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ABSTRACT

Traditional Network Intrusion Detection Systems (NIDSes) are gen-
erally implemented on vendor proprietary appliances or middle-
boxes with poor versatility and flexibility. Emerging Network Func-
tion Virtualization (NFV) and Software-Defined Networking (SDN)
technologies can virtualize NIDSes and elastically scale them to
deal with attack traffic variations. However, such an elasticity fea-
ture must not come at the cost of decreased detection effectiveness
and expensive provisioning. In this paper, we propose an innova-
tive NIDS architecture, vNIDS, to enable safe and efficient virtu-
alization of NIDSes. vNIDS addresses two key challenges with re-
spect to effective intrusion detection and non-monolithic NIDS provi-
sioning in virtualizing NIDSes. The former challenge is addressed
by detection state sharing while minimizing the sharing overhead
in virtualized environments. In particular, static program analysis
is employed to determine which detection states need to be shared.
VNIDS addresses the latter challenge by provisioning virtual NID-
Ses as microservices and employing program slicing to partition
the detection logic programs so that they can be executed by each
microservice separately. We implement a prototype of vNIDS to
demonstrate the feasibility of our approach. Our evaluation results
show that vNIDS could offer both effective intrusion detection and
efficient provisioning for NIDS virtualization.
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1 INTRODUCTION

Network Intrusion Detection System (NIDS) is a critical network
security function that is designed to monitor the traffic in a net-
work to detect malicious activities or security policy violations.
Recently, lots of networks have reached the throughput of 100
Gbps [83]. To keep up with the pace of the soaring throughput
of networks, multi-thread approaches [35, 77] have been proposed
to build NIDSes to meet the high throughput requirement for de-
tecting attacks. In addition, some NIDSes, such as Bro [67], can be
deployed as NIDS clusters [81] that spread detection tasks across
multiple nodes. However, despite their usefulness in addressing
scalability issues for NIDSes, both multi-thread and cluster solu-
tions remain limited in flexibility regarding the processing capac-
ity and placement location. In particular, they are still inflexible
to detect attacks when a significant workload spike happens. For
example, a massive attack like DDoS could bring the network traf-
fic volume up to 500 GBps [42], which requires the NIDSes scal-
ing accordingly to process the peak traffic load. Moreover, these
approaches are also inflexible to protect current prevailing virtual-
ized environments, because the perimeters of networks in virtual-
ized environments become blur and fluid, where applications may
migrate from one physical machine to another within a data center
or even across multiple data centers for the purpose of flexible re-
source management and optimization [31]. Therefore, improving
the design of current NIDSes to make them well suited to provide
flexible network intrusion detection is urgent and relevant.
Network Function Virtualization (NFV) [2] and Software-Defined
Networking (SDN) [59] are two emerging networking paradigms
that are able to facilitate the design of elastic security approaches [36,
42, 85] to securing networks. Elastic security features not only scal-
able but also flexible network security functions. NFV implements
network security functions as software instances that can be cre-
ated or destroyed rapidly to handle attack traffic volume varia-
tions on demand. SDN, recognized as complementary technology
to NFV [45, 71], can dynamically redistribute the traffic to support
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flexible placement of network security functions. Given these ben-
efits, there is a body of pioneer work devoting to developing elastic
security solutions leveraging NFV and SDN - Bohatei [42] for flex-
ible and elastic DDoS defense, PSI [85] for precise security instru-
mentation for enterprise networks, and VFW Controller [36] for
elasticity control of virtual firewalls. However, rare effort is made
to improve the design of current NIDSes to make full use of those
two advanced paradigms.

In this work, our goal is to make a step towards elastic secu-
rity through NIDS virtualization that overcomes the inflexibility of
current NIDS architectures. The virtualization of NIDSes must be
safe and efficient. The safe virtualization requires that virtualized
NIDSes do not miss any potential attacks that can be detected by
traditional NIDSes. The efficient virtualization requires that virtu-
alized NIDSes are provisioned optimally and consume minimum
resources. However, as attack postures have been shifting from
per-host and byte-level exploits to multi-stage and sophisticated
penetrations (e.g., Advanced Persistent Threats [78]) for the past
decades, detection strategies also have been evolving from con-
ceptually simple per-flow signature matching (e.g., Snort [20] and
Suricata [21]) to more complex multi-flow information and state-
ful protocol analysis (e.g., Bro [22] and Libnids [5]). The complexity
of multi-flow information and stateful protocol analysis makes safe
and efficient virtualization of NIDSes extremely challenging.

o Effective Intrusion Detection: NFV enables flexible provision-
ing an NIDS as multiple instances that could run at different
locations, and SDN can dynamically distribute network traffic
to each instance. Some detection logics in NIDSes must take ac-
count of multiple network flows to identify malicious activities.
For example, a scanner detector [17] must maintain a counter
to count the number of flows generated by the same host to de-
termine whether a host is a scanner. However, each NIDS in-
stance may receive only a part of flows originated from the same
scanner and maintain a counter individually. To ensure intru-
sion detection effectiveness, NIDS instances must share detec-
tion states with each other. Traditional NIDSes are usually pro-
visioned with a fixed number of instances at a fixed location. This
static setup mitigates the difficulty of detection state sharing be-
tween NIDS instances. In contrast, virtualized NIDSes pursue to
place their instances flexibly at different locations and with dif-
ferent numbers. This flexibility feature makes sharing detection
states among virtualized NIDS instances extremely costly and
difficult. Therefore, ensuring the effectiveness of intrusion de-
tection for virtualized NIDSes becomes more challenging than
traditional NIDSes.

o Non-monolithic NIDS Provisioning: Existing virtualization
solutions enabling elastic security [36, 85] consider a virtualized
network function as a monolithic piece of software running in a
virtual machine or container. However, simply provisioning all
the components of virtualized NIDSes within a virtual machine
or container is not efficient. First, since a monolithically virtu-
alized NIDS requires more resources than any one of its com-
ponents, the virtual machine that runs a monolithically virtual-
ized NIDS should be allocated with more resources than the one
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that runs only some components. Second, monolithically virtu-
alized NIDSes lack the ability to scale each component individu-
ally, thus have to scale out the entire instance even though only
one component is overloaded, resulting in over-provisioning of
other components. Third, it is difficult to customize a virtual-
ized NIDS if it is provisioned as a monolith. However, NIDS cus-
tomization is critical in terms of resource efficiency for advanced
network attack defense [42, 85, 86]. Due to the complexity of
modern detection logics, decoupling NIDSes as non-monolithic
pieces that are suitable to be deployed in virtualized environ-
ments remains challenging.

In this paper, we propose a novel NIDS architecture, vNIDS,
which enables safe and efficient virtualization of NIDSes. To ad-
dress the effective intrusion detection challenge, we classify detec-
tion states of virtualized NIDSes into local and global detection
states to minimize the number of detection states shared between
instances. The local detection states are only accessed within a
single instance, while the global detection states can be shared
among multiple instances. In particular, we provide a guideline to
classify detection states, and employ static program analysis and
NIDS domain-specific knowledge to automatically achieve detec-
tion state classification. To address the non-monolithic NIDS provi-
sioning challenge, virtualized NIDSes are provisioned as microser-
vices [38]. We decompose NIDSes into three microservices, header-
based detection, protocol parse, and payload-based detection. Each
microservice can be instantiated independently, provisioned at dif-
ferent locations with a different number of instances, and config-
ured to execute different detection programs. Multiple microser-
vices can be chained up in different ways as microservice chains
that provide flexible detection capabilities. In particular, we design
an algorithm that leverages program slicing technique to automat-
ically partition a detection logic so that the detection logic can
be transparently executed by microservices. We design and imple-
ment a prototype of VNIDS, which consists of an Effective Intru-
sion Detection module, a Non-monolithic NIDS Provisioning mod-
ule, and three microservices. Evaluations of our virtualized NIDS
conducted on CloudLab [10] show that our virtualized NIDS are
more flexible than traditional NIDSes regarding processing capac-
ity and placement location. To the best of our knowledge, our work
presents the first solution to enable safe and efficient virtualization
of NIDSes.

The rest of the paper is organized as follows. § 2 presents the mo-
tivation of this work. § 3 gives an overview of VNIDS architecture.
§ 4 discusses the state management approaches to ensure the detec-
tion effectiveness as well as minimizing the performance overhead.
§ 5 presents how to decouple monolithic NIDS into microservices
to achieve the efficient provisioning. Implementation and evalua-
tion of VNIDS are presented in § 6 and § 7, respectively. Discussion
and related work are addressed in § 8 and § 9, respectively. Finally,
we conclude in § 10.

2 MOTIVATION

NFV and SDN introduce significant flexibility to the deployment
of virtualized NIDSes. However, at the same time, such a flexibil-
ity feature can potentially compromise the detection effectiveness
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of virtualized NIDSes and also requires an efficient way to provi-
sion the virtualized NIDSes. We articulate the challenges of NIDS
virtualization in detail as follows.

2.1 Effective Intrusion Detection

Virtualized NIDSes have the ability to instantiate multiple instances
running on different virtual machines and dynamically scale by de-
stroying or creating instances. Each instance takes a part of traffic
and maintains its own detection states. If the traffic is delivered to
an instance that lacks the required detection states, the virtualized
NIDS may miss some attacks. For example, a scanner detector usu-
ally maintains a counter to count how many flows are generated
by each host. If a flow is delivered to an instance that does not
maintain its counter, this flow may be overlooked. For detectors
that organize detection states based on the IP address, port num-
ber, or protocol type, it tempts to distribute the traffic based on
those fields to ensure detection effectiveness. The authors of [35]
propose a concurrency model for NIDSes that ensures detection ef-
fectiveness by carefully distributing the network traffic. However,
for detectors that maintain detection states based on complex data
structures or extra information that is not available to the traffic
distributor (usually a network forwarding device), it is impractical
to ensure the detection effectiveness only relying on traffic distri-
bution.

