

Control Of Small Two-Body Heaving Wave Energy Converters for Ocean Measurement Applications

Ossama Abdelkhalik¹ and Shangyan Zou²

*Michigan Technological University
Mechanical Engineering -Engineering Mechanics Department
Houghton, MI, USA*

Abstract

Buoys carrying scientific equipment usually need continuous power supply for the operation of these equipments. These buoys can be equipped with actuators and controlled to harvest power from the heaving motion of the buoy. A two-body wave energy converter can be designed such that the buoy heaves to harvest energy while the second (lower) body carries the science equipments. This paper presents a control approach for this type of two-body wave energy converter. This control approach is a multi resonant control that attempts to maximize the harvested energy from the buoy (upper body). In this model, the actuator is attached to both bodies. The lower body however is required to have minimal heave motion. The proposed multi resonant control utilizes measurements of the buoy position. The frequencies of the measured buoy position are estimated, along with the motion amplitudes of these frequencies, and used for feedback control. Estimation is carried out using two approaches; the first uses a linear Kalman filter while the second uses an extended Kalman filter. A new method for handling the motion and actuation limitations, suitable for the multi resonant control, is proposed. Various numerical simulation results are presented in the paper. Simulation results show that the linear Kalman filter estimation approach is more robust and computationally efficient compared to the extended Kalman filter.

Keywords: Wave Energy Conversion, Two-Body Heaving Wave Energy Converter, Multi Resonant Control, Kalman Filter

¹ 1. Introduction

² Research on ocean wave energy converters (WECs) have been going since
³ 1970s [1] covering several aspects including the hydrodynamics of interaction
⁴ between a buoy and the wave [2, 3, 4], and including different concepts for ocean

¹ Associate Professor, Email: ooabdelk@mtu.edu, Tel. +1(906)487-3503

² PhD Candidate, Email: szou2@mtu.edu

5 wave energy harvesting such as oscillating water column devices [5], overtopping
6 converters [6] and the point absorbers [7, 8, 9]. In point absorbers, a buoy is
7 controlled through actuators that act on the buoy against the seabed (single-
8 body point absorber), or against a submerged larger mass that is not moving
9 significantly (two-body point absorber). The single-body point absorber has
10 been significantly studied over the past decades. Numerous controllers have
11 been developed for the single-body point absorber such as those in references
12 [10, 11, 12, 13, 14]. The two-body point absorber consists of two bodies: the
13 upper body (buoy) and lower body. In fact the two-body point absorbers can be
14 considered as a special category of the multi-body WECs, which are groups of
15 closely spaced point absorbers, studied in several references such as [15, 16, 17].
16 This concept of two-body point absorber is investigated in this paper in more
17 detail to explore the possibility of using this two-body WEC to generate enough
18 power to supply scientific instruments mounted on the lower body of the two-
19 body point absorber. The focus here is on the control strategy. A fundamental
20 constraint in this problem is the maximum stroke of the actuator; the actuator
21 connects the two bodies and both are moving. The lower body motion should be
22 kept at minimum since it is a requirement for proper operation of the scientific
23 equipments on the lower body. The linear analysis presented in this paper also
24 enforces a small displacement constraint on the motion of the upper body.

25 There has been a significant amount of research on the two-body WECs
26 in the literature. The hydrodynamics of the interaction between two cylinders
27 is studied by [18] with infinite series of orthogonal functions. Reference [19]
28 computes the radiation forces when the submerged cylinder has a larger radius
29 than the floating one. The interaction between a cylinder at the top and a sphere
30 at the bottom is studied in [20, 21]. References [22, 23, 24] present a detailed
31 study for the hydrodynamic forces when the two-body system is composed of
32 an outer hollow circular cylinder and an inner cylinder. Reference [25] studies
33 the system response of a two-body system by means of the Reynolds-averaged
34 Navier-Stokes simulation. A dome-shaped buoy that reacts against a submerged
35 spherical body is investigated in [26]. Reference [27] explores two independent
36 oscillating bodies with a power take-off (PTO) unit attached to each one of
37 them. Studying the relative motion of the two-body system is investigated in
38 reference [28]. In fact reference [28] predicts the maximum power that can be
39 harvested from the two-body system. Reference [29] compares two different
40 systems; the first has the reaction mass out of the water while the second one
41 assumes the reaction mass is submerged in the water. The results show that
42 the system with a submerged reaction mass has a better performance. Recently,
43 Reference [30] pointed out that the mass and viscous damping of the submerged
44 body needs to be designed larger to achieve a better energy absorption of the two
45 body heaving system. Reference [31] shows the system response and the energy
46 absorption of a heaving two-cylinder WEC system. Reference [32] presents a
47 latching phase control for the Interproject Service (IPS) buoy which is a two-
48 body heaving system. The latching control is also studied in [33] for a two-body
49 heaving system, and the performance of the controller is evaluated with real sea
50 states. Reference [34] implements a PD controller and optimizes the controller

51 gains using the Pontryagin Maximum Principle. The pseudo-spectrum method
52 is also developed in [35] to control the motion of a self-reacting point absorber. A
53 model predictive control is derived in [36] using the one-body equivalent model
54 developed in [28].

55 Recently, a multi resonant control was developed for a single body point
56 absorber, and is presented in references [37, 38]. The multi resonant control
57 strategy implements a PD control to resonate the buoy motion with the incoming
58 wave, at each frequency. The complex conjugate control (C3) criteria [1] are
59 used in the multi resonant control to achieve resonance at each frequency. Yet,
60 this multi resonant control is essentially a time-domain realization of the C3
61 controller. One advantage of the multi resonant control is elimination for the
62 need of wave prediction; it is purely a feedback control. Yet, the the feedback
63 signal (the buoy position signal) needs to be spectrally decomposed to obtain
64 the motion amplitude at each frequency. This decomposition is carried out using
65 a Fast Fourier Transform (FFT) approach in [37, 38].

66 This paper extends the multi resonant control for the case of a two-body
67 WEC. Two-body WECs were recently proposed to generate power necessary
68 for oceanic scientific missions [39]. A Kalman Filter is proposed to carry out
69 the feedback signal decomposition instead of the FFT approach, and it is shown
70 that the Kalman Filter has better performance and lower computational cost.
71 Another contribution in this paper is a new concept for handling constraints on
72 the WEC motion and actuation force. The original PDC3 approach is designed
73 for the unconstraint case. This paper proposes a method for handling constraints
74 suitable for the PDC3. This paper is organized as follows. Section 2 introduces
75 the dynamic model of the two-body heaving system. Section 3 presents the
76 development of the multi resonant control for the two-body system. Section 4
77 presents the signal processing part using the Kalman Filter. The simulation
78 results, which show a comparison between the Extended Kalman Filter and
79 the Linear Kalman Filter as well as a comparison between the unconstrained
80 controller and the constrained controller, are presented in Section 5. Finally,
81 the influence of different mooring stiffness is discussed in Section 6.

