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Item response theory (IRT) plays an important role in psychological and educational measurement.
Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate
measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in
practice, especially when the number of items is large. Results in the literature and simulation studies in this
paper reveal that misspecifying the local independence assumption may result in inaccurate measurements
and differential item functioning. To provide more robust measurements, we propose an integrated approach
by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown
local dependence. The new model contains a confirmatory latent variable component, which measures the
targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal
algorithm is proposed for the parameter estimation and structure learning of the local dependence. This
approach can substantially improve the measurement, given no prior information on the local dependence
structure. The model can be applied to measure both a unidimensional latent trait and multidimensional
latent traits.
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1. Introduction

Item response theory (IRT; Rasch, 1960; Lord & Novick, 1968) models play an important

role in measurement theory. Unlike classical testing theory, IRT models integrate item level

information for measurement and are regarded as being a superior measurement tool to classical

test theory (Embretson & Reise, 2000). They have become the preferred method for developing

scales, especially when high-stake decisions are involved. In particular, IRT models are used

in National Assessment of Education Progress (NAEP), Scholastic Aptitude Test (SAT), and

Graduate Record Examination (GRE). Popular IRT models include the single factor models, such

as the Rasch model (Rasch, 1960), the two-parameter logistic model, and the three-parameter

logistic model (Birnbaum, 1968), and multiple factor models, such as the multidimensional two-

parameter logistic (M2PL) model (McKinley & Reckase, 1982; Reckase, 2009).
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We use the multidimensional two-parameter logistic model as a building block. Consider

an individual responding to J test items and the responses are recorded by a vector X =

(X1, . . . , X J )�. To simplify the presentation, we only consider binary items, i.e., X j ∈ {0, 1},

but emphasize that the proposed approach is flexible enough to be generalized to analyzing poly-

tomous items (Chen, 2016). Associated with each response vector is an unobserved continuous

latent vector θ ∈ R
K , representing the latent characteristics that are measured, where K is the

number of latent traits. The model becomes a unidimensional model when K = 1. The conditional

distribution of each response given the latent vector follows a logistic model

f j (θ) � P(X j = 1|θ) =
e
a�

j θ+b j

1 + e
a�

j θ+b j

,

where f j (θ) is known as the item response function and a j = (a j1, . . . , a j K )� are known as the

factor loading parameters. When used in a confirmatory manner, the model imposes constraints

on the factor loading parameters, that is, parameter a jk is set to be 0, if item j is not designed

to measure the kth latent trait. Such design information is characterized by a J × K item–trait

relationship matrix, which we refer to as the �-matrix, � = (λ jk)J×K = (1{a jk �=0})J×K . The

�-matrix is usually provided by the item designers and is often assumed to be known. When

information about the �-matrix is vague, data-driven approaches for learning the �-matrix are

proposed (Liu et al., 2012, 2013; Chen et al., 2015a; Sun et al., 2016; Chen et al., 2015b; Liu,

2017).

One common assumption of standard IRT models, including the M2PL model, is the so-

called local independence assumption, i.e., X1, X2, . . . , X J are conditionally independent, given

the value of θ . That is

P(X1 = x1, . . . , X J = xJ |θ) = P(X1 = x1|θ)P(X2 = x2|θ) . . . P(X J = xJ |θ), (1.1)

for each x = (x1, . . . , xJ )� ∈ {0, 1}J . The local independence assumption implies that, although

the items may be highly intercorrelated in the test as a whole, it is only caused by items sharing the

common latent traits measured by the test. When the trait levels are controlled, local independence

implies that no relationship remains between the items (Embretson & Reise, 2000).

In recent years, computer-based and mobile-app-based instruments are becoming prevalent

in educational and psychological studies, where a large number of responses with complex depen-

dence structure are observed. For these tests, a small number of latent traits may not adequately

capture the dependence structure among the responses. It is known that there are many possible

causes for local dependence, including order effect where responses to early items affect the

responses to subsequent items, and shared content effect where additional dependence is caused

by a common stimuli from shared content (Hoskens & De Boeck, 1997; Knowles & Condon,

2000; Schwarz, 1999; Yen, 1993). Generally speaking, the item response process could be com-

plicated, and affected by many external and internal factors. Consequently, a low-dimensional

latent factor model may not be adequate to capture all the dependence structure within a test,

which may explain the frequently observed phenomenon of model lack of fit in empirical studies

(Reise et al., 2011; Yen, 1984, 1993; Ferrara et al., 1999).

In this paper, we propose a Fused and Latent Graphical IRT (FLaG-IRT) model to incorporate

local dependence as well as to include the test design information in the �-matrix as a priori.

The model extends the fused and latent graphical (FLaG) model proposed in Chen et al. (2016)

by incorporating the loading structure information. The proposed model adds a sparse graphical

component upon a multidimensional item response theory (MIRT) model to capture the local
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dependence. The idea is that for a well-designed test, the common dependence among responses

has been well explained by the latent traits and the remaining dependence can be characterized by

a sparse graphical structure. Moreover, a statistical learning approach is proposed for data-driven

learning of the unknown local dependence structure.1

In psychometrics, there is existing literature on modeling the local dependence structure,

including the bi-factor and testlet models (Gibbons & Hedeker, 1992; Gibbons et al., 2007; Reise

et al., 2007; Bradlow et al., 1999; Wainer et al., 2000; Wang & Wilson, 2005; Li et al., 2006;

Cai et al., 2011), copula-based approaches (Braeken et al., 2007; Braeken, 2011), and models

with fixed interaction parameters (Hoskens & De Boeck, 1997; Ip, 2002, 2010; Ip et al., 2004).

Most of these approaches require prior information on the local dependence structure, such as

knowing the item clusters and assuming the local independence between items clusters, while

the proposed approach handles unknown local dependence structure. The proposed FLaG-IRT

model is also closely connected to three lines of research in psychometrics: (1) psychometric

network models and their applications (van der Maas et al., 2006; Cramer et al., 2010, 2012;

van Borkulo et al., 2014; Boschloo et al., 2015; Fried et al., 2015; Rhemtulla et al., 2016), (2)

log-multiplicative association model (Holland, 1990; Anderson and Vermunt, 2000; Anderson &

Yu, 2007; Marsman et al., 2015; Epskamp et al., 2016; Kruis & Maris, 2016), and (3) the use of

graphical models for structural violations of local independence (Epskamp et al., 2017; Pan et al.,

2017).

The contribution of this paper is of twofolds. First, it provides a rich class of locally dependent

IRT models that can capture complex local dependence patterns. Second, a statistically solid and

computationally efficient procedure is developed for learning the local dependence structure from

data, for which no prior information is needed on the way the items are locally dependent on each

other. Consequently, the proposed approach substantially generalizes the traditional methods

which may not be flexible enough to capture various types of local dependence patterns and

require prior knowledge (e.g., the specification of item clusters in using the bi-factor model).

The rest of the paper is organized as follows. In Sect. 2, the FLaG-IRT model is introduced

and a review of related works is provided. In Sect. 3, the statistical analysis based on the model,

including parameter estimation and model selection, is presented. Results of simulation studies

are reported in Sect. 4. Section 5 contains an application to a real data example.

2. FLaG-IRT Model

2.1. Two Basic Models

We first describe the fused and latent graphical IRT model, which is built upon the multidi-

mensional 2-parameter logistic (M2PL) model and the Ising model (Ising, 1925). To begin with,

we describe these two building-block models.

MIRT model The M2PL model is one of the most popular multidimensional IRT models for

binary responses. The item response function of the M2PL model is given by

P(X j = 1|θ) =
e
a�

j θ+b j

1 + e
a�

j θ+b j

.

