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ABSTRACT Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation
that exists within and between species. As various cellular and developmental processes were revealed through intense focus on
Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of
intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and
supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related
nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of
nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial
nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of
developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of
homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and
experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular
and developmental biology.
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THE small, laboratory-friendly nematodes of the genus
Caenorhabditis were first developed as a system for genetic

analysis of animal development by a few early champions. One
of the first experimental studies on C. elegans was performed
by JapaneseAmericanHikokuroHonda,who found that sperm
determine the sex of progeny, and discovered that oocyte mei-
osis is not completed until after fertilization (Honda 1925).
Two decades later, the French biologist Victor Nigon and his
American colleague Ellsworth Dougherty greatly extended
this work (Nigon 1943; Dougherty and Nigon 1949; Ferris
and Hieb 2015; Nigon and Félix 2017), aided by improvements
in culturemethodology by Briggs (1946). Theseworkers set the
stage for Sydney Brenner’s breakthroughs with C. elegans
(Brenner 1974, 2009). Along with French biologist Emile
Maupas, who first described C. elegans (Maupas 1900), all of
these early researchers were struck by the fact that, within a
stereotypical body form, evolutionary variation in habitat choice,
feeding strategy, reproductive mode, behavior, and anatom-
ical details are rampant. Thus, research focusing on C.
elegans was always complemented by the work of other
nematologists working in other groups, such as other nema-
todes in the order Rhabditida (Figure 1) (Sudhaus 1976). It
can therefore be fairly said that questions of biodiversity, the
evolution of developmental processes, and their connections
to ecology were very much lingering over the field even in the
earliest days. The authors of this review represent examples
of contemporary biologists who share their predecessors’ fasci-
nationwith the evolution of nematode development. Trained in
the C. elegans paradigm, we and others take particular delight
in gazing outward across the phylogeny, always on the lookout
for new phenomena and explanations for how they evolved.

Unique Attributes of the Caenorhabditis System

Caenorhabditis offers an attractive set of attributes for evolu-
tionary developmental biology (EDB, or “evo-devo”). First, it
presents a highly simplified and stereotyped developmental
system. Worms are transparent and have a small number of
somatic cells formed by a predictable lineage (Sulston and
Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 1983).
This allows one to homologize and compare developmental
processes at the resolution of individual cells (Zhao et al.
2008). Nevertheless, the major tissues of larger, more com-
plex animals (e.g., muscles, integument, nerves, sensory cells,
renal, digestive and reproductive organs, and immune cells)
are present (see www.wormatlas.org). While zoologists of
the past believed the simple anatomy of nematodes repre-
sented a primitive state, molecular phylogenetics (Figure 1)
have generally supported the membership of the phylum
Nematoda in the Ecdysozoan superphylum of protostomes
(Giribet and Edgecombe 2017). This implies that nematodes’
often miniature bodies are actually highly derived and highly
specialized. An alternative interpretation to the C. elegans
body, therefore, is that it is a sophisticated, “microchip ani-
mal” that evolved from a larger progenitor. Along the way,
some ancestral regulators of animal development have been
shed or modified. For example, Caenorhabditis have fewer
Hox genes than other nematodes or more distantly related
animals (Aboobaker and Blaxter 2003), and the hedgehog
signaling pathway has both diverged in its roles (Bürglin
and Kuwabara 2006; Soloviev et al. 2011) and been
co-opted to form the core of the global sex determina-
tion pathway (Zarkower 2006). Simultaneously, proteins
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Figure 1 Phylogenies of phylum Nematoda, suborder Rhabditina, and genus Caenorhabditis, based on molecular data. (A) Inset shows the phylogenetic
position of Nematoda within a very simplified phylogeny of bilaterian animals. Recent molecular studies place Nematoda together with its sister group
Nematomorpha as the closest relatives of Panarthopoda (Arthropoda, Onychophora, Tardigrada) in a clade often called Ecdysozoa (Giribet 2016; Giribet
and Edgecombe 2017). The phylogeny of Nematoda has been derived mainly from ribosomal RNA (rRNA) genes and contains several well-defined
clades: clades I–V (De Ley and Blaxter 2004; De Ley 2006) designated in like-colored roman numerals, taxon names, and polygons; and clades 1–12
designated in black superscripts to corresponding taxon names (Holterman et al. 2008; van Megen et al. 2009). Some taxa have been left out here for
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implicated in chemosensation, such as rhodopsin-related G
protein-coupled receptors, have been amplified and diversified
(Bargmann 2006).

A striking variable distinguishing some nematodes, such as
Caenorhabditis, Pristionchus, and some other clade V taxa re-
lates to sexual mode. Although the ancestral gonochoristic (ma-
le-female), obligately outcrossing mode is retained by most
species, several have evolved a self-fertile hermaphrodite
(Kiontke et al. 2011) (Figure 1).Males persist at greatly reduced
frequencies, creating an androdioecious mating system. Andro-
dioecy is rare in both animals and plants (Pannell 2002; Weeks
et al. 2006), but because itmakes geneticmanipulations simpler
and faster, selfing species like C. elegans and C. briggsae (and
peas!) have always been favored by experimental biologists. A
major area of research reviewed below involves comparisons
between close relatives with different sexual modes.

Despite its fame for exhibiting “invariant” development,
C. elegans also offers one of the best-characterized examples
of an adaptive phenotypic plasticity: the formation of the dauer
larva. This resistant variant of the third larval stage is triggered
by crowding or starvation in the previous stage (Albert et al.
1981), which, in turn, alters pheromones and nutritional status.
These cues are then translated into differential states of signal-
ing pathways and circulating hormones (Fielenbach and Antebi
2008). Because the dauer larva appears to be a universal dis-
persal form for both free-living and parasitic terrestrial nema-
todes (Crook 2014), the cues that induce its development and
the attributes it possesses are likely to vary with ecological
niche. Some first examples of this variation are reviewed below.

C. elegans has also enjoyed early and intense attention to
the characterization of its genome and its relation to various
processes. It was the first animal species to have a complete
sequence assembly (C. elegans Sequencing Consortium 1998),
and this quickly became a handmaiden to gene-focused EDB
(e.g., Kuwabara and Shah 1994; Haag and Kimble 2000). In-
terest in examining interspecies variation led to a collection of
genome assemblies from other Caenorhabditis species (Stein
et al., 2003; Hillier et al. 2007; Ross et al. 2011; Fierst et al.

2015; see also http://www.nematodes.org/nematodege-
nomes/index.php/Main_Page). This work is ongoing on
an ever-larger scale, driven by both the discovery ofmany new
species (Kiontke et al. 2011; Barrière and Félix 2014; Huang
et al. 2014; Ferrari et al. 2017; Slos et al. 2017) and advances
in sequencing technology (see caenorhabditis.org). Note that
genome sequencing and annotation have been completed, or
are in progress, for all of the Caenorhabditis species shown in
Figure 1C except for C. sonorae, which has been refractory to
reisolation. Within species, the genomes of many genetically
distinct isolates from around the world are also being charac-
terized (Cutter et al. 2006; Rockman and Kruglyak 2009; Dey
et al. 2012; Thomas et al. 2015; Cook et al. 2016). This presents
a rich resource with which to examine standing variation in
molecules and processes (e.g., Cook et al. 2017).

