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Abstract—Graphics Processing Unit (GPU) has been recently
exploited as a hardware accelerator to improve the performance
of Network Function Virtualization (NFV). However, GPU-
accelerated NFV systems suffer from significant latency variation
when multiple network functions (NFs) are co-located in the
same machine, which prevents operators from supporting latency
Service Level Objectives (SLOs). Existing research efforts to
address this problem can only guarantee a limited number of
SLOs with very low resource utilization efficiency. In this paper,
we present the Grus framework to support latency SLOs in GPU-
accelerated NFV systems. Grus thoroughly analyzes the sources
of latency variation and proposes three design principles: (1)
dynamic batch size setting is needed to bound packet batching
latency in CPU; (2) a reordering mechanism for data transfer
over PCI-E is required to guarantee the stalling time; and
(3) maximizing concurrency in GPU is necessary to avoid NF
execution waiting time. Guided by the principles, Grus consists
of two logical layers including an infrastructure layer and a
scheduling layer. The infrastructure layer is equipped with an
in-CPU Reorder-able Worker Pool that could adjust batch size
and packet transfer order, and in-GPU Controllable Concurrent
Executors to provide maximized concurrency. The scheduling
layer runs a heuristic algorithm to perform accurate and fast
scheduling to guarantee SLOs based on our prediction models.
We have implemented a prototype of Grus. Extensive evaluations
demonstrate that Grus can significantly reduce latency variation
and satisfy 4.5 × more SLO terms than state-of-the-art solutions.

I. INTRODUCTION

Network Function Virtualization (NFV) was recently in-

troduced to address the limitations of traditional dedicated

middleboxes. NFV implements network functions (NFs) on

commodity hardware to improve service delivery flexibility

and reduce overall costs. However, due to the adoption of

virtualization techniques, software-based NFs suffer from low

performance with respect to both latency and throughput [1],

[2]. In response, recent research efforts have proposed to

introduce Graphics Processing Units (GPUs) with massive

computing cores [3] as hardware accelerators to enhance the

performance of a wide range of NFs, such as routing [4],

NIDS [5], and IPSec [6], [7]. The high performance brought

by GPU enables operators to provide performance Service

Level Objectives (SLOs) [8] of latency and throughput when

processing multiple flows in NFV [8], [9].

However, when consolidating multiple NFs in one host,

current GPU-accelerated NFV systems suffer from significant
latency variation for each NF, making it challenging to effec-

tively guarantee latency SLOs [8]. According to our evaluation

in §II-A, the latency of a firewall increases as much as 2.1×
after starting nine other NFs in the same GPU. Such high
latency variation prevents operators from guaranteeing latency

SLOs for latency sensitive applications, such as web search,

online retail, and algorithmic stock trading [2].
Some research efforts have been devoted to guaranteeing

latency in GPU-accelerated NFV systems. A typical packet

processing pipeline of GPU-accelerated NFV systems is as

follows. CPU first collects packets from network interface

cards (NICs) and then delivers them to GPU through Periph-

eral Component Interconnect Express (PCI-E). GPU executes

NF logic on packets, after which CPU copies packets back and

sends them out. Existing researches focus solely on guarantee-

ing latency of one stage of the above pipeline. ResQ [8] pro-

visioned latency guarantee for NFs in CPU. Silo [10] ensured

latency during packet transmission between network devices.

Baymax [11] provided QoS in latency inside GPU. However,

above solutions fail to support effective and efficient SLO

guarantee in GPU-accelerated NFV context in two aspects.

First, solutions that guarantee latency in GPU [11], [12] could

only support a limited number of concurrent tasks, resulting in

very a low GPU utilization efficiency [12]. We will illustrate

in §II-A that current solutions can only support a small set

of SLOs with near up to 75% of GPU resources left vacant.

Second, there is no coordinated scheduling solutions to jointly

enforce latency guarantee in CPU, PCI-E, and GPU, which

makes it challenging to guarantee end-to-end latency of the

entire pipeline in GPU-accelerated NFV systems.
To address the above problems, we construct a latency

model by performing a thorough analysis of each step in the

packet processing pipeline to understand which steps may in-

troduce latency and why latency variation occurs. We observe

that the sources of latency variation are mainly threefold.

• CPU collects packets as batches. Currently the batch size

is statically configured regardless of incoming packet rate.

However, as packet rate drops, it takes longer time to collect

a full batch of packets, causing latency variation.

• CPU transmits prepared packet batches to GPU over PCI-
E. Due to the serial nature of PCI-E [13], concurrent NFs

have to contend to monopolize PCI-E. Therefore, the unpre-

dictable stalling time due to contention adds to variation.

• The current task scheduler in GPU provides limited con-
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currency. Multiple NFs have to wait for free task executors.

Such unpredictable waiting time also incurs variation.
According to latency variation sources, we propose three

design principles to guarantee latency. First, dynamic batch
size setting is necessary to bound the time of batching incom-

ing packets to adapt to dynamically changing traffic. Second,

a reordering mechanism for data transfer is required to

achieve predictable stalling time on PCI-E. Third, maximizing
concurrency and minimizing interference for task execution
are essential to avoid waiting time in GPU.

Guided by the above design principles, in this paper, we

present Grus, a framework to enforce latency SLOs in GPU-

accelerated NFV systems. Grus consists of two logical layers

including an infrastructure layer and a scheduling layer. We

introduce three core components in the infrastructure layer.

First, we design an in-CPU Reorder-able Worker Pool that

could enable workers to adjust batch size and transfer data

in a specific order according to scheduling policy to bound

latency for packet batching in CPU and data transfer over PCI-

E. Second, the default hardware scheduler in GPU is a black

box that cannot be customized to provide maximum execution

concurrency. In response, we design an in-GPU Controllable
Concurrent Executor that circumvents the default GPU sched-

uler and provides maximum concurrent execution units for

NFs. Third, we propose an in-GPU NF Assignment Table that

enables launching NF kernels on a specific set of executors to

make NF waiting time short and predictable. In the scheduling

layer, Grus introduces a Latency SLO-aware Scheduler that

jointly manages all resources and makes scheduling decisions

to meet latency SLOs based on our Prediction Models. To

make scheduling fast, we propose a heuristic algorithm to

quickly find a feasible scheduling solution for all SLOs. In

summary, Grus makes the following contributions:

• We identify the latency variation in GPU-accelerated NFV

systems (§II), create a latency model by thoroughly analyz-

ing each step of the processing pipeline, and present three

design principles to guarantee latency (§III).

