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Abstract

Buoys carrying scientific equipment usually need continuous power supply for
the operation of these equipments. These buoys can be equipped with actua-
tors and controlled to harvest power from the heaving motion of the buoy. A
two-body wave energy converter can be designed such that the buoy heaves to
harvest energy while the second (lower) body carries the science equipments.
This paper presents a control approach for this type of two-body wave energy
converter. This control approach is a multi resonant control that attempts to
maximize the harvested energy from the buoy (upper body). In this model, the
actuator is attached to both bodies. The lower body however is required to
have minimal heave motion. The proposed multi resonant control utilizes mea-
surements of the buoy position. The frequencies of the measured buoy position
are estimated, along with the motion amplitudes of these frequencies, and used
for feedback control. Estimation is carried out using two approaches; the first
uses a linear Kalman filter while the second uses an extended Kalman filter. A
new method for handling the motion and actuation limitations, suitable for the
multi resonant control, is proposed. Various numerical simulation results are
presented in the paper. Simulation results show that the linear Kalman filter
estimation approach is more robust and computationally efficient compared to
the extended Kalman filter.

Keywords: Wave Energy Conversion, Two-Body Heaving Wave Energy
Converter, Multi Resonant Control, Kalman Filter

1. Introduction1

Research on ocean wave energy converters (WECs) have been going since2

1970s [1] covering several aspects including the hydrodynamics of interaction3

between a buoy and the wave [2, 3, 4], and including different concepts for ocean4
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wave energy harvesting such as oscillating water column devices [5], overtopping5

converters [6] and the point absorbers [7, 8, 9]. In point absorbers, a buoy is6

controlled through actuators that act on the buoy against the seabed (single-7

body point absorber), or against a submerged larger mass that is not moving8

significantly (two-body point absorber). The single-body point absorber has9

been significantly studied over the past decades. Numerous controllers have10

been developed for the single-body point absorber such as those in references11

[10, 11, 12, 13, 14]. The two-body point absorber consists of two bodies: the12

upper body (buoy) and lower body. In fact the two-body point absorbers can be13

considered as a special category of the multi-body WECs, which are groups of14

closely spaced point absorbers, studied in several references such as [15, 16, 17].15

This concept of two-body point absorber is investigated in this paper in more16

detail to explore the possibility of using this two-body WEC to generate enough17

power to supply scientific instruments mounted on the lower body of the two-18

body point absorber. The focus here is on the control strategy. A fundamental19

constraint in this problem is the maximum stroke of the actuator; the actuator20

connects the two bodies and both are moving. The lower body motion should be21

kept at minimum since it is a requirement for proper operation of the scientific22

equipments on the lower body. The linear analysis presented in this paper also23

enforces a small displacement constraint on the motion of the upper body.24

There has been a significant amount of research on the two-body WECs25

in the literature. The hydrodynamics of the interaction between two cylinders26

is studied by [18] with infinite series of orthogonal functions. Reference [19]27

computes the radiation forces when the submerged cylinder has a larger radius28

than the floating one. The interaction between a cylinder at the top and a sphere29

at the bottom is studied in [20, 21]. References [22, 23, 24] present a detailed30

study for the hydrodynamic forces when the two-body system is composed of31

an outer hollow circular cylinder and an inner cylinder. Reference [25] studies32

the system response of a two-body system by means of the Reynolds-averaged33

Navier-stokes simulation. A dome-shaped buoy that reacts against a submerged34

spherical body is investigated in [26]. Reference [27] explores two independent35

oscillating bodies with a power take-off (PTO) unit attached to each one of36

them. Studying the relative motion of the two-body system is investigated in37

reference [28]. In fact reference [28] predicts the maximum power that can be38

harvested from the two-body system. Reference [29] compares two different39

systems; the first has the reaction mass out of the water while the second one40

assumes the reaction mass is submerged in the water. The results show that41

the system with a submerged reaction mass has a better performance. Recently,42

Reference [30] pointed out that the mass and viscous damping of the submerged43

body needs to be designed larger to achieve a better energy absorption of the two44