Perhaps not surprisingly, evolutionary studies of Caenorhabditis
grew as comparative offshoots of the major topics of C. elegans
research. Essentially, once an aspect of the development of
C. elegans came to be understood in some detail, several
obvious questions followed quickly: Is that general? If it is
general, can it help us understand natural variation in form?
If it is not general, how did it evolve? Sometimes the reverse
line of questioning, starting with an appreciation of variation
in a particular feature, has also sparked more in-depth work
in C. elegans itself. In this fashion, EDB using nematodes has
focused on these topics:

zygotic mitosis and founder cell specification.
embryonic cell lineage.
developmental regulation of gene expression.
neuroanatomy.
sex determination.
germ cell development.
spermatogenesis and sexual behavior.
vulva and somatic gonad development.
nongonadal somatic sexual dimorphism and male develop-

ment, e.g., the tail.
dauer formation.

simplicity. Taxa other than Rhabditina that are mentioned in this review are listed at the right. Adapted with permission from Blaxter (2011) and Kiontke
and Fitch (2013). Taxa in quotation marks are paraphyletic: “Rhabditomorpha” includes all Rhabditina except Diplogasteromorpha and Bunonemato-
morpha. (B) Phylogeny of Rhabditina (clade V), almost entirely based on molecular data from rRNA and other loci (Kiontke et al. 2007; Ross et al. 2010;
Kanzaki et al. 2017). Thickness of the lineages, as indicated in the key at lower right, indicates the approximate level of confidence estimated from
statistical tests. The systematics of “Rhabditidae” was recently revised (Sudhaus 2011) based almost entirely on the molecular phylogeny (Kiontke et al.
2007) with some consideration of morphological characters to place taxa only known from literature descriptions (brown lineages). A few, mostly
monotypic taxa of uncertain position are not shown. Four named suprageneric clades are shown with brackets. Despite being paraphyletic, “Rhabdi-
tidae” is a useful taxon because it includes many free-living (rarely parasitic) species with fairly similar Bauplan and excludes three specialized parasitic
taxa (Angiostomatidae/Agfa, Strongylida, Rhabdiasidae) and Diplogastridae, a clade of species morphologically distinguished from “Rhabditidae” that
have undergone an extensive adaptive radiation. Pristionchus pacificus and its relatives are included in the Diplogastridae. The “Rhabditidae” sister taxa
to each of these special groups provide important resources for investigating the evolutionary origins of parasitism and other specializations that have
resulted in adaptive radiations. Colored fonts indicate taxa in which reproductive mode has evolved from gonochorism to hermaphroditism, hetero-
gonism or parthenogenesis (see key at lower right). Taxon names in bold font are at higher levels than the genera otherwise depicted. For more
complete information, see RhabditinaDB at rhabditina.org. (C) Phylogeny for some Caenorhabditis species as inferred by molecular data from rRNA and
several other loci (Kiontke et al. 2011). Due to the rapid rate of discovery, species are provisionally designated with numbers (sp. n) until names can be
attached to these species units (Félix et al. 2014). Only 28 of the �50 known species are shown here; however, this phylogeny shows all the major
known clades (demarcated here as “species groups”). Several Caenorhabditis species are only known from morphological descriptions and not included
here. Hermaphroditic species are indicated in red font; other species are gonochoristic.
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Below,we summarize keyfindings fromC. elegans research
on the above developmental processes, and discuss the evo-
lutionary studies that they have enabled. While the latter
would, in principle, include many studies of deeply diverged
nematodes and other phyla, we emphasize here the more
recent evolution revealed by comparisons within Rhabditida
(Clade V, Figure 1). Finally, we attempt to distill the major
insights that have emerged from nematode EDB.

Findings

Zygotic mitosis

The first embryonic divisions of the C. elegans embryo have
been extensively described (Rose and Gönczy 2014) (Figure 2).
Briefly, oocytes are blocked in prophase of meiosis I and un-
polarized. At fertilization, the sperm brings in the paternal
DNA and a pair of centrioles. These centrioles rapidly recruit
pericentriolar material, which locally destabilizes the corti-
cal actomyosin contractility, leading to the asymmetric re-
partition of the PAR polarity proteins. At fertilization, the
anteroposterior (AP) axis of the cell is thus established, and
the sperm entry site defines the posterior side of the cell. In
response to the PAR polarity, cytoplasmic proteins localize
asymmetrically in the cell, and the mitotic spindle that is
initially centrally located becomes posteriorly positioned
along the AP axis during anaphase (Figure 2). This asym-
metric displacement comes with impressive transverse os-
cillations of the spindle—the manifestation of excess forces
pulling on posterior astral microtubules. Because the cell
cleavage plane is perpendicular to the spindle, two daughter
cells of unequal size and asymmetric fate are formed, the
posterior cell P1 being smaller than the anterior cell AB.
This stereotyped asymmetric division has become a model
to study oriented cell division because of the exquisite spa-
tiotemporal resolution of events during this first cell cycle
and because of the strong conservation of molecules in-
volved across phyla (Neumuller and Knoblich 2009). At
each subsequent division, a similar asymmetric cell division
is reproduced in the P lineage, ultimately giving birth to the
founder cell of the germline, the P4 cell.

At the second cell cycle, while the founder cell AB divides
symmetrically to generate ABa and ABp, P1 gives rise to the
small P2 cell andEMS.During this division, themitotic spindle
of P1 rotates along the AP axis of the embryo and becomes
perpendicular to the spindle of AB. This leads to a rhomboid
organization of the four first blastomeres, which is essential
for the subsequent cellular interactions (Figure 2). Indeed,
at the four-cell stage, P2 sends a Wnt signal to EMS, which
then divides asymmetrically to give rise to the founder cell
of the intestine (the E cell) and the founder cell of the me-
soderm (MS). In the absence of P2 or Wnt signaling, EMS
gives rise to two MS cells. Through Notch/Delta signaling,
P2 also induces different fate acquisition in ABp compared
to ABa. P2 next divides to give the founder cell C and P3,
which divides again to give the founder cells D and P4.

These cell divisions thus rapidly produce the six key founder
cells of C. elegans embryos (Sulston et al. 1983).

The embryos of most nematodes, in particular free-living
forms, can easily develop ex-utero. The first cell divisions are
easy to monitor under slide and coverslip because cells are
largeand transparent and thepaceof cell divisions is relatively
fast. These properties allowed the analysis of the early steps of
embryogenesis in very diverse nematode species, starting
with the founding work of T. Boveri on Ascaris megalocephala
(=Parascaris equorum) (Maderspacher 2008) and followed
by Nigon and others in the early twentieth century (Nigon
and Félix 2017).

Among the long list of free-living and parasitic species that
have been observed since then, only species from Enoplia
(Clade I, Figure 1A) undergo a series of symmetric embryonic
first divisions, with late specification of cellular identity
(Malakhov 1994; Schulze and Schierenberg 2008, 2009,
2011). In all the other Chromadoria species so far observed,
the first embryonic division is asymmetric, giving rise to
two unequally sized, asymmetrically fated daughter cells
(Brauchle et al. 2009; Schulze and Schierenberg 2011;
Landmann et al. 2014; Calderón-Urrea et al. 2016). Thus,
as in C. elegans, the polarity of the embryo is already estab-
lished during the first mitosis in all these species. However, in
Acrobeloides sp. PS1146 (Cephalobomorpha), the sperm en-
try site does not correlate with the posterior side of the em-
bryo, in contrast to C. elegans (Goldstein et al. 1998). There is
also an absence of cytoplasmic movements toward the site of
sperm entry, further suggesting that the sperm is not the
polarity cue in this species. In a study of 16 other free-living
and parasitic nematodes, a clade that includes Acrobeloides
does not show any sign of cytoplasmic flow, while the other
groups resemble C. elegans (Goldstein et al. 1998) (Figure 2).
Thus, embryonic early polarity can be established indepen-
dently of the sperm centrosomes in many nematode species.
Parthenogenesis has emerged several times in the group of spe-
cies for which polarity is independent of the sperm, leading to
the hypothesis that the ability to polarize the embryo indepen-
dently of sperm might have been a preadaptation to the emer-
gence of parthenogenesis (Goldstein et al. 1998). Such a
transition state—to sperm-independent polarization in gono-
choristic species—is, however, not a prerequisite for the emer-
gence of parthenogenesis, because parthenogenesis is also
found in the Diploscapter genus within the “Rhabditidae” (Fig-
ure 1B) (Fradin et al. 2017)—a paraphyletic family composed
mainly of gonochoristic species that use sperm as a polarity cue.

