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Abstract

Buoys carrying scientific equipment usually need continuous power supply for
the operation of these equipments. These buoys can be equipped with actua-
tors and controlled to harvest power from the heaving motion of the buoy. A
two-body wave energy converter can be designed such that the buoy heaves to
harvest energy while the second (lower) body carries the science equipments.
This paper presents a control approach for this type of two-body wave energy
converter. This control approach is a multi resonant control that attempts to
maximize the harvested energy from the buoy (upper body). In this model, the
actuator is attached to both bodies. The lower body however is required to
have minimal heave motion. The proposed multi resonant control utilizes mea-
surements of the buoy position. The frequencies of the measured buoy position
are estimated, along with the motion amplitudes of these frequencies, and used
for feedback control. Estimation is carried out using two approaches; the first
uses a linear Kalman filter while the second uses an extended Kalman filter. A
new method for handling the motion and actuation limitations, suitable for the
multi resonant control, is proposed. Various numerical simulation results are
presented in the paper. Simulation results show that the linear Kalman filter
estimation approach is more robust and computationally efficient compared to
the extended Kalman filter.

Keywords: Wave Energy Conversion, Two-Body Heaving Wave Energy
Converter, Multi Resonant Control, Kalman Filter

1. Introduction

Research on ocean wave energy converters (WECs) have been going since
1970s [1] covering several aspects including the hydrodynamics of interaction
between a buoy and the wave [2, 3, 4], and including different concepts for ocean
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wave energy harvesting such as oscillating water column devices [5], overtopping
converters [6] and the point absorbers [7, 8, 9]. In point absorbers, a buoy is
controlled through actuators that act on the buoy against the seabed (single-
body point absorber), or against a submerged larger mass that is not moving
significantly (two-body point absorber). The single-body point absorber has
been significantly studied over the past decades. Numerous controllers have
been developed for the single-body point absorber such as those in references
[10, 11, 12, 13, 14]. The two-body point absorber consists of two bodies: the
upper body (buoy) and lower body. In fact the two-body point absorbers can be
considered as a special category of the multi-body WECs, which are groups of
closely spaced point absorbers, studied in several references such as [15, 16, 17].
This concept of two-body point absorber is investigated in this paper in more
detail to explore the possibility of using this two-body WEC to generate enough
power to supply scientific instruments mounted on the lower body of the two-
body point absorber. The focus here is on the control strategy. A fundamental
constraint in this problem is the maximum stroke of the actuator; the actuator
connects the two bodies and both are moving. The lower body motion should be
kept at minimum since it is a requirement for proper operation of the scientific
equipments on the lower body. The linear analysis presented in this paper also
enforces a small displacement constraint on the motion of the upper body.
There has been a significant amount of research on the two-body WECs
in the literature. The hydrodynamics of the interaction between two cylinders
is studied by [18] with infinite series of orthogonal functions. Reference [19]
computes the radiation forces when the submerged cylinder has a larger radius
than the floating one. The interaction between a cylinder at the top and a sphere
at the bottom is studied in [20, 21]. References [22, 23, 24] present a detailed
study for the hydrodynamic forces when the two-body system is composed of
an outer hollow circular cylinder and an inner cylinder. Reference [25] studies
the system response of a two-body system by means of the Reynolds-averaged
Navier-stokes simulation. A dome-shaped buoy that reacts against a submerged
spherical body is investigated in [26]. Reference [27] explores two independent
oscillating bodies with a power take-off (PTO) unit attached to each one of
them. Studying the relative motion of the two-body system is investigated in
reference [28]. In fact reference [28] predicts the maximum power that can be
harvested from the two-body system. Reference [29] compares two different
systems; the first has the reaction mass out of the water while the second one
assumes the reaction mass is submerged in the water. The results show that
the system with a submerged reaction mass has a better performance. Recently,
Reference [30] pointed out that the mass and viscous damping of the submerged
body needs to be designed larger to achieve a better energy absorption of the two
body heaving system. Reference [31] shows the system response and the energy
absorption of a heaving two-cylinder WEC system. Reference [32] presents a
latching phase control for the Interproject Service (IPS) buoy which is a two-
body heaving system. The latching control is also studied in [33] for a two-body
heaving system, and the performance of the controller is evaluated with real sea
states. Reference [34] implements a PD controller and optimizes the controller
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gains using the Pontryagin Maximum Principle. The pseudo-spectrum method
is also developed in [35] to control the motion of a self-reacting point absorber. A
model predictive control is derived in [36] using the one-body equivalent model
developed in [28].