body heaving system. Reference [31] shows the system response and the energy45

absorption of a heaving two-cylinder WEC system. Reference [32] presents a46

latching phase control for the Interproject Service (IPS) buoy which is a two-47

body heaving system. The latching control is also studied in [33] for a two-body48

heaving system, and the performance of the controller is evaluated with real sea49

states. Reference [34] implements a PD controller and optimizes the controller50
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gains using the Pontryagin Maximum Principle. The pseudo-spectrum method51

is also developed in [35] to control the motion of a self-reacting point absorber. A52

model predictive control is derived in [36] using the one-body equivalent model53

developed in [28].54

Recently, a multi resonant control was developed for a single body point55

absorber, and is presented in references [37, 38]. The multi resonant control56

strategy implements a PD control to resonate the buoy motion with the incoming57

wave, at each frequency. The complex conjugate control (C3) criteria [1] are58

used in the multi resonant control to achieve resonance at each frequency. Yet,59

this multi resonant control is essentially a time-domain realization of the C360

controller. One advantage of the multi resonant control is elimination for the61

need of wave prediction; it is purely a feedback control. Yet, the the feedback62

signal (the buoy position signal) needs to be spectrally decomposed to obtain63

the motion amplitude at each frequency. This decomposition is carried out using64

a Fast Fourier Transform (FFT) approach in [37, 38].65

This paper extends the multi resonant control for the case of a two-body66

WEC. Two-body WECs were recently proposed to generate power necessary67

for oceanic scientific missions [39]. A Kalman Filter is proposed to carry out68

the feedback signal decomposition instead of the FFT approach, and it is shown69

that the Kalman Filter has better performance and lower computational cost.70

Another contribution in this paper is a new concept for handling constraints on71

the WEC motion and actuation force. The original PDC3 approach is designed72

for the unconstraint case. This paper proposes a method for handling constraints73

suitable for the PDC3. This paper is organized as follows. Section 2 introduces74

the dynamic model of the two-body heaving system. Section 3 presents the75

development of the multi resonant control for the two-body system. Section 476

presents the signal processing part using the Kalman Filter. The simulation77

results, which show a comparison between the Extended Kalman Filter and78

the Linear Kalman Filter as well as a comparison between the unconstrained79

controller and the constrained controller, are presented in Section 5. Finally,80

the influence of different mooring stiffness is discussed in Section 6.81

2. Dynamic Model82

The proposed two-body heaving system in this paper is indicated in Fig. 1.83

The system consists of two bodies: a floating body and a submerged body84

(that may contain science sensors.) The two bodies are connected through a85

power take-off unit in between them. The heaving motion of the floating body86

is used to harvest energy by the power take-off unit. The submerged body is87

composed of two hemispheres; this structures has advantages in terms of the88

relative radiation damping between the two bodies as detailed in [39]. This89

submerged body of two hemispheres is adopted in this paper; yet the methods90

presented in this paper are applicable to any two-body heaving system. The91

Power take-off unit and the mooring are not shown in the figure, but they92

exist. The floating buoy is a cylinder, and the submerged body consists of two93
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hemispheres that are rigidly connected. From now on, the upper and lower94

bodies will be denoted as body 1 and body 2, respectively.95

Figure 1: The two-body WEC system

The equations of motion of this two-body system in the case of a regular96

wave can be written as:97

(m1 +ma,11)ẍ1 +ma,12ẍ2 +R11ẋ1 +R12ẋ2+

bv1ẋ1 + ksx1 = Fe1 + u (1)

(m2 +ma,22)ẍ2 +ma,21ẍ1 +R21ẋ1 +R22ẋ2+

bv2ẋ2 + kmx2 = Fe2 − u (2)