• We propose Grus, a GPU-accelerated NFV system, which

enables latency SLOs for multiple co-located NFs. Grus
introduces a new infrastructure design (§IV) and scheduler

design (§V) to effectively enforce latency SLOs.

• We implement a prototype of the Grus system and perform

extensive experiments. Evaluation results demonstrate that

Grus can effectively guarantee latency and satisfy 4.5 ×
more SLO terms than state-of-the-art solutions. (§VII).

We discuss the design limitations of Grus in §VI. Specif-

ically, Grus does not handle PCI-E contention during data

transfer from GPU to CPU after packet processing in GPU.

Moreover, Grus focuses on enabling latency SLOs for a single

NF, which is the first step towards guaranteeing the latency of

an entire chain.

II. MOTIVATION AND CHALLENGES

A. Background and Motivation

Background. A modern programmable GPU acts as a co-

processor that receives the code (called “kernels”) and data
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Fig. 1: Average latency increase of a firewall when starting

other NFs in the GPU-accelerated NFV system

from the host CPU. GPUs have on-board device memory,

so data must be copied in from the server’s main memory

(“host memory”) over the PCI-E bus after the workers in CPU

prepare enough data (e.g., a batch of packets). Then GPU will

process the data and inform CPU to copy processed data back

to host memory.
Adopting GPU as an accelerator has been shown to enable

high-performance NFs by many existing research works [3]–

[5], [7], [12], [14]–[16]. For example, PacketShader [4] pre-

sented a high-performance router by offloading workloads

to GPUs. MIDeA [14] and Kargus [5] introduced a high-

performance NIDS based on GPU. NBA [3] and GASPP [7]

presented a general GPU-based framework to boost the per-

formance of a wide range of NFs. G-NET [12] is the state-

of-the-art work that aims to improve the utilization while

achieving predictable latency for one solely running NF in

GPU. However, according to our experiments, above efforts

cannot guarantee end-to-end latency in GPU-accelerated NFV

networks. Next, we will introduce the significant latency

variation without effective guarantee methods. Then we reveal

the insufficiency of existing techniques to provide latency

guarantees in GPU-accelerated NFV.
Latency variation in GPU-accelerated NFV systems. To

illustrate the performance variation of co-located NFs in GPU-

accelerated NFV systems, we build a system based on the

architecture and design from NBA [3]. We use a testbed with

a server equipped with an NVIDIA Titan Xp GPU and a server

as the traffic generator that generates a modest traffic rate of

2 Gbps of each flow, with the packet size distribution derived

from [17] (more details are stated in §VII). We use the firewall
NF in this experiment and measure the latency variation of the

initial firewall instance when starting zero to nine new firewall

instances (each processes different flows) in the same server.
Fig. 1 shows the latency variation of the initial firewall

instance. We observe that as more NFs run concurrently, the

average latency of the initial firewall increases significantly.

Two more co-located NFs increases the latency of the initial

firewall by 0.19×. When we start nine other NFs, the initial

firewall suffers from a 2.1× latency increase. We also notice

that there is no obvious throughput drop when starting one to

nine co-located NFs. The above observations motivate us to

guarantee latency for NFs in GPU-accelerated NFV systems..
Insufficiency of existing solutions. Many prior efforts have

proposed solutions to provide guaranteed performance on one

of the shared resources in GPU-accelerated NFV pipeline [8],

[10], [11], [18]–[20]. A strawman approach is to naively com-
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bine solutions for CPU, data transfer, and GPU to guarantee

latency of the entire pipeline. However, as mentioned above,

we identify two major shortcomings of this approach.

First, current solutions that guarantee latency in GPU [11],

[12] provisions very limited concurrency. The default GPU

task scheduler provides a limited number of concurrent ex-

ecutors named Streaming Multiprocessors (SMs) that could

execute tasks in parallel [11]. Threads in GPU are equally

divided to each SM in the granularity of Warp. Warp is the

basic scheduling unit in a GPU, which contains 32 threads.

Each SM may contain 64 or more warps according to the

GPU model. For mainstream GPU applications such as big-

data analytics [21] and machine learning [22], one application

could fully occupy the resource of one or multiple SMs, which

could achieve a high utilization efficiency of GPU. However,

NFs in NFV are typical narrow tasks that usually occupies

less than 16 warps in an SM [23]. Allocating an entire SM to

an NF significantly compromises thread utilization efficiency.

If we assign multiple NFs to an SM, NFs have to wait in line

for execution, adding to unpredictable waiting time that may

violate SLOs. Therefore, current solutions can only satisfy a

limited number of SLOs. Suppose an NF consumes 16 warps

in an SM equipped with 64 warps. We can only support a

limited set of latency SLOs with 75% GPU resource vacant.

Second, existing solutions that enable guaranteed latency fo-

cus on either CPU [8], packet transmission [10], or GPU [11],

[20], [24] individually, but not together. There is no coordi-

nated scheduling solutions to jointly enforce latency guarantee

in CPU, PCI-E, and GPU. However, in GPU-accelerated NFV,

latency SLOs regulate the end-to-end latency [10] of packets

across the entire processing pipeline. Without coordinated

scheduling, we cannot decide how much latency budget can

be allocated to each resource type, making it unavailing to

guarantee latency in each resource respectively.

Grus. Based on above motivations, we propose a novel

framework, Grus, to guarantee latency in GPU-accelerated

NFV networks. With coordinated scheduling, Grus targets at

reducing NF latency variation and supporting the maximum

number of latency SLOs in GPU-accelerated NFV systems.

B. Design Challenges

We encounter three major challenges in the design of Grus.

Identifying the sources of latency variation. A GPU-

accelerated NFV system is a heterogeneous platform with

multiple types of resources, which introduces many potential

causes of latency variation. Thus it is challenging to identify

variation sources and build the latency model for scheduling.

In response, Grus thoroughly analyzes the packet processing

pipeline and presents our latency model (§III).

Infrastructure design to support latency SLOs. Enforcing

latency SLOs in GPU-based NFV incurs several concerns on

the infrastructure design. First, current infrastructure in CPU

does not allow changing batch sizes or assigning transmission

orders of packets over PCI-E. To address this challenge,

we design a Reorder-able Worker Pool in CPU to support

dynamic batching and transfer ordering. Second, the default

GPUPCI-ECPU

Packet 
Batching

Processing

Pre-processing

Post-processing

Transfer

CPU to GPU

GPU to CPU

NF Kernel
Execution

Fig. 2: A typical GPU-accelerated NF processing pipeline

GPU scheduler cannot be customized to provide adequate

concurrency, making it challenging to effectively guarantee

latency SLOs in GPU. In response, Grus circumvents the

default GPU scheduler and designs Controllable Concurrent

Executors to execute NFs with maximal concurrency (§IV).