82 2. Dynamic Model

83 The proposed two-body heaving system in this paper is indicated in Fig. 1.
84 The system consists of two bodies: a floating body and a submerged body
85 (that may contain science sensors.) The two bodies are connected through a
86 power take-off unit in between them. The heaving motion of the floating body
87 is used to harvest energy by the power take-off unit. The submerged body is
88 composed of two hemispheres; this structures has advantages in terms of the
89 relative radiation damping between the two bodies as detailed in [39]. This
90 submerged body of two hemispheres is adopted in this paper; yet the methods
91 presented in this paper are applicable to any two-body heaving system. The
92 Power take-off unit and the mooring are not shown in the figure, but they
93 exist. The floating buoy is a cylinder, and the submerged body consists of two

⁹⁴ hemispheres that are rigidly connected. From now on, the upper and lower
⁹⁵ bodies will be denoted as body 1 and body 2, respectively.

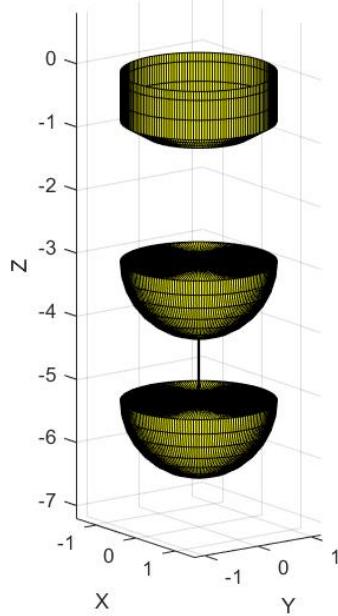


Figure 1: The two-body WEC system

⁹⁶ The equations of motion of this two-body system in the case of a regular
⁹⁷ wave can be written as:

$$(m_1 + m_{a,11})\ddot{x}_1 + m_{a,12}\ddot{x}_2 + R_{11}\dot{x}_1 + R_{12}\dot{x}_2 + b_{v1}\dot{x}_1 + k_s x_1 = F_{e1} + u \quad (1)$$

$$(m_2 + m_{a,22})\ddot{x}_2 + m_{a,21}\ddot{x}_1 + R_{21}\dot{x}_1 + R_{22}\dot{x}_2 + b_{v2}\dot{x}_2 + k_m x_2 = F_{e2} - u \quad (2)$$

⁹⁸ Where x_1 and x_2 represent the displacements of the first and second bodies,
⁹⁹ respectively, relative to their static equilibrium positions. The masses of the two
¹⁰⁰ bodies are m_1 and m_2 . The $m_{a,ij}$ and R_{ij} are the added mass and radiation
¹⁰¹ damping coefficient of the i th body due to the motion of the j th body, which
¹⁰² are computed from the Boundary Element Software WAMIT [40]. The k_s is
¹⁰³ the hydrostatic stiffness of the first mass and k_m is the mooring stiffness of
¹⁰⁴ the second mass. The b_{v1} and b_{v2} are the viscous damping coefficients of body
¹⁰⁵ 1 and body 2, respectively. The control force (also called the Power take-off

106 force) is generated by an actuator that is connected between the two bodies,
 107 and hence the control force u has the same magnitude in Equations (1) and (2),
 108 and with opposite directions. The F_{e1} and F_{e2} are the excitation forces on the
 109 first and the second bodies, respectively. As shown in Eq. (3), the excitation
 110 force is composed of the summation of several harmonics, that have different
 111 frequencies.

$$F_{e,i} = \sum_{n=1}^N \Re(\tilde{F}_{e,i}(\omega_n)\eta(\omega_n)e^{J(-\omega_n t + \phi_n)}), i = 1, 2 \quad (3)$$

112 where $\tilde{F}_{e,i}(\omega_n)$ represents the excitation force coefficient at the frequency ω_n , for
 113 the i th body, which is also obtained from WAMIT. The $\eta(\omega_n)$ is the frequency
 114 dependent wave elevation. The equation of motion can be written in a compact
 115 state space form as follows:

$$\mathbf{M}\ddot{\vec{x}} + \mathbf{B}\dot{\vec{x}} + \mathbf{K}\vec{x} = \vec{F}_e + \vec{F}_{rad} + \vec{u} \quad (4)$$

116 where the state vector $\vec{x} = [x_1, x_2]^T$. The excitation force vector $\vec{F}_e =$
 117 $[F_{e1}, F_{e2}]^T$, the radiation force vector $\vec{F}_{rad} = [F_{rad1}, F_{rad2}]^T$ and the control
 118 force vector $\vec{u} = [u, -u]^T$. The mass matrix is:

$$M = \begin{bmatrix} m_1 + m_{a,11} & m_{a,12} \\ m_{a,21} & m_2 + m_{a,22} \end{bmatrix} \quad (5)$$

The viscous damping matrix is:

$$B = \begin{bmatrix} b_{v1} & 0 \\ 0 & b_{v2} \end{bmatrix} \quad (6)$$

The stiffness \mathbf{K} matrix is:

$$K = \begin{bmatrix} k_s & 0 \\ 0 & k_m \end{bmatrix} \quad (7)$$

119 The radiation force \vec{F}_{rad} can be approximated by a state space model [41]:

$$\dot{\vec{x}}_r = A_r \vec{x}_r + B_r \dot{\vec{x}} \quad (8)$$

$$\vec{F}_{rad} = C_r \vec{x}_r \quad (9)$$

120 where A_r , B_r and C_r matrices are functions of the added masses and the
 121 radiation damping coefficients.

¹²² **3. The Multi Resonant Control**

The multi resonant control, which is also called the Proportional Derivative Complex Conjugate Controller (PDC3), uses a PD feedback control at each frequency to compute a control force at each frequency. The total feedback control is the summation of all the control forces at all frequencies. The details of the controller are presented in [42] for a single-body WEC. In this paper, the second mass is assumed to have a small motion. So the PDC3 controller is designed for the upper mass. At a frequency ω_i , the control force has the form:

$$u_i = -K_{p,i}x_{1,i} - K_{d,i}\dot{x}_{1,i} \quad (10)$$

¹²³ where $x_{1,i}$ is the first body response at the i th frequency ω_i , that is:

$$\ddot{x}_{1,i} = -\frac{k_s}{m_1 + m_{a,11,i}}x_{1,i} - \frac{b_{v1} + R_{11,i}}{m_1 + m_{a,11,i}}\dot{x}_{1,i} + \frac{F_{e1,i} + u_i}{m_1 + m_{a,11,i}} \quad (11)$$