Where x1 and x2 represent the displacements of the first and second bodies,98

respectively, relative to their static equilibrium positions. The masses of the two99

bodies are m1 and m2. The ma,ij and Rij are the added mass and radiation100

damping coefficient of the ith body due to the motion of the jth body, which101

are computed from the Boundary Element Software WAMIT [40]. The ks is102

the hydrostatic stiffness of the first mass and km is the mooring stiffness of103

the second mass. The bv1 and bv2 are the viscous damping coefficients of body104

1 and body 2, respectively. The control force (also called the Power take-off105
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force) is generated by an actuator that is connected between the two bodies,106

and hence the control force u has the same magnitude in Equations (1) and (2),107

and with opposite directions. The Fe1 and Fe2 are the excitation forces on the108

first and the second bodies, respectively. As shown in Eq. (3), the excitation109

force is composed of the summation of several harmonics, that have different110

frequencies.111

Fe,i =
N∑
n=1

<(F̃e,i(ωn)η(ωn)eJ(−ωnt+φn)), i = 1, 2 (3)

where F̃e,i(ωn) represents the excitation force coefficient at the frequency ωn, for112

the ith body, which is also obtained from WAMIT. The η(ωn) is the frequency113

dependent wave elevation. The equation of motion can be written in a compact114

state space form as follows:115

M~̈x+ B~̇x+ K~x = ~Fe + ~Frad + ~u (4)

where the state vector ~x = [x1, x2]T . The excitation force vector ~Fe =116

[Fe1, Fe2]T , the radiation force vector ~Frad = [Frad1, Frad2]T and the control117

force vector ~u = [u, −u]T . The mass matrix is:118

M =

[
m1 +ma,11 ma,12

ma,21 m2 +ma,22

]
(5)

The viscous damping matrix is:

B =

[
bv1 0
0 bv2

]
(6)

The stiffness K matrix is:

K =

[
ks 0
0 km

]
(7)

The radiation force ~Frad can be approximated by a state space model [41]:119

~̇xr = Ar~xr +Br~̇x (8)

~Frad = Cr~xr (9)

where Ar, Br and Cr matrices are functions of the added masses and the120

radiation damping coefficients.121
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3. The Multi Resonant Control122

The multi resonant control, which is also called the Proportional Derivative
Complex Conjugate Controller (PDC3), uses a PD feedback control at each
frequency to compute a control force at each frequency. The total feedback
control is the summation of all the control forces at all frequencies. The details
of the controller are presented in [42] for a single-body WEC. In this paper,
the second mass is assumed to have a small motion. So the PDC3 controller is
designed for the upper mass. At a frequency ωi, the control force has the form:

ui = −Kp,ix1,i −Kd,iẋ1,i (10)

where x1,i is the first body response at the ith frequency ωi, that is:123

ẍ1,i = − ks
m1 +ma,11,i

x1,i −
bv1 +R11,i

m1 +ma,11,i
ẋ1,i +

Fe1,i + ui
m1 +ma,11,i

(11)

The Kp,i and Kd,i are the proportional and derivative gains of the controller124

respectively. To achieve the resonant condition, the Kp,i and Kd,i need to be125

designed as follows:126

Kp,i = ω2
ex(m1 +ma,11,i)− ks (12)

Kd,i = bv1 +R11,i (13)

As shown in Eq. (12) and (13), the concept of impedance matching (a C3127

criterion) is used to design the PD gains. The system response x1 is compounded128

from all frequencies; therefore N PD controllers can be designed as feedback129

signals.130

u =
N∑
i=1

ui (14)

To compute the control in Eq. (10), the spectral decomposition of the first
mass response x1 and its derivative are needed. This spectral decomposition
yields the amplitudes of position and velocity of the first body at each frequency.
These amplitudes cannot be measured and hence they need to be estimated. For
the sake of this estimation process, lets assume that the estimate of first body
position signal x̂1 consists of N different harmonics:

x̂1 =
N∑
i=1

ai cos (ωit) + bi sin (ωit) (15)
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Hence:

˙̂x1 =
N∑
i=1

−ωiai sin (ωit) + ωibi cos (ωit) (16)