Recently, a multi resonant control was developed for a single body point
absorber, and is presented in references [37, 38]. The multi resonant control
strategy implements a PD control to resonate the buoy motion with the incoming
wave, at each frequency. The complex conjugate control (C3) criteria [1] are
used in the multi resonant control to achieve resonance at each frequency. Yet,
this multi resonant control is essentially a time-domain realization of the C3
controller. One advantage of the multi resonant control is elimination for the
need of wave prediction; it is purely a feedback control. Yet, the the feedback
signal (the buoy position signal) needs to be spectrally decomposed to obtain
the motion amplitude at each frequency. This decomposition is carried out using
a Fast Fourier Transform (FFT) approach in [37, 38].

This paper extends the multi resonant control for the case of a two-body
WEC. Two-body WECs were recently proposed to generate power necessary
for oceanic scientific missions [39]. A Kalman Filter is proposed to carry out
the feedback signal decomposition instead of the FFT approach, and it is shown
that the Kalman Filter has better performance and lower computational cost.
Another contribution in this paper is a new concept for handling constraints on
the WEC motion and actuation force. The original PDC3 approach is designed
for the unconstraint case. This paper proposes a method for handling constraints
suitable for the PDC3. This paper is organized as follows. Section 2 introduces
the dynamic model of the two-body heaving system. Section 3 presents the
development of the multi resonant control for the two-body system. Section 4
presents the signal processing part using the Kalman Filter. The simulation
results, which show a comparison between the Extended Kalman Filter and
the Linear Kalman Filter as well as a comparison between the unconstrained
controller and the constrained controller, are presented in Section 5. Finally,
the influence of different mooring stiffness is discussed in Section 6.

2. Dynamic Model

The proposed two-body heaving system in this paper is indicated in Fig. 1.
The system consists of two bodies: a floating body and a submerged body
(that may contain science sensors.) The two bodies are connected through a
power take-off unit in between them. The heaving motion of the floating body
is used to harvest energy by the power take-off unit. The submerged body is
composed of two hemispheres; this structures has advantages in terms of the
relative radiation damping between the two bodies as detailed in [39]. This
submerged body of two hemispheres is adopted in this paper; yet the methods
presented in this paper are applicable to any two-body heaving system. The
Power take-off unit and the mooring are not shown in the figure, but they
exist. The floating buoy is a cylinder, and the submerged body consists of two



o hemispheres that are rigidly connected. From now on, the upper and lower
s bodies will be denoted as body 1 and body 2, respectively.

oy
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Figure 1: The two-body WEC system

% The equations of motion of this two-body system in the case of a regular
o7 wave can be written as:

(m1 4+ mg11)%1 + Ma 282 + R11%1 + Rigda+
bvlftl + kstl = Fel + u (1)

(Mo 4+ Mg 22)T2 + Mg 2181 + Ro181 + Rogda+

bvziQ + k‘m$2 = Feg — U (2)

o Where z1 and x5 represent the displacements of the first and second bodies,
e respectively, relative to their static equilibrium positions. The masses of the two
w0 bodies are m; and mgy. The m,;; and R;; are the added mass and radiation
11 damping coefficient of the ith body due to the motion of the jth body, which
w2 are computed from the Boundary Element Software WAMIT [40]. The k; is
103 the hydrostatic stiffness of the first mass and k,, is the mooring stiffness of
s the second mass. The b,; and b, are the viscous damping coefficients of body
s 1 and body 2, respectively. The control force (also called the Power take-off



ws force) is generated by an actuator that is connected between the two bodies,
17 and hence the control force u has the same magnitude in Equations (1) and (2),
s and with opposite directions. The F,; and F.o are the excitation forces on the
wo first and the second bodies, respectively. As shown in Eq. (3), the excitation
w0 force is composed of the summation of several harmonics, that have different
m  frequencies.