¹²⁴ The $K_{p,i}$ and $K_{d,i}$ are the proportional and derivative gains of the controller
¹²⁵ respectively. To achieve the resonant condition, the $K_{p,i}$ and $K_{d,i}$ need to be
¹²⁶ designed as follows:

$$K_{p,i} = \omega_{ex}^2(m_1 + m_{a,11,i}) - k_s \quad (12)$$

$$K_{d,i} = b_{v1} + R_{11,i} \quad (13)$$

¹²⁷ As shown in Eq. (12) and (13), the concept of impedance matching (a C3
¹²⁸ criterion) is used to design the PD gains. The system response x_1 is compounded
¹²⁹ from all frequencies; therefore N PD controllers can be designed as feedback
¹³⁰ signals.

$$u = \sum_{i=1}^N u_i \quad (14)$$

To compute the control in Eq. (10), the spectral decomposition of the first mass response x_1 and its derivative are needed. This spectral decomposition yields the amplitudes of position and velocity of the first body at each frequency. These amplitudes cannot be measured and hence they need to be estimated. For the sake of this estimation process, lets assume that the estimate of first body position signal \hat{x}_1 consists of N different harmonics:

$$\hat{x}_1 = \sum_{i=1}^N a_i \cos(\omega_i t) + b_i \sin(\omega_i t) \quad (15)$$

Hence:

$$\dot{x}_1 = \sum_{i=1}^N -\omega_i a_i \sin(\omega_i t) + \omega_i b_i \cos(\omega_i t) \quad (16)$$

131 So based on Eqs. (10), (13), (15) and (16), Eq. (14) can be rewrite as:

$$u = -\sum_{i=1}^N K_{p,i} (a_i \cos(\omega_i t) + b_i \sin(\omega_i t)) - \sum_{i=1}^N (R_{11,i} (-\omega_i a_i \sin(\omega_i t) + \omega_i b_i \cos(\omega_i t))) - b_{v1} \dot{x}_1 \quad (17)$$

132 where $[a_1, a_2, \dots, a_N]$, $[b_1, b_2, \dots, b_N]$, and $[\omega_1, \omega_2, \dots, \omega_N]$ are the unknown parameters to be estimated. Note that the b_{v1} is a frequency-independent constant, 133 and hence it can be multiplied directly with the estimate of the velocity of the 134 first body, as shown in Eq. (17). 135

136 The above PDC3 solves the unconstrained problem. There are usually 137 constraints on the motion amplitude as well as limitations on the control force, in 138 most realistic applications. To satisfy these constraints, the following concept 139 is proposed. In the above unconstrained control, recall that N frequencies are 140 selected and the control component at each frequency is designed so as to 141 resonate the buoy motion with the wave at that frequency, according to the C3 142 criteria. These frequencies are those that have the largest N motion amplitudes; 143 the value of N is usually selected so that most of the energy is captured. In the 144 presence of motion and/or force constraints, it is possible to reduce the value 145 of N such that the constraints are satisfied. Reducing the value of N implies 146 resonating the buoy motion with the wave excitation force at fewer frequencies, 147 which means reduced harvested energy. This reduction in the value of N , results 148 in reduced control force and reduced motion amplitude, as detailed in Section 5. 149 Hence, the process of handling constraints is to first compute the unconstrained 150 PDC3, and if any of the constraints is violated then the number of frequencies 151 is reduced to get a control force that satisfies all the constraints.

152 **4. State Estimation**

153 The Fast Fourier Transform (FFT) approach was the first attempt at estimating 154 the amplitudes of motion as detailed in [37, 38]. Then a Least Squares 155 Error Minimization approach was implemented in [42] for the same purpose. 156 Both methods work on a time window to collect the data for signal processing. 157 In this paper, the Kalman Filter, which is a recursive filter that does not 158 need a time window, is implemented. It is demonstrated in this paper that the 159 Kalman Filter not only accelerates the signal processing calculations but also 160 can make the estimation more robust. Both a Linear Kalman Filter (LKF) and 161 an Extended Kalman Filter (EKF) implementations are presented in this paper.

¹⁶² 4.1. The Linear Kalman Filter

Consider Eqs.(15) and (16), if the frequencies are known then the position and velocity become linear functions of the a_i and b_i coefficients. In such case, LKF can be implemented. Hence we assume a vector of frequencies $\vec{\omega} = [\omega_1, \omega_2 \dots \omega_N]^T$ to be known. Let us define the state vector of the Kalman Filter as $\hat{\mathbf{X}} = [\hat{a}_1, \hat{a}_2 \dots \hat{a}_N, \hat{b}_1, \hat{b}_2 \dots \hat{b}_N]^T$. The dynamics of the Kalman Filter can be written as:

$$\dot{\hat{\mathbf{X}}} = \mathbf{0} \quad \text{and} \quad \dot{P} = Q \quad (18)$$

where Q is the covariance matrix associated with the process noise, and P is the state estimate covariance matrix. The position measurement is represented as:

$$\tilde{y}_k = \sum_{i=1}^N (\hat{a}_i \cos(\omega_i t) + \hat{b}_i \sin(\omega_i t)) + v_k \quad (19)$$

where v_k is the measurement noise. The measurement in this case is the displacement of the first body, denoted as x_{1m} . This equation can be written in a more convenient form:

$$\tilde{y}_k = H_k \hat{\mathbf{X}}_k + v_k \quad (20)$$

where H is an $N \times 2$ matrix that include all the cosine and sine functions. Note that this H matrix can be computed off line since the frequency vector is assumed known. The Kalman gain at time step k is computed as:

$$K_k = P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1} \quad (21)$$

¹⁶³ where R is the measurement noise covariance matrix. Finally, the process of
¹⁶⁴ the continuous-discrete LKF can be summarized as [43]:

- ¹⁶⁵ (1) Propagate the current state and the covariance matrix using Eq. (18) to
- ¹⁶⁶ the next stage k , to get $\hat{\mathbf{X}}_k^-$ and P_k^- .
- ¹⁶⁷ (2) Compute the Kalman Gain using Eq. (21).
- ¹⁶⁸ (3) Update the state $\hat{\mathbf{X}}_k^+$ using:

$$\hat{\mathbf{X}}_k^+ = \hat{\mathbf{X}}_k^- + K_k [x_{1m,k} - H_k \hat{\mathbf{X}}_k^-] \quad (22)$$

- ¹⁶⁹ (4) Update the state P_k^+ using:

$$P_k^+ = [I - K_k H_k] P_k^- \quad (23)$$

- ¹⁷⁰ (5) The current state becomes $\hat{\mathbf{X}}_k^+$ and P_k^+ .
- ¹⁷¹ (6) Go to step (1)

¹⁷² To complete the implementation of the LKF, the $\hat{\mathbf{X}}_i$ and P_i need to be
¹⁷³ initialized when $i = 0$. Since all the hydrodynamic coefficients can be computed
based on the shape of the buoy. Hence an initial guess $\hat{\mathbf{X}}_0$ can be computed as
follows:

$$\begin{aligned}\hat{a}_i &= \frac{\Re(\tilde{F}_{e1}(\omega_i))\eta_{max}/N}{\sqrt{(-(m_1 + m_{a,11,i})\omega_i^2 + k_s)^2 + (b_{v1} + R_{11,i})^2}} \\ \hat{b}_i &= \frac{\Im(\tilde{F}_{e1}(\omega_i))\eta_{max}/N}{\sqrt{(-(m_1 + m_{a,11,i})\omega_i^2 + k_s)^2 + (b_{v1} + R_{11,i})^2}} \\ i &= 1, 2, 3 \dots N\end{aligned}\quad (24)$$

174 where η_{max} is the maximum wave elevation which is assumed known. The
 175 $\vec{\omega}$ are selected to be evenly distributed within a certain range. The \vec{a} , \vec{b} and $\vec{\omega}$
 176 will be fed to the PDC3 controller.