To see the problem, let us consider a cookie hijacking attack [29].
The goal of the attacker is to capture an HTTP session cookie
of a victim and reuse that session. There are off-the-shelf tools,
such as Firesheep [1], implementing this attack as a Firefox exten-
sion, which makes this attack accessible to the masses. Fortunately,
there is a detector [6] having been developed upon Bro to handle
this attack. To detect the cookie hijacking attack, the NIDS must de-
termine whether a cookie is reused by different users. Basically, the
detector tracks the IP address for every cookie usage. If a cookie is
used by different IP addresses, it means the cookie has been reused
by different users. To reduce the false positive rate due to dynamic
IP allocation, the detector also makes use of MAC addresses. As a
result, only when both source IP and MAC addresses associated to
the same cookie appear inconsistency, will this cookie be consid-
ered to be reused !. Based on this detection logic, flows carrying
the same cookie should always be delivered to the same instance
to ensure the detection effectiveness. However, the cookie infor-
mation is not directly available to the network forwarding devices.
Moreover, the complex data structure queried jointly by cookie,
IP, and MAC addresses turns correct traffic distribution into even
a harder problem. A more detailed demonstration of the difficulty
of correctly distributing traffic to achieve an effective detection for
this example is given in Appendix A. As an alternative, sharing de-
tection states among NIDS instances is often used by multi-thread
and clustered NIDSes [77, 81] to ensure detection effectiveness.

Traditionally, NIDSes are deployed at fixed locations and with
fixed numbers of instances. This invariant configuration signifi-
cantly mitigates the overhead introduced by detection state shar-
ing. Being located within the same physical machine, NIDS instances

!We notice that this detector has some limitations that can be exploited by attackers
to bypass it. However, improving the robustness of existing detectors is not the focus
of this paper.
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can easily exchange information through memory sharing; or be-
ing clustered in several racks connected via high-speed cables, NIDS
instances can share detection states cheaply. In contrast, virtual-
ized NIDSes feature flexibility in terms of the placement location
and number of instances. The exact location and number of in-
stances for virtualized NIDSes are unpredictable. Thus, the over-
head to enable detection state sharing among virtualized NIDS in-
stances is significant. This makes it challenging in practice to share
detection states among virtualized NIDS instances. Therefore, for
virtualized NIDSes, it is especially critical to minimize the num-
ber of detection states that need to be shared among instances. To
facilitate the development of virtualized NIDSes, systematic anal-
ysis and classification of detection states for NIDSes to minimize
the detection state sharing is appealing.

However, rare literature from the security research community
provides a systematic approach to automatically analyze and clas-
sify the detection states to achieve effective intrusion detection and
minimize the detection states sharing. NIDS Cluster [81] enables
detection state sharing among NIDS nodes of a cluster. However,
it fails to provide a guideline to analyze and classify the detection
states and relies on users to determine manually which detection
states need to be shared. The multi-thread NIDS [77] ensures de-
tection effectiveness by enabling inter-thread communication. But
still, it fails to give analyses to detection states to minimize the
communication. In the networking research community, there are
two major research directions on NFV state management. One di-
rection focuses on the state migration problem during instance live
migration, such as Split/Merge [70] and OpenNF [46]. These pro-
posals maintain states in each instance separately during runtime.
As we discussed, without detection state sharing, it is impractical
to achieve effective intrusion detection. The other direction focuses
on state sharing between instances, such as StatelessNF [51] and
S6 [84]. The former shares all states between instances via a shared
data store, and the latter proposes to only share partial states to re-
duce performance overhead. However, both works fail to present
a systematic approach to analyzing and classifying states.

2.2 Non-monolithic NIDS Provisioning

Existing elastic security solutions [36, 42, 85] consider a virtualized
network function as a monolith directly running in a virtual ma-
chine or container. However, provisioning virtualized NIDSes as
a monolithic piece of software running as a whole has significant
limitations to protect the virtualized environments. In this section,
we discuss a few facts to highlight the limitations of provisioning
virtualized NIDSes as monoliths and then identify two challenges
to enable non-monolithic provisioning.

Inefficient Scaling: Dynamic scaling is an important feature of
virtualized NIDSes. However, if not provisioned carefully, this dy-
namic can turn into the weakness of virtualized NIDSes. We show
two cases where virtualized NIDSes are prone to inefficient scaling
if provisioned as monoliths.

e Casel: During scaling, virtualized NIDS instances must be sus-
pended and the traffic should be buffered [46]. The adversaries
can maliciously change the traffic volume to trigger the virtual-
ized NIDS scale-in/-out frequently. This can potentially cause
inefficient scaling. If the virtualized NIDS is provisioned as a
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monolith, it takes more time to launch a new instance and move
states between instances, which worsens the situation.

e Case2: In practice, it is not likely that all the components of a vir-
tualized NIDS are overloaded at the same time. The bottleneck
component usually gets overloaded first. If the virtualized NIDS
is provisioned as a monolith, the whole virtualized NIDS must
scale-out when only a single component is overloaded. This scal-
ing strategy results in over-provisioning to other components.
Moreover, by overwhelming only a single component, adver-
saries can force the entire system to scale-out, which may ex-
haust the resources in the environment.

Inefficient Resource Allocation: Monolithic NIDSes require
more resources than any components of NIDSes to run. For ex-
ample, an NIDS consists of 4 components and each component re-
quires 1 CPU core to run. If the NIDS is provisioned with a single
virtual machine, one should assign 4 CPU cores to run the virtual
machine. In this case, if the physical machine only has 3 CPU cores
available, there is no way for the NIDS to make use of these cores.
In contrast, if NIDSes are decomposed and each component is pro-
visioned with a virtual machine separately, three components of
the NIDS will be able to make use of the 3 CPU cores. Unlike tradi-
tional NIDSes that are deployed statically, virtualized NIDSes may
allocate and deallocate resources quite frequently to achieve bet-
ter flexibility in capacity and location. Therefore, monolithic provi-
sioning has a greater negative impact on virtualized NIDSes than
traditional ones.

Difficulty of Customization: Customization of virtualized NID-
Ses is important in many circumstances. For example, as found
in [39], Bro’s resource usage almost linearly scales with the num-
ber of its analyzers. Therefore, some analyzers in Bro could be
turned off to save resources when they are not necessary to run at
specific time. Other scenarios that require customization include
applications to the networks that require context-ware detections
and defenses [42, 85, 86]. Moreover, as the emergence of edge clouds
(e.g., Cloudlet [75], fog cloud [28], mobile edge cloud [66], CORD [68],
etc.), virtualized environments get increasingly diverse. Those het-
erogeneous edged, virtualized environments are not as powerful as
traditional clouds, so virtualized NIDSes need to be significantly
customized to protect those environments. However, customiza-
tion cannot be accomplished easily and efficiently with monolithic
NIDSes. Because it requires to rebuild and re-deploy the whole sys-
tem if any single component of the system has been modified.

Challenges for Non-monolithic Provisioning: Existing ap-
proaches have discussed partitioning a single application into small
pieces that can be deployed separately in other areas, such as web
applications [33] and mobile applications [34]. The networking com-
munity has also contributed literature that proposes to deploy net-
work functions in pieces [30, 52]. However, no existing work has
presented how to deploy security-specific functions, such as NID-
Ses, in a non-monolithic way in virtualized environments. Two
challenges remain to enable non-monolithic provisioning for vir-
tualized NIDSes.

e Ch1: How can we decompose monolithic NIDSes into several sepa-
rately deployable and smaller pieces? We should decompose the
NIDSes in a way that they can still perform efficiently with re-
spect to intrusion detection.
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Figure 1: High-level view of vNIDS architecture.

o Ch2: How can we enforce the detection policies with NIDSes provi-
sioned in a non-monolithic way? How to deploy NIDSes should
be transparent to the users. That is, from users’ perspective, they
should be able to implement detection logics as they are using
monolithic NIDSes.

3 OVERVIEW

In this section, we outline the key ideas of VNIDS architecture and
then provide a high-level view of the VNIDS architecture.

3.1 Key Ideas

To ensure effective intrusion detection (§ 4), the traffic is distributed
to different instances only based on its header information. Then,
we employ static program analysis to classify the detection states
of virtualized NIDSes into global and local detection states. The
global detection states are shared by all instances to ensure that
every instance has sufficient detection states for intrusion detec-
tion. The local detection states are maintained by each instance re-
spectively to mitigate the performance overhead. The challenge for
detection states classification is how to minimize the performance
overhead without compromising the intrusion effectiveness. Our
detection state classification addresses the challenge by identify-
ing as many local detection states as possible. Only those detection
states that cannot be guaranteed to be accessed by a single instance
are classified as global detection states.

To achieve non-monolithic provisioning (§ 5), we in particular
address two challenges, Ch1 and Ch2. We address Ch1 by iden-
tifying two partition points that decompose NIDSes with three
microservices: header-based detection, protocol parse, and payload-
based detection. Users implement their detection logic as Detection
Logic Programs (DLPs), which are executed by the NIDS Engine
(NE). NE is a piece of software that acquires traffic from the net-
work (e.g., reading the packets, checking the checksum, reassem-
bling IP fragments, etc.) and executes various DLPs. Each microser-
vice acts as an NE executing specific DLPs. We address Ch2 by



Session 1A: SDN 1

designing an algorithm to automatically partition a DLP into two
small DLPs that can be executed by the header-based detection and
payload-based detection microservices, respectively.

3.2 High-level View of vNIDS

Our design of VNIDS is demonstrated in Figure 1. vNIDS consists
of VNIDS controller and vNIDS microservice instances. The users
interact with vNIDS through the controller. The microservice in-
stances are responsible for processing the traffic.

