow tables to examine if there is a corresponding flow entry. 
If not, the packet is sent to the controller. The controller issues 
a new flow table entry to the switch, whose instructions contain 
GOTO_ST(n). Then, the packet is sent to the state table n in 
FP to maintain the states. Subsequent messages are directly 
sent to FP to match the corresponding state table. According 
to the current state of the  connection and  the  input event,  
the next state is decided based on the state transition policies 
defined in the state transition table. Finally, FP looks up the 
action table to find actions given the next state and the packet 
match fields. Here, we should note that after action lookup, FP 
immediately executes the actions, since the processing result 
of this application might be needed in subsequent stateful 
applications or OpenFlow flow table entries. Both software 
and hardware implementations perform in the same way. 

According to Workflow 1, we extended OVS to support FP 
in the data plane. First, we extended the security channel used 
to communicate with the controller to support SDPA message 
transmission, including both controller-to-FP messages that 
initialize and configure stateful applications in switches, and 
asynchronous messages that report states to the controller. 
Second, we enriched OpenFlow instructions with a GOTO_ST 
instruction that directs packets from the OpenFlow pipeline   
to FP. Finally, we implemented the table lookup and state 
maintenance logics in FP, in order to support finite or infinite 
state machines. In the controller side, we also extended Flood- 
light security channel to transmit SDPA messages. Moreover, 
we implemented the SDPA north bound API on top of the 
controller for constructing stateful applications in SDPA. 

We implemented the stateful firewall application based on 
the SDPA architecture where  the  FP  is  used  to  maintain  
the state of TCP connections and UDP pseudo connections. 
The ST reside in FP to record state information. A detailed 
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Workflow 1: Packet Processing in the Controller, Switch 
and FP in SDPA-Based Stateful Applications 

 
 

Input: Input packets Σ, the state of packets or flows S. 
Output: Output packets ΣI, the state of packets or flows 

SI. 
1  foreach σ Σ do 
2 Flow_Entry e = Switch.Match_Flow_Table(σ); 
3 if e = NULL then 
4 Switch.Send_Packet_In(σ); 
5 /* Example App on the Controller */ 
6 /* Install a flow entry. n is the state table ID for 

the app. */ 
7 Controller.Issue_Flow_Entry(σ, GOTO_ST(n)); 
8 /* Construct and install corresponding ST and AT 

entries. */ 
9 Controller.Issue_Entry(ST_Entry, AT_Entry, n); 

10 else 
11 foreach ins e.instructions do 
12 if ins == GOT O_ST ( ) then 
13 /* Switch: Sent packet to state table n in 

FP. */ 
14 Switch.GOTO_ST(n); 
15 /* FP: Match ST, STT, and AT of the app. */ 
16 State_Entry = FP.Match_ST(σ, n); 
17 Next_State = 

FP.Match_STT(State_Entry.State, n); 
18 Actions = FP.Match_AT(σ, Next_State, n); 
19 /* FP: Update the state of the flow in ST. */ 
20 FP.Update_ST(Next_State, State_Entry, n); 
21 /* FP: Execution actions from AT to the 

packet. */ 
22 σI = FP.Execute_Action(σ, Actions); 
23 /* FP: Packet backs to the original flow 

table. */ 
24 else 
25 /* Switch: Original OpenFlow 

instructions.*/ 
 
 
 

Fig. 6. State table structure of stateful firewalls in SDPA. 
 

structure of ST in the stateful firewall application is depicted 
in Fig. 6. The “Match fields” domain consists of SIP, SPORT, 
protocol, DIP, and DPORT. And, the “State” domain con- 
tains Connection state, Sequence number, Acknowledge num- 
ber, Idle timeout, and Hard timeout. The “Actions” domain 
includes state operating actions and packet processing actions. 

 
B. SDPA Implementation in Hardware 

To validate the feasibility of SDPA, we implemented a 
proof-of-concept hardware prototype based on the ONetCard 
platform [3] . The ONetCard development platform is an 

acceleration card supporting four Gigabit Ethernet interfaces 
and two 10G network interfaces based on PCI Express. Its 
center is the FPGA device Kintex7 (XC7K325T-2), which 
connects network sub-system, storage sub-system, CPU con- 
nection sub-system, and inter-board sub-system. As the pro- 
grammable center of the entire ONetCard developing board, 
the Xilinx Kintex7-325T FPGA provides over 326 thousand 
logic cells. The TCAM  resource on the  board is simulated  
by Look Up Tables (LUTs) based on RAM on ONetCard 
platform. 

The hardware packet processing pipeline is composed of 
seven stages as Fig. 7 depicts: (1) RxQs input queues: buffer- 
ing packets received from the Ethernet physical ports and 
DMA virtual ports. (2) Input Arbiter: selecting one input 
queue through polling and dealing with that queue. (3) Tag 
Remover: detaching the VLAN tag from original data packet. 
(4) Output Port Lookup: core module for packet processing 
inside which the packets are temporarily buffered in the Packet 
Queue and the Header Parser gets the header fields. The Flow 
Table Lookup module matches the packet headers against flow 
tables to find associated instructions. The Packet Processor 
deals with the packets according to the instructions, such as 
modifying the header fields, dropping the packet or setting 
output ports. (5) Tag Adder: combing the processed packet 
with VLAN tags to form a complete packet. (6) Output 
Queues: sending the packet to relevant output queues on the 
basis of the processing decisions of the packet. (7) TxQs 
Output Queue: buffering the output queue to output port. 