177 *4.2. The Extended Kalman Filter*

If the frequency vector in the model described in Section 3 is unknown, then it needs to be estimated. Adding $\vec{\omega}$ to the state vector renders the system nonlinear and hence an extended Kalman filter is needed. So the state vector in this case becomes:

$$\hat{\mathbf{X}} = [\hat{x}_1, \hat{\dot{x}}_1, \hat{\vec{x}}_{r11}, \hat{\vec{A}}, \hat{\vec{B}}, \hat{a}, \hat{b}, \hat{\vec{\omega}}] \quad (25)$$

178 where $\hat{\vec{A}}$ and $\hat{\vec{B}}$ are the estimates for the coefficients in Eq. (26) which rep-
 179 resents the series expansion approximation for the excitation force on the first
 180 body:

$$\hat{F}_{e1} = \sum_{i=1}^N A_i \cos(\omega_i t) + B_i \sin(\omega_i t) \quad (26)$$

181 The dynamic equations used in the EKF are listed below:

$$\begin{aligned}\hat{\ddot{x}}_1 &= \frac{1}{M_{11}}(\hat{F}_{e1} + u - C_{r11}\hat{\vec{x}}_{r11} - b_{v1}\hat{\dot{x}}_1 - k_s\hat{x}_1) \\ \hat{\ddot{x}}_{r11} &= A_{r11}\hat{\vec{x}}_{r11} + B_{r11}\hat{\vec{z}}_1 \\ \hat{\vec{A}} &= \hat{\vec{B}} = \hat{\vec{a}} = \hat{\vec{b}} = \hat{\vec{\omega}} = \mathbf{0}\end{aligned}\quad (27)$$

where $M_{11} = (m_1 + m_{a,11})$ is the summation of the first rigid body mass and the added mass due to the first body radiation waves. The \hat{x}_1 is the estimation for the displacement of the first mass, $\hat{\vec{x}}_{r11}$ represents the estimation for the radiation states associated with the radiation force on the first mass due to the radiation waves generated by the first mass. The A_{r11} , B_{r11} and C_{r11} can be obtained from WAMIT. Note that in this EKF dynamic model we neglected the effect of radiation force from the radiated waves generated by the second body on the first body for couple of reasons. First, it is assumed that the motion of

the second body is small and hence its impact is small. Second, this model is used only inside the EKF to propagate the first body motion. The propagated states get updated at each time step using the measurements, and hence a small error in the propagation step might be acceptable for the sake of having faster and computationally efficient estimation. To propagate the EKF, we need to compute the Jacobian matrix F which includes the partial derivatives of each of the dynamic equations (27) with respect to each of the states. The matrix F is then:

$$M_{11}F = \begin{bmatrix} 0 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -k_s & -b_{v1} & -C_{r11} & \frac{\partial f_2}{\partial \hat{A}} & \frac{\partial f_2}{\partial \hat{B}} & \mathbf{0} & \mathbf{0} & \frac{\partial f_2}{\partial \hat{\omega}} \\ \mathbf{0} & M_{11}B_{r11} & M_{11}A_{r11} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \quad (28)$$

182 where

$$\frac{\partial f_2}{\partial \hat{A}} = \cos(\hat{\omega}t) \quad (29)$$

$$\frac{\partial f_2}{\partial \hat{B}} = \sin(\hat{\omega}t) \quad (30)$$

$$\frac{\partial f_2}{\partial \hat{\omega}} = -\hat{\omega} \cdot \hat{A} \cdot \sin(\hat{\omega}t) + \hat{\omega} \cdot \hat{B} \cdot \cos(\hat{\omega}t) \quad (31)$$

The Jacobian matrix F is used to propagate the covariance matrix:

$$\dot{P} = FP + PF^T + Q \quad (32)$$

183 The measurement at a time step k is:

$$\begin{aligned} \tilde{y}_k &= h(\hat{\mathbf{X}}_k) + v_k \\ &= \left[\sum_{i=1}^N \hat{a}_i \cos(\hat{\omega}_i t) + \hat{b}_i \sin(\hat{\omega}_i t) \right] + v_k \end{aligned} \quad (33)$$

184 where v_k is the measurement noise. So the Jacobian matrix of the output
185 H can be computed as:

$$H = \begin{bmatrix} 1 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cos(\hat{\omega}t) & \sin(\hat{\omega}t) & \frac{\partial h_2}{\partial \hat{\omega}} \end{bmatrix} \quad (34)$$

186 where

$$\frac{\partial h_2}{\hat{\vec{\omega}}} = -\hat{\vec{\omega}} \cdot \hat{\vec{a}} \cdot \sin(\hat{\vec{\omega}}t) + \hat{\vec{\omega}} \cdot \hat{\vec{b}} \cdot \cos(\hat{\vec{\omega}}t) \quad (35)$$

187 The Kalman gain of the EKF can be computed as:

$$K_k = P_k^- H_k^T (\hat{\mathbf{X}}_k^-) [H_k (\hat{\mathbf{X}}_k^-) P_k^- H_k^T (\hat{\mathbf{X}}_k^-) + R_k]^{-1} \quad (36)$$

188 The process of the continuous-discrete EKF can be summarized as:

189 (1) Propagate the current state and the covariance matrix with Eq. (27) and
190 (32) to the next stage k to get $\hat{\mathbf{X}}_k^-$ and P_k^- .
191 (2) Compute the Kalman Gain using Eq. (36).
192 (3) Update the state $\hat{\mathbf{X}}_k^-$ using:

$$\hat{\mathbf{X}}_k^+ = \hat{\mathbf{X}}_k^- + K_k \left[[x_{1m,k}, x_{1m,k}]^T - h(\hat{\mathbf{X}}_k^-) \right] \quad (37)$$

(4) Update the state P_k^- using:

$$P_k^+ = [I - K_k H_k (\hat{\mathbf{X}}_k^-)] P_k^- \quad (38)$$

192 (5) The current state becomes $\hat{\mathbf{X}}_k^+$ and P_k^+ .
193 (6) Go to step (1)