N
Foi = R(Ei(wn)nlwn)e’ Tonttom) = 1,2 (3)
n=1

12 where Fd’e,i(wn) represents the excitation force coefficient at the frequency w,, for
us  the ith body, which is also obtained from WAMIT. The 7n(w,,) is the frequency
s dependent wave elevation. The equation of motion can be written in a compact
us  state space form as follows:

Mi+Bi+ K@= F, 4+ Fogy + (4)
116 where the state vector & = [x1, xg]T. The excitation force vector ﬁe =
w [Fu1, F.o)T, the radiation force vector Froq = [Frad1, Fraae]? and the control

us force vector @ = [u, —u]T. The mass matrix is:

M= |™ + Mq,11 Mq,12 (5)
Mg 21 mo + Mg 22

The viscous damping matrix is:

_|by1 O

B= [ 0 bv2:| (6)
The stiffness K matrix is:

ks 0
©=15 ) "
119 The radiation force Fqq can be approximated by a state space model [41]:
I = ApZ, + BT (8)
Frug = Cpiy (9)
120 where A,, B, and C, matrices are functions of the added masses and the

1 radiation damping coefficients.
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3. The Multi Resonant Control

The multi resonant control, which is also called the Proportional Derivative
Complex Conjugate Controller (PDC3), uses a PD feedback control at each
frequency to compute a control force at each frequency. The total feedback
control is the summation of all the control forces at all frequencies. The details
of the controller are presented in [42] for a single-body WEC. In this paper,
the second mass is assumed to have a small motion. So the PDC3 controller is
designed for the upper mass. At a frequency w;, the control force has the form:

uy = —Kpx1, — Kqi1 (10)

where z; ; is the first body response at the ith frequency w;, that is:

.. ks by1 + Ri1 .
T, =—————T1,— —————T1; T
mi + Ma 11,4 mi1+ Mq,11,
Fep i+ uy

— (11)
my + Mg11,4

The K, ; and K, ; are the proportional and derivative gains of the controller
respectively. To achieve the resonant condition, the K, ; and Ky ; need to be
designed as follows:

Kp,i = wgz(ml + ma,ll,i) - ks (12)
Kqi=by1 + R (13)

As shown in Eq. (12) and (13), the concept of impedance matching (a C3
criterion) is used to design the PD gains. The system response z; is compounded
from all frequencies; therefore N PD controllers can be designed as feedback
signals.

N
u= Zui (14)

To compute the control in Eq. (10), the spectral decomposition of the first
mass response x1 and its derivative are needed. This spectral decomposition
yields the amplitudes of position and velocity of the first body at each frequency.
These amplitudes cannot be measured and hence they need to be estimated. For
the sake of this estimation process, lets assume that the estimate of first body
position signal & consists of NV different harmonics:

N
T = Z a; cos (w;t) + b; sin (w;t) (15)
i=1



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Hence:

N
i = Z —wja; sin (w;t) + w;b; cos (w;t) (16)
i=1

So based on Egs. (10),(13), (15) and (16), Eq. (14) can be rewrite as:

N
u=— Z K, i(a; cos (wit) + b; sin (w;t)) —
i=1
N .
Z (Ru’i(—wiai Sin (wit) + wibi COS (wit))) — bvlil (17)
i=1

where [a1, ag, ...an], [b1, b2, ...bN], and [w1, w2, ... wy]| are the unknown pa-
rameters to be estimated. Note that the b, is a frequency-independent constant,
and hence it can be multiplied directly with the estimate of the velocity of the
first body, as shown in Eq. (17).