To support SDPA in the data plane, we extended the data- 
path of the OpenFlow hardware switches as shown in yellow 
blocks in Fig. 7. We append one stateful processing module 
for each stateful application. During hardware implementation, 
we address the following challenges to maintain the flexibility, 
scalability and performance of the data plane. 

Hiding Heterogeneity: How to present a unified data plane 
abstraction and interfaces that hide the underlying differences 
between hardware and software switches to the controller? 

Maintaining Performance: How to design and program the 
additional stateful processing modules to maintain the line rate 
processing and minimize latency overhead? 

Data Plane Generality: How to build a general and recon- 
figurable hardware architecture that can accommodate many 
types of stateful network functions through simple reconfigu- 
rations from the controller? 

The following sections will explain how we address the 
above challenges with our hardware design. 

1) Unified Data Plane Abstraction and Interfaces: Different 
networks may choose to deploy software switches, hardware 
switches, or both types. To reduce the complexity of appli- 
cation deployment and management, we keep the three-table 
abstraction: State Table (ST), State Transition Table (STT), and 
Action Table (AT) on hardware switches similar to software 
switches, thus maintaining a consistent abstraction between 
hardware and software. Over the hardware switch, we imple- 
mented a software translation layer that is responsible for 
communicating with the controller just like a software switch. 
Therefore, the hardware and software switches can expose the 
same interfaces to the control plane. 
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Fig. 7. Hardware packet processing pipeline in SDPA architecture. 

 
2) Maintain High Throughput: One of the biggest chal- 

lenges in the implementation of SDPA hardware switch is to 
maintain high throughput while ensuring correct processing 
logic. In one stateful APP module, all three tables including 
ST, STT, and  AT should  be  looked  up  when  processing 
one packet. One table lookup in TCAM requires 4 clock 
cycles (a design referenced from [5]), and three times of 
lookups would take 12 clock  cycles.  An  APP  module  has 
to be locked for 12 clock cycles  until  the  current package 
has been matched against all three tables, while the header 
parser module could deliver parsed header fields every 9 clock 
cycles. This inconsistency in clock cycle consumption could 
significantly decrease the throughput. 

The key to address this challenge is to identify match 
dependencies between consecutive packets and shorten the 
clock cycle consumption inside each APP module. A match 
dependency occurs when an STT lookup triggers a state update 
into an ST entry, and the next packet belongs to the  same  
flow and is being matched against that entry. In this case,     
the processing of the current packet must finish both STT 
lookup and ST update before the subsequent packet can be 
matched against ST. Above two steps must be strictly sequen- 
tial to ensure logical correctness, while the rest stages create 
parallel opportunities to shorten clock cycle consumption. 
Therefore, we optimize the stateful App modules to allow ST 
lookup for the next packet immediately after the ST is updated 
by the current packet lookup in STT. And, the ST lookup for 
the next packet is parallel to the AT lookup for the current 
packet. In this way, the minimum gap between two consecutive 
packets is reduced to 9 clock cycles (4 cycles for ST  lookup, 
4 cycles for STT lookup and 1  cycle  for ST  update), which 
is the same as the header parsing stage. Therefore, SDPA 
architecture can realize line-rate processing for packets with 
any size (from 64 Bytes to 1500 bytes in our experiments). 

3) Reconfigurable Hardware: Based on the unified SDPA 
paradigm and southbound APIs, SDPA hardware switches are 
more general than traditional dedicated middleboxes, and can 
support many stateful applications. For those applications that 
can be abstracted into the SDPA paradigm, SDPA hardware 
switches can support these applications by simply configuring 
ST, STT and AT. Through the unified interfaces, the controller 
is able to initiate a stateful application by issuing stateful table 
entries to the software layer on top of the hardware switch. The 
software layer will then translate them into hardware 

configurations and convey them into the hardware switch 
through drivers. To destroy a stateful application, the controller 
could clear all stateful table entries and steer packets away 
from the application, after which hardware resource can be 
reused to accommodate a new stateful application. 

 

C. Customization of Network Function Chain 
SDPA hardware switches support the customization of 

network function chains through the SDPA paradigm and cor- 
responding APIs. In SDPA hardware switches, network func- 
tions can be deployed, updated and destroyed flexibly through 
configurations from the controller. For instance, to deploy a 
new network function to the SDPA hardware switch, we can 
initialize the application in the switches and configure the ST, 
STT, and AT through APIs from the controller. By accom- 
modating several applications, we enable customization of 
network function chains within one switch and we can assign 
arbitrary processing orders of the applications as introduced 
above. We developed a sample network function chain in an 
SDPA hardware switch, which includes stateful firewall, DNS 
reflection defense, and heavy hitter detection. 

In a DNS reflection attack, attackers send DNS requests    
to name servers using the victim host’s source  IP address, 
thus flooding the victim with  the  name  servers’ responses. 
To filter out these unsolicited responses, the SDPA switches  
of the victim network maintain the requests  sent  out  from 
the local network, and checks the validity of the incoming 
responses. In detail, packets whose UDP source or destination 
port equals to 53 will be sent to the DNS reflection defense 
APP. In the ST, an unmatched DNS request will trigger the 
switch to install 2 new entries. We design four states in the 
state transition table: the initial state, request sent, response 
received for a previously recorded request, and the detection 
of an unsolicited response. 