194 **5. Simulation results**

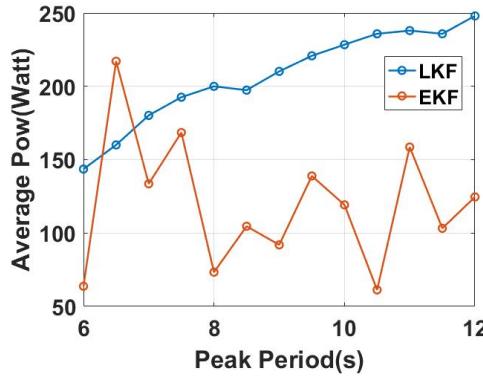
195 The first mass used in the simulation has a radius of 1.2 m and a draft of
196 1 m. The second mass has a radius of 1.2 m for both hemispheres. The rigid
197 body mass of the first body is 4637 kg, and of the second body is 7419.2 kg.
198 MatlabTM has been used for all the simulations. The PC used for simulations
199 has an Intel CoreTM i5 CPU at 3.3GHz and with 8.0GB memory. The control
200 update rate utilized in the simulation is 0.01s.

201 *5.1. Comparison between LKF and EKF*

202 The wave used in this section has a Bretschneider wave spectrum that is
203 realized using 300 frequencies. The significant height of the wave is 0.2 m, and
204 the peak period varies from 6 s to 12 s. The mooring stiffness of the second
205 mass is 3.63×10^6 N/m. The PDC3 controller with EKF uses 5 PD controllers.
206 The LKF, however, uses 11 PD controllers at fixed 11 frequencies. The values
207 of the vector of the frequencies are equally spaced and are shown below:

$$\vec{\omega} = [0.005, 0.143, 0.2811, 0.4191, 0.5571, 0.6952, \\ 0.8332, 0.9712, 1.1092, 1.2473, 1.3853]^T (rad/s) \quad (39)$$

208 The average extracted power of the two-body system for each of the LKF
 209 and the EKF at different peak periods are shown in Fig. 2. The performance
 210 of the LKF is clearly more robust compared to the EKF due to the higher
 211 estimation accuracy obtained by the LKF. Regarding the computational cost,
 212 the significant part of the computational cost is in the estimation algorithm.
 213 The EKF needs 0.0048 s for estimation in each time step. The LKF needs
 214 0.0021 s for estimation in each time step. Hence, the LKF is about twice as fast
 215 compared to the EKF. Therefore, the rest of this paper will show only results
 obtained using the LKF.



216 Figure 2: The average extracted power for a range of peak periods using both LKF and EKF

217

5.2. The Unconstrained Problem

218 The detailed results for the performance of the unconstrained PDC3 con-
 219 troller, using the LKF for estimation, is presented in this section. The wave
 220 used in this section has a significant height of 0.2 m, and has a peak period of
 221 9 s. The mooring stiffness of the second mass is 3.63×10^6 N/m. The multi
 222 resonant controller has 11 PD feedback controllers. The distribution of the fre-
 223 quencies is the same as in Eq. (39). Figures 3 and 4 show the harvested power
 224 and energy from each of the two bodies. It can be seen from Figs. 3 and 4 that
 225 the average extracted power is 210 W within 500 s. The motion of the buoy
 226 is shown in Fig. 5 which indicates a maximum displacement of 1.6 m of body
 227 1. Fig. 6 shows the displacement estimation which is clearly close to the true
 228 displacement. The maximum relative motion is also around 1.6 m due to the
 229 small motion of body 2. The control force is plotted in Fig. 7, the maximum
 230 control force is below 7×10^4 N.

231

5.3. The Constrained Problem

232

233 There are few constraints that need to be accounted for in a realistic imple-
 234 mentation of the proposed PDC3 control on the two-body WEC. In this case
 study, it is assumed that the maximum displacement for the first mass is 0.9 m,