The above PDC3 solves the unconstrained problem. There are usually con-
straints on the motion amplitude as well as limitations on the control force, in
most realistic applications. To satisfy these constraints, the following concept
is proposed. In the above unconstrained control, recall that N frequencies are
selected and the control component at each frequency is designed so as to res-
onate the buoy motion with the wave at that frequency, according to the C3
criteria. These frequencies are those that have the largest N motion amplitudes;
the value of N is usually selected so that most of the energy is captured. In the
presence of motion and/or force constraints, it is possible to reduce the value
of N such that the constraints are satisfied. Reducing the value of N implies
resonating the buoy motion with the wave excitation force at fewer frequencies,
which means reduced harvested energy. This reduction in the value of IV, results
in reduced control force and reduced motion amplitude, as detailed in Section 5.
Hence, the process of handling constraints is to first compute the unconstrained
PDC3, and if any of the constraints is violated then the number of frequencies
is reduced to get a control force that satisfies all the constraints.

4. State Estimation

The Fast Fourier Transform (FFT) approach was the first attempt at esti-
mating the amplitudes of motion as detailed in [37, 38]. Then a Least Squares
Error Minimization approach was implemented in [42] for the same purpose.
Both methods work on a time window to collect the data for signal process-
ing. In this paper, the Kalman Filter, which is a recursive filter that does not
need a time window, is implemented. It is demonstrated in this paper that the
Kalman Filter not only accelerates the signal processing calculations but also
can make the estimation more robust. Both a Linear Kalman Filter (LKF) and
an Extended Kalman Filter (EKF) implementations are presented in this paper.
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4.1. The Linear Kalman Filter

Consider Egs.(15) and (16), if the frequencies are known then the posi-
tion and velocity become linear functions of the a; and b; coefficients. In
such case, LKF can be implemented. Hence we assume a vector of frequencies
@& = w1, w2 ... wn]T to be known. Let us define the state vector of the Kalman
Filter as X = [G1, ag ... an, 51, by ... BN]T. The dynamics of the Kalman Filter
can be written as:

X=0 and P=Q (18)

where @) is the covariance matrix associated with the process noise, and P is
the state estimate covariance matrix. The position measurement is represented
as:

N
Uk = Z(di cos (wit) + b; sin (w;t)) + v (19)
i=1
where vy is the measurement noise. The measurement in this case is the dis-

placement of the first body, denoted as x1,,. This equation can be written in a
more convenient form:

Y = Hka —+ Vg (20)

where H is an N X 2 matrix that include all the cosine and sine functions.
Note that this H matrix can be computed off line since the frequency vector is
assumed known. The Kalman gain at time step k is computed as:

Ky =P, H[Hy Py HE + Ry ] (21)

where R is the measurement noise covariance matrix. Finally, the process of
the continuous-discrete LKF can be summarized as [43]:

(1) Propagate the current state and the covariance matrix using Eq. (18) to
the next stage k, to get X; and P .

(2) Compute the Kalman Gain using Eq. (21).

(3) Update the state X,; using:

X; = X]; + Kk[xlm,k - HkX]Z] (22)
(4) Update the state P, using:
Pl =[I - KyHy) P, (23)

(5) The current state becomes X; and P;.

(6) Go to step (1)

To complete the implementation of the LKF, the X; and P; need to be
initialized when ¢ = 0. Since all the hydrodynamic coefficients can be computed
based on the shape of the buoy. Hence an initial guess X, can be computed as
follows:
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~_ §R(F’el(5*}1’»77771&90/]\/'

a; =
\/(7(m1 + 77L(L,11,2')(‘L)i2 + ks)2 + (bvl + Rll,i)2
B' _ (\\S(Fel(wi))nmam/N
V(=(m1 +mg1i)w? + ks)2 + (b1 + Ri1,0)?
1=1,2,3..N (24)

where 7,4, is the maximum wave elevation which is assumed known. The

@ are selected to be evenly distributed within a certain range. The 5, b and &
will be fed to the PDC3 controller.