 

D. Dynamic Application Deployment on Hardware Switches 
Applications that can be abstracted into the SDPA para- 

digm can be dynamically deployed on SDPA switches during 
runtime. If an application needs to maintain state information, 
and all of its actions belong to the SDPA-supported action set, 
it can be deployed on SDPA switches by sending configuration 
messages from the controller to the switches. 
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The new applications can be deployed in any position in  
the network function chain  according to  controller policies.  
It can be implemented  through  adjusting  the  parameter  n  
of action GOTO_ST(n) in the flow tables to direct packets 
into the APP. It is deployed on SDPA hardware switches 
through the following steps. Firstly, according to application 
policy, the controller sends an encapsulated initialization mes- 
sage to SDPA switches which is used to install the state table 
format, the entire state transition table, and the action table 
format. Secondly, the software layer of the switch parses the 
messages issued by the controller and installs the tables into 
the hardware card. Thirdly, during runtime, if a new flow 
arrives at a switch, the switch will packet-in the first packet   
of the flow. The controller will add stateful table entries to the 
switches according to application decisions. 

 
E. Scalability of SDPA Architecture 

The ST, STT, and AT in SDPA could cost TCAM resources 
inside switches. Such an architecture could give rise to the 
scalability problems, including (1) Both ST and AT maintain 
the “Match Field”, which could waste TCAM resources when 
processing massive flows; (2) Various applications would have 
different table length and depth. However, current FPGA 
implementation of SDPA has to assign those parameters in 
advance. This inflexibility would cause an inefficient resource 
allocation; and (3) Flow level states could be unavoidably mas- 
sive. As a result, lots of table entries are required to maintain 
flow-level state inside the data plane and would heavily cost 
TCAM resources; (4) The STT of each stateful application 
should be pre-populated into the switches, which could cause 
major resource consumption due to massive states; Addressing 
above challenges, we propose the following solutions. 

1) Duplicated Storage of “Match Fields”: In SDPA design, 
each stateful application in the data plane processes packets 
according to related flow state. However, if an application 
wants to provide finer  granularity of  control over the  flows, 
it may need to specify actions with regard to both packet match 
fields and its state. Suppose a stateful application wants to 
forward packets from subnet  A1  in  ESTABLISHED  state 
to port 1. It could install a rule on ST to monitor the packets 
from subnet A1, and install a rule on AT to forward the packets 
with the ESTABLISHED state  to  port  1.  Thus,  ST  and  
AT both maintain the match fields of the same flow. Such an 
implementation on hardware could waste storage resources. 

In fact, within an APP module, packet header fields  are 
first matched against ST and then AT. We can utilize this 
knowledge by tagging flows in ST, an idea similar to the packet 
metadata that has been proposed in OpenFlow [20] and P4 [9], 
and identifying different flows in AT according to tags. More 
precisely, we extend ST with a field that records a tag for 
different flows in ST. Then, the combination of state and tag 
of a flow, which are precisely the fields to match in AT, are 
extracted and passed to AT to look up the actions. By tagging 
flows in ST, we can only store the match fields of the flows 
once in ST, in order to reduce the storage resource overhead. 

2) Fixed Table Length and Depth: Currently, each applica- 
tion possesses three tables with fixed entry length and table 

depth in the hardware implementation due to the constraints  
of FPGA. However, according to our design, we can support 
any kind of stateful applications with various states. We cannot 
pre-estimate the header fields to match, the flow number to 
process and the entry number of the tables. Therefore, we have 
to allocate abundant resources just in case of heavy resource 
consumption of an application, which could cause waste due 
to extra entry length and table depth. 

To address this challenge, we restrict the number of appli- 
cations carried in each hardware switch to ensure sufficient 
resource for each application and  avoid  potential overload.  
In the future, we plan to implement SDPA on advanced hard- 
ware platforms such as RMT [10] that provides configurable 
width and depth of tables to improve resource utilization 
efficiency. 

3) Massive Number of Flow-Level States: SDPA supports 
flow-level state monitoring in the data plane. However, flows 
could be of excessive number and result in heavy cost of data 
plane TCAM resources. This challenge seems inevitable due 
to our proposal of maintaining state inside the data plane. 
Nevertheless, according to a detailed research of commonly 
used stateful applications, we are able to recognize some 
particular states that are monitored by  lots  of applications.  
As can be seen in TABLE I, two most commonly monitored 
states are TCP state and  flow  counters.  This  reveals  that  
we do not need to maintain separate table sets for different 
applications. Instead, we divide applications by the states they 
monitor, and keep one table set for applications monitoring 
the same state. 

We develop a State Interest Registration (SIR) module 
inside the controller, which provides a set of state choices and 
collects state interests from all stateful applications. It will 
issue tables for each type of state into switches. All packet-ins 
will be sent to all applications to check what state of this flow 
they want to monitor and handle. Only one ST entry of this 
flow related to one type of state will be issued. State reports 
from switches are stored inside SIR.  Through  SIR,  tables 
can be aggregated at application level, resulting in a major 
efficiency improvement on data plane resource utilization. 