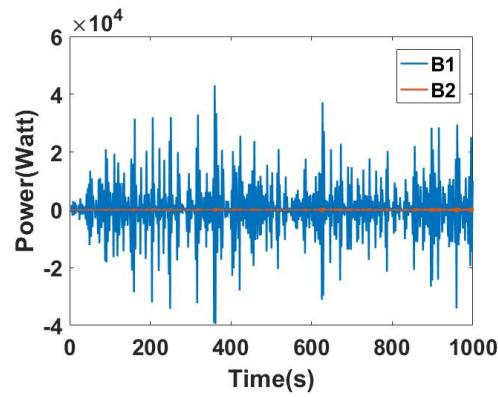


Figure 3: The extracted power for each of body 1 and body 2

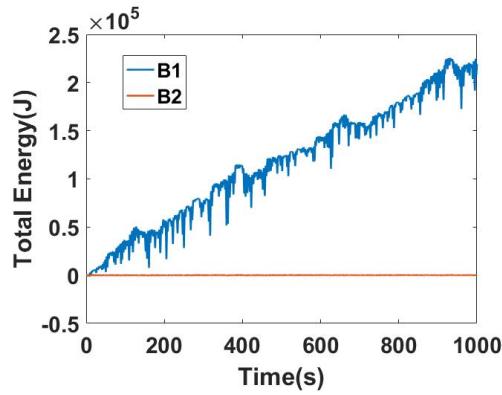


Figure 4: The extracted energy for each of body 1 and body 2

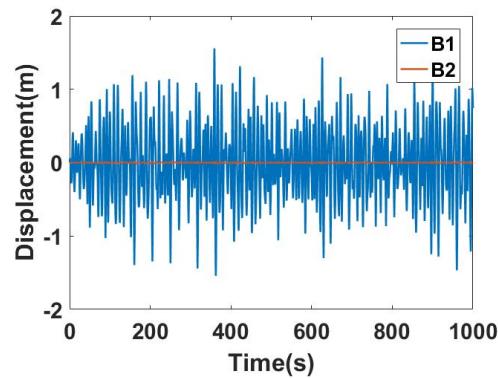


Figure 5: The displacement of each of body 1 and body 2

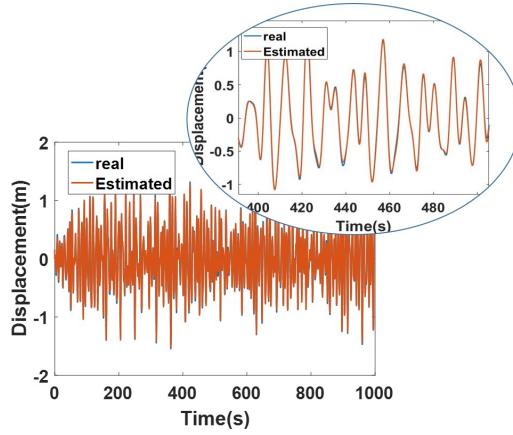


Figure 6: The real vs. the estimated displacement of body 1

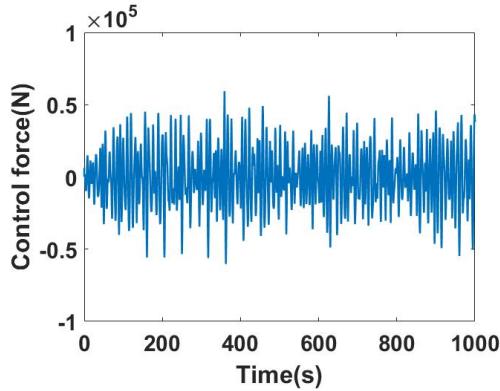


Figure 7: The control force on body 1

and the maximum relative motion is 1.5 m. The control force is limited below 7000 N. The wave used in this section has a significant height of 0.3 m and a peak period of 9 s. The mooring stiffness is 3.63×10^6 N/m. To satisfy the constraint for the control force, the number of frequencies is reduced to $N = 4$. These frequencies are $\vec{\omega} = [0.005, 0.4651, 0.9252, 1.3853]$ rad/s.

Figure 8 shows the energy extracted in 1000 s by each of body 1 and body 2. The harvested energy by body 1 is 1.421×10^5 J and the harvested energy by body 2 is 301.9 J. This is equivalent to an average power of 140 W. Fig. 9 shows that the maximum displacement of body 1 is around 0.5 m; the displacement is not plotted but it is very small and negligible due to mooring. The estimation accuracy of the displacement is shown in Fig. 9 where both the estimated and true displacements are presented. Since the motion of body 2 is very small, the relative motion then has a maximum magnitude of around 0.5 m. Using only 4 frequencies in computing the control reduces the control level significantly.

249 When it is still higher than the control constraint, the control force is forced to
 250 have the maximum control level as shown in Fig. 10.

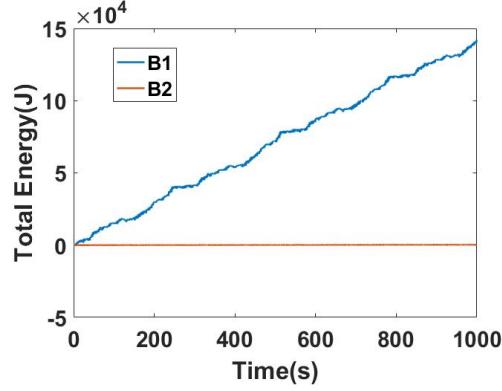


Figure 8: The extracted energy of body 1 and body 2

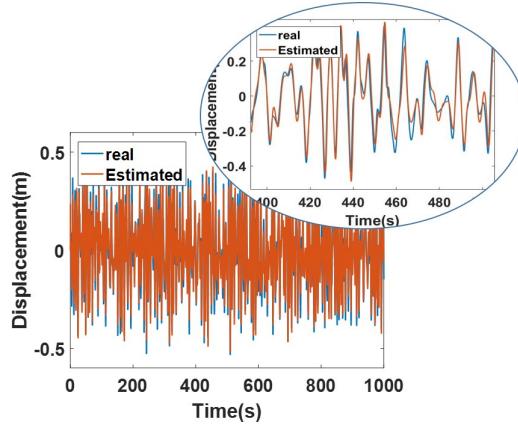


Figure 9: The real displacement of body 1 and the estimated displacement

251 **6. Discussion**

252 In this paper, the PDC3 controller is presented to control the motion of the
 253 two-body system shown in Fig. 1. After comparing the performance of the LKF
 254 and EKF, the LKF is selected to estimate the system states. It is noted here
 255 that the LKF does not require any wave information. Moreover, the compu-
 256 tational cost is significantly saved by the LKF because of the simplicity of the
 257 dynamics of LKF. In previous work, the parameters estimation was conducted
 258 using either FFT [37, 38] or a Least Squares Error minimization approach [42].
 259 A large time window was needed in both methods to collect sufficient data for

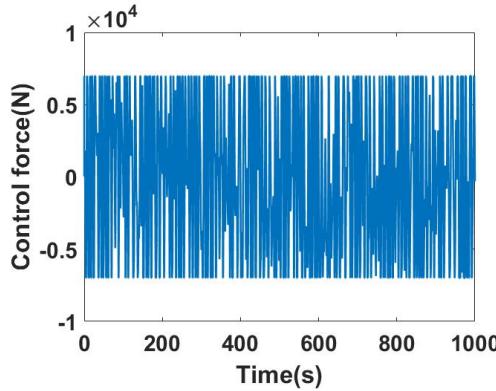


Figure 10: The control force

260 signal processing, and the optimal window size also needed careful selection.
 261 The PDC3 control was sensitive to the accuracy of the estimated states in both
 262 methods. Nevertheless, the LKF overcomes these issues. No window is needed
 263 in this recursive LKF. Also there is a robust energy extraction, while the com-
 264 putational time is improved significantly.

265 It is assumed in this paper that the second body has a small motion, and
 266 a large mooring stiffness (3.63×10^6 N/m) is assumed for the second body
 267 in the results presented in Section 5. Here, the performance of the system is
 268 compared for several different mooring stiffness values. The investigated values
 269 of the mooring stiffness are $K = [10, 1000, 5 \times 10^4, 6 \times 10^5, 3.63 \times 10^6]$ N/m.
 270 Fig. 11 shows the variation of the average power harvested by body 1 as well as
 271 the total power harvested by the two bodies versus the mooring stiffness. Also
 272 Fig. 12 shows the variation of the relative displacement between the two masses
 273 versus the mooring stiffness. As can be seen in both figures, when the mooring
 274 stiffness is below 5×10^4 N/m ($\log(5 \times 10^4) = 10.8198$), the relative displacement
 275 between the two bodies is significantly high. The average absorbed power of the
 276 first body is about the same everywhere (about 145 W) in this range, while
 277 the second body moves and affects the harvested power. The motion of the
 278 second body is undesirable and hence this range of mooring stiffness values is
 279 not suitable. On the other hand, when the mooring stiffness is greater than
 280 3.63×10^6 N/m ($\log(3.63 \times 10^6) = 15.1047$), the second mass will have very
 281 small motion and hence a minimum impact on the harvested energy by the
 282 system.