Scheduler design to ensure accurate and fast scheduling.
Finally, we are challenged to design a coordinated, accurate,

and efficient scheduler across heterogeneous resources to

guarantee latency SLOs of multiple NFs. Due to resource

constraints, not all SLOs can be satisfied (or admitted [10])

and we are challenged to find the maximal set of SLOs that

can be supported by the system. In response, we propose the

Grus scheduler that targets at maximizing the admitted SLOs

in an accurate and fast fashion (§V).

III. LATENCY ANALYSIS AND DESIGN OVERVIEW

In this section, we first identify the sources of latency

variation in a GPU-accelerated NFV systems. Based on our

analysis, we propose three design principles to guarantee

latency. Finally, we present the design overview of Grus.

A. Understanding Latency Variation of GPU-accelerated NFs

Fig. 2 shows a typical GPU-accelerated NF processing

pipeline, where a packet travels through multiple types of

resources (e.g., CPUs, PCI-E and GPUs). We identify four

major components that introduces latency in the pipeline:

(1) a worker thread in CPU first fetches packets from NICs

and batches them together; (2) according to NF specification,

the worker thread would pre-process packets before sending

packets into GPU, and post-process them after retrieving from

GPU; (3) the worker thread transfers the packet batch from

host memory to GPU memory via PCI-E; and (4) the worker

thread launches NF kernels to process packets in GPU.

When multiple NFs are competing for resources in a con-

solidated system, each component may suffer latency variation

and cause SLO violations. Next we discuss how they can vary

when co-locating with other NFs and how to bound them to

achieve guaranteed latency.

Packet batching: variation due to traffic dynamics. Traffic of

NFs could be dynamically changed due to diverse SLO spec-

ifications for throughput. Intuitively we know that different

traffic rates could vary the time of packet batching with a fixed

batch size (i.e., the number of packets in a batch). To study

the impact of traffic dynamics over packet batching latency,

we measure how the batching time changes when we vary the

traffic rate. As shown in Fig. 3(a), we observe that the batching

time is varied a lot for a fixed size with different traffic rates.

Moreover, the traffic of an NF is also dynamically changed

at runtime when dynamic-SLOs are required [8]. Hence, if
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the batch size is not adjusted according to the traffic rate,

the batching time can vary significantly. A naive approach is

to adopt a small batch size so that the batching time tops at

an endurable level when traffic rate drops. However, it would

sacrifice throughput when packet rate increases [3], [16], [25].

Pre-/post-processing: near zero variation. Normally, appli-

cations running in a CPU may contend computing resources,

such as CPU cycles and caches. However, existing NFV

solutions [1]–[3], [26] demonstrate that a today’s NF usually

runs on a dedicated CPU core, which eliminates contention

over CPU cycles among NFs. Therefore, as mentioned in

recent work [8], [27], we consider the contention over last-

level cache (LLC) as the potential cause of time variation.

To study its impact in GPU-accelerated NFV context, we

isolate different sizes of LLC to different NFs and measure the

processing time. We use Intel Cache Allocation Technology

(CAT) [28] to isolate LLC to a dedicated core (i.e., an NF).

As the upper half of Fig. 3(b) shows, we discover that there

is almost no variation of the pre-/post-processing time in all

four NFs we measured when allocating different amounts of

LLC. For example, this time of an NIDS is 31μs, 31 μs and

32 μs with 32 MB, 16 MB, and 1 MB LLC respectively.

To understand the results, we use Intel Performance Counter

Monitor (PCM) [29] to monitor the cache hit ratio of LLC. The

lower half of Fig. 3(b) shows that for an NF with different LLC

allocations, the cache hit ratio almost never changes. This is

because most compute-intensive instructions are relieved from

CPU to GPU. Thus, we conclude that the time of pre-/post-

processing suffers from near zero variation.

PCI-E transfer: variation due to contention. Prior

works [11], [12] have revealed that the time of transferring on

PCI-E is only relevant to the size of transferred data. However,

transferring over PCI-E is serial [13]. When multiple packet

batches belonging to different NFs contend for PCI-E, the

transfer time of a packet batch can be varied out of control

due to uncertain queuing and waiting. Fig. 3(c) shows that the

transfer time of a packet batch (batch size is 256) of a firewall

increases significantly when more NFs contending to PCI-E.

Kernel execution: variation due to task waiting. For an

NF kernel that executes on GPU solely, its execution time

is relevant to kernel’s complexity and data size (i.e., batch

size) [11], [12]. State-of-the-art GPUs [12], [30] support

sharing a GPU via two ways, temporal sharing and spatial
sharing. However, even if the above two sharing approaches

are enforced, the execution time still increases as shown

in Fig. 3(d). We observe that temporal sharing increases

the execution time significantly. This is because temporal

sharing delays executions until another NF yields the whole

GPU. Hence, waiting for execution significantly increases the

overall latency. Meanwhile, spatial sharing supports concurrent

executions and could potentially eliminate waiting. However, it

still introduces significant latency variation once the number of

NFs increases, which happens due to the limited concurrency

(we will provide more details in §IV). It exposes the need for a

highly concurrent spatial sharing mechanism to GPU resource

to serve more kernels at the same time.

B. Latency Model and Design Principles

Based on above analysis, in a GPU-accelerated NFV system

with multiple co-located NFs, the end-to-end latency of an

NF includes: the time of packet batching Tbatching , pre-/post-

processing Tpre post, PCI-E transfer waiting Tw transfer, data

transfer over PCI-E Ttransfer, NF kernel execution waiting

Tw execution, and NF kernel execution in GPU Texecution. We

model the latency Tnf as follows.

Tnf = Tbatching + Tpre post

+ (Tw transfer + Ttransfer)

+ (Tw execution + Texecution)

(1)

Among them, Ttransfer, Tpre post and Texecution are predi-

cable, while others may introduce unexpected variation. Thus,

we present three design principles to enable latency SLOs.