4) Pre-Population of STT: During the application initial- 
ization, the STT of an application should be  pre-populated 
into the data plane, which could harm scalability. However, 
according to above summary, two most commonly moni- 
tored states are the TCP state and  flow counters. We  design 
16 transition policies according to the TCP state machine and 
only 2 transition policies for flow counters introduced in Fig 4. 
Besides, if two applications follow the same state  machine, 
the state transition policies of the two applications are likely  
to be identical, where only one STT is issued into the switch 
for the two applications to further save switch resources. 

V. EVALUATIONS 

We run the SDPA software switch in Ubuntu 12.04 system 
on a DELL R720 server equipped with  a  Xeon  E5-2609  
(2.4 GHz) CPU, 16GB internal memory and two 10 Gigabit 
Network Interface Cards. Furthermore, we use OVS-DPDK  
to enhance the performance of the  software  SDPA  switch. 
We run an enhanced Floodlight controller on another server 
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Fig. 8. Performance comparison between a SDPA software switch and a traditional OVS-based OpenFlow software switch with  or  without  DPDK 
acceleration. Kernel-based stands for software implementation without DPDK acceleration. (a) Stateful firewall (SF) (b) Stateless forwarding (c) Scalability of 
software SDPA. 

with the same configuration. The controller is wire-connected 
to software and hardware switches  respectively  in  differ-  
ent experiments. SDPA hardware switch is implemented on 
ONetCard as introduced above. For test traffic, we use a DPDK 
based packet generator that runs on a separate server and is 
directly connected to the software or hardware switches. The 
generator sends and receives traffic to measure latency and 
throughput. 

SDPA  could  efficiently  support  stateful   applications.  
We evaluate SDPA with the following goals: 
• demonstrate that the SDPA  software  implementation  

can support stateful applications with  higher 
performance compared with OpenFlow software 
implementation (Fig. 8(a)), and suffers little performance 
overhead    when    supporting     stateless     applica- 
tions (Fig. 8(b)). Besides, SDPA stateful processing only 
introduces a little performance overhead compared with 
stateless processing (Fig. 9(b)). 

• demonstrate that SDPA has great scalability with respect 
to ST and AT sizes (Fig. 8(c)). 

• compare the performance of SDPA hardware implemen- 
tation and software implementation (Fig. 9(a)). 

• demonstrate that SDPA software and hardware implemen- 
tations could support service chains with linear latency 
and equal throughput (Fig. 9(c)). 

 
A. Performance of Stateful Firewalls in SDPA Software 
Switch v.s. in Traditional Openflow Software Switch 

To evaluate the efficiency of SDPA, we developed a stateful 
firewall application based on the traditional SDN architecture, 

where the state information is  maintained in  the  controller. 
In this architecture, a large number of packets should be sent to 
the controller to check its state information before forwarding. 
We evaluated the performance of processing states in software 
switches in the SDPA architecture against processing states in 
the controller in the traditional SDN architecture. 

We tested the forwarding latency and the throughput respec- 
tively by sending packets of 64 to 1500 bytes. The average 
forwarding latency reduces significantly in SDPA architecture 
than that  in  traditional  SDN  architecture,  with  or  with-  
out DPDK acceleration, as shown in  Fig.  8(a).  In  addi-  
tion, the throughput increases significantly in the SDPA 
architecture. When realizing stateful firewalls in the traditional 
SDN architecture, the processing bottleneck of the controller 
limits the processing capability of the firewalls. While realiz- 
ing stateful firewalls in the SDPA architecture, SDN data plane 
maintains all state information. The throughput of the firewalls 
is significantly improved regardless of the size of packets. 

 
B. Performance of Stateless Forwarding in SDPA Software 
Switch v.s. in Traditional Openflow Software Switch 

Since the SDPA architecture is fully compatible with Open- 
Flow, SDPA can also support stateless processing. While 
performing stateless forwarding in the data plane, the average 
forwarding latency in the SDPA architecture remains almost 
equal to that in the traditional SDN architecture with or with- 
out DPDK acceleration, as shown in Fig. 8(b). The throughput 
in the SDPA architecture is almost the same as that in the 
traditional SDN architecture. Applications that do not need to 
maintain state information can be fully supported by simply 
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Fig. 9. Performance comparison between a SDPA hardware switch and a SDPA software switch. In the figure legends, HW is short for Hardware, SW for 
Software, Kernel-based for software implementation without DPDK acceleration. (a) Stateful firewall (b) Stateful firewall v.s. Stateless forwarding (c) Network 
function chain. 

 
sending packets through flow tables like traditional OpenFlow 
with no additional overhead. 

C. Testing the Scalability of State Tables 
We performed a test on the scalability with respect to the 

state table size in the SDPA software switch and its impact on 
the latency and throughput. Since state tables are implemented 
in SRAM in software prototype, the state tables size can be 
increased to a large extent. We used 64-byte packets to conduct 
our experiment. As the state table size increases from 1000 to 
50000, the forwarding latency does not increase significantly, 
and the throughout almost remains the same with or without 
DPDK acceleration as shown in Fig. 8(c). The table lookup 
procedure consumes short time and has little effect on the 
performance, showing good scalability. 