VNIDS controller: There are two major modules in the VNIDS
controller: the Effective Intrusion Detection module (EIDM) and
Non-monolithic NIDS Provisioning module (NNPM). EIDM imple-
ments a detection state classification engine, which is run off-line
to classify the detection states of DLPs into global and local detec-
tion states. The detection state taxonomy is sent to the State Man-
agement component (SMC). The SMC interacts with the shared
data store and is responsible for managing the detection states of
instances. If the virtualized NIDSes scale-in/-out, the SMC should
also address the state migration. NNPM implements the DLP par-
titioning algorithm, which is run off-line to partition a DLP into
header-based and payload-based DLPs. The Provision Control com-
ponent (PCC) in the NNPM takes charge of microservice instance
provisioning, installs the DLPs into the instances, and demands the
SDN controller to update the flow rules in network forwarding de-
vices accordingly. Each time the PCC creates or destroys instances,
it should inform the SMC to update the shared data store.

vNIDS microservices: There are three microservices, which
are header-based detection, protocol parse, and payload-based detec-
tion. Different microservices can be chained up as microservice
chains. Each microservice in a microservice chain only executes
a part of the detection logic of the chain. The results of a microser-
vice can be attached to the traffic and passed to the next microser-
vice. This design enables more fine-grained customization of vir-
tualized NIDSes, since the detection logic is composable and each
microservice can be provisioned independently. In addition, dif-
ferent microservices in a microservice chain can be instantiated
with different numbers of instances. Instances instantiated from
the same microservice share their global states through the shared
data store.

Provisioning virtualized NIDSes with microservices is more effi-
cient from the following perspectives. First, microservices are smaller
than monolithic NIDSes and can be provisioned separately. There-
fore, microservices can scale faster and independently. Second, since
microservices require less resource to instantiate, they can make
better use of fractional resource than monolithic NIDSes. Third,
a microservice can be modified and updated without interfering
other microservices. In addition, different microservices can be in-
stantiated at different locations (for resource optimization [31])
and provisioned on demand based on different security contexts [85].

4 EFFECTIVE INTRUSION DETECTION

In this section, we demonstrate how to classify the detection states
based on the concept of detection state scope to achieve effective in-
trusion detection while minimizing the number of detection states
that need to be shared. We first introduce the scope of detection
states. Then, we present how to infer the scope of detection states
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by analyzing the control-flow of the Detection Logic Program (DLP)
and NIDS Engine (NE), and classify the detection states based on
their scopes. Finally, we address the effective intrusion detection
challenge in NIDS virtualization with minimum detection state
sharing.

4.1 Detection State Scope Analysis

We define the scope of a detection state by its lifetime. Detection
states can only influence detection results when the states are “alive”.
That is, detection states cannot make any difference to the detec-
tion results before they are created or after they are destroyed.
Therefore, by estimating the lifetime of the value of a variable, we
can determine the scope of a detection state stored by that variable.

To understand the lifetime of the value of a variable, let’s start
with the discussion of the design pattern of NIDSes. Generally,
NIDSes first acquire a packet from the network, then process the
packet according to various detection logic, and finally destroy the
packet. NIDSes perform detections by iterating the acquire-process-
destroy procedure. We call the acquire-process-destroy procedure
as an iteration of packet processing. The acquisition and destroy
of packets are the basic functionalities of most network functions.
Therefore, implementations of those functionalities are relatively
stable and not likely to be changed. We call these functionalities
as NE. The processing of packets varies for different detection pur-
poses. These functionalities are defined by the NIDS users through
DLPs. Some NIDSes, such as Libnids [5], provide the users with
callback functions to implement and register their DLPs. Modern
NIDSes, such as Bro [22], provide more user-friendly languages,
such as Bro scripting language [8], for the users to write the DLPs.
Those DLPs are then translated into low-level languages, and com-
piled with the NE. The recent work [35] has demonstrated the feasi-
bility to represent DLPs of Bro through an intermediate assembly-
like language and conduct program analysis based on that. The
lifetime of the value of a variable is implied by when the memory
location of that variable is freed. It can be freed for every iteration
of packet processing, or freed after multiple iterations of packet
processing.

Based on how a detection state is used, the scope of the detection
state stored by a variable can be defined in three levels.

e Per-packet scope. We call detection states with this scope per-
packet detection states. The per-packet detection states are only
utilized within a single iteration of packet processing, thus are
created and destroyed within a single iteration of packet process-
ing. For example, a variable used to compute the checksum of a
packet is considered as a per-packet detection state.

e Per-flow scope. We call detection states with this scope per-flow
detection states. The per-flow detection states are utilized by mul-
tiple packets from the same flow. Therefore, these states persist
beyond a single iteration of packet processing. However, these
states must be created after a flow initiates and destroyed before
a flow terminates. Otherwise, there are memory leaks 2 since
other flows can never access theses detection states. For exam-
ple, a variable used to count the bytes of a flow is considered as
a per-flow detection state.

2 An allocated memory location that will never be freed causes a memory leak.
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o Multi-flow scope. We call detection states with this scope multi-
flow detection states. The lifetime of multi-flow detection states
persists beyond the duration of a single flow. Therefore, they
are created before a flow initiates or destroyed after a flow ter-
minates. For example, a variable used to count how many IP ad-
dresses have been scanned by a scanner is considered as a multi-
flow detection state.

4.2 Detection State Classification

Since we notice that the lifetime of the value of a variable deter-
mines the scope of a detection state, our analysis mainly focuses
on the destroy statements of variables. Variables in the heap are
allocated by malloc and destroyed by free, while variables in the
stack are allocated by call (invoking a procedure) and destroyed
by return (returning from a procedure).

According to the detection state scope analysis presented in § 4.1,
we can infer the scope of a detection state by checking whether
the detection state is “always” destroyed before a flow terminates.
If the detection state is not “always” destroyed before a flow ter-
minates, it means this detection state must be destroyed sometime
later triggered by other flows. In other words, this detection state is
possibly utilized by multiple flows. Therefore, this detection state
has the multi-flow scope. In contrast, detection states that are “al-
ways” destroyed before a flow terminates should be utilized by a
single flow only, otherwise, other flows may end up with refer-
ring to a destroyed state causing a runtime error. Those states have
the per-flow scope. Furthermore, if a detection state is “always” de-
stroyed before the end of the iteration of the packet processing,
this detection state has the per-packet scope.

Based on the above principle, our major task is to figure out the
execution sequence of the destroy statement (which terminates the
lifetime of a variable) of each variable, and then we can infer the
scope of a detection state by checking when the variable of that
detection state is destroyed. In particular, we compare whether
the destroy statement of a variable is “always” executed before the
destroy statement of the variable storing a packet or the destroy
statement of the variable storing a flow record. We find that IP re-
assembly is an essential functionality for NIDS, and we can also
identify the variable that stores a packet (it is a C structure in BSD
and Linux systems) or stores a flow record (it is a pointer to a dou-
bly linked list in BSD and Linux systems) from the IP reassembly
implementation.

In order to define the execution sequence of two statements in
a program, we introduce two techniques: 1) Control Flow Graph
(CFG) [44] analysis; and 2) dominator finding [55]. The node in
a CFG of a program represents a block of statements in the pro-
gram and the directed edge represents a jump between blocks. The
CFG of a program depicts the execution sequence of each state-
ment. The concept of dominator is proposed by the authors of [57].
This concept is originally used in the graph theory for program
optimization. There are algorithms to efficiently compute the dom-
inators of a given node in a flowgraph [55]. We use the dominators
of a statement P in the CFG to imply the statements that are “al-
ways” executed before P, because by definition, the dominator of a
statement P in the CFG is a statement that appears on every path
in the CFG from the entry statement of the program to the target
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statement P. This key insight provides us with the opportunity to
determine whether the destroy statement of a variable is “always”
executed before the destroy statement of another variable.

We explain in detail the major four steps of our algorithm that
infers the scope of detection states as follows:

Step1: computing the CFG of the DLP and NE. Every time the
NIDS receives a packet, it starts from a packet receive function
call (e.g, pcap_next or recv) and ends at the destroy statement of
the packet. We, therefore, consider a packet receive function call
as the entry statement for the CFG.

Step2: identifying the packet and flow record destroy statements.
We manually check the code of IP/TCP reassembly implementa-
tion, which is available as standard libraries in many operating
systems. For any specific NE, once identified, this information can
be reused by all DLPs.

Step3: computing dominators of the packet and flow record destroy
statements. Computing dominators of a given node in a CFG is a
mature technique [55] in the graph theory domain.

Step4: determining the scope of each detection state. There are
three cases of the destroy statement of a variable. Different cases
indicate different scopes. (1) If the destroy statement of a variable
is a dominator of the packet destroy statement, this variable is a
per-packet detection state. (2) If the destroy statement of a variable
is a dominator of the flow record destroy statement, this variable
is a per-flow detection state. (3) If the destroy statement of a vari-
able is neither a dominator of the packet destroy statement nor a
dominator of the flow record destroy statement, this variable is a
multi-flow detection state.

After we infer the scope of each detection state by analyzing
the CFG of the DLP and NE, we define the per-packet and per-flow
detection states as local detection states and define multi-flow de-
tection states as global detection states. We justify this definition in
the next section. An example of using our approach to classify the
detection states for a scanner DLP [17] is presented in Appendix B.

4.3 Ensuring Effective Intrusion Detection

To ensure effective intrusion detection, we must ensure that all the
traffic under process can access to all the detection states relevant
to the traffic. We achieve this goal by 1) distributing the traffic of
the same flow to the same instance, and 2) enabling only global
detection states shared by multiple instances.

Since advanced network forwarding devices now have programma-

bility thanks to SDN, dynamically redistributing traffic is feasi-
ble. When virtualized NIDSes dynamically scale (by creating or
destroying instances), network traffic can be redistributed among
the instances at per-flow granularity. That is, by leveraging SDN,
we can dynamically update the forwarding rules in the network
forwarding device to always deliver the traffic of the same flow to
the same instance.