The item–trait relationship is incorporated by constraints specified by a pre-specified matrix

� = (λ jk)J×K , λ jk ∈ {0, 1}, where λ jk = 0 means that item j is not associated with latent trait

1An R package and example code for the proposed approach can be downloaded from http://www.scientifichpc.com/
flagirt.html.

http://www.scientifichpc.com/flagirt.html
http://www.scientifichpc.com/flagirt.html
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k and the corresponding loading a jk is constrained to be 0. The item response function can be

further written as

P(X j = x j |θ) =
e
(a�

j θ+b j )x j

1 + e
a�

j θ+b j

∝ exp{(a�
j θ + b j )x j }.

The notation “∝" above is used to define probability density or mass functions when the left-hand

side and the right-hand side are different by a normalizing constant that depends only on the

parameters and is free of the value of the random variable/vector.

Under the M2PL model, the joint distribution of the responses X = (X1, . . . , X J )� given θ

can be further written as, due to the local independence assumption,

P(X = x|θ) =

J∏

j=1

P(X j = x j |θ) ∝ exp{θ� A�x + b�x}, (2.1)

where A = (a jk)J×K is known as the factor loading matrix and b = (b1, . . . , bJ )�. In particular,

when K = 1, the model is known as the two-parameter logistic model (2PL; Birnbaum, 1968).

Ising model We now present the Ising model that is used to characterize the local dependence

structure on top of the M2PL model. The Ising model is an undirected graphical model (e.g., Koller

& Friedman, 2009). It encodes the conditional independence relationships among X j ’s through

the topological structure of a graph that can greatly facilitate the interpretation and understanding

of the dependence structure. This model is originated in statistical physics (Ising, 1925).

Specification of the Ising model consists of an undirected graph G = (V, E), where V and

E are the sets of vertices and edges respectively. The vertex set V = {1, 2, . . . , J } corresponds to

the random variables, X1, . . . , X J . The graph is said to be undirected in the sense that (i, j) ∈ E ,

if and only if ( j, i) ∈ E . The Ising model associated with an undirected graph G = (V, E) is

specified as

P(X = x) ∝ exp

{
1

2
x�Sx

}
, (2.2)

where S = (si j )J×J is a symmetric matrix such that si j �= 0 if and only if (i, j) ∈ E .

The conditional independence relationship in the Ising model is encoded by the topological

structure of the graph. More precisely, let A, B and C be nonoverlapping subsets of V and

A ∪ B ∪ C = V . We further let XA, XB , and XC be the random vectors associated with the sets

A, B, and C , respectively, i.e., XA = (X i : i ∈ A) and so on. We say A and B are separated by

C , if every path from a vertex in A to a vertex in B includes at least one vertex in C , as illustrated

by an example in Fig. 1. In Fig. 1, A = {1, 2}, B = {4, 5}, and C = {3}, and all paths from A

to B pass through C . For example, the path (1 → 3 → 4) that connects vertices 1 and 4 passes

through vertex 3. In particular, (i, j) /∈ E implies X i and X j are independent given others. When

C is an empty set, the separation between A and B implies their independence.

The Ising model can be understood based on the conditional distribution of one variable given

all the others. Specifically, we denote X− j = (X1, . . . , X j−1, X j+1, . . . , X J ). Then (2.2) implies

that

P(X j = 1|X− j = x− j ) =
exp

(
1
2

s j j +
∑

i �= j si j xi

)

1 + exp
(

1
2

s j j +
∑

i �= j si j xi

) , (2.3)
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Figure 1.
The set C separates A from B. All paths from A to B pass through C .

which takes a logistic regression form. The model parameters can be interpreted based on (2.3).

Specifically, s j j/2 is the log odds of X j = 1 given X− j = (0, . . . , 0) and si j is the log odds ratio

of X j = 1 associated with X i given all the other variables. In particular, based on (2.3), X i does

not affect the conditional distribution (2.3) when si j = 0 (i.e., (i, j) /∈ E). This relationship is

symmetric, in the sense that si j = 0 also implies that X j does affect the conditional distribution

P(X i = 1|X−i ), since S is a symmetric matrix.

2.2. FLaG-IRT Model

The FLaG-IRT model combines the M2PL model (2.1) and the Ising model (2.2) to construct

a joint item response function. More precisely, the conditional distribution is assumed to take the

form

P(X = x|θ , A, S) ∝ exp

{
θ

� A�x +
1

2
x�Sx

}
. (2.4)

This conditional model is an Ising model with parameter matrix S(θ), where si j (θ) = si j for

i �= j and s j j (θ) = a�
j θ + s j j . In addition, the graph of model (2.4) is the same as that encoded

by S, that is, E = {(i, j) : si j �= 0, i �= j}. Moreover, when the graph is degenerate, i.e., si j = 0,

for all i �= j ,

P(X = x|θ , A, S) ∝ exp

⎧
⎨
⎩θ

� A�x +

J∑

j=1

1

2
s j j x2

j

⎫
⎬
⎭ = exp

⎧
⎨
⎩θ

� A�x +

J∑

j=1

1

2
s j j x j

⎫
⎬
⎭ ,

which takes the same form as that of the M2PL model (2.1) if reparameterizing b j = s j j/2. Note∑
j s j j x2

j =
∑

j s j j x j since x j ∈ {0, 1}.

Similar to (2.3), model (2.4) can be understood through the conditional distribution of X j

given θ and X− j . More precisely,

P(X j = 1|θ , X− j = x− j ) =
exp

(
1
2

s j j +
∑K

k=1 a jkθk +
∑

i �= j si j xi

)

1 + exp
(

1
2

s j j +
∑K

k=1 a jkθk +
∑

i �= j si j xi

) ,

taking a logistic form. Consequently, the model parameters can be interpreted similarly based on

the log odds and log odds ratios as the ones in (2.3). In particular, a jk is the log odds ratio of X j

associated with one unit increase in θk . When si j = 0 for all i �= j ,
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P(X j = 1|θ, X− j = x− j ) =
exp

(
1
2

s j j +
∑K

k=1 a jkθk

)

1 + exp
(

1
2

s j j +
∑K

k=1 a jkθk

) ,

implying that X j and X− j are conditionally independent given θ and the item response function

takes the same form as in the M2PL model. Moreover, given θ , the distribution of X i s only

depends on its neighbors. For example, consider K = 1, J = 3, A = (1, 1, 1)�, and

S =

⎛
⎝

0 1 − 1

1 0 0

− 1 0 0

⎞
⎠ .

S-matrix encodes a graph with three nodes: node 1 is connected to both nodes 2 and 3; nodes 2

and 3 are not connected. In this example, the joint distribution of (X1, X2, X3) given θ1 becomes

P(X1 = x1, X2 = x2, X3 = x3|θ1)

=
exp(x1x2 − x1x3 + θ1x1 + θ1x2 + θ1x3)∑

x ′
1,x

′
2,x

′
3=0,1 exp(x ′

1x ′
2 − x ′

1x ′
3 + θ1x ′

1 + θ1x ′
2 + θ1x ′

3)
.

Simple calculation gives

P(X1 = 1|θ1, X2 = x2, X3 = x3) =
exp(θ1 + x2 − x3)

1 + exp(θ1 + x2 − x3)
,

P(X2 = 1|θ1, X1 = x1, X3 = x3) =
exp(θ1 + x1)

1 + exp(θ1 + x1)
,

P(X3 = 1|θ1, X1 = x1, X2 = x2) =
exp(θ1 − x1)

1 + exp(θ1 − x1)

which allow us to interpret the relationship among X1, X2, X3, and θ1 based on odds ratios. For

example, given X2 and X3, the log odds ratio of X1 associated with one unit increase in θ1 is 1. In

addition, given θ1 and X2, the log odds ratio of X1 associated with X3 is −1, implying a negative

association between X1 and X3 when the other variables are controlled.

