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Control of Wave Energy Converters
Using A Simple Dynamic Model

Ossama Abdelkhalik, Shangyan Zou

Abstract—This paper derives a control law within the context
of optimal control theory for a heaving wave energy converter
(WEC) and presents its implementation procedure. The proposed
control assumes the availability of measurements of pressure
distribution on the buoy surface, buoy position, and buoy velocity.
This control has two main characteristics. First, this control is
derived based on a simple dynamic model. The forces on the
WEC are modeled as one total force, and hence there is no need
to compute excitation or radiation forces. Second, this control
can be applied to both linear and nonlinear WEC systems. The
derived control law is optimal, yet its implementation requires
estimation of some force derivatives which render the obtained
control force sub-optimal. Numerical testing demonstrates in this
paper that the proposed simple model control can achieve levels of
harvested energy close to the maximum theoretical limit predicted
by singular arc control in the case of linear WEC systems.

Index Terms—Wave Energy Conversion, Optimal Control of
Wave Energy Converters

I. INTRODUCTION

Despite the enormous potential of ocean wave energy, the
technology of wave energy converters (WECs) is not yet
mature. The control system of a WEC has a significant impact
on the amount of energy that can be harvested by WECs, and
hence it influences the economics of wave energy conversion.
Consider a heave only point absorber WEC. Over the years
there have been significant advances in WEC control. Some
control logics are simple to implement such as the damping
control (resistive loading) in which the magnitude of the
control force u is proportional to the buoy velocity ż [1]. This
control requires the only measurement of the buoy velocity,
yet the harvested energy is relatively low. Another classical
method of WEC control is the latching control [2], [3].
The latching control method involves computing the optimal
latching delay; such computation requires the availability of a
WEC dynamic model [4]. Reference [4] used the well known
Cummins’ equation [5] to model the WEC:

mbz̈(t) =

excitation force fe︷ ︸︸ ︷∫ ∞
−∞

hf (τ)η(t− τ, z)dτ +fs + u+ fd

−µz̈(t)−
∫ t

−∞
hr(τ)ż(t− τ)dτ︸ ︷︷ ︸

radiation force fr

(1)

where z is the heave displacement of the buoy from the sea
surface, t is the time, mb is the buoy mass, fd is the viscous
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damping force, and fs is the difference between the gravity
and buoyancy force and it reflects the spring-like effect of
the fluid. The pressure effect around the immersed surface of
the floater is called the excitation force, fe, where η is the
wave surface elevation at buoy centroid and hr is the impulse
response function defining the radiation force in heave. The
radiation force, fr, is due to the radiated wave from the moving
float, where hr is the impulse response function defining the
radiation force in heave, and µ is a frequency dependent added
mass. The added mass at infinity frequency is µ∞, and it
is of particular importance since the radiation force can be
separated as an inertia term that includes only µ∞ in addition
to the radiation damping forces based on the Kramers-Kronig
relation.

There are challenges in using the Cummins’ equation in
control system design. Because the excitation force is modeled
as a function of the wave elevation, η, the WEC controls
problem is recognized as a non-causal problem, in the sense
that computing the required control force in an optimal sense
requires prediction in the future for the wave elevation or the
excitation force [6], [7], [8]. This prediction adds complexity
and cost to the energy conversion process. Also, the Cummins’
equation is a linear model. Practically the WEC motion has
nonlinear behavior, even for small motions, due to effects like
the viscous friction or the actuation efficiency. This means a
control computed based on a linear model may be suboptimal.
The dynamic model in (1) also involves calculations for
the excitation and radiation forces, which in turn require
calculations for added masses at all frequencies in addition
to the hydrodynamic coefficients.

Several other advanced concepts in WECs control have been
developed that produce relatively higher levels of harvested
energy. One of them is the model predictive control (MPC)
[9], [10], [11], [12], and it needs a prediction in the future and
a dynamic model to compute the control. The same can be said
about the pseudospectral approach [13], [14] and the shape-
based approach [15], [16]. Some other controls are causal
(prediction is not needed) such as the optimal control presented
in [17], [18], and the singular arc control presented in [19],
[20]. Yet, the dynamic model in (1) is still used.

