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Targeted Insertion of the mPing Transposable Element

Ashley E. Strother, Stephanie S. Diaz, Mary E. Baker, and C. Nathan Hancock

University of South Carolina Aiken, 471 University Parkway, Aiken SC 29801

Class II DNA Transposable Elements (TEs) are moved from one location to another in the genome by the action of transposase proteins
that bind to repeat sequences at the ends of the elements. Although the location TE insertion is mostly random, the addition of DNA
binding domains to the transposase proteins has allowed for targeted insertion of some elements. In this study, the Gal4 binding domain
was added to the transposase proteins, ORF1 and TPase, which mobilize the mPing element from rice. The Gal4:TPase construct was
capable of increasing the number of mPing insertions into the Gal2 and Gal4 promoter sequences in yeast. While this confirms that
mPing insertion preference can be manipulated, the target specificity is relatively low. Thus, the CRISPR/Cas9 system was tested for its
ability to generate targeted insertion of mPing. A dCas9:TPase fusion protein had a low transposition rate suggesting that the addition
of this large protein disrupts TPase function. Unfortunately, the use of a MS2 binding domain to localize the TPase to the MS2 hairpin
containing gRNA failed to produce targeted insertion. Thus, our results suggest that the addition of small DNA binding domain to the N
-terminal of TPase is the best strategy for targeted insertion of mPing.

Introduction

TEs were discovered in 1948 by Barbara McClintock while studying
maize genetics (McClintock 1948; McClintock 1950). Over the ensuing
decades, researchers have found that they are present in almost all
organisms (Craig 2002). TEs have been divided into superfamilies based
on the sequence homology of the encoded transposase proteins. The
transposase proteins contain a DDE catalytic domain that is responsible
for cutting the element out of the genome and inserting it elsewhere
(Yuan and Wessler 2011). The specificity of this reaction is controlled
by interaction with terminal inverted repeat sequences that define the
ends of the elements (Craig 2002). Another novel characteristic of
interest for each element is the insertion site preference. Although their
insertion pattern is somewhat random, different elements use different
strategies, either inserting near genes, in gene poor regions, or in site
specific locations (Craig 1997; Vigdal, Kaufman et al. 2002). In addition
to regional preferences for insertion, some elements will only insert into
specific local sequences [i.e. TA for Mariner elements (Plasterk, Izsvak
etal. 1999)].

TEs can disrupt genes and are useful tools for mutagenesis.
Traditionally, they have been used as a random gene discovery tools for
forward genetic screens. For example, the 7n5 transposon has been
implemented as a mutagenesis tool in bacteria and the Mutator element
has been used in maize (Goryshin, Jendrisak et al. 2000; Tan, Chen et al.
2011). When using a TE as a mutagenesis tool, the element is allowed to
transpose with the intent of disrupting gene sequences or expression.
Based on the resulting phenotypes, the disrupted gene’s function can be
extrapolated. However, the main drawback to using TEs for reverse
genetics is that not all mutations produce detectable phenotypic changes.
Thus, strategies to use transposable elements for forward genetics are
being developed. These strategies are based on fusing a DNA binding
domain to a transposase protein in order to induce targeted TE insertion
(Colloms and Renault 2013). Studies on the piggyback and Sleeping
Beauty TEs have shown that in some cases, the addition of a DNA
binding domain can facilitate insertion of the elements into target regions
(Demattei, Thomas et al. 2010). The first hurdle for this strategy is the
fact that addition of the DNA binding domain can inactivate the
transposase protein. For example, the transposition rate of the 7To/l2
element is significantly impacted by the addition of a binding domain to
its transposase (Ammar, Gogol-Doring et al. 2012). The second
challenge is to actually change the insertion preference. This is
presumably accomplished by the DNA binding domain bringing the
targeted DNA sequence into close proximity to the active site of the
transposition complex. In one study, researchers fused an adeno-
associated virus Rep protein DNA binding domain to the N-terminal of a
hyperactive Sleeping Beauty transposase and saw no increase in
insertions of the element into the target site (Ammar, Gogol-Doring et al.
2012). However, in a study by Maragathavally et al. (2006), a Gal4 DNA
binding domain fused with the MosI and piggyback transposase proteins