The hardware implementation of SDPA is developed based 
on ONetCard, where state tables are implemented in TCAM. 
For each flow, it takes 248 bits to store its header, 8 bits to store 
its state in the ST, and 320 bits to store an entry in AT. STT is 
small (24 bits for each entry) with the fixed entry number and 
is shared among all flows. Its average resource cost for one 
flow can be omitted. Therefore, the total TCAM consumption 
for one flow is 576 bits. Considering that OpenFlow 1.0 uses 
568 bits for each flow table entry, memory consumption to 
maintain and process the state of one flow in SDPA is almost 
the same as a traditional flow entry. In the situation where one 
switch is fully assigned to carry a stateful firewall application, 
only one wildcard flow table entry that directs all packets into 
ST is needed. The state table can be used to perform state 

validation and forwarding, covering the role of the flow tables. 
In this way, little additional memory is needed to process the 
same number of flows compared with traditional OpenFlow. 

 
D. Performance of Stateful Firewalls in the SDPA Hardware 
Switch v.s. in the SDPA Software Switch 

We compared the performance of the stateful firewall appli- 
cation in SDPA hardware and software switches. As illustrated 
in Fig. 9(a), the forwarding latency of the hardware-based 
implementation is much lower than  that  of  the  kernel-  
based software implementation, while the throughput of the 
hardware-based implementation increases to a large extent 
compared with the kernel-based implementation, especially 
for small sized packets. Even with DPDK acceleration, soft- 
ware SDPA switches still underperforms hardware switches in 
latency and throughput. The experimental results demonstrate 
the feasibility of implementing SDPA paradigm in a hardware 
paradigm to achieve much higher performance than software 
implementation. The SDPA hardware switch can achieve line- 
rate for packets of any size during stateful packet processing. 

 
E. Performance of Stateful Firewalls v.s. Stateless 
Forwarding in SDPA Hardware Switch 

We compared our stateful firewall in the SDPA hardware 
switch with stateless forwarding in the traditional OpenFlow 
hardware switch. As can be seen in Fig. 9(b), the forwarding 
latency  of  the  stateful  firewall  in  the  SDPA  architecture  
is slightly higher than stateless forwarding. The processing 
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overhead is acceptable and the throughput is nearly unchanged 
as shown in Fig. 9(b). This proves that stateful processing 
contributes to only a little performance overhead. As explained 
above, it only takes as few as 9 additional clock cycles to 
perform table lookup and processing in the data plane, which 
contributes to only 72ns for 125MHz board clock frequency. 

 
F. Performance of the Network Function Chain in SDPA 
Hardware Switch v.s. in SDPA Software Switch 

We evaluated the performance of the network function 
chain comprising stateful firewall, DNS reflection defense, and 
heavy hitter detection functions implemented on the SDPA 
hardware switch against the same chain on software SDPA 
switch. As can be seen from Fig. 9(c), average forwarding 
latency of hardware switch is much lower than that of software 
switch, while the throughput of hardware is  much  higher  
than software. This result is consistent with Section V-D, and 
proves the feasibility of forming a hardware SDPA network 
function chain and achieving high performance. 

Due to the limited hardware resource, we could only imple- 
ment three NFs on the ONetCard platform. By  comparing 
Fig. 9(a) and  Fig. 9(c), we could conclude that increasing    
the number of Apps traversed by packets could increase the 
processing latency and incur little overhead on the throughput 
for both hardware and software implementations. As analyzed 
in Section V-C, the table entry size in SDPA is fixed. There- 
fore, the number of Apps that can be accommodated on a 
hardware platform is proportional to the hardware resource 
amount. In future, we plan to implement SDPA on advanced 
hardware platforms that could provide more richer resource. 

 
G. Evaluation Based on a Real-World Network Topology 

We evaluated the performance of software network function 
chain in a Mininet simulation environment based on a real- 
world network topology derived from the Stanford backbone 
network [2]. We selected a three-hop forwarding path. Each 
switch in this path carries one unique network function. For 
packets of 1024 bytes, the forwarding latency is approximately 
3900µs and the throughput is about 9.5Gbps. This result 
demonstrates the feasibility of implementing SDPA in a real- 
world network topology with satisfying performance. 

 
VI. RELATED WORK 

OpenFlow Data Plane Abstraction: Some research efforts 
have been recently devoted to extend the OpenFlow data plane 
abstraction [8], [10], [13], [19], [29]. Bosshart et al. [10] 
pointed out that the rigid table structure of current hardware 
switches limits the scalability of OpenFlow packet processing 
to a fixed-set of fields and to a small set of actions. They 
introduced a logical table structure RMT (Reconfigurable 
Match Table) on top of the existing fixed physical tables and 
new action primitives. In comparison, we strive to enhance the 
programmability of the data plane by adding a co-processing 
unit in SDN switches. 

Bianchi et al. [8] proposed an abstraction to formally 
describe the desired stateful processing of flows inside SDN 
data plane based on eXtended Finite State Machines (XFSM). 

The functionality of XFSM table in OpenState is similar to that 
of STT and AT tables in SDPA. The design of XFSM actually 
combines the STT and AT of SDPA.  However,  OpenState 
only supports finite state machines, while SDPA could also 
accommodate infinite state machines by enhancing definitions 
of the event and action fields in STT and AT tables. Therefore, 
SDPA provides a more powerful and general abstraction for 
various stateful applications. 