Actually, we are trying to make a trade-off between the complex-
ity of distribution algorithm (i.e., how to distribute the traffic to
ensure detection effectiveness) and the overhead of detection state
sharing (i.e., enabling information exchange among instances). On
the one hand, we utilize the flexible per-flow forwarding capability
of SDN to simplify the traffic distribution for virtualized NIDSes.
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On the other hand, the intrusion detection effectiveness is guaran-
teed by sharing only multi-flow detection states.

We can enable detection state sharing among instances by main-
taining global detection states in the shared data store, such as
RAMCloud [62], FaRM [37], and Algo-logic [4]. The authors of
StatelessNF [51] have shown the feasibility of using RAMCloud as
the shared data store for network functions. By classifying the de-
tection states into local and global detection states in our approach,
we only put global detection states on the shared data store to min-
imize the performance overhead. We have quantified the perfor-
mance overhead in our evaluation presented in § 7.3.

5 NON-MONOLITHIC NIDS PROVISIONING

In this section, we first address challenge Ch1 by decomposing vir-
tualized NIDSes into three microservices based on the logic struc-
ture of NIDSes and the types of detection logic (DL). Then, we ad-
dress challenge Ch2 by designing an algorithm to partition the
DLPs such that they can be enforced by non-monolithic virtual-
ized NIDSes.

5.1 Decomposing NIDSes as Microservices

Logic structure of NIDSes: Typically, the logic structure of NID-
Ses consists of three major components: the network protocol stack
(NPS), application protocol parser (APP), and the detection logic.
NIDSes firstly acquire and validate the network traffic through the
NPS. This component is responsible for reading the packet from
the driver, checking the checksum, reassembling the IP fragments,
etc. It is implemented in the NE. Then, the outputs of the NPS are
passed to the APPs. The APPs parse the payload of the traffic and
extract the semantics of the conversation between two endpoints
of the network. The outputs of the APPs are then processed based
on various DLs.

For the purpose of reducing the development cost while maxi-
mizing the extensibility, the NPS and APPs are usually reused by
different DLs. NIDS users are allowed to add their new APPs, while
NPS is not likely to be changed by the users. For example, the Bro
network security monitor [22] has integrated the IP/TCP network
protocol stack and a number of predefined application protocol
parsers>. Then, users only need to program their detection logic
using a scripting language [8] provided by Bro. Users can also add
their own APPs through specific program languages, such as Bin-
PAC [65]. Another example is Libnids [5], which has implemented
a library for developing the NIDSes. The IP/TCP NPS has already
been included in the library, but the users need to implement their
own APPs and DLs through the C interface stubs. Therefore, for
generality, we consider APPs as a part of NE and only DL is imple-
mented by the DLPs.

Types of DL: We observed that there are three types of DLs
based on what information the DL needs to conduct the detection
task.

e Type-I: These DLs only need header information to complete
their detection tasks. For example, the Flow Monitor implements
the DL that only monitors the statistics of the flows, such as
byte-per-flow and packet-per-flow statistics. Another example is
the DL of HTTP Monitor, which first filters out the HTTP traffic

3In the Bro community they are called as protocol analyzers.
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Figure 2: Different DLs can be realized by different microser-
vice chains.

by the port numbers and then computes the statistics of traffic
generated by each Web server.

e Type-II: These DLs only need payload information to complete
their detection tasks. For example, all the signature-matching
DLs only need to check the payload of the packets.

e Type-III: Theses DLs need both header and payload informa-
tion to complete their detection tasks. For example, the Cookie
Hijacking DLP first looks at the cookie, which is payload infor-
mation. Then, it checks the IP address, which is header informa-
tion.

Decomposing monolithic NIDSes: Based on the logic struc-
ture of NIDSes and the types of DL, we decompose NIDSes as three
microservices: header-based detection, protocol parse, and payload-
based detection. The logic structure of NIDSes indicates three ma-
jor processing of the packets. The first processing is executed by
the NPS, which is the basic component of all network functions.
We reuse this processing in all the microservices. The second pro-
cessing is executed by APPs, which parse the traffic according to
various application protocol specifications. We define this process-
ing as a dedicated microservice called protocol parse, which is de-
voted to parsing the traffic according to various application pro-
tocol specifications. The third processing, which is specified by
users, implements various DLs. Based on the types of DLs, we can
actually classify all the DLPs into header-based DLPs, which im-
plement Type-I DLs, and payload-based DLPs, which implement
both Type-II and Type-11I DLs. We define the header-based de-
tection microservice devoted to executing the header-based DLPs,
and the payload-based detection microservice devoted to executing
the payload-based DLPs.

Microservice chaining: Different microservices can be chained
as microservice chains. A microservice chain realizes a complete
detection task, for example, detecting whether a specific host is a
scanner, or whether a cookie has been reused. Each microservice
in the chain takes over a part of the detection task. Intermediate re-
sults generated by the previous microservice can be encapsulated
in the traffic (using some encapsulation techniques, such as Flow-
Tags [43], NSH [69], Geneve [47], etc.) and passed to the next mi-
croservice in the chain.

We have studied six different types of DLs, which can be sum-
marized into 4 cases when composed as microservice chains. Their
DLPs are listed in Table 1 in § 6. Different DLs can be realized by
different microservice chains. Figure 2 depicts that the six DLs are
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Figure 3: Major steps of the DLP partitioning: (1) generat-
ing PDG of the DLP; (2) computing payload-based DLP slice;
(3) constructing header-based DLP; (4) constructing payload-
based DLP; and (5) emitting the code.

summarized into four cases. Each case can be realized by one mi-
croservice chain. For example, the Cookie Hijacking DL (case 3)
is realized by protocol parse and payload-based detection microser-
vices, while Scanner DL (case 2) is realized by header-based detec-
tion and payload-based detection microservices.

Though microservice chains can be composed flexibly, there are
still some constraints of how the microservice chains can be com-
posed. First, the header-based detection microservice can be located
before the protocol parse and payload-based detection microservices,
because header-based microservice does not need payload infor-
mation. Second, the protocol parse microservice should be located
before the payload-based detection microservice, since the latter
needs the payload information gathered by the protocol parse mi-
croservice.

5.2 Detection Logic Program Partitioning

As outlined in § 5.1, NIDSes can be decomposed into three mi-
croservices. However, it remains the challenge to partition the user-
defined DLPs into header-based and payload-based DLPs that can
be executed separately by the header-based detection and payload-
based detection microservices. In this section, we present an algo-
rithm that can automatically partition the user-defined DLPs by
utilizing the program slicing technology [49, 72, 82].

Program slicing is a program analysis technique that can deter-
mine: 1) which statements are influenced by a given variable at a
given point (forward slicing); and 2) which statements can influ-
ence the value of a variable at a given point (backward slicing).
The inputs of the program slicing are the Program Dependency
Graph (PDG), variables of interest, and the point where the vari-
able is considered. The outputs of the program slicing are the state-
ments of interest. PDG is a directed graph whose vertices represent
statements and edges represent dependencies between statements.
There are some program slicing tools available. In this work, we
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Algorithm 1: Identifying statements of header-based DLP and
variables to be tracked by header-based DLP

Input: F: a set of header fields;
prog: origin detection program
Output: header-based DLP statements and variables to be tracked
PI = {} /* a set storing inputs containing payload information */
foreach input in Inputs(prog) do
L if input ¢ F then

AW N =

| PI=PIU {input}

Slice = {} /* a set storing statements in resulted slices */
foreach input in PI do
| Slice = Slice U ForwardSlicing(prog, entry, input)

N ow

o

S = Statements(prog) — Slice

V = {} /* a set storing variables that should be tracked by
header-based DLP. */

10 foreach v in Variables(Slice) do

1 if v € Variable(S) then

12 L | V=VU{v}

1

©

return S and V

@

implement our DLPs in C and utilize Frama-C [12] to conduct pro-
gram slicing on the DLPs. We achieve DLP partitioning through
five major steps as shown in Figure 3.

Step1: Generating PDG. We conduct static program analysis to
generate the program dependency graph of the inputted DLP. The
PDG of a program involves two dependency information between
the statements of a program-the control dependency and the data
dependency. The control dependency, usually represented by con-
trol flow graphs, reflects the execution conditions and sequences
between statements. The data dependency reflects the declaration
and reference relationships between variables. There are tools that
can be used to generate the PDG of a program. For example, Frama-
C [12] can generate the PDG of C program and a commercial prod-
uct CodeSurfer [11] can generate the PDG of C++ program.

Step2: Computing slices. After we get the PDG of the DLP, we
utilize program slicing tools to isolate the statements of payload-
based DL from other statements. The key insight is that payload-
based DL relies on payload information thus is influenced by in-
puts containing payload information. If an input is a direct refer-
ence of some header fields, this input only provides header infor-
mation, otherwise, it also contains payload information. Based on
the above insight, we compute a forward program slice from the
input of the DLP for the inputs that contain payload information.
we call the resulting statements as the payload-based DLP slice. All
the statements in the payload-based DLP slice are affected by the
payload information. Therefore, we should let the payload-based
detection microservice execute these statements.

Step3: Constructing header-based DLP. Since we have isolated the
statements that are influenced by payload information, the remain-
ing statements are independent to the payload information. These
remaining statements can be executed by the header-based detec-
tion microservice. Algorithm 1 depicts the algorithm to identify the
statements of the header-based DLP. Lines 1-4 identify the inputs
containing payload information. Lines 5-7 compute the payload-
based DLP slice. Line 8 computes the statements of the header-
based DLP.



Session 1A: SDN 1

Then, one question remains: how can we deal with the packet if
the processing of the packet reaches a point where the statements
in the payload-based DLP slice must be executed? Note that those
statements in the payload-based DLP slice cannot be executed in
the header-based detection microservice, since payload information
is not available in that microservice. We solve the problem by in-
troducing the forward statement. We replace all the statements in
the payload-based DLP slice with the forward statement. The for-
ward statement is actually an interface to the NE, similar to the
“system call” in the operating systems. Once the packet processing
reaches the forward statement, it causes a trap into the NE. Then,
the NE handles the packet by encapsulating it with some metadata
and sends it to the network. The metadata includes two pieces of
information: 1) the points where the execution is interrupted; and
2) the intermediate results associated with the processing of this
packet. We can get information 1) by labeling the forward state-
ment (e.g., using its line number). Note that there may be multiple
serial forward statements, and we only label the first one. We can
get information 2) by tracking which variables have been updated
by the current packet processing. Note that this information should
not be too much, since we only need to track the variables that are
also used by the payload-based DLP. Lines 9-12 of Algorithm 1
compute which variables should be tracked.

