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Abstract—Today, larger memory capacity and higher memory
bandwidth are required for better performance and energy
efficiency for many important client and datacenter applications.
Hardware memory compression provides a promising direction
to achieve this without increasing system cost. Unfortunately,
current memory compression solutions face two significant
challenges. First, keeping memory compressed requires
additional memory accesses, sometimes on the critical path, which
can cause performance overheads. Second, they require changing
the operating system to take advantage of the increased capacity,
and to handle incompressible data, which delays deployment.
We propose Compresso, a hardware memory compression archi-
tecture that minimizes memory overheads due to compression,
with no changes to the OS. We identify new data-movement
trade-offs and propose optimizations that reduce additional
memory movement to improve system efficiency. We propose a
holistic evaluation for compressed systems. Our results show that
Compresso achieves a 1.85x compression for main memory on aver-
age, with a 24% speedup over a competitive hardware compressed
system for single-core systems and 27% for multi-core systems. As
compared to competitive compressed systems, Compresso not
only reduces performance overhead of compression, but also
increases performance gain from higher memory capacity.

I . I N T RO D U C T I O N

Memory compression can improve performance and

reduce cost for systems with high memory demands, such as

those used for machine learning, graph analytics, databases,

gaming, and autonomous driving. We present Compresso,

the first compressed main-memory architecture that: (1)

explicitly optimizes for new trade-offs between compression

mechanisms and the additional data movement required

for their implementation, and (2) can be used without any

modifications to either applications or the operating system.

Compressing data in main memory increases its effective

capacity, resulting in fewer accesses to secondary storage,

thereby boosting performance. Fewer I/O accesses also

improve tail latency [1] and decrease the need to partition tasks

across nodes just to reduce I/O accesses [2, 3]. Additionally,

transferring compressed cache lines from memory requires

fewer bytes, thereby reducing memory bandwidth usage. The

saved bytes may be used to prefetch other data [4, 5], or may
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even directly increase effective bandwidth [6, 7].

Hardware memory compression solutions like IBM

MXT [8], LCP [4], RMC [9], Buri [10], DMC [11], and

CMH [12] have been proposed to enable larger capacity,

and higher bandwidth, with low overhead. Unfortunately,

hardware memory compression faces major challenges that

prevent its wide-spread adoption. First, compressed memory

management results in additional data movement, which can

lead to performance overheads, and has been left widely

unacknowledged in previous work. Second, to take advantage

of larger memory capacity, hardware memory compression

techniques need support from the operating system to

dynamically change system memory capacity and address

scenarios where memory data is incompressible. Such support

limits adoptive potential of the solutions. On the other hand,

if compression is implemented without OS support, hardware

needs innovative solutions for dealing with incompressible data.

Additional data movement in a compressed system is caused

due to metadata accesses for additional translation, change

in compressibility of the data, and compression across cache

line boundaries in memory. We demonstrate and analyze the

magnitude of the data movement challenge, and identify novel

trade-offs. We then use allocation, data-packing and prediction

based optimizations to alleviate this challenge. Using these

optimizations, we propose a new, efficient compressed memory

system, Compresso, that provides high compression ratios

with low overhead, maximizing performance gain.

In addition, Compresso is OS-transparent and can run any

standard modern OS (e.g., Linux), with no OS or software

modifications. Unlike prior approaches that sacrifice OS

transparency for situations when the system is running out of

promised memory [8, 10], Compresso utilizes existing features

of modern operating systems to reclaim memory without

needing the OS to be compression-aware.

We also propose a novel methodology to evaluate the

performance impact of increased effective memory capacity

due to compression. The main contributions of this paper are:

• We identify, demonstrate, and analyze the data movement-

related overheads of main memory compression, and

present new trade-offs that need to be considered when

designing a main memory compression architecture.

• We propose Compresso, with optimizations to reduce

compressed data movement in a hardware compressed

memory, while maintaining high compression ratio by
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Fig. 1: Overview of data organization in compressed memory systems.

repacking data at the right time. Compresso exhibits only

15% compressed data movement accesses, as compared

to 63% in an enhanced LCP-based competitive baseline

(Section 4).

• We propose the first approach where the OS is completely

agnostic to main memory compression, and all hardware

changes are limited to the memory controller (Section 5).

• We devise a novel methodology for holistic evaluation that

takes into account the capacity benefits from compression,

in addition to its overheads (Section 6).