To assist understanding, Fig. 2 provides graphical representations of the MIRT model and

the FLaG-IRT model. The left panel shows a graphical representation of the marginal distribution

of responses, where there is an edge between each pair of responses. Under the conditional

independence assumption (1.1) of the MIRT model, there exists a latent vector θ . If we include

θ in the graph, then there is no edge among X j s as in the middle panel. The concern is that this

conditional independence structure may be oversimplified and there is additional dependence not

attributable to the latent traits. The FLaG-IRT model (right panel) is a natural extension of the

MIRT model (middle panel), allowing edges among X j s even if θ is included. The additional

edges capture the dependence among X j s not explained by θ . Due to the presence of the latent

variables, it is likely that we only need a small number of additional edges to capture the local

dependence. Furthermore, the loading structure in � is reflected by the edges between θks and

the responses X j s in the middle and right panels.

We consider the following joint distribution of (X, θ),

f (x, θ |A, S, �) =
1

z0(A, S, �)
exp

{
−

1

2
θ

��−1
θ + θ

� A�x +
1

2
x�Sx

}
, (2.5)
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Figure 2.
Graphical illustration of the MIRT model and the FLaG-IRT model.
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where (A, S, �) are the model parameters and z0(A, S, �) is the normalizing constant,

z0(A, S, �) =
∑

x∈{0,1}J

∫
exp

{
−

1

2
θ

��−1
θ + θ

� A�x +
1

2
x�Sx

}
dθ .

Note that under this joint distribution, the joint item response function, i.e., the conditional dis-

tribution of X given θ , is consistent with (2.4). Under this joint distribution, a specific prior

distribution of θ is implicitly assumed, under which the posterior distribution of θ is Gaussian.

Moreover, the prior distribution of θ can be derived from (2.5), that is,

f (θ |A, S, �) =
∑

x∈{0,1}J

f (x, θ |A, S, �)

=

∑
x∈{0,1}J exp

{
− 1

2
θ

��−1
θ + θ

� A�x + 1
2

x�Sx
}

z0(A, S, �)
,

taking the form of a mixture of Gaussian distributions. This prior distribution of θ brings technical

convenience in the data analysis (see Eq. (2.8)). More precisely, under this model, θ given X = x

follows Gaussian distribution

N (� A�x, �), (2.6)

for which the posterior variance is � and the posterior mean is given by

E(θ |X = x) = � A�x, (2.7)

a weighted sum of the responses. Once A and � are estimated from the data, it is reasonable to

score each individual by �̂ Â�x.

In the specification (2.5), A, �, S, and the graph E induced by S (equivalently, the nonzero

pattern of matrix S) can be estimated from the data. Similar to the M2PL model, we pre-specify

a binary matrix � = (λ jk)J×K for the confirmatory structure and impose constraint that a jk = 0

if λ jk = 0. Since the latent vector θ is not directly observable, parameter estimation is based on

the marginal likelihood,

P(X = x|A, S, �) =

∫
f (x, θ |A, S, �)dθ ,

where f (x, θ |A, S, �) is given in (2.5). From a straightforward integration over θ , the marginal

distribution of X still follows an Ising model, that is

P(X = x|A, S, �) =

∫
f (x, θ |A, S, �)dθ ∝ exp

{1

2
x�(A� A� + S)x

}
. (2.8)

It is worth pointing out that this is a second-order generalized log-linear model (Holland, 1990;

Laird, 1991). In fact, Holland (1990) considers a special case of (2.8) for which the graph is

degenerate (i.e., S is a diagonal matrix). As shown in Corollary 1 of Holland (1990), this second-

order generalized log-linear model can be obtained under a joint distribution of X and θ , under

which X given θ follows an M2PL model and θ given X is multivariate Gaussian.



546 PSYCHOMETRIKA

2.3. Related Works and Discussions

In what follows, we first review related works and make connections to the proposed approach.

Then discussions are provided on extending the proposed FLaG-IRT model to more general

response types.

FLaG exploratory analysis The proposed model is similar to the FLaG model considered in

Chen et al. (2016) except that the loading structure � is pre-specified for the former. Both papers

consider item response analysis in the presence of local dependence. However, the scopes and the

goals of the two papers are different, which further lead to different analyses and computational

algorithms. Chen et al. (2016) focus on the recovery of the major latent factors underlying an

item pool under an exploratory item factor analysis setting, where the number of major latent

factors and their loading structures, as well as the local dependence structure, are unknown. Chen

et al. (2016) show that by adjusting for the local dependence using a graphical model component,

the number of major latent factors and their loading structure can be consistently recovered. On

the other hand, the current paper studies the use of the FLaG model as a measurement model,

under a setting similar to confirmatory item factor analysis but with an unknown local dependence

structure. As will be shown in the rest of the paper, the proposed approach automatically adjusts

for local dependence structure, substantially reducing the measurement bias induced by the local

dependence structure.

Bi-factor models The bi-factor model is one of the most popular models to incorporate depen-

dence. This model is a special case of the M2PL model, assuming that there is a unidimensional

general factor θg associated with all items and is the target of measurement. Besides the general

factor, there exist nuisance factors θ1, . . . , θM associated with M nonoverlapping item clusters

C1, C2, . . . , CM , where each item cluster has no less than two items and there may be items not

belonging to any of these item clusters. The bi-factor model based on a logistic link (e.g., Cai et

al., 2011) is a special M2PL model with

P(X = x|θ) ∝ exp{θ� A�x + b�x}, (2.9)

where θ = (θg, θ1, . . . , θM ), b = (b1, . . . , bJ )� and A = (ag, a1, . . . , aM ). In particular, the j th

element of ak is zero if item j is not in the kth item cluster, i.e., j /∈ Ck .

Such a bi-factor model structure can be captured by the proposed FLaG-IRT model. Specif-

ically, if we use the specific joint distribution of (X, θ) as in the FLaG-IRT model and further

assume � to be an identity matrix, i.e.,

f (x, θ) ∝ exp

{
−

1

2
θ

�
θ + θ

� A�x + b�x

}
,

then the marginal distribution of X becomes

P(X = x) ∝ exp

{
1

2
x�aga�

g x +
1

2
x�Sx

}
, (2.10)

where s j j = 2b j , and si j = s j i = 0 when items i and j do not belong to the same item cluster and

si j = s j i = aika jk when both items belong to the kth cluster, which admits the same form as the

marginal FLaG-IRT model in (2.8). In other words, the graphical model component of the FLaG-

IRT model can take the place of the specific factors in the bi-factor model. The corresponding
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graph encoded by the S matrix in (2.10) is sparse, when each item cluster has only a small number

of items. For example, if each item cluster has only two items, then the sparsity level of the graph,

defined as the ratio between the number of edges in the graph and the total number of item pairs,

is 1/(J − 1), which can be as small as 3% with J = 30 items. Figure 3 presents an example

of the a bi-factor model, the corresponding FLaG-IRT model, and the local dependence graph.

In other words, when the specific prior for θ is assumed, the bi-factor model becomes a special

case of the FLaG-IRT model with one latent trait and a sparse local dependence graph. One of

the advantages of the FLaG-IRT model is that there is no need to specify a priori item clusters

and they are learned from the data.

Psychometric network models The proposed method is also connected to, but different from,

network modeling of psychometric problems (van der Maas et al., 2006; Cramer et al., 2010, 2012;

van Borkulo et al., 2014; Boschloo et al., 2015; Fried et al., 2015; Rhemtulla et al., 2016), where

no latent variable is considered. In these models, psychometric item responses are conceived of

as proxies for variables that directly interact with each other, instead of being dominated by a few

latent factors. In particular, the Ising model is used as a psychometric network model when the

item responses are binary. The key difference between the proposed model and the psychometric

network models is that the proposed one maintains a latent variable component that can be used

for measurement. In addition, upon the existence of latent factors whose effects spread out to the

item responses, one typically needs a network model with a dense graph (e.g., the left panel of

Fig. 2) to fit the data well, resulting in lack of visualizability and interpretability.

Log-multiplicative association model The proposed FLaG-IRT model, according to the joint

distribution of (X, θ) in (2.5), is also closely related to the log-multiplicative association model.