Moshref et al. [21] proposed FAST (Flow-level State Transi- 
tions) as a new switch primitive for SDN. Shuyong et al. [29] 
introduced a preliminary stateful forwarding solution in the 
SDN data plane. However, none of them presented the relation- 
ships and interactions between the state tables and flow tables 
in SDN switches. Thus their compatibility with OpenFlow 
remains unclear. They also did not elaborate the  fundamen- 
tal shortcoming of the limited “match-action”  paradigm  in 
the current OpenFlow specification. Besides, they could not 
provide concrete implementations and extensive evaluations. 
In this paper, we presented a novel “match-state-action” par- 
adigm for the SDN data plane and designed an extended 
OpenFlow protocol to operate the state information in  the 
data plane. We also developed both software and hardware 
prototypes of the SDPA architecture. Especially, we developed 
three stateful applications and organized them as a network 
function chain in an SDPA hardware switch, and provided 
support for dynamic deployment of new applications. 

Data Plane Programmability: Some efforts have been 
devoted to enhance the programmability of the SDN data 
plane [9], [27]. Among them,  P4  [9]  is  a  typical  lan-  
guage for programming protocol-independent packet proces- 
sors. Although P4 is also capable of supporting advanced 
applications, such as the heavy hitter  detection  and  the 
Paxos consensus protocol [11], in the data plane, SDPA and 
P4 differ in their design goals. P4 aims to enhance the data 
plane programmability. Therefore, it proposes an abstraction 
for data plane behaviors along with a related high level 
language. In contrast, SDPA addresses the limitation of the 
simple “match-action” paradigm of OpenFlow when sup- 
porting advanced stateful applications. Since heavily relying 
on SDN controllers for all state maintenance incurs both 
scalability and performance issues, SDPA proposes a “match- 
state-action” paradigm for stateful applications, which could 
be intuitively programmed and efficiently supported in the 
data plane. Thus, SDPA provides a higher level abstraction 
than P4. Through  proper  encapsulation,  P4  could  work  as 
a potential target data plane for SDPA. Moreover, P4 data 
plane supports customized protocols by parsing headers based 
on a state machine. Since SDPA data plane already supports 
state machines, SDPA could possibly achieve the protocol 
independence similar to P4. 

Middlebox Enhancement: Since current OpenFlow data 
plane is limited to support stateful processing, the advanced 
packet processing has been turned to specialized middle- 
boxes [7], [16]. Anwer et al [7] also believe that expanding the 
“match-action” interface could make it possible for network 
operators to implement more sophisticated policies. To support 
complex middlebox functions in SDN, Fayazbakhsh et al. [12] 
developed a FlowTags architecture, which attempts to combine 
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traditional middleboxes with the SDN  architecture.  There  
are also some efforts for developing middlebox functions 
using SDN [14], [22], [26]. In particular, Gember et al. [14] 
advocated for a mechanism that helps exercise unified con- 
trol over the key factors influencing middlebox operations. 
Qazi et al. [22] proposed to add an SDN-based policy enforce- 
ment layer for efficient middlebox-specific traffic steering. 
However, above research efforts lack a general programming 
interface for stateful applications. Moreover, the network is 
filled with various middleboxes,  and  the  network  structure 
is complex. We believe that with SDPA stateful data plan 
abstraction, new approaches would be stimulated for designing 
middlebox functions within the SDN architecture. 

Another option to address current middlebox limitations is 
to utilize virtualization technologies to manage networking 
functions via software, as opposed to having to rely on 
proprietary middleboxes to handle these functions, referred to 
as Network Functions Virtualization (NFV) [17]. Since SDN 
and NFV are complementary technologies [30], we believe 
our solution can facilitate the realization of stateful network 
functions in NFV through integrating our SDPA architecture 
into Service Function Forwarder (SFF) in NFV [6]. Especially 
our hardware implementation can provide high forwarding 
capacity to fulfill the requirements of stateful packet process- 
ing required by advanced network functions. 

VII. DISCUSSION 

A. Flow Migration in SDPA 
In the situation where one switch is overloaded, the operator 

plane. We have also designed an extended OpenFlow protocol 
to implement the communication between the controller and 
the FP. In addition, we have implemented both software and 
hardware prototypes of SDPA switches, and developed a net- 
work function chain in a SDPA hardware switch. Experimental 
results show that the SDPA architecture can tremendously 
improve the forwarding efficiency with manageable processing 
overhead for those applications that need to maintain states. 

For the future work, we will develop more stateful applica- 
tions based on the SDPA architecture to further validate the 
effectiveness of our approach. We will also extend the concept 
of state in our architecture to include switch states such as 
queueing delay, link states, and other customized states to 
support more complex applications. Finally, future adoption  
of advanced data plane platforms, such as RMT [10], could 
further improve data plane resource utilization efficiency and 
enhance the scalability of SDPA architecture. 