So based on Eqs. (10),(13), (15) and (16), Eq. (14) can be rewrite as:131

u = −
N∑
i=1

Kp,i(ai cos (ωit) + bi sin (ωit))−

N∑
i=1

(R11,i(−ωiai sin (ωit) + ωibi cos (ωit)))− bv1 ˙̂x1 (17)

where [a1, a2, ... aN ], [b1, b2, ... bN ], and [ω1, ω2, ... ωN ] are the unknown pa-132

rameters to be estimated. Note that the bv1 is a frequency-independent constant,133

and hence it can be multiplied directly with the estimate of the velocity of the134

first body, as shown in Eq. (17).135

The above PDC3 solves the unconstrained problem. There are usually con-136

straints on the motion amplitude as well as limitations on the control force, in137

most realistic applications. To satisfy these constraints, the following concept138

is proposed. In the above unconstrained control, recall that N frequencies are139

selected and the control component at each frequency is designed so as to res-140

onate the buoy motion with the wave at that frequency, according to the C3141

criteria. These frequencies are those that have the largest N motion amplitudes;142

the value of N is usually selected so that most of the energy is captured. In the143

presence of motion and/or force constraints, it is possible to reduce the value144

of N such that the constraints are satisfied. Reducing the value of N implies145

resonating the buoy motion with the wave excitation force at fewer frequencies,146

which means reduced harvested energy. This reduction in the value of N , results147

in reduced control force and reduced motion amplitude, as detailed in Section 5.148

Hence, the process of handling constraints is to first compute the unconstrained149

PDC3, and if any of the constraints is violated then the number of frequencies150

is reduced to get a control force that satisfies all the constraints.151

4. State Estimation152

The Fast Fourier Transform (FFT) approach was the first attempt at esti-153

mating the amplitudes of motion as detailed in [37, 38]. Then a Least Squares154

Error Minimization approach was implemented in [42] for the same purpose.155

Both methods work on a time window to collect the data for signal process-156

ing. In this paper, the Kalman Filter, which is a recursive filter that does not157

need a time window, is implemented. It is demonstrated in this paper that the158

Kalman Filter not only accelerates the signal processing calculations but also159

can make the estimation more robust. Both a Linear Kalman Filter (LKF) and160

an Extended Kalman Filter (EKF) implementations are presented in this paper.161
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4.1. The Linear Kalman Filter162

Consider Eqs.(15) and (16), if the frequencies are known then the posi-
tion and velocity become linear functions of the ai and bi coefficients. In
such case, LKF can be implemented. Hence we assume a vector of frequencies
~ω = [ω1, ω2 ... ωN ]T to be known. Let us define the state vector of the Kalman

Filter as X̂ = [â1, â2 ... âN , b̂1, b̂2 ... b̂N ]T . The dynamics of the Kalman Filter
can be written as:

˙̂
X = 0 and Ṗ = Q (18)

where Q is the covariance matrix associated with the process noise, and P is
the state estimate covariance matrix. The position measurement is represented
as:

ỹk =
N∑
i=1

(âi cos (ωit) + b̂i sin (ωit)) + vk (19)

where vk is the measurement noise. The measurement in this case is the dis-
placement of the first body, denoted as x1m. This equation can be written in a
more convenient form:

ỹk = HkX̂k + vk (20)

where H is an N × 2 matrix that include all the cosine and sine functions.
Note that this H matrix can be computed off line since the frequency vector is
assumed known. The Kalman gain at time step k is computed as:

Kk = P−
k H

T
k [HkP

−
k H

T
k +Rk]−1 (21)

where R is the measurement noise covariance matrix. Finally, the process of163

the continuous-discrete LKF can be summarized as [43]:164

(1) Propagate the current state and the covariance matrix using Eq. (18) to165

the next stage k, to get X̂−
k and P−

k .166

(2) Compute the Kalman Gain using Eq. (21).167

(3) Update the state X̂−
k using:

X̂+
k = X̂−

k +Kk[x1m,k −HkX̂
−
k ] (22)

(4) Update the state P−
k using:

P+
k = [I −KkHk]P−

k (23)

(5) The current state becomes X̂+
k and P+

k .168

(6) Go to step (1)169

To complete the implementation of the LKF, the X̂i and Pi need to be170

initialized when i = 0. Since all the hydrodynamic coefficients can be computed171

based on the shape of the buoy. Hence an initial guess X̂0 can be computed as172

follows:173
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âi =
<(F̃e1(ωi))ηmax/N√