That is, when the graphical component is degenerate, i.e., si j = 0, for all i �= j , the joint model

(2.5) of X and θ is a log-multiplicative association model, whose use as an IRT model has been

discussed in Holland (1990); Anderson and Vermunt (2000); Anderson and Yu (2007); Marsman

et al. (2015); Epskamp et al. (2016); Kruis and Maris (2016). Empirical evidences show that the

log-multiplicative association model and traditional IRT models perform similarly (e.g., Anderson

& Yu, 2007).

Graphical modeling in structural equation models Recent works on structural equation mod-

eling, including Epskamp et al. (2017) and Pan et al. (2017), consider a similar idea of capturing

local dependence structure by a sparse graphical model. In these works, the observed variables

are continuous and are assumed to follow a multivariate Gaussian model with latent variables.

Such a model assumes that given the latent variables, the observed variables, instead of being

conditionally independent, follow a sparse Gaussian graphical model (e.g., Koller & Friedman,

2009). Statistical procedures for learning the sparse graphical component are also developed in

Epskamp et al. (2017) and Pan et al. (2017). The developments in the current paper are indepen-

dent of and parallel to that of Epskamp et al. (2017) and Pan et al. (2017), under the context of

item response analysis where the observed variables are binary.

Extension to more general response types The proposed FLaG-IRT model can be extended to

analyzing responses of mixed types, under an exponential family model framework (Chen, 2016;

Lee & Hastie, 2015). Let X be the response vector, containing discrete variables or a combination

of both continuous and discrete variables. Then the joint distribution of X and θ can be specified

as

f (x, θ) ∝ exp

{
−

1

2
θ

��−1
θ + θ

� A�s(x) +
1

2
t(x)�St(x)

}
, (2.11)
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Figure 3.
Graphical representation of a bi-factor model, the corresponding FLaG-IRT model, and the local dependence graph.
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where s(x) = (s1(x1), . . . , sJ (xJ ))� and t(x) = (t1(x1), . . . , tJ (xJ ))� are transformations of

the original data, where s j (x j ) and t j (x j ) can be vectors. For example, if X j ∈ {0, 1, . . . , c j }

is a discrete variable, we can set s j (x j ) and/or t j (x j ) to be (1{x j =1}, . . . , 1{x j =c j }) and if X j is

continuous, we set s j (·) and t j (·) to be identity functions. The dimensions of matrices A and S

depend on the choices of s(·) and t(·). The S matrix may contain constraints, depending the data

types. Specifically, when all items are binary, model (2.11) becomes the same as (2.5). When all

item responses are ordinal, model (2.11) can be viewed as a combination of a multidimensional

partial credit model (Yao & Schwarz, 2006) and an undirected graphical model for categorical

variables. When all the responses are continuous, the model above becomes the same Gaussian

model considered in Epskamp et al. (2017). The statistical inference and computation procedures

described below can be adapted to this generalized FLaG-IRT model.

3. FLaG-IRT Analysis

3.1. Regularized Pseudo-likelihood Estimation

In this section, we discuss estimation and dimension reduction in the FLaG-IRT model. The

most natural approach would be the maximum marginal likelihood function of responses given

in (2.8). Unfortunately, the evaluation of (2.8) involves computing the normalizing constant,

z(A, S, �) =
∑

x∈{0,1}J

exp

{
1

2
x�(A� A� + S)x

}
,

which requires a summation over 2J all possible response patterns and thus is computationally

infeasible for even a relatively small J . To bypass this, we propose a pseudo-likelihood as a

surrogate (Besag, 1974), which is based on the conditional distribution of X j given the rest

X− j = (X1, . . . , X j−1, X j+1, . . . , X J ),

P(X j = 1|X− j = x− j , A, S, �) =
exp

{
1
2
(l j j + s j j ) +

∑
i �= j (li j + si j )xi

}

1 + exp
{

1
2
(l j j + s j j ) +

∑
i �= j (li j + si j )xi

} ,

where L = (li j )J×J = A� A�. Note that the above conditional distribution takes a logistic regres-

sion form. Following Besag (1974), we let L j (A, S, �; x) = P(X j = x j |X− j = x− j , A, S, �)

and define the pseudo-likelihood function

L(A, S, �) =

N∏

i=1

J∏

j=1

L j (A, S, �; xi ), (3.1)

where xi is the responses from individual i .

The above pseudo-likelihood function is related to, but different from the vertex-wise sparse

logistic regression approach for learning a sparse Ising graphical model (e.g., van Borkulo et al.,

2014). Under the sparse Ising graphical model, the conditional distribution of each variable X j

given the rest X− j follows a sparse logistic regression model. Consequently, the neighbors of each

vertex j can be learned by regressing X j on all the other variables X− j and selecting the variables

with nonzero regression coefficients (van Borkulo et al., 2014; Ravikumar et al., 2010; Barber
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& Drton, 2015). The entire graph is constructed by aggregating vertex-wise information. In the

FLaG-IRT model, learning the graphical component requires knowledge about the latent factor

component parameterized by A and �, which has to be learned from the entire data. Consequently,

the learning of the FLaG-IRT model cannot be decomposed into solving vertex-wise regression

problems separately. By aggregating the likelihood functions of vertex-wise logistic regressions,

the pseudo-likelihood function (3.1) contains information about S, A, and � simultaneously and

thus can be used for the model selection and parameter estimation.

To incorporate the knowledge of the test items, the factor loading matrix A is constrained

such that a jk = 0 when λ jk = 0, noting that the matrix � = (λ jk) is pre-specified. Therefore,

the unknown parameters in A are {a jk : λ jk = 1}. Since A and � appear in the pseudo-likelihood

function in the form of A� A�, additional constraints are needed to ensure their identifiability. This

is because, for example, scaling A by a constant ω can be offset by the corresponding scaling of �

by ω−2. To identify the scale of latent factors, we impose constraints �kk = 1, k = 1, . . . , K . To

avoid rotational indeterminacy, we assume that with appropriate column swapping, the � matrix

contains a K × K identity submatrix. It means that for each latent factor, there is at least one item

that only measures that factor.

When the graph for local dependence is known, we estimate A, S, and � using a maximum

pseudo-likelihood function

( Â, Ŝ, �̂) = arg min
A,S,�

{
−

1

N
log L(A, S, �)

}

s.t. a jk = 0 if λ jk = 0, j = 1, . . . , J, k = 1, . . . , K ,

S = S�, si j = 0 if (i, j) /∈ E,

and � is positive semidefinite, �kk = 1, k = 1, . . . , K ,

(3.2)

where E is the set of edges of the known graph.

When the graph for local dependence is unknown, which is typically the case in practice, we

impose an assumption that the graph is sparse, that is, the number of edges in E = {(i, j) : si j �= 0}

is relatively small. The rationale is that most of the dependence among responses has been captured

by the common latent traits, leaving the local dependence structure sparse. This assumption is

incorporated in the analysis through selecting a sparse graphical model component based on the

data. We would like to point out that even for a sparse local dependence structure (i.e., a local

dependence graph with a relatively small number of edges), if ignored in the measurement, can

result in measurement bias, as illustrated by simulated examples. In addition, the sparse local

dependence graph, once learned from the data, facilitates the understanding of the measurement

and may be used to improve the test design. For example, patterns (e.g., item clusters) identified

from the graph may help the test designers to review the items and improve the wording.

We propose to use the regularized pseudo-likelihood for simultaneous estimation and model

selection

( Âγ , Ŝγ , �̂γ ) = arg min
A,S,�

⎧
⎨
⎩−

1

N
log L(A, S, �) + γ

∑

i �= j

|si j |

⎫
⎬
⎭

s.t. a jk = 0 if λ jk = 0, j = 1, . . . , J, k = 1, . . . , K ,

S = S�, and � is positive semidefinite, σkk = 1, k = 1, . . . , K ,

(3.3)

where γ is a tuning parameter that controls the sparsity level of the estimated graph Êγ =

{(i, j) : ŝ
γ

i j �= 0, i �= j}. At one extreme, when γ is sufficiently large, the estimated graph
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becomes degenerate, i.e., no edge, and the responses are conditionally independent given the

latent variables that are measured. The graph becomes more and more dense as γ decreases.