The origin of the polarity cue in the absence of sperm has
been investigated (Lahl et al. 2006). Because, in some exper-
imental conditions, the female meiotic spindle can promote
PAR asymmetric localization in C. elegans embryos (Wallenfang
and Seydoux 2000), one tempting hypothesis is that the female
meiotic spindle becomes the polarity cue in parthenogenetic
species. However, this hypothesis can be ruled out, as the posi-
tion of the posterior pole does not correlate with the position of
the polar bodies in Acrobeloides nanus and in Diploscapter coro-
natus (Lahl et al. 2009). In Acrobeloides, the anterior side of the
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embryos always faces the vulva, suggesting that the orientation
of the oocytes within the gonadal tract provides a polarity cue.
In contrast, there is no correlation between embryo orien-
tation within the uterus and the position of the posterior
pole in Diploscapter, suggesting that polarity in these spe-
cies is established randomly. Because polarization relies
on the local destablilization of the actomyosin network
in C. elegans, one could imagine that spontaneous self-
organization of the actomyosin cortex triggers symmetry
breaking to define the anterior–posterior axis of the em-
bryo in Diploscapter.

Early embryo polarization is also observed in the parasitic
nematode Brugia malayi (Spirurina) (Landmann et al. 2014).
In this species, a microtubule-organizing center is found in
oocytes prior to fertilization at the future posterior side of the
cell, opposite to the location of the female meiotic spindle,

suggesting a microtubule-based mechanism of polarization
from a maternal origin. Wolbachia endosymbionts are found
enriched at the posterior side of the one-cell embryo and in
the P1 cell after the first division in this species; their removal
leads to polarity defects in two-cell embryos (Landmann et al.
2014). Whether Wolbachia are required for the initiation of
polarity or its maintenance remains to be determined, but
this example nicely illustrates the diversity of mechanisms
that exist to establish the first embryonic polarity axis of
nematode embryos during the first cell cycle.

In C. elegans, the early polarization of the embryo after
fertilization can be easily scored by a series of cortical con-
tractions following the reorganization of the actomyosin net-
work. Similarly, in response to the asymmetric localization of
PAR proteins, microtubule force generators produce move-
ments of the nuclei and the spindle that are extremely

Figure 2 First embryonic cell divisions in C. elegans and variations in other species. Top panel (A–F) schematic representation of the two first cell division
of the C. elegans embryo. Microtubules are shown in green, centrosomes are represented by black dots and nuclei by white circles. Polarity proteins are
shown in gray and yellow. (A) Initially, the oocyte is unpolarized. After the sperm entry (on the right), female meiosis resumes (spindle on the left). (B)
After fertilization, polarity proteins are asymmetrically localized and the sperm entry site defines the posterior pole of the cell on the right (B). In response
to polarity, the mitotic spindle (D) and cell fate determinants (E) are asymmetrically localized. During the second cell division, spindle orientation is
different between the two cells (E), giving rise to a rhomboid organization of blastomeres at the four-cell stage (F). At this stage, the P2 cell sends a Wnt
signal to EMS. Phenotypic changes: timing of cell divisions and cell orientations can vary between species leading to different cellular contacts and
blastomeres organization. Cryptic changes: among species that have similar embryonic cell divisions than C. elegans, evolutionary changes are found in
the polarization of the embryo, the positioning of the first mitotic spindle or in cell/cell communication.
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stereotyped. In one study, the first two embryonic divisions
of 34 rhabditids were scored, uncovering a large degree of
variability in these subcellular phenomena (Brauchle et al.
2009). Farhadifar et al. (2015) analyzed the first embryonic
cell division of 42 different rhabditid species and of natural
isolates and mutation accumulation lines of C. elegans. Spin-
dle length appears to be constrained by stabilizing selection
on cell and embryo size, with the two linked in C. elegans by a
linear scaling relationship. However, the observed variations
in spindle movements could not be explained by evolutionary
changes in cell size between species (Valfort et al. 2018).
Moreover, traits associated with spindle movements com-
bined in ways contrasting with the expectation based on C.
elegans studies, suggesting that mechanical optimization of
the mitotic spindle differs between species despite a con-
served output phenotype: the asymmetry of division.

The origin of differences in spindle positioning between
C. elegans and its congener C. briggsae have been explored
(Riche et al. 2013). In C. briggsae, at the onset of mitosis, the
spindle is anteriorly shifted in contrast to a central position
found in C. elegans. During anaphase, the spindle is pulled
posteriorly in both species. However, this movement is ac-
companied by much-reduced transverse spindle oscillations
in C. briggsae compared to C. elegans. These phenotypes were
attributable to the GPR-1/2 proteins—components of the
cortical force generator complex. While two recently dupli-
cated genes gpr-1 and gpr-2 are found in the genome of
C. elegans, C. briggsae has only one gpr-2 gene. This difference
in gene copy number correlated with a lower expression
level in C. briggsae compared to C. elegans but also with a
different spatio-temporal regulation.. Thus, the processes
that produce a conserved and essential cellular feature,
asymmetric spindle position, are distinct. This represents
a case of what has been dubbed developmental system drift
(DSD; True and Haag 2001) or phenogenetic drift (Weiss
and Fullerton 2000) at the earliest stages of embryonic
development.

Postzygotic cell lineage and founder cell specification

Although descriptions of early embryogenesis in Enoplia and
Dorylaimia (Clades I and II; Figure 1) remain scarce because
species of these clades are difficult to maintain in laboratory
conditions (Schulze and Schierenberg 2011), what is known
suggests that a striking diversity of mechanisms for early-
development evolved early in the phylum. In Enoplus brevis
(Enoplia, Clade I) the first embryonic divisions are symmetric
and body axes are not specified during the first cell divisions.
Moreover, except for the endoderm (E) lineage, no founder
cells are identified and cells become determined later “en
bloc” (Schulze and Schierenberg 2011). In Pontonema vul-
gare, the spatial arrangements of the blast cells producing
specific lineages can also vary substantially among embryos
(Malakhov 1994; Voronov 1999), also suggestive of “regula-
tive” development. In another representative of Enoplia,
Tobrilus, a blastocoel is even observed with a canonical
gastrulation—a feature that was unexpected in this phylum

of pseudocoelomate worms. However, anteroposterior polar-
ity is established at the four-cell stage, and three founder cells
for the germline, the pharynx, and the intestine are found
(Schierenberg 2005; Schulze and Schierenberg 2011). Re-
sults obtained in Prionchulus punctatus (Mononchida) are
contradictory. On the one hand, laser ablation of half of the
embryo does not prevent the development of a normal fertile
adult (Borgonie et al. 2000). On the other hand, there are five
founder cells (E, pharynx, D, C, and P), suggesting an early
specification of cellular identities (Schulze and Schierenberg
2011). While Romanomermis culicivorax (Dorylaimia, a.k.a.
Clade II) has six founder cells like C. elegans, tissues are
formed by rings of cells, reminiscent of a segmentation pro-
cess (Schulze and Schierenberg 2008, 2009). These species
present extremely divergent early embryonic development,
making it difficult to infer the ancestral pattern of develop-
ment in nematodes. Nevertheless, because it is shared with
outgroup phyla, the absence of deterministic lineage was
most likely an ancestral character associated with slow
embryogenesis.