IX. AVAILABILITY 

The   SDPA   source   code    is    available    on    Github  
at: https://github.com/sdpa-project/sdpa.git 

REFERENCES 

[1] Floodlight, accessed on Jul. 22, 2017. [Online]. Available: 
http://www.projectfloodlight.org/floodlight/ 

[2] Header Space Library, accessed on Jul. 22, 2017. [Online]. Available: 
https://bitbucket.org/peymank/hassel-public 

[3] Onetcard, accessed on Jul. 22, 2017. [Online]. Available: 
http://www.xilinx.com/products/boards-and-kits/1-411ymv.html 

[4] Open vSwitch, accessed on Jul. 22, 2017. [Online]. Available: 
http://openvswitch.org/ 

[5] OpenFlow Switch on NetFPGA, accessed on Jul. 22, 2017. [Online]. 
needs to migrate some flows from the switch to another one. 
For stateful applications such as stateful firewalls, migrating 

[6]  
Available: https://github.com/NetFPGA/netfpga 
Service Function Chaining (SFC), accessed on Jul. 22, 2017. [Online]. 
Available: https://datatracker.ietf.org/wg/sfc/ 

flows means migrating the ST,  STT and AT  entries. We could 
refer to OpenNF [15] and enhance  both  SDPA  data  plane 
and control plane to realize loss-free and order-preserving 
state migration among SDPA switches. As introduced above, 
the software layer of a SDPA hardware switch is responsible 
for the communication with the controller. Therefore, software 
and hardware switches will react similarly in  state  migration. 

 
B. Limitation of SDPA 

As discussed above, SDPA could efficiently support appli- 
cations that can be abstracted into finite or infinite state 
machines. Thus, the capability of SDPA equals a Finite 
Automation in the automation theory, and therefore is not 
Turning Complete. However, the stateful abstraction of SDPA 
is capable of representing a large number of general network 
functions including stateful firewalls, heavy hitter detection, 
etc. Through both software and hardware implementations, 
SDPA could support them with high performance. 

 
VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a new “match-state- 
action” paradigm in the data plane, which has the generality  
to support various applications that need to process state 
information. We have proposed a novel stateful data plane 
architecture SDPA. Through  adding  a  co-processing  unit, 
the FP, it can manipulate state information in the SDN data 

[7] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, 
“A slick control plane for network middleboxes,” in Proc. ACM SIG- 
COMM Workshop Hot Topics Softw. Defined Netw.  (HotSDN),  2013, 
pp. 147–148. 

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: 
Programming platform-independent stateful OpenFlow applications 
inside the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, 
no. 2, pp. 44–51, 2014. 

[9] P. Bosshart et al., “P4: Programming protocol-independent packet 
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, 
pp. 87–95, 2014. 

[10] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable 
match-action processing in hardware for SDN,” in Proc. ACM SIG- 
COMM Conf. SIGCOMM (SIGCOMM), 2013, pp. 99–110. 

[11] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made 
switch-y,” ACM SIGCOMM Comput. Commun. Rev.,  vol.  46,  no.  1, 
pp. 18–24, 2016. 

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, 
“Enforcing network-wide policies in the presence of dynamic middlebox 
actions using FlowTags,” in Proc. USENIX Symp. Netw. Syst. Des. 
Implement. (NSDI), 2014, pp. 533–546. 

[13] Open Networking Foundation (ONF), “Software-defined networking: 
The new norm for networks,” Open Netw. Found. (ONF), White Paper, 
2012. [Online]. Available: https://www.opennetworking.org/images/ 
stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf 

[14] A. Gember, R. Grandl, J. Khalid, and A. Akella, “Design and implemen- 
tation of a framework for software-defined middlebox networking,” ACM 
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 467–468, 2013. 

[15] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network 
function control,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 163–174. 

[16] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom 
network processing via waypoint services,” in Proc. 3rd Workshop 
Infrastruct. Softw./Hardw. Co-Des. (WISH), 2011. [Online]. Available: 
http://yuba.stanford.edu/~nickm/papers/waypoint-cgo11.pdf 

[17] R. Guerzoni “Network functions virtualisation: An introduction, 
benefits, enablers, challenges and call for action, introductory white 
paper,” in Proc. SDN OpenFlow World Congr., 2012, pp. 5–7. 



3308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017 
 

[18] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, and S. Goll, “Modeling 
and performance evaluation of an OpenFlow architecture,” in Proc. 
23rd Int. Teletraffic Congr., 2011, pp. 1–7. 

[19] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières, “Mil- 
lions of little minions: Using packets for low latency network program- 
ming and visibility,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 3–14. 

[20] N. McKeown et al., “OpenFlow: Enabling innovation in campus 
networks,” ACM SIGCOMM Comput. Commun. Rev.,  vol.  38,  no. 2, 
pp. 69–74, 2008. 

[21] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, 
“Flow-level state transition as a new switch primitive for sdn,” in Proc. 
ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 
2014, pp. 61–66. 

[22] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement 
using SDN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 
pp. 27–38, 2013. 

[23] C. Roeckl, “Stateful inspection firewalls,” Juniper Netw., Sunnyvale, CA, 
USA, White Paper, 2004. [Online]. Available: http://www.abchost.cz/ 
download/204-4/juniper-%EE%80%80stateful%EE%80%81-inspection- 
firewall.pdf 

[24] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and 
implementation of a consolidated middlebox architecture,” in Proc. 9th 
USENIX Conf. Netw. Syst. Des. Implement., 2012, p. 24. 

[25] J. Sherry et al., “Making middleboxes someone else’s problem: Network 
processing as a cloud service,” ACM SIGCOMM Comput. Commun. 
Rev., vol. 42, no. 4, pp. 13–24, 2012. 