• We evaluate Compresso and compare it to an uncom-

pressed memory baseline. When memory is constrained,

Compresso increases the effective memory capacity by

85% and achieves a 29% speedup, as opposed to an 11%

speedup achieved by the best prior work. When memory

is unconstrained, Compresso matches the performance

of the uncompressed system, while the best prior work

degrades performance by 6%. Overall, Compresso

outperforms best prior work by 24% (Section 7).

I I . OV E RV I E W

In this paper, we assume that the main memory stores com-

pressed data, while the caches store uncompressed data (cache

compression is orthogonal to memory compression). In this

section, we discuss important design parameters for compressed

memory architectures, and Compresso design choices.

A. Compression Algorithm and Granularity

The aim of memory compression is to increase memory

capacity and lower bandwidth demand, which requires a

sufficiently high compression ratio to make an observable

difference. However, since the core uses uncompressed data,

the decompression latency lies on the critical path. Several

compression algorithms have been proposed and used in this

domain: Frequent Pattern Compression (FPC) [13], Lempel-Ziv

(LZ) [14], C-Pack [15], Base-Delta-Immediate (BDI) [16], Bit-

Plane Compression (BPC) [6] and others [17, 18]. Although LZ

results in the highest compression, its dictionary-based approach

results in high energy overhead. We chose BPC due to its higher

average compression ratio compared to other algorithms. BPC

is a context-based compressor that transforms the data using its

Delta-Bitplane-Xor transform to increase data compressibility,

and then encodes the data. Kim et al. [6] describe BPC in

the context of memory bandwidth optimization of a GPU. We

adapt it for CPU memory-capacity compression by decreasing

the compression granularity from 128 bytes to 64 bytes to

match the cache lines in CPUs. We also observe that always

applying BPC’s transform is suboptimal. We add a module that

compresses data with and without the transform, in parallel,

and chooses the best option. Our optimizations save an average

of 13% more memory, compared to baseline BPC. Compresso

uses the modified BPC compression algorithm, achieving

1.85x average compression on a wide range of applications.

Compression Granularity. A larger compression

granularity, i.e., compressing larger blocks of data, allows a

higher compression ratio at the cost of higher latency and data

movement requirements, due to different access granularities

between core and memory. Compresso uses the compression

granularity of 64B.

B. Address Translation Boundaries

Since different data compress to different sizes, cache lines

and pages are variable-sized in compressed memory systems.

As shown in Fig. 1a, the memory space available to the OS

for allocating to the applications is greater than the actual

installed memory. In any compressed memory system, there

are two levels of translation. (i) Virtual Address (VA) to OS

Physical Address (OSPA), the traditional virtual-to-physical

address translation, occurring before accessing the caches to

avoid aliasing problems and (ii) OSPA to Machine Physical

Address (MPA), occurring before accessing main memory.

Fixed-size pages and cache lines from the VA need to

be translated to variable-sized ones in MPA. OS-transparent

compression translates both the page and cache line levels

in the OSPA-to-MPA layer in the memory controller. On the

other hand, compression-aware OS has variable-sized pages in

OSPA space itself, and the memory controller only translates

addresses into the variable cache line sizes for the MPA space.

Bus transactions in the system happen in the OSPA space.

Since OS-aware solutions have different page sizes as per com-

pressibility, in OSPA, their bus transactions do not follow current

architectural specifications. Hence, all hardware, including all

peripheral devices and associated drivers, must be modified to

accommodate the change. Compresso, being OS-transparent,

has the same, fixed-page size in VA and OSPA spaces, for

example, only 4KB pages. Larger OS page sizes (2MB, 1GB

etc.) can be broken into their 4KB building blocks in the MPA.
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keep holes in the page to make sure that the lines are aligned.

This leads to loss in compression (23% loss on average with

BPC) and complex calculations for cache line offsets. The

other possible solution is to have alignment-friendly cache

line sizes, as we discuss later.

B. Data-Movement Optimizations

We now describe the optimizations we use in Compresso in

order to alleviate the problem of compressed data movement.

Fig. 6 shows how these optimizations reduce data movement.

Without the full set of optimizations, our choice of incremental

allocation of 512B chunks does not outperform using 4

variable page size allocation. However, with all optimizations,

Compresso saves significant data movement compared to other

configurations, reducing the average relative extra accesses to

15% compared to 63% in a competitive compressed memory

system that uses 4 page sizes. We describe and analyze the

mechanisms below.