Step4: Constructing payload-based DLP. As we have already com-
puted the payload-based DLP slice. We can use that slice as a start-
ing point to construct the payload-based DLP. There are two major
concerns with the construction: 1) how can we get access to the in-
termediate results produced by the header-based DLP? and 2) how
can we retrieve the execution from the previous breakpoints? For
concern 1), we add an initialization statement at the beginning of
the payload-based DLP slice for every variable that is also used by
the header-based DLP. Recall that we have a contract that the for-
ward statement in the header-based DLP will encapsulate interme-
diate results of those variables used by both DLPs. As a result, those
variables are initialized at the beginning of the payload-based DLP
slice. For concern 2), we add a switch-case statement right after
all the initialization statements. The switch-case statement checks
the label that is set by the forward statement in the header-based
DLP. According to the label, the switch-case statement jumps to
the right points to start execution.

Step5: Emitting the code. This step is a reverse of Stepl. Once
we have constructed the PDG of header-based and payload-based
DLPs, there is little challenge to emit the code for both DLPs. Many
program analysis tools also support the reversing procedure to
emit the code from a computed PDG.

We provide an example of partitioning the DNS Tunneling DLP
in Appendix C.

6 IMPLEMENTATION

We have implemented a prototype of vVNIDS based on Xen [25] hy-
pervisor. The VNIDS controller is implemented in the Dom0 of Xen,
which has the ability to monitor and manage the virtual machines
provisioned in Xen. We utilized Floodlight [18], an open-source
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Detection Programs | Descriptions

Detects potential DNS tunnels based on

DNS Tunneling the DNS request frequency, packet length
DLP [7] ¢ pa

and domain name characteristics.
Cookie Hijacking Detects whether an HTTP cookie has
DLP [6] been reused by different users.

Combines SSH, HTTP and FTP traffic to
detect whether a host has been infected

by Trojans.

Detects whether a host has generated a
large amount of small flows to different
hosts in a short period of time. And searches
signatures in the flows generated by scanners.
Monitors the bytes, packets, and average
byte per packet information of each flow.
Monitors the data being transferred

through HTTP traffic and sort the hosts
based on the volume of HTTP traffic.

Table 1: Detection programs that we have written for our
virtualized NIDS.

Trojan DLP [35]

Scanner DLP [17]

Flow Monitor DLP

HTTP Monitor DLP

SDN controller, and Open vSwitch [16] to construct our SDN envi-
ronment. In particular, the vNIDS controller interacts with Flood-
light to achieve per-flow traffic distribution. The three microser-
vices are implemented based on the Click modular router software [54].
Click provides rich networking processing elements, which can be
leveraged to construct a wide range of network functions.

vNIDS controller: We have implemented the DLP partition-
ing algorithms and detection state classification engine based on
Frama-C [12], a static program analysis tool framework for C. The
DLP partitioning algorithms and detection state classification en-
gine are run off-line. Each time the user specifies new DLPs, the
DLP partitioning algorithms will be run to partition the DLP into
two header-based and payload-based DLPs that can be installed
into the header-based detection and payload-based detection microser-
vices, respectively. The detection state classification engine takes
the two small DLPs and outputs DLPs with classified detection
sates. We have developed a programming interface on top of XL [26]
to support provision control and state management.

vNIDS microservice instances: We have developed three new
elements for Click to enable the three microservices. The major
functionalities of the three microservice include 1) handling the
messages from the controller, 2) integrating RAMCloud [75] to
support detection state sharing between instances, and 3) execut-
ing DLPs or protocol parsers (we have implemented HTTP, SSH,
DNS, and FTP protocol parsers for our virtualized NIDS). We have
written six DLPs as Click elements for various detection purposes.
Table 1 shows the descriptions of the six DLPs that we have written
for our virtualized NIDS. In particular, DNS Tunneling DLP, Cookie
Hijacking DLP, Trojan DLP, and Scanner DLP are representatives of
the DLPs handling traffic of different application protocols. Flow
Monitor DLP and HTTP Monitor DLP are commonly used traffic
monitors that collect traffic statistics and conduct some detection
tasks based on the statistics.

7 EVALUATION

In this section, we evaluate our approach with the following major
goals:

e Demonstrating the intrusion detection effectiveness of vNIDS.
We run our virtualized NIDS and compare its detection results
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with those generated by Bro NIDS based on multiple real-world

traffic traces (Figure 4).

Evaluating the performance overhead of detection state shar-

ing among instances in different scenarios: 1) without detection

state sharing; 2) sharing all detection states; and 3) only sharing
global detection states. The results are shown in Figure 5. The
statistics of global states, local states, and forward statements

are shown in Table 2.

Evaluating how fast each microservice can execute and scale

compared with monolithically provisioned NIDSes. We compare

the processing capacity and launch time of each microservice

with those of the monolithically virtualized NIDS (Figure 6).

e Demonstrating the flexibility of vNIDS regarding placement lo-
cation. In particular, we quantify the communication overhead
between virtualized NIDS instances across different data centers
that are geographically distributed (Figure 8).

o Demonstrating the flexibility of vNIDS regarding processing ca-
pacity. We compare vNIDS with Bro Cluster with respect to pro-
cessing capacity and resource usage when the network traffic
volume is changed (Figure 9).

7.1 Data Collection and Attack Trace
Generation

We conducted our experiments on CloudLab [10], an open plat-
form that provides various resources for the experimenters to build
clouds by running cloud software stacks, such as CloudStack and
OpenStack. In the experiments, we built a cloud environment based
on Xen. The physical servers we employed have two Intel E5-2630
v3 8-core CPUs at 2.4 GHz and with two 10Gb network interface
cards.

Our dataset consists of the background traffic and the labeled at-
tack traffic. The background traffic is from three different sources:
1) the CAIDA UCSD anonymized Internet trace [3], which is a rep-
resentative of Internet traffic; 2) the LBNL/ICSI enterprise trace [14],
which is a typical traffic trace collected from an enterprise net-
work; and 2) the campus network trace that is collected from our
campus network gateway. The labeled attack traffic is generated
by conducting penetration tests in an isolated environment. We
generated four attack traces for our DLPs.

e The DNS.trace contains DNS tunneling traffic generated by 20
different hosts. Therefore, we counted the number of “malicious
activity” in this trace as 20. We used scapy [19], a powerful in-
teractive packet manipulation program, to generate the traffic.

o The Cookie.trace contains HT TP traffic with 100 different cook-
ies that have been reused by multiple hosts. Therefore, we counted
the number of “malicious activity” in this trace as 100. We used
Firesheep [1], an extension of FireFox, to generate the traffic.

o The Trojan.trace contains 20 victim hosts intruded by our pen-
etration. The penetration follows the description in [35]. Basi-
cally, an attacker connects to the victim through SSH; then, the
attacker downloads a ZIP toolkit from a website; finally, the at-
tacker escalates the privilege and uploads a ZIP data file to a
remote FTP server. Therefore, we counted the number of “mali-
cious activity” in this trace as 20.
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e The Scanner.trace contains the traffic from 20 hosts that try to
scan other hosts in the network. Therefore we counted the num-
ber of “malicious activity” in this trace as 20. We used Nmap [15]
to generate the scanning traffic.

We merged the above four traces as the Attack.trace. Then,
we merged the Attack.trace with three different real-world back-
ground traffic as CAIDA+Attack.trace, LBNL+Attack.trace,
and Campus+Attack.trace. The merged traces are then replayed
to the NIDS. We observed the output logs to determine how many
attacks have been detected by the NIDS.

7.2 Detection Effectiveness of vNIDS

In this experiment, we evaluated the detection effectiveness of VNIDS.
Our evaluation is based on the DNS Tunneling, Cookie Hijacking,
Trojan, and Scanner DLPs.

For each dataset, we compared the detection results in four sce-
narios:

o We used the outputs of Bro NIDS as our baseline for the experi-
ment results (Bro).

e We implemented a version of the four DLPs that share all the
detection states, and used them in our virtualized NIDS. Each
DLP was run with multiple instances (Share All).

e We ran the detection state classification component in the vNIDS
controller to generate another version of the four detection pro-
grams that enable state sharing between instances. Each DLP is
run with multiple instances (vNIDS).

e We implemented a version of the four DLPs without state shar-
ing between instances, and directly ran each DLP with multiple
instances (No Sharing).

In our experiments, we first ran the Bro NIDS over the three
datasets and took the outputs of Bro as the baseline for the de-
tection results. We didn’t find DNS, Cookie, or Trojan malicious
activities in any of the three real-world traces. The malicious ac-
tivities detected by these DLPs are all from our Attack.trace. We
found malicious activities for Scanner DLP in all three real-world
traces. The malicious activities detected by the Scanner DLP are
from real-world traces and our Attack.trace.

Then, we ran the Share All NIDS over the three datasets. The
traffic is distributed to two instances randomly at per-flow granu-
larity. The number of the malicious activities reported by the NIDS
is the same as Bro NIDS. This implies that, by sharing all detection
states, our virtualized NIDS can ensure the effectiveness.

Next, we ran the vNIDS over the three datasets. The traffic is
distributed to two instances randomly at per-flow granularity. We
also observed the same number of malicious activities reported by
the NIDS. This implies that vNIDS can also ensure the detection
effectiveness by only sharing the global detection states.