283 **7. Conclusion**

284 This paper presents a multi resonant controller for a two-body heaving sys-
 285 tem, in which the lower body is required to have minimal motion while harvested
 286 energy from the upper body is maximized. The concept of impedance matching

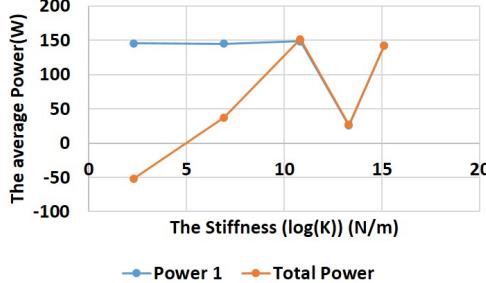


Figure 11: The power harvested by body 1 (Power 1) and the total harvested power by the two bodies for different mooring stiffness values

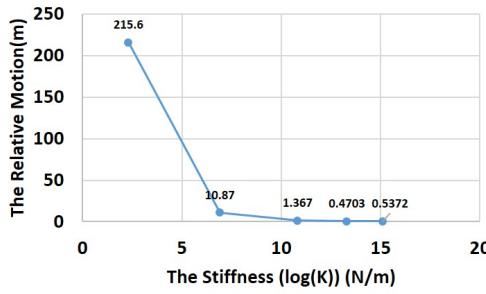


Figure 12: The maximum relative motion for different mooring stiffness values

287 is utilized in this multi resonant control and is realized using multiple PD con-
 288 trol designs at multiple frequencies, in the feedback signal. This approach is a
 289 feedback approach that does not require wave prediction. Rather the spectral
 290 decomposition of the buoy motion amplitude at different frequencies is esti-
 291 mated. It is shown in this paper that a linear Kalman filter (LKF) can be used
 292 to estimate these amplitudes in a computationally efficient and more robust
 293 way, compared to fast Fourier transform, least square error methods, and an
 294 extended Kalman filter (EKF). This paper also presents a simple method for
 295 handling motion and control constraints when the PDC3 approach is imple-
 296 mented for control. High mooring stiffness is needed for the lower body when
 297 designing this type of control, due to the requirement of small motion of the
 298 second body. simulation results in this paper demonstrates the possibility of
 299 maintaining small displacements for the second body while harvesting energy
 300 from the first body. While the analysis conducted in this paper focuses on a
 301 specific two-body WEC, the methods presented are applicable to any type of
 302 two-body heaving system.

303 **Acknowledgement**

304 This material is based upon work supported by the National Science Foundation
305 under Grant Number 1635362. Dr. Rush Robinett suggested the use of
306 the multi resonant control in this application.

307 **References**

- 308 [1] J. Falnes, A review of wave-energy extraction, *Marine Structures* 20 (4)
309 (2007) 185–201.
- 310 [2] C. C. Mei, Power extraction from water waves, *Journal of Ship Research*
311 20 (1976) 63–66.
- 312 [3] K. Budal, Theory for absorbtion of wave power by a system of interacting
313 bodies, *Journal of Ship Research* 21 (1977) 248–253.
- 314 [4] J.N.Newman, *The interaction of stationary vessels with regular waves*, in:
315 Proceeding 11th symposium, Naval hydrodynamics, London, 1976. [doi:10.1017/S0022112076001109](https://doi.org/10.1017/S0022112076001109)
316 URL http://journals.cambridge.org/article_S0022112076001109
- 318 [5] A. F. Falcão, J. C. Henriques, Oscillating-water-column wave energy con-
319 verters and air turbines: A review, *Renewable Energy* 85 (2016) 1391–1424.
- 320 [6] B. Drew, A. Plummer, M. N. Sahinkaya, A review of wave energy converter
321 technology, *Proceedings of the Institution of Mechanical Engineers, Part A:*
322 *Journal of Power and Energy* 223 (8) (2009) 887–902.
- 323 [7] J. Ringwood, G. Bacelli, F. Fusco, Energy-maximizing control of wave-
324 energy converters: The development of control system technology to op-
325 timize their operation, *Control Systems, IEEE* 34 (5) (2014) 30–55. [doi:10.1109/MCS.2014.2333253](https://doi.org/10.1109/MCS.2014.2333253).
- 327 [8] F. Fusco, J. Ringwood, Hierarchical robust control of oscillating wave en-
328 ergy converters with uncertain dynamics, *Sustainable Energy, IEEE Trans-
329 actions on* 5 (3) (2014) 958–966. [doi:10.1109/TSTE.2014.2313479](https://doi.org/10.1109/TSTE.2014.2313479).
- 330 [9] J. Scruggs, S. Lattanzio, A. Taflanidis, I. Cassidy, *Optimal causal control
331 of a wave energy converter in a random sea*, *Applied Ocean Research* 42
332 (2013) 1 – 15. [doi:<http://dx.doi.org/10.1016/j.apor.2013.03.004>](http://dx.doi.org/10.1016/j.apor.2013.03.004).
333 URL <http://www.sciencedirect.com/science/article/pii/S0141118713000205>
- 335 [10] G. Li, M. R. Belmont, *Model predictive control of sea wave
336 energy converters part i: A convex approach for the case of
337 a single device*, *Renewable Energy* 69 (0) (2014) 453 – 463.
338 [doi:<http://dx.doi.org/10.1016/j.renene.2014.03.070>](http://dx.doi.org/10.1016/j.renene.2014.03.070).
339 URL <http://www.sciencedirect.com/science/article/pii/S0960148114002456>

341 [11] A. Babarit, A. H. Clément, Optimal latching control of a wave energy device
342 in regular and irregular waves, *Applied Ocean Research* 28 (2) (2006) 77–91.

343 [12] E. Abraham, E. C. Kerrigan, Optimal active control and optimization of
344 a wave energy converter, *IEEE Transactions on Sustainable Energy* 4 (2)
345 (2013) 324–332.

346 [13] G. Bacelli, J. Ringwood, Numerical optimal control of wave energy con-
347 verters, *Sustainable Energy, IEEE Transactions on* 6 (2) (2015) 294–302.
348 [doi:10.1109/TSTE.2014.2371536](https://doi.org/10.1109/TSTE.2014.2371536).

349 [14] S. Zou, O. Abdelkhalik, R. Robinett, G. Bacelli, D. Wilson, [Optimal](#)
350 [control of wave energy converters](#), *Renewable Energy* 103 (2017) 217 –
351 225. [doi:<http://dx.doi.org/10.1016/j.renene.2016.11.036>](http://dx.doi.org/10.1016/j.renene.2016.11.036).
352 URL <http://www.sciencedirect.com/science/article/pii/S0960148116310059>

354 [15] F. F. Flavià, A. Babarit, A. Clément, On the numerical modeling and
355 optimization of a bottom-referenced heave-buoy array of wave energy con-
356 verters, *International Journal of Marine Energy*.

357 [16] G. Barcelli, J. Ringwood, Constrained control of arrays of wave energy
358 devices., *International Journal of Marine Energy* 3 (2013) 53–69.

359 [17] B. F. M. Child, On the configuration of arrays of floating wave energy
360 converters.

361 [18] Y. Zheng, Y. Shen, Y. You, B. Wu, L. Rong, Hydrodynamic properties of
362 two vertical truncated cylinders in waves, *Ocean Engineering* 32 (3) (2005)
363 241–271.