On the other hand, the more derived Chromadoria are
characterized by a fast embryonic development with largely
deterministic lineages (Malakhov1994;SchulzeandSchierenberg
2011). Plectus species (Plectida) seem to have an intermedi-
ate way to specify cell types between Enoplia (no early foun-
der cells) and Rhabditina (six founder cells established by the
16-cell stage): while the P lineage is clearly specified, the AB
lineage is highly variable, leading to variable cell–cell con-
tacts from one embryo to the other (Schulze et al. 2012).
Within the Chromadoria, the early lineages of many species
resemble C. elegans. Early examples came fromwork with the
Clade IV species Panagrellus redivivus, Turbatrix aceti, and
Aphelencoides blastophthorus imbedded in the seminal de-
scription of the C. elegans embryonic lineages (Sulston et al.
1983). Later studies examined fellow Clade V taxa, such as C.
briggsae (Zhao et al. 2008), Litoditis marina (a.k.a. Pellioditis
marina) (Houthoofd et al. 2003), Pristionchus pacificus
(Vangestel et al. 2008), and Oscheius shamimi (Tahseen
and Nisa 2006). Other species within the Tylenchina a.k.a.
Clade IV have also been described, such as Rhabditophanes
(Houthoofd et al. 2008), Halicephalobus (Borgonie et al.
2000), as well as from the more distantly related Spirurina
a.k.a. Clade III (Ascaris; Boveri 1899). Nevertheless, in a de-
tailed analysis of 70 different species from 19 different nem-
atode families within Chromadoria, differences were found
in the spatial and temporal organization of the founder cells
(Dolinski et al. 2001). First, AB and P1 divide at the same rate
as C. elegans (synchrony), or at different rates (asynchrony)
as in Acrobeloides, in which all the P divisions take place
before the first division of AB. It has been previously proposed
that such timely separation of soma and germline divisions
would ensure proper germline identity (Schlicht and Schier-
enberg 1991). Yet, in species for which AB and P1 divide
in the same generation, a delay in cell divisions can exist,
such as in C. elegans, where AB divides 2 min before P1,
or in Diploscapter and Poikilolaimus oxycercus, where P1
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divides first (Brauchle et al. 2009). Moreover, species have
either a rhomboid organization of blastomeres as in C. ele-
gans, or a linear arrangement at the four-cell stage when both
AB and P1 spindles rotate to align along the AP axis. Such
linear organization is found in Diploscapter and some
“Protorhabditis” species (Dolinski et al. 2001; Brauchle et al.
2009; Lahl et al. 2009; Fradin et al. 2017) or in Meloidogyne
(Dolinski et al. 2001; Calderón-Urrea et al. 2016) (Figure 2).

In species with linear arrangement of the early blasto-
meres, the question of lineage specification remains open.
In C. elegans, ABp fate is induced by P2 via Notch signaling
(Mello et al. 1994; Mickey et al. 1996). The linear arrange-
ment in the four-cell embryo means that this signaling must
occur in a different way, if it occurs at all (Brauchle et al.
2009). Also, in Diploscapter coronatus, and some other spe-
cies of the “Protorhabditis” group, P2 has already divided into
C and P3 at the time of EMS and ABp division (Lahl et al.
2009; Fradin et al. 2017). Moreover, the orientation of C and
P3 is random, at least in Diploscapter coronatus. Thus, in only
50% of embryos does ABp contact C while EMS contacts P3.
Despite these random contacts, ABp and ABa have a distinct
lineage, suggesting that ABp specification is independent of
an induction by either C or P3. Whether EMS requires an
inductive signal by a neighboring cell or is cell-autonomous
remains to be determined. Importantly, removal of EMS leads
to an absence of intestinal cells, demonstrating an absence of
multipotency, as in C. elegans (Lahl et al. 2009). In striking
contrast, in Acrobeloides nanus, where cellular contacts at the
four-cell stage are similar to C. elegans, the absence of P2 does
not prevent gut specification (Figure 2). Rather, any cell at
the three-cell stage can give rise to intestinal cells after abla-
tion of the others. Similarly, if AB is ablated, EMS takes over
and C becomes EMS. Thus, in this species, multipotency and
hierarchy of transformations is observed, despite an early
segregation of the lineage in wild-type embryos (Wiegner
and Schierenberg 1998, 1999). Unexpectedly, in the distantly
related Plectus, the situation resembles C. elegans, since an
induction of EMS by P2 is necessary to specify the intestine
(Schulze et al. 2012). Therefore, many different solutions
and reversals are found over the course of nematode evolu-
tion to specify cellular identities during early embryogenesis.

Interestingly, even within Caenorhabditis, differences in
gut specification have been revealed at the molecular level,
despite conservation of cellular interactions and blastomere
specification (Coroian et al. 2006; Lin et al. 2009). Upon Wnt
signaling by P2, the transcription factors SKN-1 and POP-1
act to specify E and MS identity. While POP-1 has a positive
contribution to MS specification in C. elegans, it represses the
MS fate in C. briggsae. In an interesting twist to the story,
MED-1,2, two GATA transcription factors that act down-
stream of SKN-1, evolved in the lineage to C. elegans and
are not present in C. briggsae. One model for the co-option
of these new factors is via a transitional feed-forward archi-
tecture in which SKN-1 acts both through and independently
of MED-1,2 (Maduro 2009). Given the highly conserved
cell lineages in the two species (Zhao et al. 2008), such an

opposite role for a key signaling pathway is an unexpected
case of DSD.

The above results demonstrate that—despite a very con-
strained body plan—early steps of embryogenesis vary con-
siderably between nematodes. The molecular signature of
such diversity in the early steps of embryogenesis was ex-
plored in five different species within Caenorhabditis (Levin
et al. 2012). Embryos from 10 different morphological stages
were collected, from four-cell stage embryos to L1 larvae, and
their transcriptomes were analyzed. Despite species-specific
developmental timing, embryos from specific stages showed
a similar pattern of gene expression across species, suggest-
ing the existence of conserved “milestones” in development.
Importantly, at midembryogenesis, corresponding to ventral
enclosure, transcriptomes from different species were the
least divergent. Moreover, genes that were activated at this
stage showed enrichment in crucial functions such as pattern-
ing by Hox genes or locomotion. These results led to the
proposition (Levin et al. 2012) that for nematodes, ventral
enclosure represents a key, body plan-defining point in devel-
opment, the so-called phylotypic stage (Slack et al. 1993;
Richardson et al. 1998). Transcriptome profiles throughout
embryonic development were also performed in 20 mutation
accumulation lines of C. elegans, in which the effect of selec-
tion is largely abolished. For all developmental stages, except
ventral enclosure, variation in gene expression was much
higher in the MA lines. This result strongly suggests that
gene expression during ventral enclosure is highly con-
served because of stabilizing selection (Zalts and Yanai
2017). Regardless of whether or not there is a phylotypic
stage, these results do support an hourglass model (Raff
1996), in which nematode development shows the greatest
diversity prior to or after a conserved point midway through
embryogenesis.