1) Alignment-Friendly Cache Line Sizes

Previous work [4, 9] selected the possible sizes for cache

lines as an optimization problem, maximizing the compression

ratio. This led them to use the cache line sizes of 0, 22, 44

and 64B. This choice leads to an average of 30.9% of cache

lines stored split across cache line boundaries. Accessing any

of these cache lines would require an extra memory access on

the critical path. We redo this search in order to maintain high

compression ratio while decreasing the alignment problem,

arriving at cache line sizes of 0, 8, 32 and 64B. The decrease

in compression is just 0.25%, while at the same time bringing

down the split-access cache lines from 30.9% to 3.2%. This

decrease in split-access cache lines is intuitive, given that the

cache line boundaries are at 64B. We note that if changes

are made to the cache line packing algorithm such that it

introduces holes in the pages to avoid split-access cache lines,

we can completely avoid extra accesses from misalignment.

However, that leads to higher complexity in the line-packing

algorithm, as well as the offset calculation of a line in a page.

Hence, we skip that optimization. Alignment-friendly cache

line sizes bring down the extra accesses from 63% to 36%.

2) Page-Overflow Prediction

One of the major contributors to compression data movement

is frequent cache line overflows. This often occurs in scenarios

of streaming incompressible data. For example, it is common

for applications to initialize their variables with zeros, and

then write back incompressible values to them. If a zero page,

which offers the maximum compressibility, is being written

back with incompressible data, its cache lines will overflow

one by one, causing the complete page to overflow multiple

times, as it jumps the possible page sizes one by one. In such

cases, we use a predictor to keep the page uncompressed to

avoid the data movement due to compression. A repacking

mechanism later restores the overall compression ratio.

We associate a 2-bit saturating counter with each entry

in the metadata cache (Fig. 5b). The counter is incremented

when any writeback to the associated page results in a cache

line overflow and is decremented upon cache line underflows

(i.e., new data being more compressible). Another 3-bit global

predictor changes state based on page overflows in the system.

We speculatively increase a page’s size to the maximum (4KB)

when the local as well as global predictors have the higher

bit set. Hence, a page is stored uncompressed if it receives

multiple streaming cache line overflows during a phase when

the overall system is experiencing page overflows.

False negatives of this predictor lose the opportunity to save

data-movement, while false positives squander compression

without any reduction in data-movement. We incur 22.5% false

negatives and 19% false positives on an average. This optimiza-

tion reduces the remaining extra accesses from 36% to 26%.

3) Dynamic Inflation Room Expansion

As discussed earlier, we use inflation room to store the cache

lines that have overflown their initial compressed size. However,

frequently, when a cache line overflows, it cannot be placed

in the inflation room because of insufficient space in the MPA

page, despite having available inflation pointers in the metadata.

As shown in Option 1 in Fig. 5c, prior work would recompress

the complete page, involving up to 64 cache line reads and 64

writes. Instead, we go for the optimized Option 2 ( Fig. 5c) and

allocate an additional 512B chunk, expanding the inflation room,

requiring only 1 cache line write. Due to metadata constraints,

this can be done only till the page has fewer than 8 allocations

of 512B chunks, and fewer than 17 inflated lines. With this, we

have reduced the remaining extra accesses from 26% to 19%.

4) Dynamic Page Repacking

Previous work [4, 9] in this field does not consider or

evaluate repacking (recompressing) a page while it is in main

memory. It is widely assumed that a page only grows in

size from its allocation, till it is freed (which then leads to

zero storage for OS-aware compression). However, we note

that even for OS-aware compressed systems, repacking is

important for long running applications. Fig. 7 shows the

loss in compression ratio if no repacking is performed (24%

storage benefits are squandered on average).

So far we have only focussed on dealing with decreasing

compressibility, and not increase in compressibility, or

underflows. However, as the cache lines within a page become

more compressible, the page should be repacked. Additionally,

we have proposed data-movement optimizations that leave

compressible pages uncompressed in order to save on

data-movement. Such poor packing will squander potentially

high compressibility. On the other hand, repacking requires

data movement, potentially moving many cache lines within

the page. If a page is repacked on each writeback that improves

compression ratio, it may lead to significant data movement.