Unlike most existing control strategies, this study uses a
simple dynamic model to derive a control law for WECs. Let
the sum of all the forces on the right hand side of Eq. (1)
(except the control u) be recognized as the total force FT .
The radiation force fr in Eq. (1) can be approximated as the
summation of an inertia term and a radiation damping force
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[21]. Hence the total force can be split into two parts:

FT = F − µ∞z̈ (2)

Instead of using the WEC model in Eq. (1), this paper uses a
model that combines all the forces in one term as follows:

(mb + µ∞)z̈ = F (z, ż, t) + u (3)

where F ((z, ż, t) is a force term defined in Eq. (2). In
section II, the control force u(t) is derived within the context
of optimal control theory using this WEC model. The resulting
control law is valid whether F ((z, ż, t) is a linear or nonlinear
function of the position z and the velocity ż. Section III details
a process for applying this control law and the approximations
that are needed for implementation. Numerical testing results
and further discussion are detailed in Section IV.

II. CONTROL LAW FOR MAXIMUM ENERGY

The simple dynamic model in Eq. (3) is used to derive
the control force such that the harvested energy is maximized
over a given time horizon T . The resulting control law will
be referred to as Simple-Model Control (SMC) in the rest
of this paper. Note that the force F (z, ż, t) is assumed a
function of time, buoy position, and buoy velocity. Although,
the dependency of the total force is determined, the explicit
format of the total force is assumed to be unknown. The
dependence on time is intuitive since part of this force is due to
the wave pressure on the buoy surface, and the wave pressure is
time dependent. The buoy position determines the hydrostatic
force, and hence the force F should be function of the position
z. Also, the buoy velocity creates waves which affects the
force on the buoy, and hence F is made also function of ż.
Let the state vector ~x = [x1, x2, x3]T and m = mb + µ∞,
the dynamic model in Eq. (3) can be written in the state space
form:

ẋ1 = x2

ẋ2 =
1

m
(F (x1, x2, x3) + u)

ẋ3 = 1

(4)

where the x1 and x2 represent the position and velocity of the
buoy respectively, x3 represents the time t. The objective is
to maximize the harvested energy over a time interval [0 T ],
defined as E = −

∫ T
0
{u(t)x2(t)}dt. Assuming no limits on

the control force, the optimal control problem is then defined
as:

Min : J((x(t), u(t)) =

∫ T

0

{u(t)x2(t)}dt

Subject to : Equations (4)
(5)

The Hamiltonian [22] in this problem is defined as:

H(x1, x2, x3, F, λ1, λ2, λ3) = ux2+λ1x2+
λ2
m

(F+u)+λ3

(6)

Where ~λ = [λ1, λ2, λ3]T are lagrange multipliers. The neces-
sary conditions for optimality show that the optimal solution
should satisfy the Euler-Lagrange equations:

Hλ = ẋ, Hx = −λ̇, Hu = 0 (7)

Evaluating the Hamiltonian partial derivatives in Eq. (7),
we find that the optimal trajectory should satisfy the motion
constraints in (4) in addition to:

λ̇1 = − ∂H
∂x1

= −λ2
m

∂F

∂x1
(8)

λ̇2 = − ∂H
∂x2

= −u− λ1 −
λ2
m

∂F

∂x2
(9)

λ̇3 = − 1

m

∂F (x3)

∂x3
λ2 (10)

∂H

∂u
= x2 +

λ2
m

= 0 (11)

It is possible to eliminate the co-states from the above
equations and solve for the control force u(t) as follows.
Taking the derivative of Eq. (11), we get:

λ̇2 +mẋ2 = 0 (12)

Substitute the second of Eqs. (4) and Eq. (12) into Eq. (9),
we get:

−F − u = −u− λ1 −
λ2
m

∂F

∂x2
(13)

Substituting Eq. (11) into Eq. (13) and rearranging we get:

F − λ1 + x2
∂F

∂x2
= 0 (14)

Evaluating the time derivative of the above equation we get:

Ḟ − λ̇1 + ẋ2
∂F

∂x2
+ x2

d

dt

∂F

∂x2
= 0 (15)

Substituting Eq. (8), Eq. (11) and the second of Eqs. (4)
into the above equation we get:

mḞ −mx2
∂F

∂x1
+ (F + u)

∂F

∂x2
+mx2

d

dt

∂F

∂x2
= 0 (16)

We can solve Eq. (16) for the controller to get:

u∗ = m
x2
∂F

∂x1
− Ḟ − ∂F

∂x2
F/m− x2

d

dt

∂F

∂x2
∂F

∂x2

(17)

where u∗ denotes the optimal control. To implement this
control law in time domain, we need to compute F , Ḟ , x2,
∂F

∂x1
and

∂F

∂x2
. These calculations are discussed in Section III.

The equation of the optimal controller also indicates the SMC
is adaptive to different format of the total force which means
it is adaptive to different dynamics or different nonlinearities.
This paper aims at introducing the concept of the simple model
controller, and hence the constraints on the control force,
position and velocity are not included in this paper. However,
these constraints can be included in the optimization problem
and also the Hamiltonian. Additionally, the control limitation
can be implemented by using a Bang-Singular-Bang control
law as described in [23].
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III. WEC CONTROL SYSTEM

In this study, it is assumed that we measure the buoy
position x1, its velocity x2, and also the total pressure using
multiple pressure sensors on the buoy surface, as detailed
in reference [20]. The surface pressure can then be used to
compute the total force FT . Let x̃i be the measurement of
xi and F̃T be the measurement of FT . The measurement
F̃T is then added to the quantity µ∞ ˙̃x2 to obtain F̃ as a
pseudo measurement. These measurements will also be used to
estimate the quantities Ḟ , ∂F/∂x1 and ∂F/∂x2 as described
below.

Since we need to estimate the derivatives of the force F with
respect to time and the states, it is convenient to approximate
the force F using a series expansion. This way, it is possible
to compute approximate expressions for the derivatives once
the coefficients of the polynomial are determined. Moreover, it
is possible to compute approximate expressions for the control
force and the harvested energy analytically. Toward that end,
it is assumed that the following series expansion approximates
the force F :

F̄ = a1x1 + a2x2 + b1x
3
1 + b2sign(x2)x22

+
N∑
n=1

(cn cos(ωnt) + dn sin(ωnt))
(18)

The above series expansion is selected intuitively and in
a general form. Higher order terms can be added to the
polynomial terms if needed. While this series expansion is
suitable for 1-DoF point absorbers, it is straightforward to
write similar expansions for other types of WECs or extend it
to account for multi-DoF WECs.

The coefficients in the Eq. (18) are estimated using a
Kalman filter such that the square error between F̄ and F
is minimized. The frequencies ωn, ∀n, are assumed fixed. In
the study presented in this paper the values of ωn are assumed
equally spaced in the range from 0.5 rad/sec to 3 rad/sec. This
assumption enables the use of a linear Kalman filter. If desired,
these frequencies could be appended to the Kalman filter state
vector to be estimated; in such case, an extended Kalman
filter would be needed for the resulting nonlinear system.
If we use a sufficiently large number of frequencies, the
assumption of fixed frequencies provides reasonable accuracy
as demonstrated in Section IV where 45 fixed equally spaced
frequencies are used.