Developmental regulation of gene expression

The variation in global embryonic gene expression described
above indicates that the transcriptional controls acting on
each gene evolve readily. Several studies have examined this
process at the level of individual genes. One early focus was
on lin-48, which encodes a transcription factor related to
Drosophila ovo. lin-48 is expressed in the developing excre-
tory duct cell in C. elegans, but is not in C. briggsae. Using
reporter transgenes, Wang and Chamberlin (2002) found
that only the combination of C. elegans regulatory sequences
with a C. elegans host supported lin-48 excretory cell expres-
sion, suggesting the difference between species was due to
changes in both cis-regulatory sequences and trans-acting
factors. At least four C. elegans-specific sequences contribute
to the former. Further, the absence of lin-48 expression in C.
briggsae correlates with a more anterior location of the ex-
cretory duct cell—a shift also seen in lin-48 loss-of-function
mutants in C. elegans. A subsequent study (Wang and Cham-
berlin 2004) found that C. elegans lin-48 recently gained a
binding site for the bZip transcription factor CES-2 that
is necessary in C. elegans for both strong excretory cell
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expression and anterior excretory duct cell location. Forcing
expression of LIN-48 in the C. briggsae excretory duct cell is
sufficient for anterior location. Thus, the gain of a novel reg-
ulatory linkage during evolution altered both lin-48 expres-
sion andmorphology. In addition, enhancers thatmediate the
conserved hindgut expression of lin-48, which are bound by
EGL-38, have diverged between C. elegans and C. briggsae
(Wang et al. 2004).

Gene regulatory evolution has also been examined in sub-
sets of homologous neurons conserved across Caenorhabditis.
Barrière et al. (2012) focused on the GABAergic cell marker
unc-47. Though expressed in identical ways in C. elegans and
C. briggsae, cross-species reporter transgenes produced addi-
tional, ectopic sites of expression. Further experiments
revealed that coordinated evolution between cis and trans fac-
tors has occurred in each lineage. A subsequent study (Barrière
and Ruvinsky 2014) expanded the neuronal genes analyzed to
seven (unc-25, unc-46, unc-47, oig-1, acr-14, gpa-5, and mod-5)
and the species to five (C. elegans, C. briggsae, C. remanei,
C. brenneri, and C. japonica). Again, while regulatory regions
from non-elegans species generally drive expression in the
expected C. elegans cells, ectopic expression and/or cell-
specific lack of expression is seen in nearly all cases. Interest-
ingly, ectopic expression of cross-species transgenes is much
more common, suggesting that the repressive mode of regu-
lation evolves faster than the activating mode. Similar reporters
based on homologs from the much more distantly related par-
asites Meloidogyne, Brugia, and Trichinella (Figure 1) showed
that conserved patterns of expression can be driven by se-
quences that are essentially unalignable (Gordon et al. 2015).

The above studies show that changes in cis-regulatory se-
quences evolve rapidly. They can sometimes have develop-
mental effects, but more often remain phenotypically cryptic.
This is likely due to the action of stabilizing selection, which
mandates an outcome, but not a mechanism. This allows
compensatory evolution (or apparently compensatory, see
Haag 2007) to proceed unchecked, accelerated by directional
selection on other loci that share trans-regulators (Johnson
and Porter 2007). Over time complex dependencies between
distinct promoter regions form (Ludwig et al. 2000).

Neuronal development

Of the 957 somatic cells of the C. elegans hermaphrodite,
302 are neurons, with another 56 providing support
(Chalfie and White 1988). Males have over 100 additional
neurons and glia, mostly with mating-related roles. Pioneer-
ing work of John White and his colleagues determined the
full connectome of the hermaphrodite (White et al. 1986),
and 25 years later a full description of the male posterior
nervous system completed the picture (Jarrell et al. 2012).
A large body of literature has described normal and per-
turbed nervous system development in C. elegans as well
(Hobert 2010; Cherra and Jin 2015; Shaham 2015). Such a
wealth of information about this one species, as with other
topics explored here, begs the question of conservation. Are
all Caenorhabditis nematodes put together this way? How

about more distantly related nematodes? The earliest com-
parisons were with the larger, distantly related parasite,
Ascaris (e.g., Sulston et al. 1975; Walrond et al. 1985; Niebur
and Erdos 1993; Holden-Dye andWalker 1994), and revealed
a surprising fine-scale congruence of neurons over a large evo-
lutionary distance (Schafer 2016).

Perhaps not surprising given their overtly similar anatomy,
homologous neurons are produced in C. briggsae from a con-
gruent embryonic cell lineage (Zhao et al. 2008). The more
distantly related P. pacificus shares all 20 of the pharyngeal
neurons, despite substantial divergence in feeding strategies
(Bumbarger et al. 2013). Interestingly, however, these ho-
mologous pharyngeal neurons are connected in substantially
different ways. The cell lineages producing them have yet to
be determined in P. pacificus, but even if they differ some-
what, the nervous system appears to evolve novel connec-
tions far faster than novel neurons. That finding presents
an interesting parallel to work on the evolution of gene reg-
ulatory networks (GRNs; Peter and Davidson 2011). In both
cases, homologous components (either neurons or genes)
evolve distinct regulatory connections to other components.
How neural development is modified to produce novel con-
nections is an important area for future research.

Sex determination

Sex determination was one of the first aspects of C. elegans
development to be tackled using forward genetic approaches
(Hodgkin and Brenner 1977; Hodgkin 2002). X chromosome
dosage had long been known to be the ultimate regulator of
sexual fate (Nigon 1951). The discovery of a genetic pathway
linking X dosage to cell fate (Hodgkin 1986) was subse-
quently confirmed by molecular cloning of the genes
(reviewed by Zarkower 2006). It soon became apparent,
however, that this pathway did not resemble those that link
chromosomes to sexual fate in Drosophila or mammals (Cline
and Meyer 1996; Eggers et al. 2014). The cloning of C. ele-
gans mab-3 revealed the first widely conserved sex-specifier,
the DM family of transcription factors (Raymond et al. 1998;
Zarkower 2001). Thus, the disparity in sex determination
mechanisms among different phyla is not due to wholly in-
dependent origins of sexual dimorphism, but rather to rapid
divergence of sex determination pathways, most likely up-
stream and downstream of conserved DM factors (Haag
and Doty 2005; Kopp 2012). This realization provided fur-
ther motivation to examine the evolution of sex determina-
tion over shorter time scales.