[26] S. Shin et al., “FRESCO: Modular composable security services 
for software-defined networks,” in Proc. Netw. Distrib. Syst. Secur. 
Symp. (NDSS), 2013. [Online]. Available: https://www.internetsociety. 
org/doc/fresco-modular-composable-security-services-software-defined- 
networks 

[27] H. Song, “Protocol-oblivious forwarding: Unleash the power of 
SDN through a future-proof forwarding plane,” in Proc. ACM 
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013, 
pp. 127–132. 

[28] S.  H.  Yeganeh,  A.  Tootoonchian,  and  Y.   Ganjali,  “On  scalability of 
software-defined networking,” IEEE Commun. Mag., vol.  51,  no.  2, 
pp. 136–141, Feb. 2013. 

[29] S. Zhu, J. Bi, and C. Sun, “SFA: Stateful forwarding abstraction in 
SDN data plane,” Open Netw. Summit Res. Track (ONS), 2014. 

[30] M.   Zimmerman,   D.   Allan,   M.   Cohn,   N.   Damouny,    and 
Kolias, “OpenFlow-enabled SDN and network functions 
virtualization,” ONF, White Paper, 2014. [Online]. Available: 
https://www.opennetworking.org/images/stories/downloads/sdn- 
resources/solution-briefs/sb-sdn-nvf-solution.pdf 

 
Chen Sun received the B.S. degree from the Depart- 
ment of Electronic Engineering, Tsinghua Univer- 
sity, in 2014, where he is currently pursuing the 
Ph.D. degree with the Institute for Network Sci- 
ences and Cyberspace. He has authored papers in 
SIGCOMM, ICNP, SOSR, IEEE Communications 
Magazine, and the IEEE Network Magazine. His cur- 
rent research interests include Internet architecture, 
software-defined networking, and network function 
virtualization. 

 
Jun  Bi  (S’98–A’99–M’00–SM’14)  received B.S., 
C.S., and Ph.D. degrees from the Department of 
Computer Science, Tsinghua University, Beijing, 
China. He is currently a Changjiang Scholar Dis- 
tinguished Professor and the Director of Network 
Architecture Research Division, Institute for Net- 
work Sciences and Cyberspace, Tsinghua University. 
His current research interests include Internet archi- 
tecture, SDN/NFV, and network security. He suc- 
cessfully led tens of research projects, published 
over  200  research   papers  and  20  Internet  RFCs 

or drafts, and also holds 30 innovation patents. He received the National 
Science and Technology Advancement Prizes, the IEEE ICCCN Outstanding 
Leadership Award, and Best Paper awards. He is the Co-Chair of the AsiaFI 
Steering Group and the Chair of the China SDN Experts Committee. He served 
as the TPC Co-Chair of a number of Future Internet related conferences or 
workshops/tracks at INFOCOM and ICNP. He served on the Organization 
Committee or Technical Program Committees of SIGCOMM, and ICNP, 
INFOCOM, CoNEXT, and SOSR. He is a Distinguished Member of the China 
Computer Federation. 

Haoxian Chen received the B.S. degree from the 
Department of Electronic Engineering, Tsinghua 
University, Beijing, China, in 2016. He is currently 
pursuing the Ph.D. degree with the Computer Sci- 
ence Department, Carnegie Mellon University. His 
current research interests include computer networks 
and distributed systems. 

 
 
 
 
 
 

Hongxin Hu (S’10–M’12) received the Ph.D. degree 
in computer science from Arizona State University, 
Tempe, AZ, in 2012. He is currently an Assistant 
Professor with the Division of Computer Science, 
School of Computing, Clemson University. His cur- 
rent research interests include security in  emerg- 
ing networking technologies, security in Internet of 
Things, security and privacy in social networks, and 
security in cloud and mobile computing. He has 
authored over 80-refereed technical papers,  many 
of which appeared in top conferences and journals. 

He was a recipient of the Best Paper Award from ACM CODASPY 2014, and 
the Best Paper Award Honorable Mentions from ACM SACMAT 2016, IEEE 
ICNP 2015, and ACM SACMAT 2011. His research has been funded by the 
National Science Foundation, U.S. Department of Transportation, VMware, 
Amazon, and Dell. He has served as a Technical Program Committee Member 
for many conferences, such as the  IEEE Conference  on  Communications 
and Network Security, the ACM Symposium on Access Control Models and 
Technologies, and the IEEE Global Communications Conference. 

 
 
 

Zhilong Zheng received the B.S. degrees from the 
School of Software Engineering from Chongqing 
University, Chongqing, China, in 2016. He is 
currently pursuing the Ph.D. degree with the 
Institute for Network Sciences and Cyberspace, 
Tsinghua University. His research interests include 
software-defined networking and network function 
virtualization. 

 
 
 
 
 

Shuyong Zhu received the B.S. and M.S. degrees 
from the National University of Defense Technology, 
Changsha, China, and the Ph.D. degree with from 
Department of Computer Science, Tsinghua Uni- 
versity, Beijing, China. His research fields include 
Internet architecture, software-defined networking, 
and network function virtualization. 

 
 
 
 
 
 

Chenghui Wu received the B.S. degree from the 
Department of Electronic Engineering, Tsinghua 
University, in 2013, where he is currently pursuing 
the Ph.D. degree with the Institute for Network 
Sciences and Cyberspace. His research interests 
include Internet architecture and software-defined 
networking. 