(−(m1 +ma,11,i)ω2
i + ks)2 + (bv1 +R11,i)2

b̂i =
=(F̃e1(ωi))ηmax/N√

(−(m1 +ma,11,i)ω2
i + ks)2 + (bv1 +R11,i)2

i = 1, 2, 3...N (24)

where ηmax is the maximum wave elevation which is assumed known. The174

~ω are selected to be evenly distributed within a certain range. The ~̂a,
~̂
b and ~ω175

will be fed to the PDC3 controller.176

4.2. The Extended Kalman Filter177

If the frequency vector in the model described in Section 3 is unknown, then
it needs to be estimated. Adding ~ω to the state vector renders the system
nonlinear and hence an extended Kalman filter is needed. So the state vector
in this case becomes:

X̂ = [x̂1, ˆ̇x1, ~̂xr11, ~̂A, ~̂B, ~̂a, ~̂b, ~̂ω] (25)

where ~̂A and ~̂B are the estimates for the coefficients in Eq. (26) which rep-178

resents the series expansion approximation for the excitation force on the first179

body:180

F̂e1 =

N∑
i=1

Ai cos (ωit) +Bi sin (ωit) (26)

The dynamic equations used in the EKF are listed below:181

ˆ̈x1 =
1

M11
(F̂e1 + u− Cr11~̂xr11 − bv1 ˆ̇x1 − ksx̂1)

ˆ̇xr11 = Ar11~̂xr11 +Br11 ˆ̇z1

ˆ̇
~A =

ˆ̇
~B =

ˆ̇
~a =

ˆ̇
~b =

ˆ̇
~ω = 0 (27)

where M11 = (m1 + ma,11) is the summation of the first rigid body mass and
the added mass due to the first body radiation waves. The x̂1 is the estimation
for the displacement of the first mass, ~̂xr11 represents the estimation for the
radiation states associated with the radiation force on the first mass due to the
radiation waves generated by the first mass. The Ar11, Br11 and Cr11 can be
obtained from WAMIT. Note that in this EKF dynamic model we neglected the
effect of radiation force from the radiated waves generated by the second body
on the first body for couple of reasons. First, it is assumed that the motion of
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the second body is small and hence its impact is small. Second, this model is
used only inside the EKF to propagate the first body motion. The propagated
states get updated at each time step using the measurements, and hence a small
error in the propagation step might be acceptable for the sake of having faster
and computationally efficient estimation. To propagate the EKF, we need to
compute the Jacobian matrix F which includes the partial derivatives of each
of the dynamic equations (27) with respect to each of the states. The matrix F
is then:

M11F =



0 1 0 0 0 0 0 0

−ks −bv1 −Cr11 ∂f2

∂ ~̂A

∂f2

∂ ~̂B
0 0 ∂f2

∂~̂ω

0 M11Br11 M11Ar11 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(28)

where182

∂f2

∂ ~̂A
= cos (~̂ωt) (29)

∂f2

∂ ~̂B
= sin (~̂ωt) (30)

∂f2

∂~̂ω
= −~̂ω · ~̂A · sin (~̂ωt) + ~̂ω · ~̂B · cos (~̂ωt) (31)

The Jacobian matrix F is used to propagate the covariance matrix:

Ṗ = FP + PFT +Q (32)

The measurement at a time step k is:183

ỹk = h(X̂k) + vk

=

[
N∑
i=1

âi cos (ω̂it) + b̂i sin (ω̂it)

]
+ vk (33)

where vk is the measurement noise. So the Jacobian matrix of the output184

H can be computed as:185

H =

[
1 0 0 0 0 0 0 0

0 0 0 0 0 cos (~̂ωt) sin (~̂ωt) ∂h2

~̂ω

]
(34)
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where186

∂h2

~̂ω
= −~̂ω · ~̂a · sin (~̂ωt) + ~̂ω · ~̂b · cos (~̂ωt) (35)

The Kalman gain of the EKF can be computed as:187

Kk = P−
k H

T
k (X̂−

k )[Hk(X̂−
k )P−

k H
T
k (X̂−

k ) +Rk]−1 (36)

The process of the continuous-discrete EKF can be summerized as:188

(1) Propagate the current state and the covariance matrix with Eq. (27) and189

(32) to the next stage k to get X̂−
k and P−

k .190

(2) Compute the Kalman Gain using Eq. (36).191

(3) Update the state X̂−
k using:

X̂+
k = X̂−

k +Kk

[
[x1m,k, x1m,k]T − h(X̂−

k )
]

(37)

(4) Update the state P−
k using:

P+
k = [I −KkHk(X̂−

k )]P−
k (38)

(5) The current state becomes X̂+
k and P+

k .192

(6) Go to step (1)193

5. Simulation results194

The first mass used in the simulation has a radius of 1.2 m and a draft of195

1 m. The second mass has a radius of 1.2 m for both hemispheres. The rigid196

body mass of the first body is 4637 kg, and of the second body is 7419.2 kg.197

MatlabTM has been used for all the simulations. The PC used for simulations198

has an Intel CoreTM i5 CPU at 3.3GHz and with 8.0GB memory. The control199

update rate utilized in the simulation is 0.01s.200

5.1. Comparison between LKF and EKF201

The wave used in this section has a Bretschneider wave spectrum that is202

realized using 300 frequencies. The significant height of the wave is 0.2 m, and203

the peak period varies from 6 s to 12 s. The mooring stiffness of the second204

mass is 3.63× 106 N/m. The PDC3 controller with EKF uses 5 PD controllers.205

The LKF, however, uses 11 PD controllers at fixed 11 frequencies. The values206

of the vector of the frequencies are equally spaced and are shown below:207

~ω = [0.005, 0.143, 0.2811, 0.4191, 0.5571, 0.6952,

0.8332, 0.9712, 1.1092, 1.2473, 1.3853]T (rad/s) (39)
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The average extracted power of the two-body system for each of the LKF208

and the EKF at different peak periods are shown in Fig. 2. The performance209

of the LKF is clearly more robust compared to the EKF due to the higher210

estimation accuracy obtained by the LKF. Regarding the computational cost,211

the significant part of the computational cost is in the estimation algorithm.212

The EKF needs 0.0048 s for estimation in each time step. The LKF needs213

0.0021 s for estimation in each time step. Hence, the LKF is about twice as fast214

compared to the EKF. Therefore, the rest of this paper will show only results215

obtained using the LKF.

Figure 2: The average extracted power for a range of peak periods using both LKF and EKF

216

5.2. The Unconstrained Problem217

The detailed results for the performance of the unconstrained PDC3 con-218

troller, using the LKF for estimation, is presented in this section. The wave219

used in this section has a significant height of 0.2 m, and has a peak period of220

9 s. The mooring stiffness of the second mass is 3.63 × 106 N/m. The multi221

resonant controller has 11 PD feedback controllers. The distribution of the fre-222

quencies is the same as in Eq. (39). Figures 3 and 4 show the harvested power223

and energy from each of the two bodies. It can be seen from Figs. 3 and 4 that224

the average extracted power is 210 W within 500 s. The motion of the buoy225

is shown in Fig. 5 which indicates a maximum displacement of 1.6 m of body226

1. Fig. 6 shows the displacement estimation which is clearly close to the true227

displacement. The maximum relative motion is also around 1.6 m due to the228

small motion of body 2. The control force is plotted in Fig. 7, the maximum229

control force is below 7× 104 N .230

5.3. The Constrained Problem231

There are few constraints that need to be accounted for in a realistic imple-232

mentation of the proposed PDC3 control on the two-body WEC. In this case233

study, it is assumed that the maximum displacement for the first mass is 0.9 m,234
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Figure 3: The extracted power for each of body 1 and body 2

Figure 4: The extracted energy for each of body 1 and body 2

Figure 5: The displacement of each of body 1 and body 2

13



Figure 6: The real vs. the estimated displacement of body 1

Figure 7: The control force on body 1

and the maximum relative motion is 1.5 m. The control force is limited below235

7000 N. The wave used in this section has a significant height of 0.3 m and a236

peak period of 9 s. The mooring stiffness is 3.63 × 106 N/m. To satisfy the237

constraint for the control force, the number of frequencies is reduced to N = 4.238