The first comparisons of sex determination genes within
Caenorhabditis focused on the “core pathway” that regulates
dimorphism body-wide (Figure 3), starting with the identifi-
cation of C. briggsae homologs of the genes tra-2 (Kuwabara
and Shah 1994; Kuwabara 1996) and tra-1 (de Bono and
Hodgkin 1996). These early studies revealed rapid sequence
evolution but conserved functions in the promotion of female
somatic development. Similar results were subsequently re-
ported for the male-promoting xol-1, her-1, fem-2, and fem-3
(Hansen and Pilgrim 1998; Streit et al. 1999; Haag et al.
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2002; Luz et al. 2003) and the male-promoting tra-3 (Kelleher
et al. 2008). XOL-1 and FEM-3 are particularly divergent,
with only 22 and 38% amino acid sequence identity be-
tween their C. elegans and C. briggsae orthologs, respec-
tively. For FEM-3, its overall rapid divergence is mirrored by
the region of the C-terminal domain of TRA-2 with which it
interacts (Haag and Kimble 2000). In three species tested,
the interaction between conspecific TRA-2 and FEM-3 part-
ners was conserved, but interspecies pairings invariably
failed (Haag et al. 2002). Less complete interspecies incom-
patibility was observed for the FEM-2-FEM-3 interaction
(Stothard and Pilgrim 2006). Another interaction, between
a C-terminal domain of TRA-2 and TRA-1, has been docu-
mented in both C. elegans and C. briggsae (Lum et al. 2000;
Wang and Kimble 2001). These results indicate that, contrary
to the conventional wisdom of molecular biology, even pro-
tein domains of critical importance can evolve rapidly. This
may be especially true if the only role of a sequence is to
interact with one other partner (i.e., there is no pleiotropy
at the molecular level). Abundant polymorphisms that do not
disrupt interaction are observed in C. remanei TRA-2 and
FEM-3 (Haag and Ackerman 2005). A population model sug-
gests such variants can allow rapid coevolution by reducing
the deleterious effects of other changes that would reduce
fitness on their own (Haag and Molla 2005).

In addition to rapid ortholog sequence evolution, C. brigg-
sae is apparently lacking a clear ortholog of sea-1, an autoso-
mal regulator of xol-1, the upstream-most “master regulator”
of sexual fate (E.S.H., unpublished data). Thus, over the
roughly 20 MY since C. elegans and C. briggsae diverged
(Cutter 2008), their global sex determination pathways have
undergone rapid sequence evolution and coevolution of con-
served genes, and have begun to exhibit gene-level pathway
incongruence. The existence of a highly diverged tra-1 ho-
molog in the more distantly related P. pacificus (Pires-daSilva
and Sommer 2004) suggests that key aspects of the core sex
determination pathway nevertheless remain after substan-
tially longer periods of divergence.

Self-fertile hermaphrodites have evolved at least three
times within Caenorhabditis (Kiontke et al. 2004, 2011) (Fig-
ure 1 and Figure 3). This novel strategy is enabled by pro-
duction of sperm in the XX ovary, making germline sex
determination an obvious topic of interest for EDB. Before
examining that, however, it is worth noting that, unlike
Drosophila and mammals, the somatic niches for germline
stem cells are very similar (if not identical) in male and fe-
male Caenorhabditis (Kimble and Hirsh 1979; Kimble and
White 1981; Milloz et al. 2008), and a male somatic gonad
is not required to support the differentiation of spermatocytes
(Graham and Kimble 1993; Graham et al. 1993). Further, the
C. elegans hermaphrodite does not express HER-1, a secreted
protein that specifies male fate in XO animals, even in the L4
stage when sperm are produced (Trent et al. 1991; Perry et al.
1993). Self-fertility thus represents a cell-autonomous change
in sexual fate. Extensive mutagenesis screens for XX ani-
mals with germline-specific sexual transformations (e.g., the

masculinization of germline, or Mog, and feminization of
germline, or Fog phenotypes) have identified cis-regulatory
elements in core sex-determination gene mRNAs that are sites
of negative regulation by germline RNA-binding proteins
[RBPs, reviewed by Zanetti and Puoti (2013)]. The reconfigu-
ration of RBP-target mRNA networks thus appears to be the
key to XX spermatogenesis, distinguishing it from other phe-
notypic novelties that are rooted in changes in transcription
factors and their target genes (Carroll 2008).

What were the changes that allowed XX spermatogenesis
to evolve, and how similar are they in selfing species that
evolved convergently? Examination of conserved global sex-
determiners in the hermaphroditic C. briggsae and the
outcrossing C. remanei revealed identical roles for the fe-
male-promoting tra-1, tra-2, and tra-3 (de Bono andHodgkin
1996; Kuwabara 1996; Haag and Kimble 2000; Kelleher et al.
2008), and the male-promoting her-1 (Streit et al. 1999). In
contrast, while RNAi knockdown of Cbr-fem-2 and Cbr-fem-3
function could feminize the germ cells of C. briggsaemales, it
had no effect on hermaphrodites (Haag et al. 2002; Stothard
et al. 2002). The dispensability of the C. briggsae fem genes
for hermaphrodite spermatogenesis was subsequently con-
firmed by deletion mutations and exhaustive tra-2(ts) sup-
pressor screens (Hill et al. 2006). These results suggested
that regulatory mechanisms that allow C. briggsae spermato-
genesis act downstream of the fem genes. Cbr-fem-3; Cbr-tra-1
double mutants have the perfect male soma characteristic
of Cbr-tra-1 mutants, but a well-regulated hermaphrodite
germline, as in Cbr-fem-3mutants (Hill and Haag 2009). This
indicates that, as in C. elegans (Hodgkin 1986), the fem mu-
tations are epistatic to tra-1 in the germ line. Interestingly, in
both species fog-3 expression, which is controlled by tra-1,
and thus by the fem genes, remains high in tra-1 mutants
even when the germline is feminized by simultaneous loss
of one ormore fem genes (Chen and Ellis 2000; Hill and Haag
2009). This indicates that the fem genes act in multiple places
near the terminus of the germline sex determination path-
way. The degree of identity of these sites of control be-
tween the two selfing species, and the extent to which they
were present in their gonochoristic ancestors, remains to be
determined.

How conserved are the germline-specific sex determina-
tion factors known from C. elegans? The promoter of sperm
fate fog-3 is conserved and plays a similar role across the
genus (Chen et al. 2001). Clear orthologs of fog-1 also exist
in all Caenorhabditis species (Cho et al. 2004), but their loss-
of-function phenotypes have not yet been reported. GLD-1,
the RBP that binds the tra-2 39 UTR (Jan et al. 1999), is also
conserved across species (Nayak et al. 2005; Beadell and
Haag 2014). However, C. briggsae GLD-1 is a repressor of
sperm fate, rather than an enabler, Cbr-tra-2 lacks the dupli-
cated motifs that recruit GLD-1 in C. elegans, and gld-1 has no
apparent role in sex determination in any male-female spe-
cies (Nayak et al. 2005; Beadell et al. 2011). GLD-1 thus
appears to have been co-opted into sex determination
independently, and to opposite effect, in C. elegans and
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C. briggsae. This may have occurred because of its simple
RNA target motif (Ryder et al. 2004) and conserved expres-
sion in early meiotic germ cells (Jones et al. 1996; Nayak
et al. 2005). FOG-2, an F-box protein cofactor for GLD-1 in
C. elegans that is essential for XX (but not male) spermato-
genesis (Schedl and Kimble 1988; Clifford et al. 2000) is a
recent gene duplicate that is found only in this species
(Nayak et al. 2005).

The gld-1mRNA is itself subject to translational repression
via its own 39 UTR by the PUF family RBP FBF (Crittenden
et al. 2006). The PUF family is somewhat dynamic in
Caenorhabditis, such that in C. briggsae there are not strict

orthologs of FBF. However, both biochemical and genetic
studies indicate that the three paralogs of the PUF-2 subfam-
ily (Cbr-puf-2, Cbr-puf-1.1, and Cbr-puf-1.2) represent the
C. briggsae equivalents (Liu et al. 2012). Given the opposite
roles of C. briggsae and C. elegans gld-1 in sex determination,
it is not surprising that simultaneous RNAi knockdown of
Cbr-puf-2 and Cbr-puf-1.2 function feminizes the germ line,
rather than masculinizes as does C. elegans fbf(RNAi). Sur-
prisingly, however, complete elimination of Cbr-puf-2 activity
alone (via a deletion mutation) leads to a fully penetrant
larval arrest. Subsequent studies revealed this was due to a
defect in pharyngeal development, apparently related to the
brief expression of Cbr-puf-2 in three pharyngeal muscle cells
(Liu and Haag 2014). This suggests that the PUF protein
family may spin off paralogs as they acquire novel roles out-
side of the germ line, an example of the neofunctionalization
process thought to favor retention of otherwise redundant
gene copies (Lynch et al. 2001).