produced a 20 fold increase in targeted insertion into a plasmid encoded
Gal promoter (Maragathavally, Kaminski et al. 2006). Similarly,
researchers found that although the addition of the Gal4 binding domain
reduced Tol2 transposition to 10% of the wild-type, it allowed for a 4
fold increase in insertions near the target site (Ammar, Gogol-Doring et
al. 2012). Similarly, the fusion of the Gal4 binding domain to the
Sleeping Beauty transposase protein resulted in 80% transposition rate
and a 15 fold increase in insertions near the plasmid-based target site
(Ammar, Gogol-Doring et al. 2012). Other elements that have been
shown to produce targeted insertion include the /S30 element with the
addition of cl and Glil domains and the Mos/ element through the
addition of the Gal4 binding domain (Szabo, Muller et al. 2003;
Maragathavally, Kaminski et al. 2006; Demattei, Thomas et al. 2010).

The element used in this study, mPing, is a non-autonomous miniature
inverted repeat TE discovered in rice (Jiang, Bao et al. 2003; Kikuchi,
Terauchi et al. 2003; Nakazaki, Okumoto et al. 2003). The 430 bp
element is a member of the PIF/Harbinger superfamily (Zhang, Jiang et
al. 2004; Grzebelus, Lasota et al. 2007) and is highly active in some rice
lines (Naito, Cho et al. 2006; Naito, Zhang et al. 2009; Naito, Mondee et
al. 2014). The element requires both the ORF1 and TPase proteins from
either the autonomous Ping or Pong elements for mobilization (Yang,
Zhang et al. 2007; Hancock, Zhang et al. 2010). These two proteins have
separate functions with the ORF1 protein functioning as a DNA binding
domain while TPase contains the DDE catalytic domain that is
responsible for DNA cleavage during transposition (Sinzelle, Kapitonov
et al. 2008; Hancock, Zhang et al. 2010). mPing and its relatives have a
strict target site requirement of either TTA or TAA (Zhang, Jiang et al.
2004). This element also preferentially inserts into regions 2,500 bp
upstream or downstream of genes in plants (Hancock, Zhang et al.
2011). Our goal was to determine if addition of a DNA binding domain
to either the ORF1 or TPase proteins would result in targeted insertion of
the mPing element.

In addition to testing the well characterized Gal4 binding domain, we
also tested the CRISPR/Cas9 system which relies on a guide RNA
(gRNA) sequence to determine sequence specificity (Carroll 2012) for
its ability to direct mPing insertion. This system is very versatile because
the binding site is easily changed by altering the short gRNA sequence.
Importantly, a nuclease-null version of the Cas9 protein (dCas9) has
been used to target other fusion proteins to specific sequences in vivo
(Gilbert, Larson et al. 2013; Maeder, Linder et al. 2013; Mali, Aach et al.
2013; Perez-Pinera, Kocak et al. 2013). We hypothesized that fusing the
dCas9 protein to the mPing transposition complex might be able to
recruit gRNA-specified DNA sequences to the transposition complex,
promoting insertion into the targeted region. We tested this by directly
fusing dCas9 to the TPase protein and using an MS2 domain that bound
to an MS2 hairpin loop added to the gRNA (Konermann, Brigham et al.
2015).
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Methods

Yeast Genotypes

Saccharomyces cerevisiae strains used in this study were developed
previously (Gilbert, Bridges et al. 2015). The genotype of the CB101
strain is: MATa ade?A::hphMX4 his3A1 leu2A0 metl5SAQ ura3A0
Iys2A::ADE2*.

Constructs

The Pong TPase LA and ORFISCI (ORF1 Shuffle NLS) genes were
described previously (Hancock, Zhang et al. 2010; Payero, Outten et al.
2016) and were Gateway cloned into the pAG413 Gal, pAG415 Gal
[gifts from Susan Lindquist (Addgene plasmids # 14141 and # 14145)],
and pDEST32 (Invitrogen) vectors. To create the control plasmids, the
Gal4 DNA binding domain was cleaved out of the pDEST32 plasmids
using HindlIl and NofI and replaced with the following linker sequence

5> -GAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTACTGA
TTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTC
TTTACAGGATATAAAAGCATTGTTAACAGGATTATTT - 3°.