First, an adaptive batch size setting is necessary to bound

Tbatching with the requirement of dynamically changeable

traffics. Second, a reordering mechanism for data transfer
is required to achieve predictable stalling for Tw transfer on

PCI-E. Third, maximizing concurrency and minimizing inter-
ference for task execution are essential to eliminate waiting

time on GPU, i.e., Tw execution.

C. Grus Design Overview

Guided by the above design principles, we introduce Grus
with an infrastructure layer and a scheduling layer to provide

guaranteed latency for co-located NFs in GPU-accelerated

NFV. Fig. 4 presents the Grus system overview. In the infras-

tructure layer, we first introduce a Reorder-able Woker Pool
that performs concurrently requested data transfer over PCI-E

in a configurable order. Additionally, we design Controllable
Concurrent Executors that could maximize NF execution

concurrency. Finally, we introduce an NF Assignment Table
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Fig. 4: Grus design overview

that maintains information about pending NFs as well as com-

pleted NF tasks. The scheduling layer is equipped with two

logical components including Latency Prediction Models and

a Latency SLO-aware Scheduler. We maintain a set of latency

prediction models to predict the processing time of packet

batching, data transfer, and NF kernel execution. The scheduler

takes the prediction models and requested SLOs as input to

accurately and quickly produce an optimal batch size and order

for each SLO term. We present detailed infrastructure design

in §IV, and scheduling layer design in §V.

IV. INFRASTRUCTURE LAYER DESIGN

In this section, we introduce detailed design of three com-

ponents in Grus’s infrastructure: Reorder-able Worker Pool,
Controllable Concurrent Executors, and NF Assignment Table.

A. Data Transfer in Order: Reorder-able Worker Pool

Each NF has its own corresponding worker, which is run

in dedicated CPU cores. When multiple workers request data

transfer over PCI-E simultaneously, a specific order should

be assigned to guarantee data transfer latency. A strawman

mechanism is to design a centralized data transfer engine that

handles data transfer for all workers [11]. Workers delegate

data transfer tasks to the engine, which assigns orders to each

task and performs transfer accordingly. However, this solution

has two major shortcomings. First, now that the centralized

engine has to receive all transfer requests and enforce the

transfer tasks, it may be heavily burdened and become the

performance bottleneck. Second, a worker has to ensure that

the data transfer is finished, after which it can launch the

NF kernel in GPU. Thus, the worker must stall and perform

synchronization with this engine to check transferring status,

which fully occupies the CPU in the worker, delays packet

batching, and seriously compromises performance.

To provide an effective reordering mechanism with low

overhead, we design a Reorder-able Worker Pool in CPU. The

key idea is to decouple order assignment and data transfer

by enabling workers to obtain orders from the centralized

engine and transfer data via themselves. However, after an

order is assigned to a worker, it has to synchronize with other

workers to wait until workers with frontier orders finish data

transfer, which still introduces performance overhead. Inspired

by [31], we enable allocating timeslot for each worker as an

indicator of the order. A timeslot directly regulates when the

0 Runtime(worker id)
1 request buffer ← requests buffers[worker id]

2 timeslot buffer ← timeslot buffers[worker id]

3 while true do
4 if batch prepared() == true then
5 Send a request via request buffer

6 timeslot ← Get from timeslot buffer
7 if timeslot == NULL then
8 continue
9 while true do

10 cur time ← Get system clock

11 if cur time ≥ timeslot then
12 Start data transfer

13 break

Fig. 5: Pseudo code of Timeslot based runtime
worker submits data transfer task on PCI-E. Note that as PCI-

E handles tasks in serial, a worker may need to wait for its

turn to transfer the data after submitting the task. However,

this mechanism ensures that data transfers of multiple workers

could happen in a configurable order. To achieve this goal,

as shown in Figure 4, we design two components including

(1) a Timeslot allocator that receives transfer requests from

workers and calculates timeslots for workers according to their

orders, and (2) a Timeslot based runtime in each worker that

receives timeslot from the allocator and enforces data transfer

accordingly. Next we introduce the two components in detail.

Timeslot allocator. The Timeslot allocator maintains the

orders of all workers, which can be dynamically configured

by the global scheduler, and use the orders to calculate the

right timeslots for the data transfer requests from workers.

First, the allocator selects a pending request according to the

configured order of each worker. Then it calculates a timeslot

for the selected request using its order o and system time t:
timeslot = t + α ∗ o. Here, we adopt a small α to slightly

differ the task submission time of workers from each other.

Finally, it sends the timeslot information back to the worker.

Note that using system time t is accurate enough for reorder-

ing mechanism since the local clock system of all workers

and the allocator are the same clock system of the host. The

Timeslot allocator is lightweight enough as it performs simple

calculation without the burden of actual data transfer, which

minimizes its performance overhead.

Timeslot based runtime. We design a Timeslot based runtime
in each worker to interact with the Timeslot allocator and

enforce data transfer according to the allocated timeslot. A

naive scheme for the interaction between the runtime and

the allocator is request-wait-response, i.e. a synchronized ap-

proach where the worker’s CPU has to busily wait for timeslot

allocation, which introduces serious performance degradation.

Instead, we introduce a request buffer and timeslot buffer for

each worker to make all interactions asynchronous. Fig. 5

presents the pseudo code. When initializing the runtime, every

worker gets its individual buffers (lines 1-2). Next the runtime

enters a loop. It first checks whether a batch of packets

has been prepared. If so, it sends a request to the allocator
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Fig. 6: Task scheduling in GPU based on NF Assignment
Table and Controllable Concurrent Executors in SMs

(lines 4-5). Afterwards, it attempts to get a timeslot from

timeslot buffer (line 11). If no timeslot is available, it goes

back checking packet batch (lines 7-8), which prevents waiting

for the timeslot allocation. Otherwise, it enters a loop and

keeps checking the clock, if current time reaches the acquired

timeslot, it starts data transfer on PCI-E (lines 10-13).

B. Maximal Concurrency: Controllable Concurrent Executors
The default task scheduler in GPU uses Streaming Multipro-

cessors (SMs) as basic concurrent execution units for parallel

execution. The number of SMs is often limited. The latest

NVIDIA TITAN Xp GPU contains merely 30 SMs. Moreover,

an NF task may use a set of SMs to reduce processing

latency meanwhile maintaining resource efficiency [3], [12],

which implies that only a small fractions of NF kernel can

execute concurrently. This lack of available concurrency for

multiple co-executing NF kernels could result in task queuing

and waiting, which leads to unpredictable processing latency.