The optimization problem (3.3) is nonconvex and nonsmooth, and thus is computationally

nontrivial. An efficient and stable algorithm is developed, which alternates between minimizing

A, S, and �. In particular, an proximal gradient-based method (Parikh & Boyd, 2014) is used

in updating S, which avoids the issues due to the nonsmoothness of the function that may occur

in standard gradient-based optimization approaches. Details of the algorithm are provided in

appendix in the online supplementary material.

3.2. Choice of Tuning Parameters

In the estimation, we construct a solution path of ( Âγ , Ŝγ , �̂γ ) for a sequence of γ values.

We then choose γ based on an extended Bayes information criterion (EBIC; Chen & Chen, 2008;

Foygel & Drton, 2010; Barber & Drton, 2015), which takes the form

EBICρ(M) = −2 log L(β̂(M)) + |M|(log N + 4ρ log(J )),

where M is the model under consideration, L(β̂(M)) is the maximal likelihood for model M,

|M| is the number of free parameters, and ρ ∈ [0, 1] is a parameter that indexes the criterion

and has a Bayesian interpretation (Chen & Chen, 2008). When ρ = 0, the criterion becomes the

classical Bayes information criterion (Schwarz, 1978). Positive ρ leads to stronger penalization

when the model space is large (i.e., when J is large). In this study, we replace the likelihood

function with the pseudo-likelihood function. Specifically, let

M
γ =

{
(A, S, �) : a jk = 0 if λ jk = 0, S = S�, si j=0 if ŝi j = 0,

and � is positive semidefinite, σkk = 1, k = 1, . . . , K }

be the model selected by tuning parameter γ , containing all models having the same support as

Ŝγ . We select the tuning parameter γ , such that the corresponding model minimizes the pseudo-

likelihood-based EBIC

EBICρ(Mγ ) = −2 max
(A,S,�)∈Mγ

{log L(A, S, �)} + |Mγ |(log N + 4ρ log(J )), (3.4)

where the number of parameters in Mγ is

|Mγ | =
∑

j,k

λ jk + J +
∑

i< j

1{ŝ
γ

i j �=0} +
(K − 1)K

2
.

Here,
∑

j,k λ jk counts the number of free parameters in the loading matrix A, J and
∑

i< j 1{ŝ
γ

i j �=0}

are the numbers of diagonal and off-diagonal parameters in Ŝγ , and K (K − 1)/2 is the number

of parameters in �.

The tuning parameter is finally selected by

γ̂ρ = arg min
γ

EBICρ(Mγ ). (3.5)
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In addition, the corresponding maximal pseudo-likelihood estimates of A, S, and � are used as

the final estimate of A, S, and �:

( Â, Ŝ, �̂)ρ = arg max

(A,S,�)∈Mγ̂ρ

{L(A, S, �)}. (3.6)

In the rest of the paper, following Barber and Drton (2015), ρ = 0, 0.25, and 0.5 are used.

3.3. Summary

We summarize the procedure of FLaG-IRT analysis, when the graph for local dependence is

unknown.

1. Select a sequence of γ values, denoted by �.

2. Obtain a sequence of models indexed by γ ∈ �, based on the regularized estimates

( Âγ , Ŝγ , �̂γ ) from (3.3).

3. Among the sequence of models above, select the best fitted model in terms of EBICρ

value, using (3.5).

4. Report ( Â, Ŝ, �̂)ρ from the selected model given by (3.6), as well as the local depen-

dence graph given by Êρ = {(i, j) : (ŝi j )ρ �= 0}.

The default values ρ are chosen as 0, 0.25, and 0.5, reflecting different prior beliefs on the size

of the model space. In practice, the sequence of γ values in step 1 is chosen in two stages. First,

coarse grid points (e.g., γ = 10−3, 10−2.5, 10−2, . . .) are used to anchor a reasonable range,

for which the sparsity level of the estimated graph is of interest (e.g., from below 5% to above

40%). Then finer grids are placed in this range for more refined analysis. We also remark that

the regularized estimator is mainly used to produce a short list of candidate models, which are

further compared and selected by the EBIC. Unregularized parameter estimate is reported for the

selected model, which has the advantage of a smaller bias comparing to the regularized one (e.g.,

Belloni & Chernozhukov, 2013).

4. Simulation Studies

In this section, we report two simulation studies. First, we provide a study exploring the

consequence of ignoring local dependence and the effectiveness of the proposed FLaG-IRT model.

Second, we evaluate the performance of the FLaG-IRT analysis, when data are generated from a

FLaG-IRT model. An additional simulation study is reported in the supplementary material that

assesses the performance of FLaG-IRT analysis under model misspecification.

4.1. Study 1

Data generation We generate data from the bi-factor model (2.9), with N = 1000, J = 15,

and only one item cluster C1 = {1, 2, 3, 4, 5}. Note that the general factor θg and the nuisance

factor θ1 are assumed to be independent and follow the standard normal distribution. The setting

mimics a test that aims at measuring the general factor θg , and thus, every item is designed to

be associated with this dimension. In addition, θ1 is a nuisance dimension that is only associated

with five items and is not included in the design. For ease of exposition, we set a jg = 1.5,

j = 1, 2, . . . , J and a j1 = c, j = 1, . . . , 5. The value of c is positive and will be varied to account

for different local dependence levels. In addition, b j s are sampled from uniform distribution over

interval [− 2, 2]. For each value of c, 100 independent data sets are generated.
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Comparison In this study, we compare three models, including (1) the unidimensional 2PL

model, (2) the bi-factor model with known nuisance factor, and (3) the proposed FLaG-IRT model

with known local dependence graph. Specifically, the graph of the FLaG-IRT model is set to be

E = {(i, j) : i, j ≤ 5} and the specific values of si j remain to be estimated. Note that this

FLaG-IRT model is a misspecified model that approximates the generating one.

The measurement of the general factor is compared for the three models above. For a given

model, a two-stage procedure is adopted. In the first stage, the model parameters are estimated,

and then in the second stage, each person i is measured by the expected a posteriori (EAP) score θ̂i

computed under the estimated model. Note that for the bi-factor model, θ̂i refers to the EAP score of

the general factor. We investigate the measurement accuracy based on sample correlation between

θ̂i and the true general factor score θigs. In addition, measurement bias is investigated based on

the sample correlation between θ̂i and the nuisance factor score θi1. For better comparison, we

consider three correlation measures, including Kendall’s tau rank correlation, Spearman’s rho

rank correlation, and Pearson’s correlation. We point out that as Kendall’s tau and Spearman’s

rho are both rank-based measures that do no rely on specific distribution assumptions, they may

be more objective measures for the comparison than Pearson’s correlation.

Results Results are shown in Fig. 4, where the left and right panels reflect the measurement

accuracy (correlations between θ̂i s and θigs) and the measurement bias (correlations between θ̂i s

and θi1s), respectively. In each panel, the x-axis records the value of c, where the level of local

dependence increases as c increases. Each point is an average over 100 independent data sets.

From Fig. 4, under all local dependence levels, the proposed FLaG-IRT model with a known

graph performs similarly as the bi-factor model, in terms of both measurement accuracy and

bias. Moreover, the 2PL model that ignores the local dependence structure performs poorly.