4.2. The Extended Kalman Filter

If the frequency vector in the model described in Section 3 is unknown, then
it needs to be estimated. Adding & to the state vector renders the system
nonlinear and hence an extended Kalman filter is needed. So the state vector
in this case becomes:

A =

X = [5%17 -,I';17 jj’rlh A7 B7 a, ba

g

] (25)

where A and B are the estimates for the coefficients in Eq. (26) which rep-

resents the series expansion approximation for the excitation force on the first
body:

N
Fo = Z A; cos (w;t) + B sin (w;t) (26)
i=1

The dynamic equations used in the EKF are listed below:

o 1 - y i 7
= F(Fel +u— Cri1&r11 — by11 — ksiy)
11

Tr11 = Ar112r11 + Bri11

A=B=i=b=u=0 (27)

where My; = (mq + mg11) is the summation of the first rigid body mass and
the added mass due to the first body radiation waves. The Z; is the estimation
for the displacement of the first mass, 5:;11 represents the estimation for the
radiation states associated with the radiation force on the first mass due to the
radiation waves generated by the first mass. The A,11, Br11 and Cyq; can be
obtained from WAMIT. Note that in this EKF dynamic model we neglected the
effect of radiation force from the radiated waves generated by the second body
on the first body for couple of reasons. First, it is assumed that the motion of



the second body is small and hence its impact is small. Second, this model is
used only inside the EKF to propagate the first body motion. The propagated
states get updated at each time step using the measurements, and hence a small
error in the propagation step might be acceptable for the sake of having faster
and computationally efficient estimation. To propagate the EKF, we need to
compute the Jacobian matrix F' which includes the partial derivatives of each
of the dynamic equations (27) with respect to each of the states. The matrix F'

is then:
r 0 1 0 0 0 0 0 0 7
—k by —Cpy 2 22 g o 22
? N " oA B a3
0 MBy1 MpjA4 0 0 0 0 O
MuF—| O 0 0 0 0 00 0 (28)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0O O
0 0 0 0 0O 0 0O O
L O 0 0 0 0O 0 0 O |
182 Where
0 A
f; = cos (&t) (29)
0A
0 N
f:' = sin (W) (30)
0B
0 A D - - A .
aJ:Q=—4D’~A~sin(c3)+&5-B~cos(o3t) (31)
o

The Jacobian matrix F' is used to propagate the covariance matrix:
P=FP+PFT+Q (32)

183 The measurement at a time step k is:

Tk = h(Xp) + vk

N
= [Z a; cos (dztt) + Z)i sin ((szt) —+ Vg (33)
i=1
184 where vy, is the measurement noise. So the Jacobian matrix of the output
185 H can be computed as:
H- 1 0 0 00O 0 0 0 a4
|0 0 0 0 O cos(wt) sin (i) % (34)

10
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where

h A A ~ A S N
83 = —@-d-sin(0t) + @b - cos (&) (35)
w

The Kalman gain of the EKF can be computed as:

Ky = Py H{ (X)) [He(X; )Py HY (X)) + Ri] ™ (36)

The process of the continuous-discrete EKF can be summerized as:

(1) Propagate the current state and the covariance matrix with Eq. (27) and
(32) to the next stage k to get X; and Py .

(2) Compute the Kalman Gain using Eq. (36).