Furthermore, an SM is a coarse-grained resource block that

contains thousands of threads. However, the default hardware

scheduler in GPU might allocate an entire SM to a task even

if the task only needs 10s of threads. This results in a very

low thread utilization and may reduce the number of supported

SLOs. Finally, the behaviour of the default scheduler cannot

be customized, making it challenging to control the scheduling

and resource allocation policy.
In response, we design Controllable Concurrent Execu-

tors, which enable controllable task scheduling with maximal

concurrency by slicing an SM into fine-grained execution

units named executors. Next we introduce our scheduling

mechanism that circumvents the default scheduler, and how we

slice coarse-grained SMs into executors. Note that threads in

different SMs cannot be allocated to the same task. Therefore,

scheduling related modules are inserted into each SM to

control executors in the same SM.
Task scheduling mechanism. To circumvent the default GPU

scheduler and own control over underlying executors, we adopt

the persistent threads technique proposed by [16], [20], [32].

A persistent thread indicates it sinks into a loop and will never

be torn down. As shown in Fig 4, we configure a small fraction

of persistent threads in an SM named Dispatcher and enable

them to fetch and assign tasks. This is possible because a

kernel in GPU can not only be started by in-CPU workers,

which will then be scheduled by the default GPU scheduler,

but also by other threads in GPU. Thanks to the sustained

lifecycle of persistent threads, we are able to use dispatchers

as our scheduler to control underlying executors.

(a) Execution Table

(b) NF Assignment Table

Fig. 7: Data structures of the two tables in GPU

Fine-grained concurrent executors. Our intuition behind

increasing concurrency is the observation that NFs are typical

narrow tasks which usually occupies less than 16 warps in

an SM [23]. Allocating an entire SM to them significantly

compromises thread utilization. Therefore, inspired by [23],

[33], we adopt a novel intra-SM slicing mechanism to achieve

higher concurrency. As shown in Fig. 6, a Concurrent Executor
includes 128 threads, which is fine-grained enough compared

with an entire SM. State-of-the-art GPU contains at most 2048

threads in an SM, meaning that we could have 16 executors

that could run in parallel. The reason why we do not use

the most fine-grained execution units, i.e. Warps in [23],

as the executor is to avoid performance degradation due to

frequent dispatching. Suppose an NF needs 16 warps. If we

use 128 threads as an execution unit, the Dispatcher only needs

to dispatch 4 times, instead of 16. Dispatching is expensive

since it has to guarantee atomic write. Moreover, as reported

in [3]–[5], [12], an NF often adopts a large set of threads in

an SM to achieve better system efficiency. Therefore, we pack

128 threads in an executor to provide high concurrency while

maintaining utilization.

Task scheduling workflow in an SM. Based on the

Dispatcher and Concurrent Executors, we present the task

scheduling workflow inside an SM. As shown in gray blocks

in Fig. 6, inside an SM we present the Dispatcher that runs

as multiple persistent threads to fetch tasks and assign them

to executors. We design an Execution Table which records

necessary parameters for executing a task and the status of

the current task. As shown in Fig. 7(a), the STATUS field

records the status of a current task. STATUS = 0 indicates

that the task has finished, while STATUS = 1 shows

that the task with the ID NF ID is being executed on

packets P IN PKTS and will generate the output packets at

P OUT RETS. Each thread in the Dispatcher assigns a task to

an executor by configuring its corresponding entry in this table.

The Dispatcher keeps visiting the STATUS field in the entry

and safely assigns a new task by configuring NF parameters

in the entry if STATUS turns into 0. Finally, assigned tasks

are executed on Concurrent Executors.

An intuitive approach for executors to receive tasks is letting

them contend over all assigned tasks recorded in the Execution

Table. In this way, the task fetched by a dispatcher can be

finally executed on any executor. However, this full-mapping
scheme could seriously degrade performance, as distributed

task polling requires expensive synchronization and locking

mechanisms. In contrast, as shown in Fig. 6, we maintain a 1:1
mapping between the Execution Table entry and the Executor.

Thus, a thread in Dispatcher can only assign a task to its

corresponding Executor to avoid contention. After finishing a
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task, the executor informs its Execution Table entry. Then it

keeps querying the STATUS field of the entry until it turns into

1, which indicates that a new task is assigned. The executor

then polls the task and performs execution.

C. Safe NF Task Assignment: NF Assignment Table

Before scheduling a task inside an SM, a thread in the

Dispatcher has to fetch a task from workers in CPU. The

number of workers is equal to the number of NFs, which

might be large, while the number of threads in the Dispatcher

is equal to the number of Executors, which is rather limited.

A straightforward design is for workers to contend over the

limited Dispatcher threads to assign tasks. However, such

contention needs synchronization and may be expensive. To

address the above challenges, Grus introduces NF Assignment
Table, a data structure that works as the task queue, to enable

safe task assignment. Fig. 7(b) depicts the table structures.

When a worker attempts to launch an NF kernel with m
executors, it first inserts an entry with WORKER ID (its

id), NB EXES (m executors), NF ID (which NF to execute),

NB PKTS (how many packets), P IN PKTS (the pointer to

packets), and P OUT RETS (the pointer to output results).

Then, it copies this entry to overwrite the corresponding slot

in this table. As shown in Fig. 6, threads in the dispatcher

fetch tasks from the NF Assignment Table and schedule them.

V. SCHEDULING LAYER DESIGN

In this section, we describe how Grus makes scheduling

decisions in the scheduling layer to achieve latency SLOs

for co-located NFs. We first build prediction models for

processing time on different components. Next, we propose

a heuristic scheduling algorithm to produce fast schedules.

A. Latency Prediction Modeling

Packet batching. As introduced in §III, the time for forming

packet batches follows a near-linear relationship with batch

size. Thus, we use a linear function to model the relationship

between batch size and batching time. According to our

evaluation in Fig. 3(a), as traffic rate changes, the linear

function of batching time and batch size has different slope

af and intercept bf . Hence, our latency prediction model for

packet batching is modeled as Tbatching = af ·batch size+bf .

To obtain the value of af and bf , we generate a wide range

of traffic workloads, of which the rate is from 0.1 Gbps to 10

Gbps and increased by 0.1 Gbps. Under different traffic rate,

we measure the batching time under different batch sizes and

establish the latency model for packet batching.