Finally, to demonstrate the limitations of NIDSes without shar-
ing detection states, we ran the No Sharing NIDS. The traffic is
distributed to two instances randomly at per-flow granularity. At
this time, we observed a degradation of detection rate for all the
three datasets. The comparison of detection rates of NIDSes in four
scenarios is shown in Figure 4. Figures 4-a, 4-b, and 4-c are based on
the three traces, CAIDA +Attack.trace, LBNL-+Attack.trace and
Campus+Attack.trace, respectively.
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Figure 4: Detection rate of known malicious activities for
Bro, vNIDS, Sharing all states, and No sharing solutions. The
experiments are based on three different real-world traf-
fic with generated attack traces: (a) CAIDA+Attack.trace; (b)
LBNL+Attack.trace; and (c) Campus+Attack.trace.

We further examined the reasons for detection rate degradation
in this scenario. We found that the detection rate degradation is
caused by distributing traffic relevant to the same malicious activ-
ity to different instances. For example, for the Scanner DLP, we
totally observed 58 hosts that are conducting scanning through
the Bro NIDS in the CAIDA+Attack.trace. The No Sharing NIDS
only reports 45 hosts. We manually checked the flow rules used to
distribute the traffic and examined the flows generated from the
13 hosts that are not detected. We found that those 13 hosts are
not reported because their flows are almost evenly distributed to
the two instances. For each instance, the scanning speed of those
hosts is below the threshold.

As a summary, this experiment demonstrates that vNIDS can
address the effective intrusion detection challenge for virtualized
NIDSes and achieve equivalent outputs as traditional NIDSes.

7.3 Detection State Sharing Overhead

In this experiment, we evaluated the overhead of detection state
sharing in three scenarios described in § 7.2: Share All, vNIDS, and
No Sharing.

We replayed the same traffic trace to the virtualized NIDS in
three scenarios and observed the processing time of each packet.
We chose the processing time as the evaluation metric because this
time reflects how fast a packet can be processed. If a packet takes
too much time to be processed, the NIDS instance cannot keep up
with the packet transmission rate thus may drop packets.
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Figure 5: (a) Packet processing time of each detection pro-
gram in three scenarios. (b) Packet processing time reduced
by vNIDS compared with sharing all detection states.

Detection Programs | # Global State | # Local State | #“Forward”
DNS Tunneling DLP 23 146 1
Cookie Hijacking DLP | 28 174 1
Trojan DLP 32 187 2
Scanner DLP 28 121 1
Flow Monitor DLP 24 99 0
HTTP Monitor DLP 29 168 0

Table 2: Statistics of global state, local state
statement in our DLPs.

and forward

Figure 5 (a) presents the packet processing time of each DLP. On
the one hand, the results of this experiment demonstrate that shar-
ing all detection states introduced non-trivial performance over-
head to the virtualized NIDSes. On the other hand, for DNS Tun-
neling, Cookie Hijacking, Trojan, and Scanner DLPs, we observed
that vNIDS saves 70.71%, 54.22%, 70.34%, and 69.96% of the pro-
cessing time compared with the approach that shared all detection
states, shown in Figure 5 (b). Especially, VNIDS saves 92.23% and
99.55% packet processing time for the Flow Monitor and HTTP
Monitor DLPs, respectively, because their global states are accessed
much less frequently. vNIDS keeps all of their detection states lo-
cally to each instance to significantly reduce the processing time of
each packet. Those results demonstrate that sharing all detection
states introduce non-trivial performance overhead and vNIDS en-
ables only global detection states to be shared to minimize perfor-
mance overhead significantly.

To further quantify the overhead introduced by vNIDS, we eval-
uated the number of global states, local states, and forward state-
ments in our DLPs. Table 2 lists the numbers we observed. On av-
erage, the number of global detection states is only 15.4% of the
number of all detection states. In addition, the number of forward
statements is very small for each DLP, because most of the for-
ward statements are never executed since the very first forward
statement interrupts the execution, avoiding the followed forward
statements being executed.

7.4 Microservice Efficiency

In this experiment, we evaluated the efficiency of virtualized NID-
Ses provisioned as microservices. First, we evaluated how fast each
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Figure 6: Launch time (a) and processing capacity (b) of
header-based detection, protocol parse, payload-based detec-
tion, and Monolithic NIDS instances.

microservice instance can launch with various detection programs
installed and compared them with the launch time of the monolith
NIDS instance. Then, we compared the processing capacity of each
microservice instance with that of monolithic NIDS instance. The
launch time is used to estimate how fast the microservice instance
can scale out by launching new instances. The processing capac-
ity reflects the number of CPU cores required to achieve a specific
performance requirement. The greater the processing capacity, the
fewer CPU cores are required to achieve a specific performance re-
quirement, therefore, the instance required less resource to run.

We implemented our microservices based on Click elements. For
the monolithic NIDS, we included all the elements of three mi-
croservices and instantiated them within a single instance. Notice
that there are four cases (Figure 2) with respect to composing mi-
croservice chains. In our experiment results, if a microservice is
not included in microservice chain, we set the processing time of
that microservice as 0.

Based on the evaluation results shown in Figure 6 (a), we ob-
served that, for all the detection programs, the launch time of each
microservice instance is less than the launch time of the mono-
lithic NIDS instance, though the sum of the launch times of all mi-
croservice instances is greater than the launch time of monolithic
NIDS instance. This is because each microservice instance includes
fewer Click elements than the monolithic NIDS instance but some
elements have been executed by multiple times. The results of this
experiment indicate that microservice instances can launch faster
than monolithic NIDS instances thus can scale faster.

We also compared the processing capacity of each microservice
instance with that of the monolithic NIDS instance. Figure 6 (b)
shows the comparison results. We observed that all the microser-
vice instances achieve greater processing capacity than the mono-
lithic NIDS instance. That means, every microservice instance re-
quires less resource than the monolithic NIDS instance to achieve
equal processing capacity. Therefore each microservice instance
can be provisioned with less resource than the monolithic NIDS
instance.
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Figure 8: Required bandwidth between Site-1 and Site-2 for
vNIDS and traditional NIDS respectively.

7.5 Flexibility of Placement Location

In this experiment, we evaluated the flexibility of vNIDS regard-
ing placement location. The experimental environment is built on
CloudLab involving two data centers (Site-1) and (Site-2) that are
geographically distributed. In the experiment, we wanted to demon-
strate that under the situation where some applications (Applica-
tions B) have been migrated from Site-1 to Site-2, virtualized NID-
Ses have advantages over traditional NIDSes due to their flexibility
of placement location. Figure 7 demonstrates the different behav-
iors of two types of NIDSes.

Originally, all applications are run at Site-I1 and the NIDS is pro-
visioned at Site-1 to protect those applications. If Applications B
are migrated to Site-2 due to resource management or optimization
purpose, as traditional NIDSes are difficult to migrate, in this case,
the network traffic relevant to Applications B must be rerouted
from Site-2 back to Site-1 for processing. In contrast, vNIDS can
flexibly provision new instances at Site-2 to process the traffic of
Applications B. The only concern is the communication traffic, the
volume of which we quantified in this experiment, between the
virtualized NIDS instances located at different sites.

During the experiment, we divided each of our datasets into two
parts, representing the traffic of Applications A and Applications
B, respectively. Then, we replayed the two parts of each dataset at
two sites, respectively. In the traditional NIDS case, traffic replayed
at Site-2 is rerouted to Site-1 and we evaluated the bandwidth re-
quired by the rerouting. In the vNIDS case, traffic is replayed at
Site-1 and Site-2 separately and is processed by instances at corre-
sponding sites. We evaluated the bandwidth required by the com-
munication between instances in the two sites.
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The required bandwidth between Site-1and Site-2 for traditional
NIDS and vNIDS respectively is shown in Figure 8. We tested the
three real-world datasets (without synthetic attack traces injected)
and found that the bandwidth required by vNIDS is much less than
traditional NIDS. Especially, for Campus.trace, traditional NIDS
requires 1000x more bandwidth than vNIDS. This is because vNIDS
only needs to exchange global detection states between the two
sites, while traditional NIDS needs to reroute all the network traffic
between the two sites. Another important observation is that for all
three real-world datasets, the communication bandwidth between
virtualized NIDS instances is surprisingly low — only hundreds of
Kbps - for the three datasets. This is because the number of global
detection states is relatively small.

7.6 Flexibility of Processing Capacity

In this experiment, we evaluated the flexibility of vNIDS regarding
processing capacity and compared it with Bro Cluster. We only
used Campus.trace, which has the highest traffic rate, for this
experiment. We ramped the traffic sending rate gradually from 0
up to 10Gbps in 100 seconds and observed the throughput of Bro
Cluster and vNIDS. We deployed 5 instances for Bro Cluster in the
experiment because each Bro Cluster instance, estimated against
our dataset, can roughly handle 1Gbps traffic. In contrast, vNIDS
scales according to the traffic volume. Once existing virtualized
NIDS instances are about to overload, we created a new instance
and redirected some traffic to the new instance.

Figure 9 depicts our observation of this experiment. Figure 9-a
indicates that the throughput of Bro Cluster and vNIDS steadily in-
creases as the traffic volume grows. Once the traffic volume reaches
the maximum processing capacity of Bro Cluster, the throughput
of Bro Cluster is limited to less than 6Gbps. For vNIDS, as it can
quickly launch new instances, its throughput grows consistently
with the traffic volume. Figure 9-b depicts the number of provi-
sioned instances for Bro Cluster and vNIDS over time. Bro Cluster
provisions a static number of instances. Virtualized NIDS, in con-
trast, provisions its instances according to the traffic volume. As
the traffic volume grows, vNIDS provisions an increasing number
of instances to handle the traffic. We saw that when the traffic
volume is under 5Gbps, the Bro Cluster is over-provisioning, while
the traffic volume exceeds 5Gbps, the Bro Cluster becomes under-
provisioning (overloaded in Figure 9-a).