(3) Update the state X;, using:

XZF = X; + K, [.’L‘lm)k, .Tlm,k]T - h(Xg) (37)
(4) Update the state P, using:
P =1 - KoHy(X;)) Py (38)

(5) The current state becomes Xz and P;.
(6) Go to step (1)

5. Simulation results

The first mass used in the simulation has a radius of 1.2 m and a draft of
1 m. The second mass has a radius of 1.2 m for both hemispheres. The rigid
body mass of the first body is 4637 kg, and of the second body is 7419.2 kg.
Matlab™ has been used for all the simulations. The PC used for simulations
has an Intel Core™ i5 CPU at 3.3GHz and with 8.0GB memory. The control
update rate utilized in the simulation is 0.01s.

5.1. Comparison between LKF and EKF

The wave used in this section has a Bretschneider wave spectrum that is
realized using 300 frequencies. The significant height of the wave is 0.2 m, and
the peak period varies from 6 s to 12 s. The mooring stiffness of the second
mass is 3.63 x 10¢ N/m. The PDC3 controller with EKF uses 5 PD controllers.
The LKF, however, uses 11 PD controllers at fixed 11 frequencies. The values
of the vector of the frequencies are equally spaced and are shown below:

& = [0.005, 0.143, 0.2811, 0.4191, 0.5571, 0.6952,
0.8332, 0.9712, 1.1092, 1.2473, 1.3853]7 (rad/s) (39)

11
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The average extracted power of the two-body system for each of the LKF
and the EKF at different peak periods are shown in Fig. 2. The performance
of the LKF is clearly more robust compared to the EKF due to the higher
estimation accuracy obtained by the LKF. Regarding the computational cost,
the significant part of the computational cost is in the estimation algorithm.
The EKF needs 0.0048 s for estimation in each time step. The LKF needs
0.0021 s for estimation in each time step. Hence, the LKF is about twice as fast
compared to the EKF. Therefore, the rest of this paper will show only results
obtained using the LKF.

N
[3.]
o

N
o
o

Average Pow(Watt)
2 @
o (=]

(2]
o

6 8 10 12
Peak Period(s)

Figure 2: The average extracted power for a range of peak periods using both LKF and EKF

5.2. The Unconstrained Problem

The detailed results for the performance of the unconstrained PDC3 con-
troller, using the LKF for estimation, is presented in this section. The wave
used in this section has a significant height of 0.2 m, and has a peak period of
9 5. The mooring stiffness of the second mass is 3.63 x 105 N/m. The multi
resonant controller has 11 PD feedback controllers. The distribution of the fre-
quencies is the same as in Eq. (39). Figures 3 and 4 show the harvested power
and energy from each of the two bodies. It can be seen from Figs. 3 and 4 that
the average extracted power is 210 W within 500 s. The motion of the buoy
is shown in Fig. 5 which indicates a maximum displacement of 1.6 m of body
1. Fig. 6 shows the displacement estimation which is clearly close to the true
displacement. The maximum relative motion is also around 1.6 m due to the
small motion of body 2. The control force is plotted in Fig. 7, the maximum
control force is below 7 x 10* N.

5.3. The Constrained Problem

There are few constraints that need to be accounted for in a realistic imple-
mentation of the proposed PDC3 control on the two-body WEC. In this case
study, it is assumed that the maximum displacement for the first mass is 0.9 m,

12
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Figure 3: The extracted power for each of body 1 and body 2
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Figure 4: The extracted energy for each of body 1 and body 2
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Figure 5: The displacement of each of body 1 and body 2
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Figure 6: The real vs. the estimated displacement of body 1
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Figure 7: The control force on body 1

and the maximum relative motion is 1.5 m. The control force is limited below
7000 N. The wave used in this section has a significant height of 0.3 m and a
peak period of 9 s. The mooring stiffness is 3.63 x 105 N/m. To satisfy the
constraint for the control force, the number of frequencies is reduced to N = 4.
These frequencies are & = [0.005, 0.4651, 0.9252, 1.3853] rad/s.