Data transfer on PCI-E. Previous works [11], [12] have

demonstrated that the time of data transfer on PCI-E can

be modeled as a linear function with batch size. However,

according to our evaluation in Fig. 3(c), the parameters of the

linear model may vary significantly with data characteristics,

such as the data size. To build a more accurate prediction

model, we measure the latency under NF context in Grus.

According to the data required for processing, we classify

NFs into three categories including NFs that need (1) only
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Fig. 8: Profiling result examples of kernel execution time

header, (2) only payload, and (3) header and payload. For each

category, we train a different slope dclass and intercept eclass,

which is presented as Ttransfer = dclass ·batch size+eclass.

Kernel execution on GPU. Suppose an NF task in GPU

occupies one or more executors on a specific SM for execution.

We refer to existing research [11], [12] and use a linear

function to model the execution time of an NF kernel with

the number of executors for this NF. We adopt performance

profiling [8], [12] to get the parameters of this model. We

profile the kernel execution time when using different numbers

of executors for each NF. An example is shown in Fig. 8(a).

However, sometimes ensuring the throughput SLO of an

NF requires massive concurrency, which exceeds the number

of threads that one SM can provide. In this case, we have to

divide a large batch of packets into multiple smaller batches

(i.e. minibatches) and process them on different SMs. Mini-

batches make it more complex to predict the kernel execution

time since minibatches from different NFs may share one SM

and therefore may suffer from latency overhead. To understand

its effect, we profile the execution time of an NF kernel under

all possible sharing cases with other NFs. Fig. 8(b) shows that

the increased execution time due to SM can be easily profiled.

Therefore, we introduce penalty (denoted as βij) to indicate

the overhead incurred by SM sharing and model the kernel

execution time as Tkernel = (g · executors+ h) + βij . Note

that the execution time of an NF should be calculated as the

longest processing time among all minibatches.

B. Scheduling Decision

Problem description. Given a set of SLOs S = {1, 2, ..., N}
where each term is associated with target latency Li and

expected throughput Ti, we need to decide which SLOs can be

admitted on available resources. Moreover, we should generate

the batch size, data transfer order, and executors for each NF.

For each NF i ∈ S in SLOi, let bi denote the batch size used

for packet batching and data transfer, bim denotes the size of

the mth minibatch. We denote the time of packet batching

as t1i, the time of data transfer on PCI-E as t2i, the kernel

execution time as t3i, the time of waiting on PCI-E as t4i, and

pre-/post-processing time on CPU as tPP . For the scheduling

problem, there are two binary decision variables,

yni =

{
1, if NF i admitted with order n to transfer data

0, otherwise

xk
im=

{
1, if the mth minibatch of NF i assigned on SM k

0, otherwise
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Suppose SMs are numbered from 0 to K, each with E
executors. One executor can process c packets. We use a step

function U(x) as the utility function. U(x) = 1 if x > 0,

otherwise U(x) = 0. The objective is to maximize the number

of admitted latency SLOs with respect to resource constraints.

If required latency SLO is larger than our predicated latency,

the latency SLO is considered to be admitted. We formulate

the problem as:

max
∑
i∈S

U(Li − t1i − t2i − t3i − t4i − tPP ) (2)

s.t.
(1)

∑
m∈[1,Mi]

bim = bi
(2) 1 ≤ Mi ≤ bi

c
(3)

∑
m,k x

k
im =

∑
n y

n
i ·Mi

(4)
∑

i∈S yni ≤ 1,
∑

n∈S yni ≤ 1,
∑

k x
k
im ≤ 1,∑

m xk
im ≤ 1, ∀n, i ∈ S, k ∈ [0,K]

(5) bi
Li

≥ Ti

(6)
∑

i,m xk
im · bim ≤ E · c, ∀k ∈ [0,K]

where
t1i = af · bi + bf , t2i = dclass · bi + eclass
t3i = max{g · bim

c + h+ βij · I{xk
im>0} · I{xk

jt>0},
∀k ∈ [0,K] , j ∈ S, t ∈ [1,Mj ]}, ∀m ∈ [1,Mi]

t4i =
∑

p(j)<p(i) t2j , ∀j ∈ S
Constraint (1) shows the relationship between the size of

minibatches and required batch size. Constraints (2) ∼ (4)

represent the scheduling requirements where Mi denotes the

amount of minibatches of NF i. Constraint (5) satisfies the

throughput requirement. Constraint (6) ensures that allocated

executors of each SM does not exceed physical limit.

Scheduling decision should quickly identify SLOs that

cannot be supported and respond the operators. However, the

optimization objective is a piece-wise function, which makes

it hard to find a solution within limited time [34]. In response,

we propose an online heuristic algorithm for fast scheduling.

This algorithm exploits three major intuitions:

1) Minimal batch size. From Constraint (5), we can calculate

a minimal batch size to satisfy the throughput SLOs.

Minimizing batch size also helps reduce latency.

2) Shortest headroom first. Headroom [11] is the maximal

waiting time that can be added to an NF without latency

SLO violation. We first allocate transfer order and GPU

executor for those SLOs with the shortest headroom.

3) Penalty avoidance. We prefer assigning an NF to one SM

to avoid SM sharing penalty. If an NF is too large to be

supported by any single SM, we split the NF to multiple

SMs with the lowest penalty according to our modeling.

We show the online scheduling algorithm in Algorithm 1.

The notations are the same as before and the headroom is

denoted as Thdr. For each SLO, we first calculate an optimal

batch size (line 2) and calculate the headroom by subtracting

the time of packet batching and pre-/post-processing from the

latency SLO (line 3). Then, we consider SLOs in an increasing

order of headroom (line 5) and refer to the penalty avoidance
intuition when allocating executors for them (line 7). Finally

we subtracts execution time in GPU from headrooms and

decide the data transfer order of NFs (lines 8-21).