The hCas9 and hCas9 D10A plasmids [Addgene plasmids #41815 and
#41816 (Mali, Yang et al. 2013)] were PCR amplified using the
following primers, Cas9 Kpnl IF For and Cas9 Xbal IF Rev (Table 1).
The amplified producs was then cut using Kpnl-HF and Xbal enzymes
and In-Fusion (Takara) cloned into digested pDONR Pong TPase LA
plasmid. To make the dCas9 version, QuikChange site-directed
mutagenesis was performed on the hCas9 D10A plasmid with the
following primers: QC Cas9 H840A For and QC Cas9 H840A Rev
(Table 1). Gateway cloning was used to transfer Cas9 constructs into
PAG415 Gal-ccdb [a gift from Susan Lindquist (Addgene plasmid #
14145)].

Bridge fusion PCR (Mehta and Singh 1999) was used to join an MS2-
NLS domain, PCR amplified from a synthesized gBlock (IDT, sequence
available upon request) with the MS2-NLS attb For and MS2-NLS
TPase Rev primers, with a Pong TPase LA T2A ORF1SC1 ONE
construct amplified with the TPase MS2 For and Pong ORF1 Rev attb
primers (Table 1). Purified PCR product was Gateway cloned into the
pDONR vector before transferring to the pAG423 Gal-ccdb vector [a
gift from Susan Lindquist (Addgene plasmid # 14149)].

The CANI gRNA2.0 gene was synthesized by IDT (sequence available
upon request) and amplified using SNR52 Promoter C For primer and
sgRNA Flank R primer (Table 1). The amplicon was ligated into the
Clal and BsrGI sites of p426-SNR52p-gRNA.CAN1.Y-SUP4t [Addgene
plasmid #43803 (DiCarlo, Norville et al. 2013)].

Transposition Assay

The transposition rate was determined using the previously developed
yeast transposition assay (Gilbert, Bridges et al. 2015; Payero, Outten et
al. 2016). Briefly, constructs were transformed into yeast using the
LiAc/single stranded carrier DNA/PEG method (Schiestl and Gietz
1989). Cultures were grown for one day at 30°C in liquid media and then
100 pl was plated onto selective galactose media (CSM-His-Leu-Ura-
Ade) and incubated for 10 days at 30°C. A 10™* dilution of the culture
was plated onto YPD media to determine the titer. The transposition rate
was calculated as the number of ADE2 revertant cells per million cells
plated. For each experiment, the average and standard error of 6
replicates were calculated. Selected colonies were treated with
zymolyase (Zymo Research) and screened for mPing excision with
ADE2-CF and ADE2-CR primers (Table 1).

Detecting mPing Insertions

CB101 ADE?2 revertant colonies were treated with zymolyase (Zymo
Research) and screened with the Gal2P For, pAG Gal For, or Gall0P
For primers in conjunction with the mPing 41 Rev and mPing 403 For
primers (Table 1). ADE?2 revertant yeast colonies were cultured several
times in CSM-Ade media and then individual colonies were screened for
loss of the ORF1 and TPase plasmids on CSM-His and CSM-Leu. They
were then treated with zymolyase (Zymo Research) and screened for
mPing by PCR with mPing TTA For and Rev primers (Table 1). The

Table 1. Primers used in this study.

Name Sequence (5'- 3")