The above studies revealed evolutionary variation through
reverse-genetic targeting of conserved genes. Another fruitful
approach has been to conduct unbiased forward screens
for germline-specific feminizers in C. briggsae (reviewed by
Ellis 2017). For example, alleles of Cbr-gld-1 emerged from
screens forMog hermaphrodites (Beadell et al. 2011). Similarly,
screens for fog-2-like mutations conferring hermaphrodite-
specific germline feminization led to the discovery of she-1
(Guo et al. 2009). Like FOG-2, SHE-1 is an F-box protein that
depends upon tra-2 for its function. However, there is no in-
dication that it directly regulates tra-2, nor that it interacts
with GLD-1. Its exact role in enabling XX spermatogenesis
thus remains a subject for future work.

Another novel factor required for sperm development of
both sexes of C. briggsae is encoded by trr-1 (Guo et al. 2013).
This component of the Tip60 histone acetyl transferase com-
plex is conserved across Caenorhabditis, but loss of trr-1 alone
is incapable of causing similar feminization of the C. elegans
germ line. Cbr-trr-1 mutations enhance the incomplete so-
matic masculinization of Cbr-tra-2, and, in the germ line, help
activate fog-3 expression, suggesting that TRR-1 promotes
male development. However, the effect on fog-3 is dependent
upon the presence of tra-1. This suggests that, as for Gli and
its other hedgehog pathway transcription factor homologs,
TRA-1 has both activating and repressing effects on target
genes, with TRR-1 being important for the former. A previ-
ously unknown role of the C. elegans trr-1 ortholog in promot-
ing male development can be revealed through enhancement
of weak fem alleles (Guo et al. 2013). These results are consis-
tent with existence of separate and conserved tra-2/fem (repres-
sor) and tra-1/trr-1 (activator) branches of the sex determination
pathway. Though apparently conserved in both C. elegans and
C. briggsae, their relative importance is reversed. The case of
trr-1 also shows how use of a second “satellite model” organism
can shed important light on cryptic evolution underlying con-
served phenotypes of the more widely studied species.

The impact of trr-1 described above, as well as related
work in C. elegans (Grote and Conradt 2006) suggest that

Figure 3 Convergent evolution of self-fertility via distinct changes alter-
ations of germline sex determination. The core body-wide sex determi-
nation pathway (black), which acts in all dimorphic tissues, is shared with
outcrossing relatives (top). Upstream factors that sense X dosage and
regulate both sex determination and dosage compensation (xol-1 and
the sdc genes), are not depicted here for simplicity. The XX hermaphro-
dites of C. elegans (middle) and C. briggsae (bottom) both produce sperm
in an otherwise female body by germline-specific modification of sex
determination. Germline-specific factors that promote sperm production
in each are indicated in green, while those limiting it are in red. Note that
in the C. briggsae case, the influence of she-1 on tra-2 is indirect, and the
action of the pathway consisting of puf-2, puf-1.2, gld-1, and puf-8 has
not yet been placed along the global pathway, and is thus conservatively
depicted as a parallel pathway. Pleiotropic accessory factors with impor-
tant roles in sexual fate are indicated in gray. The alternative functions of
homologous genes and the role of species-specific genes in both her-
maphrodites are particularly noteworthy. The arrows connecting fem
genes directly to sperm fate in C. elegans depicts how loss of any of
the fem genes phenotypically feminizes tra-1 germ cells without loss of
fog-3 expression (Chen and Ellis 2000). In C. briggsae, a similar result is
found for fem-3, but not fem-2, and the effect is to convert the mostly
male tra-1 germ line to a consistent hermaphroditic (rather than female)
pattern (Hill and Haag 2009). For this reason, the equivalent arrow is
dashed.
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chromatin regulators may be frequent contributors to sexual
regulation via modulation of TRA-1 function. Chen et al.
(2014) thus pursued possible roles for the nucleosome remod-
eling factor (NURF) complex in C. briggsae. Using the TALEN-
based genome editing methods they had developed (Wei et al.
2014a), they discovered that, while complete loss of Cbr-isw-1
and Cbr-nurf-1 were sterile, hypomorphic mutations were
sometimes Fog, and RNAi knockdown of either gene increased
the penetrance of this. Surprisingly, however, the feminizing
impact is not observed in C. elegans, or in the outcrossing
C. nigoni and C. remanei. The NURF complex thus appears to
be uniquely important in C. briggsae, and likely represents an-
other component of the species-specific regulation that each
hermaphrodite evolved to produce sperm transiently.

Germ cell proliferation

The proliferation of germ cells at the distal tip of the C. elegans
gonad is directed by a somatic niche, comprised of the many
finger-like projections of a single distal tip cell (DTC, Hall
et al. 1999; Byrd et al. 2014). The DTC stimulates mitotic
proliferation of germline stem cells via Notch signaling
(Kimble and Hirsh 1979; Kimble and White 1981; Austin
and Kimble 1987; Cinquin et al. 2010). As proliferation
pushes stem cells out of the DTC niche, they undergo a final
mitosis and then enter meiosis. No further mitoses are nor-
mally observed in either sex, and there is no evidence for a
mostly quiescent, or “label-retaining” subpopulation of stem
cells (Crittenden et al. 2006). In addition, for all Caenorhabditis
species that are self-fertile, spermatocytes are found only during
the L4 larval stage and (depending on species) the first few
hours of adulthood as defined by the final molt. Thus, sperm
are of a finite number established prior to ovulation, and
when sperm are exhausted reproduction ceases unless mat-
ing with a male occurs. Recent studies in other nematode
groups have revealed significant deviations from these
aspects of Caenorhabditis germ cell proliferation.

The recently described genus Auanema (Kanzaki et al.
2017) has presented several unexpected aspects of germline
development. Though similar to Caenorhabditis in overall
form and habitat, and within the same family, “Rhabditidae”
(Kiontke and Fitch 2005), at least three Auanema species
(A. rhodensis, A. freiburgenesis, and A. viguieri) exhibit a re-
productive polyphenism in the development of XX individu-
als, such that those that develop directly via a normal L3 larva
mature into females, while those produced from dauer larvae
(L3d) develop as selfing hermaphrodites (Félix 2004; Kanzaki
et al. 2017). This presents another convergently evolved self-
fertile taxon, which has now been examined in some detail.
Among their unexpected features, hermaphrodite spermatocytes
are not specified briefly in the L4 stage, as in Caenorhabditis,
but instead are continuously replenished via coherent popu-
lations of spermatagonia (McCaig et al. 2017). These form
elongated cysts that proliferate mitotically far from the distal
stem cell niche, and undergo meiosis and spermatogenesis
adjacent to oocytes. Other surprising features of Auanema
germline biology are described below.