The Kalman filter uses the measurements to update the
estimates of the coefficients in F̄ sequentially in time. The
state vector of the Kalman filter is selected as:

~̂x = [â1, â2, b̂1, b̂2, ĉ1, · · · , ĉN , d̂1, · · · , d̂N ]T (19)

The dynamic equation of the Kalman filter is:

˙̂
~x = ~0 (20)

where ~0 is a vector which components are all zeros. The
coefficiensts ~̂x are assumed to be constant in the dynamic
model; yet they can be updated based on measurements in the
Kalman update step. Each measurement is simulated as a zero

mean white noise added to its true signal. The Kalman filter
output equation is:

ŷ = F̂ = â1x̃1 + â2x̃2 + b̂1x̃
3
1 + b̂2sign(x̂2)x̃22

+
N∑
n=1

(ĉn cos(ωnt) + d̂n sin(ωnt))
(21)

The process of implementing the Kalman filter in this paper
is standard and is not presented; reference [24] presents the
details on the process of linear Kalman filters. At each time
step, the partial derivatives of F can be approximated by taking
the derivatives of Eq. (18), and using the estimated states as
follows:
∂F

∂t
=
∑

(−ĉnωn sin(ωnt) + d̂nωn cos(ωnt))

∂F

∂x̃1
= â1 + 3b̂1x̃

2
1

∂F

∂x̃2
= â2 + 2b̂2sign(x̃2)x̃2 ,

d

dt

∂F

∂x̃2
= 2b̂2sign(x̃2) ˙̃x2

(22)

These partial derivatives are substituted in Eq. (17) to compute
the control force. As a result, the proposed control force only
requires the current states which can be obtained from the state
estimation by using Kalman Filter. The wave prediction is not
required for the SMC controller.

A. Initialization of The Kalman Filter States

The initial conditions of the state vector ~̂x0 dictate the
effectiveness of the Kalman filter in estimating the coefficients.
In this problem, in particular, there are multiple local solutions
that the Kalman filter can converge to that are not the true
values of the coefficients. Hence, it is critical to have a good
initial guess for the coefficients. In this study, the initial guess
values are obtained via an optimization process that is here
described. First, measurements are collected over some period,
called the initialization period T0. In the simulations conducted
in Section IV, T0 = 100 seconds and measurements are
collected every ∆t = 0.05 seconds. The optimization problem
is to find the vector ~̂x0 that minimizes the function:

J =

ND∑
i=1

‖F̄
(
~̂x0, x̃1(i∆t), x̃2(i∆t), i∆t

)
− F̃ (i∆t)‖2 (23)

where ND is the number of data points. A sequential quadratic
programming algorithm was used to solve this optimization
problem. It is noted here that this process works even when
sea state changes over time. This is because data are collected
continuously and used to update the estimate of the coeffi-
cients x̂arrow via the Kalman update step. In the simulations
conducted in this paper, data collected over 100 s are used
for this update step. Hence the introduced initialization of
Kalman Filter is adaptive to the changing environment using
the collected data.

IV. NUMERICAL TESTING AND DISCUSSION

Numerical testing was conducted using the buoy shown in
Figure 1 in a wave field that is modeled using linear wave
theory. The dynamic model applied in the WEC plant in the
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Fig. 1. Geometry of the buoy used in the numerical simulations in this paper.

simulation is the Cummins’ equation (Eq. (1)), although the
controller is derived based on the simple model by defining
a total force. A Bretschneider wave is realized using 200
frequencies equally spaced in the range 0 − 4 rad/s. The
significant wave height is 0.3 m, and the peak period is
7 s. The hydrodynamic and hydrostatic forces on the buoy
are simulated using force coefficients that are computed us-
ing NEMOH [25]. These forces, in addition to the viscous
damping force, are considered as data that simulates the force
measurements F̃T . These forces are also used to propagate
the buoy motion and generate simulated measurements for the
buoy position and velocity. The derivative of the measured
velocity is computed at each time step and is used to compute
the force F̃ . The numerical parameters used to generate the
data are as follows: the mass of the buoy is 4.637 × 103 kg,
the stiffness of hydrostatic force is 4.437× 104 N/m, and the
viscous damping coefficient is 6.1525 Nm/s.