Specifically, when local dependence becomes severe, the Kendall’s tau, Spearman’s rho, and

Pearson’s correlations between θ̂i s and θigs based on the 2PL model can drop to 0.3, 0.4, and

0.4, respectively, while they remain to be 0.7, 0.9, and 0.9, respectively, for both the bi-factor and

FLaG-IRT models. In addition, when local dependence becomes more severe, the three correlation

measures between θ̂i s and θi1s based on the 2PL model increase and can be as high as 0.6, 0.8,

and 0.8, respectively, while the ones based on the bi-factor and FLaG-IRT models are all below

0.1. In other words, the latent trait being measured under the 2PL model deviates from what

is designed to measure. This could lead to the issue of test fairness that could especially be of

concern in educational testing. That is, for two examinees with the same θg value, the one with

a higher nuisance trait level tends to be scored higher. This phenomenon is known as differential

item functioning (Holland & Wainer, 2012).

4.2. Study 2

In this study, we evaluate the performance of the FLaG-IRT analysis in Sect. 3, under the

settings that data are generated from a FLaG-IRT model. In this FLaG-IRT analysis, the local

dependence structure is completely unspecified and learned from data.

Data generation We consider the following model settings.

S1. We consider J = 45, K = 3 and the local dependence graph E = {(i, j) : |i − j | ≤ 1}.

For the loading structure, items 1–15, 16–30, and 31–45 measure the three latent traits,

respectively. If particular, we set a jk = 0.4 for q jk �= 0, s j j = −4, j = 1, . . . , J ,

si j = 0.5 for (i, j) ∈ E , and σkk = 1, k = 1, . . . , K and σkl = 0.1, k �= l.

S2. We consider J = 100, K = 5 and the local dependence graph E = {(i, j) : |i − j | ≤ 1}.

For the loading structure, items 1–20, 21–40, 41–60, 61–80, and 81–100 measure the
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Figure 4.
Study 1: (a) Kendall’ tau correlation between θ̂i s and θigs. (b) Kendall’ tau correlation between θ̂i s and θi1s. (c) Spearman’

rho correlation between θ̂i s and θigs. (d) Spearman’ rho correlation between θ̂i s and θi1s. (e) Pearson’ correlation between

θ̂i s and θigs. (f) Pearson’ correlation between θ̂i s and θi1s.
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five latent traits, respectively. If particular, we set a jk = 0.35 for q jk �= 0, s j j = −4.5,

j = 1, . . . , J , si j = 1 for (i, j) ∈ E , and σkk = 1, k = 1, . . . , K and σkl = 0.1, k �= l.

For each setting, sample sizes N = 500, 1000, and 3000 are considered. For each setting and

each sample size, 100 independent data sets are generated.

Evaluation criteria For each data set, model selection results are obtained from the FLaG-

IRT analysis under the extended Bayesian criterion with ρ = 0, 0.25, 0.5. The selected models

are evaluated based on the following criteria.

1. The Kendall’s tau correlation between the EAP score θ̂iks and the corresponding true

factor score, θiks, k = 1, . . . , K . An average of the Kendall’s tau correlations over K

latent traits is reported.

2. The true positive rate of graph estimation, defined as

T P R =

∑
i< j 1

{(i, j)∈Ê,(i, j)∈E}∑
i< j 1{(i, j)∈E}

.

3. The false positive rate of graph estimation, defined as

F P R =

∑
i< j 1

{(i, j)∈Ê,(i, j)/∈E}∑
i< j 1{(i, j)/∈E}

.

4. The accuracy in parameter estimation is also evaluated for the selected model based on

the mean square error (MSE).

Results Results are presented in Tables 1 and 2. In Table 1, the column “Oracle" gives the

values of Kendall’s tau, TPR, and FPR when the true model and its parameters are known. Given

the true model, the oracle values of TPR and FPR are 1 and 0, respectively. The oracle value of

Kendall’s tau is the correlation between the EAP scores under the true model and the true scores.

According to Table 1, under both settings, all sample sizes, and all values of ρ in the EBIC, the

models selected by the FLaG-IRT analysis have high measurement accuracy. The Kendall’s tau

correlation between the EAP scores under the selected model and the true factor scores is very

close to the oracle one. In addition, it is observed that a larger value of ρ in the EBIC yields

both lower TPR and lower FPR. This is because a larger value of ρ penalizes more on the model

complexity, resulting in a more sparse graph. Furthermore, as sample size increases, the TPR

and FPR tend to increase and decrease, respectively. When the sample size is as large as 3000,

under both settings, the TPR and FPR are close to 1 and 0, respectively, implying that the true

model is accurately selected. Table 2 shows the results on parameter estimation. In particular, we

show the MSE for the estimation of a11, s11, and σ12, calculated based on the 100 independent

replications. According to the data generation model, these results are representative of those of

nonzero a jks, s j j s, and σkls, respectively, which are freely estimated and are not under model

selection. According to Table 2, we see that the MSEs become smaller when the sample size

increases. In addition, the models selected by the EBIC (ρ = 0.25, 0.5) tend to have smaller

MSEs than the ones selected by the BIC (ρ = 0) and thus have more accurate estimates. Finally,

we point out that even under the setting S2 where J = 100, K = 5, and under the sample size

N = 3000, the proposed algorithm solves the optimization problem (3.3) for the regularized

estimator efficiently. For a given tuning parameter, (16) can be solved within three minutes on an

Intel(R) machine (Core(TM) i5-5300U CPU @ 2.30GHz), with code written in R. The algorithm

can be further speeded up by writing the code in a more efficient language such as C++ and by

parallel computing.
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Table 1.
Study 2: Performance of FLaG-IRT analysis when data are generated from a FLaG-IRT model. The average of each
evaluation measure and its standard error over 100 independent replications are reported.

ρ = 0 ρ = 0.25 ρ = 0.5 Oracle

S1

N = 500

Kendall’s tau 0.61 (0.001) 0.61 (0.001) 0.61 (0.001) 0.63

TPR 0.61 (0.007) 0.44 (0.007) 0.30 (0.008) 1

FPR 0.08 (0.002) 0.02 (0.001) 0.01 (0.000) 0

N = 1000

Kendall’s tau 0.62 (0.001) 0.62 (0.001) 0.62 (0.001) 0.63

TPR 0.86 (0.006) 0.73 (0.007) 0.62 (0.007) 1

FPR 0.06 (0.002) 0.02 (0.001) 0.01 (0.000) 0

N = 3000

Kendall’s tau 0.62 (0.000) 0.62 (0.001) 0.62 (0.001) 0.63

TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.002) 1

FPR 0.04 (0.001) 0.01 (0.000) 0.00 (0.000) 0

S2

N = 500

Kendall’s tau 0.67 (0.001) 0.67 (0.001) 0.67 (0.001) 0.68

TPR 0.63 (0.005) 0.39 (0.004) 0.24 (0.004) 1

FPR 0.08 (0.000) 0.02 (0.000) 0.00 (0.000) 0

N = 1000

Kendall’s tau 0.67 (0.001) 0.68 (0.001) 0.68 (0.001) 0.68

TPR 0.87 (0.003) 0.70 (0.005) 0.58 (0.006) 1

FPR 0.06 (0.000) 0.01 (0.000) 0.01 (0.000) 0

N = 3000

Kendall’s tau 0.68 (0.000) 0.68 (0.000) 0.68 (0.000) 0.68

TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.001) 1

FPR 0.03 (0.000) 0.01 (0.000) 0.00 (0.000) 0

5. Real Data Analysis

We illustrate the use of FLaG-IRT analysis through an application to the Extroversion short

scale of the Eysenck’s Personality Questionnaire-Revised (EPQ-R; Eysenck et al., 1985; Eysenck

& Barrett, 2013). The data set contains the responses to 12 items from 842 females in the USA.

All these items are designed to measure a single personality trait Extroversion, characterized by

personality patterns such as sociability, talkativeness, and assertiveness. The items are shown in

Table 3, and the data are preprocessed so that the responses to the reversely worded items are

flipped.