ADE2-CF GGGTTTTCCATTCGTCTTAAGTCGA
GGAC

ADE2-CR CATTTCCACACCAAATATACCACAA
CCGGGA

mPing TTA For Short CATGATTGTGAGGTCTGTTAGGCCA
GTCACAATGGCTAGTGTC

mPing TTA Rev Short GTAAGAAAACACTAAACCGTTAAG
GCCAGTCACAATGGGGGTTTC

pAG Galp Flank For GCCTACATACCTCGCTCTGC

PAG Galp Flank Rev ATCAAAAATCATCGCTTCGC

Gal2p Flank For CGACAAGATGCCAAGCTGTA

Gal2p Flank Rev CTCACCGGCTTTCAATTCAT

Gall0p Flank For ACCCAAGTTCCACTCACGAC

mPing 403 For CGTGCAATGACACTAGCCAT

mPing 41 Rev TGCATGACACACCAGTGAAA

Cas9 Kpnl IF For CGTGGTACCATGGACAA-
GAAGTACTCCATTGGG

Cas9 Xbal IF Rev CGTTCTAGACACCTTCCTCTTCTTCT
TGGG

QC Cas9 H840A For CTCCGACTACGACGTGGATGCCATC
GTGCCCCAGTCTTT

QC Cas9 H840A Rev AAAGACTGGGGCACGATGGCATCCA
CGTCGTAGTCGGAG

MS2-NLS attb For GGGGACAAGTTTGTACAAAAAAGCA

GATGGCTTCAAACTTTACTCAGTTCG

TG

MS2-NLS TPase Rev GCTAAACTCTGCATGGATCCAGCGG
CCGCC

TPase MS2 For GCGGCCGCTGGATCCATGCAGAGTT
TAGCCATCTCTCTA

Pong ORF1 Rev attb GGGGACCACTTTGTACAAGAAAGCT
GGGTCTTAGTCAGCAAATAACTTTTC
CTCCA

TCACACCCTACAATGTTCTGTTCA

SNR52 Promoter C For

sgRNA Flank R ACTTCAGGTTGTCTAACTCCTTCC

mPing positive colonies were screened for genomic Gal2 promoter
insertion using Gal2P Flank For and mPing 41 Rev and mPing 403 For
primers. The PCR products from positive clones were sequenced after
cloning into pJetl.2 (Thermo Scientific).

Results and Discussion

Small domains fused to Transposase maintains transposition activity

Our first goal was to determine how the addition of DNA binding
domains affected ORF1 (ORF1SC1) or TPase function. We first made N
-terminal Gal4 DNA Binding Domain (DBD) fusion protein constructs
and the appropriate control plasmids lacking the Gal4 DBD (pDES32A
Gal). Figure 1A shows the results of transposition assays using a plasmid
version of the mPing:ade2 reporter. The result indicate that the addition
of the 148 amino acid Gal4 DBD to Pong TPase (pDEST32) did not
decrease the mPing transposition rate significantly compared to the
control (pDEST32A Gal). However, when the Gal4 DBD was added to
ORF1SC1 version of ORF1 (pDEST32), the mPing transposition rate
was drastically reduced. This suggests that the addition of the DBD is
interfering with the folding or activity of the ORF1 protein. The fact that
transposition rates for the controls are different (phDEST32A ORFISCI
was lower than pDEST32A Pong TPase LA) is likely a result of the fact
that different promoters were used to drive expression of the ORFSC1
and TPase proteins in the different experiments (ADH1 promoter in
pDEST32 and Gal2 promoter in pAG413).
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Figure 1. Transposition rates of Pong fusion proteins. Histograms
illustrating the average transposition rate and standard error of six
replicates. Experiments include comparison of (A) control
(pDEST32A Gal) to Gal4 DBD fusions (pDEST32), (B) control
(Pong TPase LA) to a dCas9:TPase fusion (dCas9:Pong TPase
LA), and (C) control (Pong TPase LA) to a MS2 NLS:TPase
fusion (MS2 NLS Pong TPase LA).

Similarly, we tested if direct fusion of the 1381 amino acid dCas9
protein to the N-terminal of TPase would affect transposition rates.
Figure 1B shows that the dCas9 TPase fusion protein produced very low
transposition compared with the control. This indicates that the addition
of larger protein fusions may disrupt the folding of the TPase protein or
its ability to form functional transposition complexes with ORF1 and the
mPing element. In comparison, addition of the 160 amino acid MS NLS
domain (Johansson, Liljas et al. 1997) to TPase had no significant effect
on transposition rates (Figure 1C).