364 [19] B. Wu, Y. Zheng, Y. You, D. Jie, Y. Chen, On diffraction and radiation
365 problem for two cylinders in water of finite depth, *Ocean engineering* 33 (5)
366 (2006) 679–704.

367 [20] J. Engström, M. Eriksson, J. Isberg, M. Leijon, Wave energy converter
368 with enhanced amplitude response at frequencies coinciding with swedish
369 west coast sea states by use of a supplementary submerged body, *Journal*
370 *of Applied Physics* 106 (6) (2009) 064512.

371 [21] J. Engström, V. Kurupath, J. Isberg, M. Leijon, A resonant two body
372 system for a point absorbing wave energy converter with direct-driven linear
373 generator, *Journal of applied physics* 110 (12) (2011) 124904.

374 [22] F. P. Chau, R. W. Yeung, Inertia and damping of heaving compound cylin-
375 ders, in: *Abstract for The 25th International Workshop on Water Waves*
376 *and Floating Bodies*, Harbin, China, 2010, pp. 1–4.

377 [23] C. Cochet, R. W. Yeung, Two-component axisymmetricwave-energy
 378 absorber-analysis of dynamics and geometric proportions, in: The 27th Interna-
 379 tional Workshop on Water Waves and Floating Bodies, Copenhagen,
 380 Denmark, Citeseer, 2012.

381 [24] J. R. Kim, Y. H. Bae, I. H. Cho, et al., Relative heave motion responses
 382 of a floating dual-buoy wave energy converter in waves, in: The Twenty-
 383 fifth International Ocean and Polar Engineering Conference, International
 384 Society of Offshore and Polar Engineers, 2015.

385 [25] Y.-H. Yu, Y. Li, Reynolds-averaged navier–stokes simulation of the heave
 386 performance of a two-body floating-point absorber wave energy system,
 387 Computers & Fluids 73 (2013) 104–114.

388 [26] T. Whittaker, A. Wells, Experiences with a hydropneumatic wave power
 389 device, in: International Symposium on Wave and Tidal Energy, Vol. 1,
 390 1978, pp. B4–57.

391 [27] M. Srokosz, D. Evans, A theory for wave-power absorption by two inde-
 392 pendently oscillating bodies, Journal of Fluid Mechanics 90 (02) (1979)
 393 337–362.

394 [28] J. Falnes, Wave-energy conversion through relative motion between two
 395 single-mode oscillating bodies, Journal of Offshore Mechanics and Arctic
 396 Engineering 121 (1) (1999) 32–38.

397 [29] U. A. Korde, Systems of reactively loaded coupled oscillating bodies in
 398 wave energy conversion, Applied ocean research 25 (2) (2003) 79–91.

399 [30] C. Liang, L. Zuo, On the dynamics and design of a two-body wave energy
 400 converter, Renewable Energy 101 (2017) 265–274.

401 [31] B. Wu, X. Wang, X. Diao, W. Peng, Y. Zhang, Response and conversion
 402 efficiency of two degrees of freedom wave energy device, Ocean Engineering
 403 76 (2014) 10–20.

404 [32] F. d. O. António, P. A. Justino, J. C. Henriques, J. M. André, Reactive
 405 versus latching phase control of a two-body heaving wave energy converter,
 406 in: Control Conference (ECC), 2009 European, IEEE, 2009, pp. 3731–3736.

407 [33] J. Henriques, M. Lopes, R. Gomes, L. Gato, A. Falcao, On the annual
 408 wave energy absorption by two-body heaving wecs with latching control,
 409 Renewable Energy 45 (2012) 31–40.

410 [34] J. J. Cândido, P. A. Justino, Modelling, control and pontryagin maximum
 411 principle for a two-body wave energy device, Renewable Energy 36 (5)
 412 (2011) 1545–1557.

413 [35] G. Bacelli, J. V. Ringwood, J.-C. Gilloteaux, A control system for a self-
 414 reacting point absorber wave energy converter subject to constraints, IFAC
 415 Proceedings Volumes 44 (1) (2011) 11387–11392.

416 [36] S. Olaya, J.-M. Bourgeot, M. Benbouzid, Optimal control for a self-reacting
 417 point absorber: A one-body equivalent model approach, in: Power Elec-
 418 tronics and Application Conference and Exposition (PEAC), 2014 Interna-
 419 tional, IEEE, 2014, pp. 332–337.

420 [37] J. Song, O. Abdelkhalik, R. Robinett, G. Bacelli, D. Wil-
 421 son, U. Korde, Multi-resonant feedback control of heave wave
 422 energy converters, Ocean Engineering 127 (2016) 269 – 278.
 423 [doi:<http://dx.doi.org/10.1016/j.oceaneng.2016.09.046>](http://dx.doi.org/10.1016/j.oceaneng.2016.09.046).
 424 URL <http://www.sciencedirect.com/science/article/pii/S0029801816304346>

426 [38] O. Abdelkhalik, J. Song, R. Robinett, G. Bacelli, D. Wilson, U. Korde,
 427 Feedback control of wave energy converters, in: Asian Wave and Tidal
 428 Energy Conference (AWTEC 2016), Marina Bay Sands, Singapore, 2016,
 429 pp. 258–261.

430 [39] U. A. Korde, J. Song, R. D. Robinett, O. O. Abdelkhalik, Hydrodynamic
 431 considerations in near-optimal control of a small wave energy converter
 432 for ocean measurement applications, Marine Technology Society Journal
 433 51 (6) (2017) 44–57. [doi:doi:10.4031/MTSJ.51.6.5](http://doi:10.4031/MTSJ.51.6.5).
 434 URL <http://www.ingentaconnect.com/content/mts/mtsj/2017/00000051/00000006/art00006>

436 [40] C. Lee, **WAMIT Theory Manual**, Report (Massachusetts Institute of Tech-
 437 nology. Department of Ocean Engineering), Massachusetts Institute of
 438 Technology, Department of Ocean Engineering, 1995.
 439 URL <http://books.google.com/books?id=fWKGHAAACAAJ>

440 [41] T. Pérez, T. I. Fossen, Time-vs. frequency-domain identification of para-
 441 metric radiation force models for marine structures at zero speed, Modeling,
 442 Identification and Control 29 (1) (2008) 1–19.

443 [42] O. Abdelkhalik, S. Zou, R. Robinett, G. Bacelli, D. Wilson, R. Coe, U. A.
 444 Korde, Multi resonant feedback control of three-degree-of-freedom wave
 445 energy converters, IEEE Transactions on Sustainable Energy 8 (4) (2017)
 446 1518–1527. doi:10.1109/TSTE.2017.2692647.

447 [43] J. L. Crassidis, J. L. Junkins, Optimal Estimation of Dynamic Systems,
 448 CHAPMAN&HALL/CRC, 2004.