We start with fitting the unidimensional 2PL model whose unidimensional latent trait follows

a standard Gaussian distribution and then check the model fit. The estimated 2PL parameters are

shown in Table 4. Under the fitted model, the expected two-by-two tables for item pairs can be

evaluated by

Exi x j
= N × P̂(X i = xi , X j = x j ) = N

∫
exp (âiθ + b̂i )xi

1 + exp (âiθ + b̂i )

exp (â jθ + b̂ j )x j

1 + exp (â jθ + b̂ j )
φ(θ)dθ,
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Table 2.
Study 2: Performance of FLaG-IRT analysis when data are generated from a FLaG-IRT model. The MSEs for the estimation
of a11, s11, and σ12 calculated based on 100 independent replications are reported.

N = 500 N = 1000 N = 3000

S1

ρ = 0

a11 = 0.4 1.4 × 10−2 8.4 × 10−3 1.7 × 10−3

s11 = − 4 3.5 × 10−1 2.2 × 10−1 4.8 × 10−2

σ12 = 0.1 2.6 × 10−3 1.6 × 10−3 3.9 × 10−4

ρ = 0.25

a11 = 0.4 1.2 × 10−2 5.6 × 10−3 1.5 × 10−3

s11 = − 4 2.9 × 10−1 1.8 × 10−1 4.5 × 10−2

σ12 = 0.1 1.8 × 10−3 8.9 × 10−4 1.8 × 10−4

ρ = 0.5

a11 = 0.4 9.2 × 10−3 5.5 × 10−3 1.3 × 10−3

s11 = − 4 2.6 × 10−1 1.6 × 10−1 4.6 × 10−2

σ12 = 0.1 1.6 × 10−3 7.6 × 10−4 1.3 × 10−4

S2

ρ = 0

a11 = 0.35 1.2 × 10−2 6.5 × 10−3 1.6 × 10−3

s11 = − 4.5 4.8 × 10−1 2.3 × 10−1 4.6 × 10−2

σ12 = 0.1 2.5 × 10−3 9.8 × 10−4 3.2 × 10−4

ρ = 0.25

a11 = 0.35 7.2 × 10−3 4.9 × 10−3 9.6 × 10−4

s11 = − 4.5 3.4 × 10−1 1.8 × 10−1 4.5 × 10−2

σ12 = 0.1 1.7 × 10−3 6.8 × 10−4 2.0 × 10−4

ρ = 0.5

a11 = 0.35 4.8 × 10−3 3.8 × 10−3 7.0 × 10−4

s11 = − 4.5 3.1 × 10−1 1.7 × 10−1 4.3 × 10−2

σ12 = 0.1 1.3 × 10−3 6.0 × 10−4 1.4 × 10−4

Table 3.
Real data: The revised Eysenck Personality Questionnaire short form of Extroversion scale.

1 Are you a talkative person?

2 Are you rather lively?

3 Can you usually let yourself go and enjoy yourself at a lively party?

4 Do you enjoy meeting new people?

5 Do you usually take the initiative in making new friends?

6 Can you easily get some life into a rather dull party?

7 Do you like mixing with people?

8 Can you get a patty going?

9 Do you like plenty of bustle and excitement around you?

10 Do other people think of you as being very lively?

11(R) Do you tend to keep in the background on social occasions?

12(R) Are you mostly quiet when you are with other people?
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Table 4.
Real data: The estimated 2PL model for the EPQ-R data.

1 2 3 4 5 6 7 8 9 10 11 12

â j 1.90 2.13 1.82 1.67 1.53 2.48 2.27 2.25 0.85 2.49 1.74 2.05

b̂ j 1.16 2.35 1.71 3.13 0.66 − 0.51 2.80 0.53 0.91 1.81 0.60 1.13

Figure 5.
Real data: The heat maps for visualizing the fit of all item pairs under the 2PL model (left) and selected FLaG-IRT model
(right).

where φ(θ) is the density function of a standard normal distribution. We first check the fit of item

pairs by comparing the expected two-by-two tables with the observed ones, using the X2 local

dependence index (Chen & Thissen, 1997) as a descriptive statistic. For each item pair i and j ,

the X2 statistic is defined as

X2
i j =

1∑

xi =0

1∑

x j =0

(Oxi x j
− Exi x j

)2

Exi x j

,

where Oxi x j
is the observed number of (xi , x j ) pairs. A large value of X2

i j indicates a lack of

fit. In addition, based on simulation studies, Chen and Thissen (1997) suggest that the marginal

distribution of each X2
i j is roughly a chi-square distribution with one degree of freedom when

data are generated from the 2PL model. We visualize (X2
i j )J×J using a heat map in the left panel

of Fig. 5. For a better visualization, we plot a monotone transformation of X2
i j ,

Ti j = X2
i j/(QChi

1,95% + X2
i j ),



YUNXIAO CHEN ET AL. 559

Table 5.
Real data: Item pairs with largest values of local dependence indices.

Ti j X2
i j

1 0.89 32 6. Can you easily get some life into a rather dull party?

8. Can you get a patty going?

2 0.88 28 4. Do you enjoy meeting new people?

7. Do you like mixing with people?

3 0.83 18 2. Are you rather lively?

10. Do other people think of you as being very lively?

4 0.83 18 1. Are you a talkative person?

12. Are you mostly quiet when you are with other people?

Figure 6.
Real data: The results of a parametric bootstrap test for the 2PL model (left) and the selected FLaG-IRT model (right).

where QChi
1,95% is the 95% quantile of the chi-square distribution with one degree of freedom.

Thus, Ti j > 1/2 suggests that item pair (i, j) is not fitted well. In the heat map, the value of Ti j

is presented according to the color key above the heat map. The top four item pairs with highest

levels of Ti j are shown in Table 5, where items within a pair tend to share common content/stimuli.

To further assess the overall fit of the 2PL model and to compare it with that of the selected FLaG-

IRT model, we consider a parametric bootstrap test, using the total sum of the X2 statistics as the

test statistic SX2P L =
∑

i< j X2
i j . That is, we generate 500 bootstrap data sets, each of which has

842 samples drawn from the estimated 2PL model. For each bootstrap data set, we fit the 2PL

model again and compute the corresponding total sum of X2s, denoted by SX
(b)
2P L . The empirical

distribution of SX
(b)
2P L is used as the reference distribution. The histogram of SX

(1)
2P L , . . . , SX

(500)
2P L

is shown in the left panel of Fig. 6. The observed value of SX2P L based on the fitted model is

192, much larger than the ones from bootstrap data. Consequently, the p value of this bootstrap

test is 0, indicating the lack of fit of the 2PL model.

We apply the FLaG-IRT analysis. Using the BIC for model selection, the local dependence

graph of the selected model has 12 edges, as shown in Fig. 7, where the positive and negative

edges are in black and red, respectively. In particular, the most locally dependent item pairs also
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Figure 7.
Real data: The local dependence graph of the selected FLaG-IRT model.

correspond to the most positive edges in Fig. 7. Similar to the analysis above, we compute the

local independence indices for all the items pairs and visualize them in the right panel of Fig. 5,

where no X2
i j is found to exceed QChi

1,95%. Moreover, 500 bootstrap data sets are generated from

the selected FLaG-IRT model and the bootstrap distribution of SX F LaG is shown in the right

panel of Fig. 6. As we can see, the observed value of SX F LaG for the selected model is within

the range of the bootstrap distribution with a p value 9%, which does not show strong evidence

of model lack of fit.

Based on the above analysis, we see that even a well-designed 12-item EPQ-R short form

displays significant level of local dependence, which, if not adjusted, may result in measurement

bias. The proposed FLaG-IRT model automatically adjusts for the local dependence based on the

data, while maintaining the unidimensional latent trait as the key source of dependence among

responses. As a result, the FLaG-IRT model learned from data fits well, at both the item pair level

and the test level.

Acknowledgments

This research was funded by NSF grant DMS-1712657, NSF grant SES-1323977, NSF grant

IIS-1633360, Army Research Office grant W911NF-15-1-0159, and NIH grant R01GM047845.

References

Anderson, C. J., & Vermunt, J. K. (2000). Log-multiplicative association models as latent variable models for nominal
and/or ordinal data. Sociological Methodology, 30, 81–121.