The effectiveness of the proposed control system is assessed
by comparing the harvested energy obtained using the pro-
posed SMC to the optimal harvested energy as computed by
the singular arc control (SAC) [19]. The SAC is computed
assuming perfect measurements (noise free measurements) so
that we can use the harvested energy from SAC as a reference.
Figure 2 shows the harvested energy over 10 minutes. In
the first 100 seconds, no control was applied; rather only
measurements were collected and used to initialize the Kalman
filter. Three different controls are presented in Figure 2.
The SAC is the maximum energy curve computed using the
singular arc control. The SMC line is the energy harvested
using SMC. The RL line is the energy harvested using the
resistive loading control: u = −Rmx2. Finally, the PD line is
the energy extracted using the Proportional Derivative control
u = −Kpx1 − Kdx2. The feedback gain of the RL and PD
controllers are optimized in terms of energy extraction.

As can be seen in Figure 2, the harvested energy using
the SMC is very close to the optimal one, and it is sig-
nificantly larger than the RL harvested energy. The control
force produced using the SMC is shown in Figure 3, and the
displacement of the buoy over time is shown in Figure 4. To
emphasize the accuracy of the assumed force series expansion
in Eq. (18) when the actual forces on the buoy are linear,
Figure 5 shows both the true and the approximate forces on

Fig. 2. Comparison between the SMC, the SAC, the RL and the PD in terms
of harvested energy. The SMC performance is close to the ideal SAC.

Fig. 3. Control force computed using SMC. No control limits are assumed
in this study.

Fig. 4. Displacement of the buoy when using SMC. No displacement
constraints are assumed in this study.

the buoy surface.
The proposed SMC is valid for both linear and nonlinear

systems. It is still valid even when the hydrodynamic and/or
the hydrostatic forces are nonlinear functions of the states. In
fact, in the case of a nonlinear system, the SMC control law
in Eq. (17) is locally optimal. To demonstrate this advantage
numerically, a nonlinear stiffness term, K2 x

3
1 N, is added

to the force acting on the buoy, where K2 = 10000 N/m3.
Some references point out that when the shape of the buoy
is complex (not cylinder), it is possible to have a cubic
nonlinear hydrostatic force in the dynamics [26] [27]. Hence
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Fig. 5. The series expansion for the force F on the buoy is a good
approximation for the true force for the linear force test case

Fig. 6. The harvested energy using SMC when hydrodynamic/hydrostatic
forces are nonlinear. The Nonlin SMC can harvest more energy than the Lin
SMC designed to harvest energy based on a linear WEC model

the cubic nonlinear term is included in the model to examine
the performance of the proposed SMC in such cases. Figure 6
shows the harvested energy, where two versions of the SMC
are plotted. The Nonlin SMC is the SMC when all coefficients
in the series expansion (Eq. (18)) are included. The Lin SMC
is the SMC when forcing bi = 0, ∀i; i.e. when forcing the
series expansion to be a linear function of the states. Clearly,
the SMC (Nonlin SMC in Figure 6) is able to capture more
energy than a control that is designed based on a linear WEC
model when they are applied to a nonlinear model. To further
highlight this advantage, note that the SAC is designed based
on a linear WEC model and if we run it in a simulation that has
nonlinear forces, it will have a poor performance as shown in
Figure 7, for different values of the nonlinear coefficient K2.
The figure also indicates the advantage of the SMC that it can
handle different nonlinearities without the need to change the
control law. This is unlike the SAC which is designed to work
only on a linear dynamic model.

The control law presented in Section II is optimal for the
system described by Eq. (3). The optimality of this control
law is valid even when the WEC force model is nonlinear.
However, the implementation of this control law requires the
estimation of the partial derivatives in Eq. (17), which involved

Fig. 7. The SAC is designed based on a linear WEC model. Its performance
degrades when tested in a nonlinear environment; K2 = 0 corresponds to a
linear WEC model. As K2 value increases, the significance of the nonlinearity
increases.

approximating the force using a series expansion. Hence, the
resulting control force is sub-optimal. A significant advantage
of this control is the ability to generate a sub-optimal solution
despite using a simple dynamic model. It is not needed to
compute radiation or excitation forces.