mPing insertion can be directed to Gal promoter sequences

To determine if addition of the Gal4 DBD altered the insertion site
preference, we analyzed 96 ADE2 revertant colonies from the
transposition assays with and without the Gal4 DBD. Each colony
results from a single transposition event, thus, each colony represents a
single insertion site. We determined the number of mPing insertions that
occurred in the Gal2 promoter (encoded on both the plasmid and
genome) and the Gall0 promoter (genome only) region which contain
four and three of the Gal4 DBD recognition sequences [CGG-N;;-CCG
(Traven, Jelicic et al. 2006)] respectively. PCR using a primer flanking
the promoter regions and two primers directed out of each end of mPing
showed that the control Pong TPase produced 5/96 mPing insertions in
the plasmid copies of the Gal2 promoter and no insertions in the
genomic Gal2 or Gall0 promoter regions (Figure 2). In contrast, the
addition of the Gal4 DBD to Pong TPase increased the plasmid Gal2
promoter insertions to 11/96, the genomic Gal2 promoter insertions to
3/96, and the Gall0 promoter insertions to 1/96 (Figure 2). Thus, from
this survey of a small number of possible target sites we observed an
approximately 5 fold increase in Gal promoter insertions. In addition,
analysis of the ADE?2 revertant colonies resulting from the Gal4 DBD
ORF1SC1 protein resulted in 30/96 insertions into the plasmid copy of
the Gal2 gene, 1/96 insertions into the genomic Gal2 promoter region,
and no insertions into the Gall0 promoter region. Thus, despite that fact
that this construct produces low number of transposition events, they
appear to have a very high rate of targeted insertion.

Together these results indicate that mPing preferentially inserts into
plasmid DNA under the conditions used for these experiments. While
the modified ORF1SCI1 construct produced a much higher rate of
targeted insertion of mPing into Gal4 recognition sequences, the
modified Pong TPase LA construct retained a much higher transposition
rate and still increased the number of insertions into the Gal4 recognition
sequences when compared with the control. Thus, we decided to focus
our efforts on the TPase fusion protein because of its higher
transposition efficiency.

We next sequenced some of the mPing insertions into Gal promoters to
determine how close they are to the Gal4 target sequences. Cloning and
sequencing six selected insertion events from pDEST32 Pong TPase
yeast showed that these insertions were all within 177 bp of a Gal4
recognition sequence. The average insertion distance was 63 bp away
and one insertion was in a Gal4 recognition site (Figure 3). The fact that
the insertions are not in a single location is consistent with the Gal4
DBD recruiting the target site to the transposition complex, but then
allowing insertion into a nearby site.

Cas9 DNA binding is not sufficient to direct mPing insertion

Analysis of the ADE?2 revertant colonies resulting from the dCas9-TPase
fusion proteins together with a CAN1 specific gRNA (DiCarlo, Norville
et al. 2013) showed that there was no increase in canavanine resistant
colonies resulting from mPing insertion compared to controls (data not
shown). This result indicated that targeted insertion of mPing into the
CANI gene was not occurring. We then tested the MS2-TPase fusion
together with a gRNA with two MS2 hairpin-binding sites (gRNA 2.0)
(Konermann, Brigham et al. 2015) and dCas9. Once again, this
combination of proteins did not increase canavanine resistant colonies
above background levels. This is despite the fact that we confirmed that
the gRNA2.0 was capable of directing a control Cas9 to the target
successfully (Figure 4a) and the MS2-TPase fusion was capable of
mobilizing mPing (Figure 4b). Together these results suggests that the
excessive number of components in the CRISPR/Cas9 complex
decreases the overall probability of successfully capturing the single
target genomic sequence. Our results showing that Cas9 is not a viable
option for targeted insertion is strikingly similar to what was recently
reported for targeted insertion of the LI retrotransposon (Ade, Derbes et
al. 2018).

Conclusions

These results show the feasibility of targeted insertion of the mPing
element. This is made possible by the addition of a relatively small DNA
binding protein to the N-terminal of the Pong TPase protein. While we
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Figure 2. Electrophoresis gels of PCR from 96 (8 pools of 12) ADE? revertant colonies obtained from control (pDEST32A Gal) and Gal4 DBD
fusions (pDEST32). Amplifications were performed with primers facing out from the mPing element and a primer adjacent to Gal promoter
regions: (A) pAG For, (B) pAG Rev, (C) Gal 2P For, and (D) Gal 10P For. Each band represents a unique insertion into the target region. L=
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Figure 3 - Sequence of selected mPing insertion sites. DNA maps indicating the location of six mPing insertion events induced by pDEST32
Pong TPase into the Gall0 and Gal2 promoters. The mPing insertions are shown in red and the Gal4 binding sites are indicated in dark blue.

The Gal2 and Gall0 genes are shown in green.

were only able to successfully use the Gal4 DBD, it is also feasible that
other small DNA binding proteins could produce targeted transposition.
The finding that localizing the TPase protein to the dCas9 or gRNA
components did not induce targeted insertion is disappointing. However,
there may be other versatile DNA binding domains that will be more
applicable in the future.
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