8 DISCUSSION

Service chain acceleration: Running virtualized NIDS instances
in virtual machines or containers may incur extra overhead. Also,
provisioning NIDSes as microservices requires communication be-
tween microservices. We did not optimize our virtualized NIDS
prototype regarding those two aspects in this work. However, ac-
celeration of network function service chain has been widely inves-
tigated by the NFV research community [50, 56, 58, 64, 79, 87, 88].
1) ClickNP [56] and NetBricks [64] are devoted to accelerating the
execution of a single instance. 2) ClickOS [58] and NetVM [50, 87]
focus on accelerating the packet delivery between instances. 3)
NFP [79] and ParaBox [88] accelerate the execution of the whole
service chain by parallelizing the execution of different services.
We can adopt those techniques to our prototype to further mitigate

29

CCS’18, October 15-19, 2018, Toronto, ON, Canada

@
Q
Q
© 10— Bro Cluster —
3 8|-v- wDs | o
=
o g
3 —— A
E 4
S v
o 2
£
é 00 10 20 30 40 50 60 70 80 90 100
Time Elapsed (Sec)
(@)

@
Q 10— Bro Cluster Qver-provisioning
3 8- wiDs |
2
=
5
5 4
Qo
E 2 Inder-provisioning
z

00 10 20 30 40 50 60 70 80 90 100

Time Elapsed (Sec)

(b)

Figure 9: (a) Runtime throughput of vNIDS and Bro Cluster.
(b) Number of instances of vNIDS and Bro Cluster.

the extra overhead introduced by NIDS virtualization and improve
the performance of virtualized NIDSes.

Applicability of vNIDS architecture: In this work, we present
vNIDS architecture for NIDS virtualization based on NIDSes that
support multi-flow information and stateful protocol analysis, such
as Bro [22]. However, due to the complexity of mature NIDSes —
e.g., it is reported that the recent version of Bro includes 97K lines
of code, 1798 classes and 3034 procedures [53] and has been evolv-
ing for nearly 20 years — we choose to implement a prototype of vir-
tualized NIDS to demonstrate our idea. This is however not the lim-
itation of our approach. Especially, the program analysis and pro-
gram slicing techniques we employed in this work can also be ap-
plied to existing mature NIDSes. For example, recent work [35] has
demonstrated the possibility to utilize program slicing upon Bro by
introducing an intermediate assembly-like representation of its de-
tection logic programs. Signature-based NIDSes, such as Snort [20]
and Suricata [21], can also benefit from our approach. Relying on
classic per-flow signature matching, though signature-based NID-
Ses do not need to share detection states among instances to achieve
effective detection, they can still apply our approach to enable non-
monolithic provisioning when virtualized. Worth noting, detection
logic partitioning is not a challenge for signature-based NIDSes
since signatures usually explicitly specify the header-based and
payload-based detection logics [73]. In addition, as a recent trend,
artificial neural network (ANN) is used to build NIDSes [60]. Our
work gains a foothold in NIDS virtualization and can be further
extended to support ANN-based NIDS virtualization in the future.

Usage of virtualized NIDSes: We envision that virtualized NID-
Ses with more flexibility than traditional NIDSes can be used to
protect both traditional networks [76, 85] and virtualized environ-
ments [9, 24]. Besides, as a new trend, edge computing, in which
computing and storage resources are placed at the Internet’s edge
in close to IoT devices, has drawn an increasing number of re-
search attentions from the security community [48, 61, 63, 74]. The
major challenges are the limited resource and diversity of edge
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computing environments. Virtualized NIDSes can be easily cus-
tomized through microservice composition and can provision dif-
ferent components flexibly at different locations and with differ-
ent number of instances. These flexibilities of virtualized NIDSes
are well suited to address the limited resource and diversity of
edge computing environments. For example, we can provision only
header-based detection microservice at the edge computing envi-
ronment (easily customized). If the traffic needs further analysis
on the payload, we can then provision the payload-based detection
microservice on demand (flexible capacity) in the same edge com-
puting environment or even in a remote cloud (flexible location),
depending on the trade-offs between performance and resource us-
age.

Elastic security vision: To this end, there are some efforts
having been made to develop elastic security approaches, such as
DDoS defense systems [42], security architecture for enterprise
networks [85], virtual firewall controller [36], and NIDS virtualiza-
tion in this work. However, these efforts are disjoint points at dif-
ferent security areas. In our work, the idea of provisioning network
security functions as microservices has been proved to be a feasi-
ble way to achieve more efficiency (than monolithically provision-
ing) for elastic security approaches (§ 7.4). Though our approach
is specific to NIDS virtualization, it can be generalized to develop
other network security functions leveraging microservices. We call
this paradigm as network security as microservices. As a result, we
envision an open platform that can facilitate the design of elastic
security approaches with the support of diverse virtual security
functions developed with microservices.

9 RELATED WORK

Some recent research efforts have used NFV and SDN techniques
to address the inflexibility and inelasticity limitations of traditional
network defense mechanisms [36, 42, 85]. In Bohatei [42], the au-
thors address the limitations of traditional DDoS defense systems
with respect to flexibility and elasticity. Bohatei utilizes NFV to
dynamically launch virtual machines at different locations to han-
dle DDoS attack traffic and leverages SDN to redistribute the traffic
that optimizes the bandwidth consumption. The DDoS defense sys-
tem is specific for DDoS attacks, while our work is for NIDSes that
aim to defensing various attacks. In addition, we have considered
the cases where different instances need to exchange information
to ensure detection effectiveness, which is overlooked by Bohatei.
The authors of PSI [85] propose a security architecture for enter-
prise networks leveraging NFV and SDN to provide better isola-
tion between security functions, support context-aware security
policies, and agilely change its security policies. However, the de-
sign of each specific network security function remains unsolved
in that work. Our work focuses on improving the specific design of
NIDSes for virtualization purpose. VFW Controller [36] is devoted
to addressing the problems of firewall virtualization. In particular,
VFW Controller analyzes the relationship between firewall rules
and OpenFlow rules to safely select the firewall rules that need to
migrate between virtual firewall instances during virtual firewall
elastic scaling. Our work, in contrast, addresses the challenges in
NIDS virtualization, which are fundamentally different from the
challenges of virtual firewalls.
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Existing work of NIDSes is devoted to developing scalable ar-
chitectures for NIDSes [35, 77, 81]. However, flexible architectures
with respect to capacity and location for NIDSes are missing. The
authors of [35] propose a concurrency model for stateful deep packet
inspection to enable NIDSes to run with multiple threads in par-
allel for better scalability. Their approach attempts to avoid inter-
thread communication to reduce the performance overhead induced
by detection state sharing. However, such an approach proposes
to maintain detection states in each instance separately, without
any sharing. As we have demonstrated in § 2.1, for some complex
detection logics, it is impractical to achieve effective intrusion de-
tection only relying on traffic distribution. NIDS Cluster [81] and
multi-core architecture for NIDS [77] enable information exchange
between NIDS nodes or threads to achieve effective intrusion de-
tection. However, both of them fail to give any analysis or classi-
fication to the detection states. In particular, NIDS Cluster relies
on users to manually determine which detection states need to be
shared. Our work is fundamentally different from existing NIDS
research efforts in the point of view that our work aims to develop
a more flexible architecture for NIDSes and addresses the effective
intrusion detection and non-monolithic NIDS provisioning prob-
lems, which cannot be well addressed by existing NIDS architec-
tures for virtualized environments.

There is another body of work from the network research com-
munity, which addresses state management problems of virtual-
ized network functions [46, 51, 53, 70, 84]. Split/Merge [70] and
OpenNF [46] are limited to addressing the state migration prob-
lem during network function elastic scaling. Both methods main-
tain the state of each instance separately at runtime, therefore can-
not be used to address the effective intrusion detection problem
of NIDS virtualization. StateAlyzer [53] classifies the states of net-
work functions to reduce the overhead during state migration. How-
ever, such classification is based on per-packet processing proce-
dure and cannot identify per-flow states. Our work ensures the de-
tection effectiveness for virtualized NIDSes at runtime, and is able
to identify per-flow detection states to minimize detection state
sharing. StatelessNF [51] proposes to share all states among net-
work function instances. This approach incurs significantly perfor-
mance overhead when applied by virtualized NIDSes (evaluated
in § 7.3). The authors of [84] use the concept of local and global
states for network functions. However, they fail to provide a sys-
tematic approach that can automatically distinguish between the
two types of states in a program. Our work can distinguish local
and global detection states automatically in a detection logic pro-
gram through program analysis.

10 CONCLUSION

In this paper, we have proposed vNIDS, a new NIDS architecture,
to achieve safe and efficient virtualization of NIDSes. We have care-
fully designed solutions in vNIDS to address two key challenges
including effective intrusion detection and non-monolithic NIDS pro-
visioning in NIDS virtualization. We have implemented a proto-
type of vNIDS and evaluated it with various detection logic pro-
grams based on real-world traffic traces. Our evaluation results
have demonstrated the safety and efficiency of vNIDS for NIDS
virtualization.
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Appendix A COOKIE HIJACKING
DETECTION

To detect the cookie hijacking attack, the NIDS monitors whether
a cookie is used by different users. Basically, the NIDS tracks the
IP address for every cookie usage. If a cookie is used by different IP
addresses, it means the cookie has been reused by different users.
However, the detection results are not often true if only based on
IP addresses, because in many networks the IP address of a host is
dynamically allocated and can be changed from time to time. In or-
der to improve the detection accuracy, the NIDS makes use of extra
information, such as MAC addresses 4. The NIDS collects the MAC
address information by monitoring the traffic of a DHCP server
and maintains the IP-to-MAC bindings in a table. Every time the
NIDS observes a cookie being reused by different IP addresses, it
further checks whether those two IP addresses are assigned to dif-
ferent MAC addresses. If so, a cookie hijacking attack is reported.
The detector [80] implementing the aforementioned detection log-
ics should employ at least two tables: the Cookies table maintain-
ing the context (e.g., the IP and MAC addresses of the original user
of the cookie) of each cookie that has been observed by the NIDS,
and the IP2MAC table maintaining the bindings between IP and
MAC addresses.