Anderson, C. J., & Yu, H.-T. (2007). Log-multiplicative association models as item response models. Psychometrika, 72,
5–23.

Barber, R. F., & Drton, M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electronic

Journal of Statistics, 9, 567–607.
Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-dimensional sparse models. Bernoulli,

19, 521–547.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society

Series B (Methodological), 36, 192–236.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R.

Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading, MA: Addison-Wesley.
Boschloo, L., van Borkulo, C. D., Rhemtulla, M., Keyes, K. M., Borsboom, D., & Schoevers, R. A. (2015). The network

structure of symptoms of the diagnostic and statistical manual of mental disorders. PLoS One, 10, e0137621.



YUNXIAO CHEN ET AL. 561

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76, 57–76.
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72, 393–411.
Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychological Methods,

16, 221–248.
Chen, Y. (2016). Latent variable modeling and statistical learning. Ph.D. thesis, Columbia University. Available at http://

academiccommons.columbia.edu/catalog/ac:198122.
Chen, Y., Li, X., Liu, J., & Ying, Z. (2016) A fused latent and graphical model for multivariate binary data. Available at

arXiv:1606.08925v1.pdf. ArXiv preprint.
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces.

Biometrika, 95, 759–771.
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015a). Statistical analysis of Q-matrix based diagnostic classification models.

Journal of the American Statistical Association, 110, 850–866.
Chen, Y., Liu, J., & Ying, Z. (2015b). Online item calibration for Q-matrix in CD-CAT. Applied Psychological Measure-

ment, 39, 5–15.
Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of

Educational and Behavioral Statistics, 22, 265–289.
Cramer, A. O., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., et al. (2012). Dimensions of normal

personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of

Personality, 26, 414–431.
Cramer, A. O., Waldorp, L. J., van der Maas, H. L., & Borsboom, D. (2010). Complex realities require complex theories:

Refining and extending the network approach to mental disorders. Behavioral and Brain Sciences, 33, 178–193.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates

Publishers.
Epskamp, S., Maris, G. K., Waldorp, L. J., & Borsboom, D. (2016). Network psychometrics. arXiv preprint

arXiv:1609.02818.
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network pschometrics: Combining network and latent

variable models. Psychometrika, 82, 904–927.
Eysenck, S., & Barrett, P. (2013). Re-introduction to cross-cultural studies of the EPQ. Personality and Individual Dif-

ferences, 54, 485–489.
Eysenck, S. B., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality and Individual

Differences, 6, 21–29.
Ferrara, S., Huynh, H., & Michaels, H. (1999). Contextual explanations of local dependence in item clusters in a large

scale hands-on science performance assessment. Journal of Educational Measurement, 36, 119–140.
Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. In Advances in

Neural Information Processing Systems (pp 604–612).
Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O., et al. (2015). From loss to loneliness:

The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124, 256–265.
Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., et al. (2007). Full-information item

bifactor analysis of graded response data. Applied Psychological Measurement, 31, 4–19.
Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423–436.
Holland, P. W. (1990). The Dutch identity: A new tool for the study of item response models. Psychometrika, 55, 5–18.
Holland, P. W., & Wainer, H. (2012). Differential item functioning. New York, NY: Routledge.
Hoskens, M., & De Boeck, P. (1997). A parametric model for local dependence among test items. Psychological Methods,

2, 261–277.
Ip, E. H. (2002). Locally dependent latent trait model and the Dutch identity revisited. Psychometrika, 67, 367–386.
Ip, E. H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response

models. British Journal of Mathematical and Statistical Psychology, 63, 395–416.
Ip, E. H., Wang, Y. J., De Boeck, P., & Meulders, M. (2004). Locally dependent latent trait model for polytomous responses

with application to inventory of hostility. Psychometrika, 69, 191–216.
Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei, 31, 253–258.
Knowles, E. S., & Condon, C. A. (2000). Does the rose still smell as sweet? Item variability across test forms and revisions.

Psychological Assessment, 12, 245–252.
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT

press.
Kruis, J., & Maris, G. (2016). Three representations of the Ising model. Scientific Reports, 6(34175), 1–11.
Laird, N. M. (1991). Topics in likelihood-based methods for longitudinal data analysis. Statistica Sinica, 1, 33–50.
Lee, J. D., & Hastie, T. J. (2015). Learning the structure of mixed graphical models. Journal of Computational and

Graphical Statistics, 24, 230–253.
Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of alternative models for testlets. Applied Psychological Measurement,

30, 3–21.
Liu, J. (2017). On the consistency of Q-matrix estimation: A commentary. Psychometrika, 82, 523–527.
Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36, 548–564.
Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19, 1790–1817.
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

http://academiccommons.columbia.edu/catalog/ac:198122
http://academiccommons.columbia.edu/catalog/ac:198122
http://arxiv.org/abs/1606.08925v1.pdf
http://arxiv.org/abs/1609.02818


562 PSYCHOMETRIKA

Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). Bayesian inference for low-rank Ising networks. Scientific

Reports, 5(9050), 1–7.
McKinley, R. L., & Reckase, M. D. (1982). The use of the general Rasch model with multidimensional item response

data. Iowa City, IA: American College Testing.
Pan, J., Ip, E. H., & Dubé, L. (2017). An alternative to post hoc model modification in confirmatory factor analysis: The

bayesian lasso. Psychological Methods, 22, 687–704.
Parikh, N., & Boyd, S. P. (2014). Proximal algorithms. Foundations and Trends in Optimization, 1, 127–239.
Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish Institute for

Educational Research.
Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional ising model selection using 1-regularized

logistic regression. The Annals of Statistics, 38, 1287–1319.
Reckase, M. (2009). Multidimensional item response theory. New York, NY: Springer.
Reise, S. P., Horan, W. P., & Blanchard, J. J. (2011). The challenges of fitting an item response theory model to the social

anhedonia scale. Journal of Personality Assessment, 93, 213–224.
Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health

outcomes measures. Quality of Life Research, 16, 19–31.
Rhemtulla, M., Fried, E. I., Aggen, S. H., Tuerlinckx, F., Kendler, K. S., & Borsboom, D. (2016). Network analysis of

substance abuse and dependence symptoms. Drug and Alcohol Dependence, 161, 230–237.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Schwarz, N. (1999). Self-reports: How the questions shape the answers. American Psychologist, 54, 93–105.
Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory

models via L1 regularization. Psychometrika, 81, 921–939.
van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., et al. (2014). A new

method for constructing networks from binary data. Scientific Reports, 4(5918), 1–10.
van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A

dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review,
113, 842–861.

Wainer, H., Bradlow, E. T., & Du, Z. (2000). Testlet response theory: An analog for the 3PL model useful in testlet-based
adaptive testing. In W. J. van der Linden & G. A. Glas (Eds.), Computerized adaptive testing: Theory and practice

(pp. 245–269). New York, NY: Springer.
Wang, W.-C., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological Measurement, 9, 126–149.
Yao, L., & Schwarz, R. D. (2006). A multidimensional partial credit model with associated item and test statistics: An

application to mixed-format tests. Applied Psychological Measurement, 30, 469–492.
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic

model. Applied Psychological Measurement, 8, 125–145.
Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educa-

tional Measurement, 30, 187–213.

Manuscript Received: 12 DEC 2016

Final Version Received: 26 FEB 2018

Published Online Date: 12 MAR 2018


	Robust Measurement via A Fused Latent and Graphical Item Response Theory Model
	Abstract
	1 Introduction
	2 FLaG-IRT Model
	2.1 Two Basic Models
	2.2 FLaG-IRT Model
	2.3 Related Works and Discussions

	3 FLaG-IRT Analysis
	3.1 Regularized Pseudo-likelihood Estimation
	3.2 Choice of Tuning Parameters
	3.3 Summary

	4 Simulation Studies
	4.1 Study 1
	4.2 Study 2

	5 Real Data Analysis
	Acknowledgments
	References