The compression-squandering optimizations mostly affect

the entries that are hot in the metadata cache, since they

target the pages with streaming incompressible data, that get

evicted from LLC with high locality. Using this insight, we

choose metadata cache eviction of a page’s entry as a trigger
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D. Area Overhead

The BPC compressor unit with our optimizations synthesized

using 40nm TSMC standard cells [32] at 800MHz requires an

overall area of 43Kµm2, corresponding to roughly 61K NAND2

gates. A 96KB metadata (single read/write port) cache has an

area of roughly 100Kµm2 [28]. Although the area overhead

is not negligible, the benefits from Compresso justify it.

E. Cache Line Offset Calculation

In Compresso, we find the position of a cache line within

a compressed page by looking up the metadata cache and

calculating the offset with a custom low-latency arithmetic

unit. The bin sizes (0/8/32/64B) are first shifted right by 3 bits

to reduce their width. We then need to add up to 63 numbers

of values 0/1/4/8. A simple 63-input 4-bit adder requires under

1.5K NAND gates and 38 NAND-gate delays, which can be

reduced to 32 gate delays with some optimizations that take

possible inputs into account. DDR4-2666MHz allows only

˜30 gate delays in one cycle, but this offset calculation can

be partially parallelized with metadata cache lookup, thereby

making the overhead only 1 cycle.

V I I I . R E L AT E D W O R K

Software memory compression has been implemented

in commercial systems for the past decade. For example,

Linux (since Linux 3.14 and Android 4.4), iOS [33] and

Windows [34] keep background applications compressed. Any

access to compressed pages generates a compressed-page fault,

prompting the OS to decompress the page into a full physical

frame. Since the hardware is not involved, hot pages are stored

uncompressed, thereby limiting the compression benefits.

Most other prior work in system compression deals

with cache compression or bandwidth compression [5]–

[7, 13, 16, 18, 35]–[45]. We summarize the prior work in

main memory compression in Tab. V.

IBM MXT [8] was mostly non-intrusive, but required a

few OS changes. The OS was informed of an out-of-memory

condition by the hardware changing watermarks based on

compressibility. Furthermore, OS was required to zero out

free pages to avoid repacking data in hardware. Since the

compression granularity was 1KB, a memory read would result

in 1KB worth of data being decompressed and transferred. To

address this, a large 32MB L3 cache with a 1KB line size

was introduced. These features would significantly hinder the

performance and energy efficiency of MXT in today’s systems.

Robust Memory Compression [9] was an OS-aware

mechanism, proposed to improve performance of MXT. RMC

used translation metadata as part of page table data and cached

this metadata on chip in the block size table. RMC used 4

possible page sizes, and divided a compressed page into 4

subpages, with a hysteresis area at the end of each subpage

to store inflated cache lines.

Linearly Compressed Pages [4] was also OS-aware. It

addressed the challenge of cache line offset calculation by

compressing them all to same size, such that compression still

remains high. It used an exception region for larger cachelines

in order to achieve higher compression, hence still requiring

metadata access for every memory access.

Buri [10] targeted lightweight changes to the OS by manag-

ing memory allocation and deallocation in hardware. However,

it required the OS to adapt to scenarios with incompressible data,

using similar methods as MXT. It used an OS-visible “shadow

address” space, similar to OSPA and used the LCP approach to

handle computing cache line offsets within a compressed page.

DMC [11] proposed using two kinds of compression : LZ

at 1KB granularity for cold pages and LCP with BDI for hot

pages. It decides between the 2 compression mechanisms in

an OS-transparent fashion, at 32KB boundaries, which can

potentially increase the data movement. Additionally, LCP is

now applied for 32KB pages instead of 4KB pages, resulting

in lower compression.

CMH [12] proposed compression to increase the capacity of

a Hybrid Memory Cube (HMC), by having compressed and

uncompressed regions per vault, with a floating boundary in

between. The compression and allocation granularity is at the

cache-block level, thereby not needing any page movement.

However, having to maintain strictly separate compressed and

uncompressed regions amplifies the problem of cache-block

level data movement, causing their scheme to require explicit

defragmentation every 100 million cycles.

I X . C O N C L U S I O N

We identify important tradeoffs between compression

aggressiveness and unwanted data movement overheads of

compression, and optimize on these tradeoffs. This enables

Compresso to acheive higher compression benefits while

also reducing the performance overhead from this data

movement. We present the first main-memory compression

architecture that is designed to run an unmodified operating

system. We propose a detailed holistic evaluation with high

accuracy using the novel methodologies of Memory Capacity

Impact Evaluations. Overall, by reducing the data movement

overheads while keeping high compression, we make main

memory compression pragmatic for adoption by real systems,

and show the same with holistic evaluation.
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