Algorithm 1: Scheduling algorithm

input : (L, T ), (ft1, ft2, ftPP , profiles) - SLO terms, prediction
models and profiling results.

output : (Saccepted, Sbatch, Sorder, SSM , Sexes) - Whether to
accept, batch size, order, assigned SMs and executors

1 foreach i ∈ SLOs do
2 Sbatch[i] = Ti ∗ Li; // An minimal batch size
3 Thdr[i] = Li − ft1(Ti, Sbatch[i])− ftPP (i);

4 // Shortest headroom first
5 foreach i ∈ Thdr, in increasing order of hdr value do
6 // Penalty avoidance
7 (SSM [i], Sexes[i], tkernel) ← selecting SMs and executors,

meanwhile getting the kernel execution time from profiles
8 Thdr[i] − = tkernel;
9 for order = i to 0 do

10 t2 = ft2(Sbatch[i]);

11 t2w ← ∑order−1
k=0 ft2(Sbatch[k]);

12 hdr = Thdr[i]− t2− t2w;
13 if hdr >= 0 and NoViolations(order, i, t2) then
14 accepted = true;
15 break;

16 if accepted == true then
17 Saccepted[i] ← true;
18 Sorder[i] ← order;
19 for j = order + 1 to i do
20 Sorder[j] + +;
21 Thdr[j] − = t2;

22 function NoViolations (start, end, t2 w)
23 for i = start to end do
24 hdr = Thdr[i]− t2 w;
25 if hdr < 0 then
26 return false

27 return true

VI. DISCUSSION OF Grus LIMITATIONS

In this section, we discuss two major limitations of Grus.

Grus does not handle PCI-E contention during data
transfer from GPU to CPU. After GPU processing, data are

copied from GPU to CPU over PCI-E for further processing

or transmission through the NIC. If multiple tasks finish

execution in GPU at roughly the same time, data transfer may

suffer from PCI-E contention and latency variation.

To handle this contention, an intuitive approach is to sched-

ule the transfer order of in-GPU tasks according to the time

when they finish execution (denoted as Tfinish). Theoretically,

Tfinish is the sum of (i) the start time of data transfer from

CPU to GPU, (ii) data transfer time from CPU to GPU,

and (iii) task execution time in GPU. Therefore, estimating

Tfinish suffers from accumulated estimation inaccuracy of

these three latency components. Using this inaccurate Tfinish

for scheduling may result in a bad scheduling plan that
brings even larger latency variation than the situation without
scheduling. For example, suppose the CPU schedules data

transfer of kernel A before kernel B, but kernel B still finishes

first. Kernel B will need to wait for kernel A to finish and

transfer data before it initiates data transfer, which introduces

larger latency variation. Therefore, current Grus design does

not handle PCI-E contention from GPU to CPU. We will

carefully handle this contention in future work.

Grus focuses on guaranteeing latency for single NFs. Grus
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Fig. 9: Average latency increase of the baseline firewall

focuses on providing latency SLOs for a single NF but, in its

present form, it will not enable latency SLOs for entire service

chains that may span multiple NFs. We consider Grus only as

a first step towards a fully fledged system for guaranteeing

SLOs for service chains. Conceptually, this may be solved

by incorporating the NF-to-NF packet forwarding time in our

latency model (Eqn. 1); we leave this as future work herein.

VII. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of Grus. The infrastruc-

ture layer uses DPDK for networking I/O and CUDA as the

programming toolkit for GPU. The scheduler is written in the

C language. We implement the scheduler on the same server

as the infrastructure. It is easy to migrate this scheduler to

other servers that can communicate with the infrastructure

server. We have implemented four NFs including IPv4Router,

Firewall, NIDS, and IPSec. Key logics of these NFs are five-

tuple hash value matching, trie-based pattern search, Aho-

Corasick search, and HMAC-SHA1 & AES-128, respectively.

Experimental setup. Currently we run Grus and NFs on one

server equipped with two Intel Xeon E5-2650 v4 CPUs (2.20

GHz, 12 physical cores), 128GB total memory (DDR4 2400

MHz 16GB x8), two dual-port 10G NICs (Intel X520-DA2),

and an NVIDIA TITAN Xp (30SMs, 3840 cores, 12GB G5X

memory). For test traffic, we implement a traffic generator on

a separate server, which sends and receives packets that follow

the flow size distribution of data center traffics [17]. The server

for the generator has the same configurations as the previous

one. Both servers run Ubuntu 14.04 (with kernel 3.16.0-30),

DPDK version 17.11, and CUDA version 8.0.

SLO generation. SLOs are defined in different styles across

different service providers, making it hard to decide univer-

sally recognized SLOs for evaluation. As mentioned in § I,

the key to an SLO is guaranteeing performance variation.

Therefore, similar to ResQ [8], we generate the target latency

of each SLO term as a tolerated increase (denoted by toler-
ance) of the baseline latency of a target NF in our evaluation.

i.e., target latency = baseline latency * (1 + tolerance). The

baseline latency is the latency of when an NF runs solely.

Evaluation goals. We evaluate Grus with the following goals:

(1) the effectiveness to stabilize the latency of multiple co-

located NFs (§VII-A); the accuracy of latency prediction mod-

els (§VII-B); and (3) the improvement of resource efficiency

and fast scheduling (§VII-C).

A. Effect on Reducing Latency Variation

We first evaluate that Grus can reduce latency variation of an

NF when other NFs co-locate in the same machine. We use the

same setup and traffic workloads as §II-A. We run the initial

firewall with order 0 running on two executors in SM#0. Fig. 9

shows the increase in average latency with different numbers

of co-located NFs. We observe that the latency variation is

significantly reduced in Grus. We observe that even if 9 other

NFs are running together with the initial firewall, its average

latency increase is below 10%. In comparison, when there is no

latency guarantee, introducing two additional NFs can increase

the latency of the initial firewall by 19%. This demonstrates

the effectiveness of Grus to guarantee latency.

Note that even though we try to reduce the latency variation

as thorough as possible, there still exists slight variation as

more NFs co-locate. This is because the reordering engine

is non-preemptive, which implies that even an NF with the
first order submits a data transfer task over PCI-E, it cannot

directly capture the PCI-E. Instead, it still has to wait for the

completion of previous tasks.

B. Latency Prediction Accuracy

Latency prediction accuracy is critical for generating ac-

curate scheduling decisions. We evaluate the accuracy of the

latency model for packet batching and data transfer, respec-

tively. Evaluation for kernel execution accuracy is presented

in Fig. 8. Furthermore, we evaluate the prediction accuracy of

overall end-to-end latency when multiple NFs co-locate.

Packet batching latency predication. We evaluate the

predication accuracy using three sets of real-world traces.

Traffic-A is the trace from CAIDA recorded in 2016 from an

ISP backbone link [35]. Traffic-B is sampled from a Facebook

open-source Hadoop cluster data [36]. Traffic-C is a private

trace collected from the gateway in a large enterprise data

center. We vary the batch size and predict the batching latency.