The detection process is demonstrated in Figure 10. For each
HTTP flow, the detector extracts the cookie and retrieves the con-
text of the cookie from the Cookies table (1). If there is no context
available, a new context record of the cookie is added. This opera-
tion requires access to the IP2MAC table to obtain the MAC ad-
dress (2). If the context exists, but the IP address in the context
record is not consistent to the IP address of the flow (3), the detec-
tor needs to access the IP2MAC table to determine whether the
two IP addresses are from the same user by looking at the MAC
addresses (4). In the example shown in Figure 10, FlowI is from
the original user using cookie CI. If Flow2, which is actually from
an attacker, is delivered to another instance that does not process
Flow1 thus lacks the context of C1, Flow2 is falsely considered as
a legitimate user of the cookie C1. However, without deep analy-
sis of traffic, it is impossible to know which two flows contain the
same cookie thus should be delivered to the same instance.

41t is still possible for attackers to bypass this detection. However, augmenting the
robustness of existing detectors is not the focus of this paper.
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Figure 10: The process of cookie hijacking detection and the
detection states maintained by the detector. Flow1 is from
the original user of the cookie C1. Flow2 is from an attacker
reusing the cookie C1.

In addition, it is impossible to predict which two detection states
must be maintained by the same instance. For example, in Fig-
ure 10, if FlowI and Flow2 do not appear, the two records indexed
by 10.1.1.1and 10.1.2.2 in the IP2MAC table can be maintained by
different instances. However, if Flowl and Flow2 come, these two
flows must be delivered to the same instance that maintains the
context of the cookie (CI). As described above, Flowl and Flow2
also need to check the two records indexed by 10.1.1.1 and 10.1.2.2
in the IP2MAC table. Therefore, those two records must also be
maintained in the same instance. This example demonstrates that
the incoming traffic could dynamically correlate two detection states,
thus it is impossible to predict beforehand which detection state is
maintained by which instance.

Appendix B DETECTION STATE
CLASSIFICATION EXAMPLE

A DLP detecting scanners in the network consists of two tasks:

o Counting the number of flows generated by each host. If a
host generates too many flows in a short time, it’s poten-
tially a scanner.

e Monitoring the number of packets for each flow. If a flow
contains many packets, this flow is not likely for scanning
purpose.

The DLP should have two tables: a Hosts table maintaining the
number of flows generated by each host, and a Flowcounts table
maintaining the number of packets of each flow.

Figure 11 shows the CFG > of the DLP combined with the NE.
Each node in the CFG represents a block of statements and each di-
rected edge represents a jump between blocks. The DLP considers a
host as a scanner if it generates too many flows in a short period of
time. But not all the flows are taken into consideration. Only those
flows that contain a few packets will be considered. The Hosts|[sip]
stores the number of flows that have been generated by the host
with sip as IP address. The Flowcounts|p.sip, p.dip, p.sp, p.dp]

SFor simplicity, we prune nodes and edges irrelevant to our analysis.
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Figure 11: The CFG of a scanner detecting DLP and NE.

stores the number of packets contained in the flow identified by
source IP, destination IP, source port, and destination port, respec-
tively. For simplicity, let’s denote “p.sip, p.dip, p.sp, p.dp” as
“id”.

If a new flow is observed, Hosts|p.sip| increments. If a packet
belonging to an existing flow comes, Flowcounts[id] is updated. If
Flowcounts|id] exceeds a threshold (T2), Hosts[sip] decrements
because this flow is not for scanning purpose. If Hosts[sip] exceeds
a threshold (T'1), the IP address sip is logged. Finally, if the flow
terminates (determined by expiration or FIN flag), the flow record
maintained by NE is destroyed.

Intuitively, Hosts[p.sip] is a multi-flow detection state, which is
accessed by all flows originating from sip, while Flowcounts|p.sip,
p.dip, p.sp, p.dp] is a per-flow detection state that can only be
accessed by the flow generated from sip at port sp and received
by dip at port dp. We manually identify the destroy statement of
the flow record (“del Flows[p.sip, p.dip, p.sp, p.dp]”). The flow
record is defined and maintained in the NE.

We observe that in the CFG, “del Flowcounts[p.sip, p.dip,
p-Sp, p.dp]” is a dominator of “del Flows|p.sip, p.dip, p.sp, p.dp]”,
while “del Hosts[p.sip]” is not. A statement P is a dominator of
statement Q if every path in the graph from a entry statement
(“p=pcap_ next”) to Q always passes through P [57]. This means
the value of Flowcounts|p.sip, p.dip, p.sp, p.dp| variable is al-
ways destroyed before the flow record is destroyed, while the value
of Hosts[p.sip] is not necessarily destroyed before the flow record
is destroyed. Based on this fact, we, therefore, know that flows[p.sip,
p.dip, p.sp, p.dp] can only be accessed by a specific flow (gener-
ated from sip at port sp and received by dip at port dp), while
Hosts[p.sip] can be accessed by flows other than that specific flow
because Hosts[sip] is possibly still “alive” after that specific flow
terminates. Finally, we can infer that Flowcounts[p.sip, p.dip,
p-sp, p.dp] is a per-flow detection state, while Hosts[p.sip] is a
multi-flow detection state.
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Appendix C DLP PARTITIONING EXAMPLE

DNS protocol is usually considered as a commonly used protocol
to interpret the domain names on the Internet thus is rarely pro-
hibited by firewalls. In a DNS Tunneling attack, the attacker tries
to bypass the firewall by encapsulating the malicious content in
DNS traffic. The DNS Tunneling DLP tries to detect DNS Tunnel-
ing attacks. We use this DLP as a use case because the DNS Tun-
neling detection techniques have been well studied in lots of lit-
erature [27, 32, 40, 41], and there is also a DLP implemented by
Bro scripting language [7]. We have implemented a C version of
DNS Tunneling DLP based on existing Bro DNS Tunnels detection
scripts. The DLP involves both header-based DL and payload-based
DL. Thus, it would be a good use case to demonstrate our approach
for partitioning the DLP.

The code shown in Code 1 is an implementation of the DNS Tun-
neling DLP in C language. The Tunneling Detection is a C inter-
face stub that will be called back by the NE when a DNS packet is
received. The parameters sip and length are header fields of incom-
ing packets, while the query is the payload information indicating
the domain name being queried by the DNS packet. The basic idea
of the DLP is as follows: The hosts is a pointer of a linked list. Each
element in the list is a structure recording which IP address this el-
ement is associated with and the number of DNS packets being
counted by the DLP. Each time a DNS packet is received, the DLP
increments the count accordingly (lines 26 and 27). The DLP first
checks whether a host has generated too many DNS packets in a
period of time (line 28). If this is true, this host is reported as an
attacker (lines 29-31). Otherwise, the DLP checks the length of the
DNS packet (line 33). If the packet’s size exceeds a threshold, the
DLP further checks the payload of the packet (lines 34-41); other-
wise, this is a normal packet.

Stepl & Step2: We use Frama-C to compute the forward slice of
query from the beginning of the DLP (line 25). Note that Frama-
C has already computed the PDG internally for its program slic-
ing. The resulting statements of the payload-based DLP slice are
lines 35, 36, 39, 40, 41, and 45.

Step3: To construct the header-based DLP, we replace lines 35,
36, 39, 40, 41, and 45 with forward statements. Then, we identify
the variables that should be tracked. According to Algorithm 1,
variable length and i have been used by both header-based and

payload-based DLPs. Therefore, those two variables should be tracked.

We find that length has never been updated (i.e., never appear
on the left-hand-side). As a result, only i is encapsulated into the
packet and sent to the payload-based DLP.

Step4: To construct the payload-based DLP, we first add the ini-
tialization statements for the variables storing intermediate results.
In this case, we only add a statement to assign the value to vari-
able i. Then, right after the initialization statements, we need the
switch-case statement to retrieve the breakpoints. In this case, the
switch-case statement checks the label and maps each label to
lines 35, 36, 39, 40, 41, and 45, respectively.

Step5: Once we have PDGs of both header-based and payload-
based DLPs, we can use tools to reverse the PDGs into the source
code. In our case, instead of generating PDGs, Frama-C computes
the PDG internally and utilizes the PDG to compute the forward
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program slice. Finally, Frama-C emits the source code of the result-
ing slice directly. We write a parser using Flex [23] and Bison [13]
to do the construction in Step3 and Step4. In practice, most modern
compilers can make optimization of the source code by removing
unused variables and unreachable statements.

1 int T1 = 100; /*frequency threshold*/

2 int T2 = 53; /*length threshold*/

3 int T3 = 0.3; /*numeric threshold*/

4 struct host {

5 unit ip;

6 int count;

7 struct host* next;

8 1}

9 struct host* hosts;

10 struct host® find_ host(uint ip) {

11 struct host* h = hosts;

12 while (h) {

13 if (h->ip == ip) return h;

14 h = h->next;

15 }

16 h = malloc(sizeof(struct host));

17 h->ip = ip;

18 h->count = 0;

19 h->next = hosts->next;
20 hosts->next = h;
21 return h;
2 }
23

24 int Tunneling_Detection(uint sip,int length,char* query){
25 int num_ count = 0, i = 0;

26 struct host* h = find__host(sip);

27 h->count += 1;

28 if (h->count > T1) {

29 h->count = 0;

30 printf(”"DNS Tunnel Detected!\n”);
31 return 1;

32 } else {

33 if (length > T2) {

34 for (i =0;i < length; i++) {
35 if (queryli]>="'0" && query[i]<="'9"){
36 num_ count += 1;

37 1

38 }

39 if (num_ count > length * T3) {
40 printf("DNS Tunnel Detected!\n”);
41 return 2;
42 }
43 }
44 1
45 return 0O;
46}

Code 1: Simplified DNS Tunneling Detection Program
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