Figure 8 shows the energy extracted in 1000 s by each of body 1 and body 2.
The harvested energy by body 1 is 1.421 x 10° J and the harvested energy by by
body 2 is 301.9 J. This is equivalent to an average power of 140 W. Fig. 9 shows
that the maximum displacement of body 1 is around 0.5 m; the displacement is
not plotted but it is very small and negligible due to mooring. The estimation
accuracy of the displacement is shown in Fig. 9 where both the estimated and
true displacements are presented. Since the motion of body 2 is very small, the
relative motion then has a maximum magnitude of around 0.5 m. Using only
4 frequencies in computing the control reduces the control level significantly.

14



29 When it is still higher than the control constraint, the control force is forced to
0 have the maximum control level as shown in Fig. 10.

4
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Figure 8: The extracted energy of body 1 and body 2
e gy
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Figure 9: The real displacement of body 1 and the estimated displacement

»1 6. Discussion

252 In this paper, the PDC3 controller is presented to control the motion of the
3 two-body system shown in Fig. 1. After comparing the performance of the LKF
s and EKF, the LKF is selected to estimate the system states. It is noted here
»s  that the LKF does not require any wave information. Moreover, the compu-
6 tational cost is significantly saved by the LKF because of the simplicity of the
»7  dynamics of LKF. In previous work, the parameters estimation was conducted
s using either FFT [37, 38] or a Least Squares Error minimization approach [42].
0 A large time window was needed in both methods to collect sufficient data for
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signal processing, and the optimal window size also needed careful selection.
The PDC3 control was sensitive to the accuracy of the estimated states in both
methods. Nevertheless, the LKF overcomes these issues. No window is needed
in this recursive LKF. Also there is a robust energy extraction, while the com-
putational time is improved significantly.

It is assumed in this paper that the second body has a small motion, and
a large mooring stiffness (3.63 x 106 N/m) is assumed for the second body
in the results presented in Section 5. Here, the performance of the system is
compared for several different mooring stiffness values. The investigated values
of the mooring stiffness are K = [10, 1000, 5 x 10%, 6 x 10°, 3.63 x 10°] N/m.
Fig. 11 shows the variation of the average power harvested by body 1 as well as
the total power harvested by the two bodies versus the mooring stiffness. Also
Fig. 12 shows the variation of the relative displacement between the two masses
versus the mooring stiffness. As can be seen in both figures, when the mooring
stiffness is below 5 x 10* N/m (log(5x 10*) = 10.8198), the relative displacement
between the two bodies is significantly high. The average absorbed power of the
first body is about the same everywhere (about 145 W) in this range, while
the second body moves and affects the harvested power. The motion of the
second body is undesirable and hence this range of mooring stiffness values is
not suitable. On the other hand, when the mooring stiffness is greater than
3.63 x 10° N/m (log(3.63 x 10°) = 15.1047), the second mass will have very
small motion and hence a minimum impact on the harvested energy by the
system.

7. Conclusion

This paper presents a multi resonant controller for a two-body heaving sys-
tem, in which the lower body is required to have minimal motion while harvested
energy from the upper body is maximized. The concept of impedance matching
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is utilized in this multi resonant control and is realized using multiple PD con-
trol designs at multiple frequencies, in the feedback signal. This approach is a
feedback approach that does not require wave prediction. Rather the spectral
decomposition of the buoy motion amplitude at different frequencies is esti-
mated. It is shown in this paper that a linear Kalman filter (LKF) can be used
to estimate these amplitudes in a computationally efficient and more robust
way, compared to fast Fourier transform, least square error methods, and an
extended Kalman filter (EKF). This paper also presents a simple method for
handling motion and control constraints when the PDC3 approach is imple-
mented for control. High mooring stiffness is needed for the lower body when
designing this type of control, due to the requirement of small motion of the
second body. simulation results in this paper demonstrates the possibility of
maintaining small displacements for the second body while harvesting energy
from the first body. While the analysis conducted in this paper focuses on a
specific two-body WEC, the methods presented are applicable to any type of
two-body heaving system.
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