Estimating the coefficients in the force series expansion
can benefit significantly from some basic knowledge of the
buoy properties and/or the incoming wave. For example, the
coefficients a1 and b1 represent stiffness terms, which means
they represent hydrostatic forces. These coefficients then can
be removed from the Kalman filter state vector and can be
determined a priori from the geometry and mass properties of
the buoy, or from the measured data during the initialization
phase. Similarly, if we know that for a given buoy and
wave conditions the forces are strictly linear, then we can set
bi = 0, ∀i, as was the case in Figure 2. Higher order terms can
be added to the force series expansion if needed. Fixing some
of the coefficients, if they can be determined, and selecting
the ranges for the other coefficients is a precursor that may
require some trial and error.

To demonstrate the effectiveness of the proposed SMC, sim-
ulations were conducted on a range of sea states (Bretschneider
wave with a significant height of 0.3 m for a range of wave
periods) and the average power harvested is plotted in Figure 8.
Clearly, the SMC is very close to the SAC most of the time.
Note that the SAC solution is a steady state solution, and
hence its performance is not optimal in periods of transient
behavior. The SMC is not restricted to steady-state situations
and hence might have better performance when motion is in
the transient period. The transient response may occur due to
the arbitrary initial conditions. Another reason that leads to
transient periods is the use of stochastic estimators. The use
of stochastic estimation results in estimates that are not error
free; when these estimates are used to compute the control the
errors propagate to the control. This effect creates transient
behavior in the response of the WEC. To further validate the
performance of the SMC, the controller is simulated with a
more realistic dynamic model that models the cases when the
buoy is fully in the air or fully in the water. When the buoy is
totally in the air, we assume no hydrodynamic or hydrostatic
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Fig. 8. The average harvested power using both the SMC and the SAC for
a range of peak periods of Bretschneider waves

Fig. 9. The harvested energy using SMC with the realistic model. The SMC
can harvest more energy than the PD

forces on the body and we turn off the control. When it is
fully under water, hydrostatic force becomes constant. The
performance of the SMC is shown in Fig. 9 which is simulated
with a wave that has a significant wave height of 0.08 m and a
peak period of 7 s. A small significant wave height is elected
to help keep the buoy in the water for longer times. The SMC
controller extracts better energy than the PD controller in this
case.

The SMC assumes the availability of the pressure, position,
and velocity, measurements of the buoy. Measurements of
the buoy position are quite common in many WEC control
algorithms. It is not unusual also to assume the availability
of the velocity measurement in the WEC literature. The
pressure measurement on the buoy surface was also proposed
in reference [20], and was actually implemented recently in the
scaled experimental buoy developed by Sandia National Labs.
Finally, this paper is a proof of concept for the SMC. Improve-
ments can be made to the method presented in Section III in
estimating the force and its derivatives. For example, system
identification methods such as those presented in references
[28], [29], [30] can be investigated to improve the structure
of the force model in Eq. (18), or the coefficients of that
model. The Kalman filter estimation vector can be extended
to include the buoy position and velocity to improve the
estimation accuracy. These will be investigated in future work.

V. CONCLUSION

This paper demonstrated that it is possible to design a con-
trol system utilizing measurements of the pressure distribution
on the buoy surface, the buoy’s position, and its velocity. The
main advantage of the proposed control method is that it uses
a simple dynamic model that does not require calculations of
radiation or excitation forces. The proposed SMC is valid for
linear and nonlinear WECs. The SMC, despite developed using
optimal control theory, is sub-optimal due to the assumption
of a series expansion for the force, in the estimation step.
Numerical simulations demonstrated the SMC can generate
near-optimal harvested energy and can work in nonlinear force
environments. Future research will investigate the situations of
changing sea states and how the proposed SMC adapts to these
changes.
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