We input the three traces into Grus infrastructure to measure

real batching time as the baseline. As shown in Fig. 10(a), we

observe a reasonable average predication errors of 1.2%, 1.6%

and 1.3% in average for the three traces. The accuracy varies

modestly (e.g., from 0.2% to 4.7% for Traffic-A) due to flaws

in the data traces (e.g., badly-distributed samples).

Data transfer latency predication. As mentioned above,

Grus classifies NFs into three types according to the packet

fields they process (headers, payloads, and headers+payloads),

and build three predication models for them respectively.

Therefore, we evaluate the data transfer (two directions)

predication accuracy by using three representative NFs: Fire-

wall for header-only, NIDS for payload-only, and IPSec

for header+payload. We use Traffic-A as the input traffic.

Fig. 10(b) presents the average prediction error when con-

figuring different batch sizes for the three NFs. We observe

that our models are able to accurately predict the time of data

transfer across three NFs with a deviation of 2.2%, 3.5%, and

4.1% in average compared with the real transfer time.

End-to-end latency predication. Prediction accuracy for

end-to-end latency is critical to avoid SLO violations when

consolidating multiple SLO terms. To evaluate its accuracy,

we generate four sets of latency SLOs each with 10 terms.

For each term, we randomly select a target NF, and randomly
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Fig. 10: Average prediction error of packet batching, data transfer on PCI-E and end-to-end latency
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set target latency by setting tolerance from 5% to 15%. The

baseline latency is measured when these NFs run with batch

size 256 on Traffic-A. Fig. 10(c) shows the average prediction

errors in four SLOs sets. We observe that Grus suffers from

very low prediction error for end-to-end latency. For example,

in SLOs Set#1, only 20% SLO terms (i.e., two terms) have

10-20% deviation from the real end-to-end latency. Note that

although deviation exists, it does not imply that Grus cannot

provide guaranteed end-to-end latency. The Grus scheduler

adds these deviations to corresponding SLO terms.

C. Efficiency of Grus to Support Latency SLOs

Grus can support more SLOs than existing solutions. With

different latency targets (i.e., differentiated service levels), two

alternative strategies have the potential to enable latency SLOs:

(1) reordering kernel executions to satisfy the performance

requirement of QoS-required applications (i.e., solution from

Baymax [11]), and (2) spatially sharing a GPU and allocating

SMs to multiple NFs to achieve predictable performance (i.e.,

solution from G-NET [12]). To demonstrate the efficiency in

Grus as opposed to them, we implemented both strategies in

the system we used in §II-A. we randomly generate 9 sets

of SLOs, and mark them from number 2 to 10. We vary

the tolerance value of all SLOs. We measure the number of

maximal satisfied SLOs in each setting. Fig. 11 shows that

Grus can support more SLOs than both strategies. Even with

tolerance 30%, it is able to support 4.5× more SLOs than

Strategy (1) and >2× than Strategy (2). Note that for Strategy

(2),when the number of SLOs is larger than 7 in all settings,

all SLOs suffer violations due to the lack of scheduling for

multiple NFs (not shown in the figure).

The improved efficiency in Grus is by enabling slicing GPU

resources into fine-grained executors to improve concurrency

and resource utilization efficiency. To demonstrate this, we

randomly generate 9 sets of SLOs. We use a different number

of SLOs in each set, i.e., 8 terms for SLOs set 1-3, 9 terms for

SLOs set 4-6, 10 terms for SLOs set 7-9. Fig. 12 shows the

ratio of admitted SLOs. We denote the traditional no-slicing

solution as Grus-NS. In all SLOs sets, Grus-NS only admits

a small fraction of them, i.e. less than 50% in all cases. In

comparison, Grus admits over 90% of these terms. The reason

for such a gap is that Grus utilizes all available resources in

an SM and carefully places different NFs in one SM to avoid

SLO violations with improved resource utilization efficiency.
Grus can quickly generate scheduling plans. To perform

fast scheduling, we propose a heuristic algorithm for Grus
scheduling. Fig. 13 shows that the average computation time

of this algorithm is below 300 μs when handling 10 to 100

SLO terms (100 is large enough as the number of NFs that

can be supported in one server [1]), which demonstrates that

the Grus scheduler can perform fast SLO admission control.

VIII. RELATED WORK

Guaranteeing end-to-end latency. Many efforts focused on

providing latency guarantee, such as Internet QoS [37], per-

formance isolation in datacenter and cloud [10], [18], [38]–

[40]. They worked well in the context where applications share

network, CPU and storage resources. However, they cannot be

directly applied to the context GPU-accelerated NFV. A few

works [8], [19], [27] proposed solutions to enable performance

isolation for packet processing in NFV. But they become

ineffective when introducing GPUs into NFV. G-NET [12]

presented a model to achieve predictable latency for single

GPU-based NFs. However, it can not guarantee latency when

multiple NFs co-locate on the same server.
Predictable latency on GPUs. To reduce the response latency

of real-time or user-facing applications, the GPU community

has proposed abundant works to enable QoS support for these

applications. They enabled this by introducing preemption

primitives via new hardware design [41]–[44], software frame-

work [11], [20], [45], or scheduling [24], [46], [47]. However,

as illustrated in §II-A, these solutions are not suitable for NFs

due to a much finer granularity at latency target. Furthermore,

previous works did not jointly consider all latency components

including CPU, PCI-E, and GPU.
Predication of in-CPU processing time and data transfer
time. ResQ [8] and Dobrescu et al. [27] have proposed using
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predicted LLC allocation to predict latency of CPU-driven

NFs. However, our experiments show that the contention

in LLC has slight impact on GPU-accelerated NFs. Some

works [11], [20] used a linear model to predict the duration

of data transfer on PCI-E and kernel execution for general-

purpose applications. Grus also uses a linear model to predict

them; nevertheless, we specify these models in NFV context

to improve accuracy. G-NET [12] also provided performance

models for data transfer and kernel execution. However, it

could not predict latency when multiple NF kernels co-locate

in the same GPU and the latency for of packet batching.

IX. CONCLUSION

We have presented Grus, a GPU-accelerated NFV system

that enables latency SLOs for multiple co-located NFs. We

present the infrastructure design of Grus to support control-

lable concurrent executors for the NF kernel and reorder data

transfer over PCI-E . Moreover, Grus introduces a Latency
SLO-aware scheduler, which takes our latency prediction mod-

els and SLO terms as input to accurately and quickly maximize

the admitted SLOs. Our evaluations have demonstrated the

effectively and efficiently of Grus to support latency SLOs.
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