These frequencies are ~ω = [0.005, 0.4651, 0.9252, 1.3853] rad/s.239

Figure 8 shows the energy extracted in 1000 s by each of body 1 and body 2.240

The harvested energy by body 1 is 1.421×105 J and the harvested energy by by241

body 2 is 301.9 J. This is equivalent to an average power of 140 W. Fig. 9 shows242

that the maximum displacement of body 1 is around 0.5 m; the displacement is243

not plotted but it is very small and negligible due to mooring. The estimation244

accuracy of the displacement is shown in Fig. 9 where both the estimated and245

true displacements are presented. Since the motion of body 2 is very small, the246

relative motion then has a maximum magnitude of around 0.5 m. Using only247

4 frequencies in computing the control reduces the control level significantly.248
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When it is still higher than the control constraint, the control force is forced to249

have the maximum control level as shown in Fig. 10.250

Figure 8: The extracted energy of body 1 and body 2

Figure 9: The real displacement of body 1 and the estimated displacement

6. Discussion251

In this paper, the PDC3 controller is presented to control the motion of the252

two-body system shown in Fig. 1. After comparing the performance of the LKF253

and EKF, the LKF is selected to estimate the system states. It is noted here254

that the LKF does not require any wave information. Moreover, the compu-255

tational cost is significantly saved by the LKF because of the simplicity of the256

dynamics of LKF. In previous work, the parameters estimation was conducted257

using either FFT [37, 38] or a Least Squares Error minimization approach [42].258

A large time window was needed in both methods to collect sufficient data for259

15



Figure 10: The control force

signal processing, and the optimal window size also needed careful selection.260

The PDC3 control was sensitive to the accuracy of the estimated states in both261

methods. Nevertheless, the LKF overcomes these issues. No window is needed262

in this recursive LKF. Also there is a robust energy extraction, while the com-263

putational time is improved significantly.264

It is assumed in this paper that the second body has a small motion, and265

a large mooring stiffness (3.63 × 106 N/m) is assumed for the second body266

in the results presented in Section 5. Here, the performance of the system is267

compared for several different mooring stiffness values. The investigated values268

of the mooring stiffness are K = [10, 1000, 5 × 104, 6 × 105, 3.63 × 106] N/m.269

Fig. 11 shows the variation of the average power harvested by body 1 as well as270

the total power harvested by the two bodies versus the mooring stiffness. Also271

Fig. 12 shows the variation of the relative displacement between the two masses272

versus the mooring stiffness. As can be seen in both figures, when the mooring273

stiffness is below 5×104 N/m (log(5×104) = 10.8198), the relative displacement274

between the two bodies is significantly high. The average absorbed power of the275

first body is about the same everywhere (about 145 W) in this range, while276

the second body moves and affects the harvested power. The motion of the277

second body is undesirable and hence this range of mooring stiffness values is278

not suitable. On the other hand, when the mooring stiffness is greater than279

3.63 × 106 N/m (log(3.63 × 106) = 15.1047), the second mass will have very280

small motion and hence a minimum impact on the harvested energy by the281

system.282

7. Conclusion283

This paper presents a multi resonant controller for a two-body heaving sys-284

tem, in which the lower body is required to have minimal motion while harvested285

energy from the upper body is maximized. The concept of impedance matching286
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Figure 11: The power harvested by body 1 (Power 1) and the total harvested power by the
two bodies for different mooring stiffness values

Figure 12: The maximum relative motion for different mooring stiffness values

is utilized in this multi resonant control and is realized using multiple PD con-287

trol designs at multiple frequencies, in the feedback signal. This approach is a288

feedback approach that does not require wave prediction. Rather the spectral289

decomposition of the buoy motion amplitude at different frequencies is esti-290

mated. It is shown in this paper that a linear Kalman filter (LKF) can be used291

to estimate these amplitudes in a computationally efficient and more robust292

way, compared to fast Fourier transform, least square error methods, and an293

extended Kalman filter (EKF). This paper also presents a simple method for294

handling motion and control constraints when the PDC3 approach is imple-295

mented for control. High mooring stiffness is needed for the lower body when296

designing this type of control, due to the requirement of small motion of the297

second body. simulation results in this paper demonstrates the possibility of298

maintaining small displacements for the second body while harvesting energy299

from the first body. While the analysis conducted in this paper focuses on a300

specific two-body WEC, the methods presented are applicable to any type of301

two-body heaving system.302
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