More distant relatives of Caenorhabditis are the mamma-
lian filarial parasites (onchocercids, Spiruromorpha, Figure
1), such as Brugia malayi, the causative agent of human fil-
ariasis. These parasites have a radically different life history
from the bacteriovores in “Rhabditidae” discussed thus far. A
female Brugia adult can lay over 1000 embryos per day, and
sustain this rate for over 5 years (Taylor et al. 2010)—a re-
productive output three orders of magnitude greater than
that of C. elegans. In addition, they andmany of their relatives
have harboredWolbachia bacteria as obligatory symbionts for
millions of years (McLaren et al. 1975; Bandi et al. 1998;
Taylor et al. 1999). Importantly, curing these nematodes of
Wolbachia with antibiotics adversely affects them without
harming their mammalian host (Bosshardt et al. 1993). In
Onchocerca ochengi, a parasite of livestock, tetracycline treat-
ment kills adults (Langworthy et al. 2000). In cured Brugia
malayi and B. pahangi, females produce inviable embryos
that die via extensive apoptosis, while males retain normal
fertility (Bandi et al. 1999; Landmann et al. 2011). This in-
viability is likely caused by the requirement for Wolbachia in
proper polarization of the first zygotic cell division, as noted
earlier (see section Zygotic mitosis). A subsequent study
(Foray et al. 2018) revealed that the Wolbachia symbiont
and the Brugia female have coevolved to jointly support oo-
cyte proliferation. The dynamics of this proliferation differ
markedly from that of Caenorhabditis, in that it occurs predom-
inantly in a zone proximal to the distal stem cell niche, with the
most distal cells represent a quiescent population (Foray et al.
2018). Loss ofWolbachia stimulates ectopic proliferation in the
distal zone, with the effect of exhausting the quiescent pool. It
thus appears thatWolbachia has become such an integral part of
the female germline development that the nematodes can no
longer prosperwithout it.What, if anything, the nematode hosts
derive from the symbiosis is another mystery.

In addition to the presence of theWolbachia symbiont, the
somatic niche for germline stem cells differs between
Caenorhabditis and Brugia (Foray et al. 2018). Ablation of
the DTC in Brugia is not sufficient to eliminate germline pro-
liferation, as it is in Caenorhabditis. Nevertheless, broad treat-
ment with inhibitors of Notch signaling reduce proliferation.
These results suggest that the somatic niche in Brugia is sim-
ilar to that of Caenorhabditis, but on a larger scale. This find-
ing is consistent with the ongoing anatomical (Rundell
and Leander 2010) and genomic (Aboobaker and Blaxter
2003) miniaturization of nematodes that accompanied their
invasion of tiny meiofaunal habitats.

Spermatogenesis

Compared to the wild variety seen in other phyla (Lüpold and
Pitnick 2018), the peculiar amoeboid sperm of nematodes
are notably constant in their major sperm protein (MSP)-
based motility and overall shape. However, this outward
constancy masks tremendous variation that impacts organis-
mally important traits, such as sex ratio, self-fertility, sexual
selection, and resistance to cross-species mating. Some of
these variables are described below.
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Just within Caenorhabditis, sperm can differ in volume as
much as 50-fold between species (Vielle et al. 2016). Sperm
size is correlated with competitive ability within species
(LaMunyon and Ward 1998). In selfing species, male sperm
are consistently larger than those of hermaphrodites, in part
because of somatic gonad effects (Baldi et al. 2011). How-
ever, male sperm of outcrossing species are generally larger
than those of males from selfing species (LaMunyon and
Ward 1999; Hill and L’Hernault 2001). Further, conditions
that select for the most competitive sperm also increase
sperm size (LaMunyon and Ward 2002). These correlations
indicate that postcopulatory sexual selection and its relaxation
in selfing species is a major force that shapes sperm develop-
ment. They also suggest a simple effect of sperm size on com-
petitive ability, yet interspecies matings reveal a more complex
relationship. Males of outcrossing species frequently suppress
self-fertility in hermaphrodites, and tend to have larger sperm.
However, across a matrix of many pair-wise crosses, the extent
of this effect is not correlated with difference in the sperm size
of the two species (Ting et al. 2014). This suggests that other
factors contribute to competitiveness. A likely candidate is the
sperm proteome, which can be much larger in outcrossing
species (Thomas et al. 2012b; Yin et al. 2018).

Several lines of evidence have revealed that male-
expressed genes are disproportionately lost as part of wide-
spread genome shrinkage in self-fertile lineages (Thomas
et al. 2012b; Fierst et al. 2015). One case that has been
investigated functionally is that of the MSS family of sperm
surface glycoproteins. Yin et al. (2018) found thatmss genes
are found in nearly all outcrossing Caenorhabditis, but are
missing in all self-fertile species. MSS proteins are both nec-
essary (in C. remanei) and sufficient (when restored to C.
briggsae) for optimal sperm competition. The increased suc-
cess in siring cross-progeny that an mss+ transgene confers
to C. briggsaemales (Yin et al. 2018) may provide an impor-
tant clue about its independent loss. With greater suppres-
sion of selfing comes a greater fraction of male progeny. The
reproductive assurance and lack of inbreeding depression of
selfing species (Dolgin et al. 2008), combined with the
small, transient habitats they favor likely create conditions
that select for lower male frequency via interdemic selec-
tion. This is reminiscent of the local mate competition sce-
nario of Hamilton (1967). Loss of mssmay provide a way to
reduce male frequency without complete loss of outcross-
ing, which is likely needed at some level (Morran et al.
2009a,b).

Beyond competiveness, the sperm of some nematodes
exhibit oddities that lead to unexpected sex ratios, as in the
heterogonic sheep parasite Strongyloides papillosus. Adults in
a host are always parthenogenic females. Many of their XX
progeny develop directly into infective larvae, creating a sim-
ple asexual life cycle. However, females can also produce
sexual XX female and XO male progeny, which mate outside
the host and produce outcrossed infective larvae. How does a
parthenogenic XX female produce a male without mating?
Albertson et al. (1979) had suggested that one X chromosome

(present as part of an X-autosome fusion in this species) may
be lost in some diploid oocytes via chromosomal diminution.
Using molecular markers and heroic crosses through sheep,
Nemetschke et al. (2010) found clear support for this hypothesis.
Which of the two X chromosomes is lost appears to be random,
but some mechanism must prevent both from being lost.

Auanema rhodensis presents another interesting sperm-
mediated sex ratio anomaly. Though males are XO and fe-
males XX, cross progeny are ,2% male (Félix 2004). Exam-
ination of male spermatogenesis provided an explanation
(Shakes et al. 2011). As spermatocytes proceed through mei-
osis I, the two X chromosomes are not paired, as in C. elegans.
This produces secondary spermatocytes with one X chroma-
tid. When these divide, the spermatid possessing the X at-
tracts nearly all of the organelles required for sperm function
(mitochondria, membranous organelles, and MSP), while the
nullo-X chromosome set ends up in a residual body incapable
of supporting spermiogenesis. As a result, nearly all spermato-
zoa capable of fertilizating an oocyte are X-bearing, which, in
turn, produces extremely female-biased broods. Interestingly,
matings between male and free-living female Strongyloides
papilillosus also produce all-female broods, but it is not yet
known whether the mechanism is the same as that described
forA. rhodensis (Streit et al. 1999).A. rhodensis hermaphrodite
morphs employ yet another non-Mendelian mechanism of X
chromosome segregation during spermatogenesis, as the func-
tional self-sperm contain two X chromosomes (Tandonnet
et al. 2018). This is coupled with loss of both oocyte X chro-
mosomes to the first polar body. As a result, self-progeny are
always XX, but crosses between XX hermaphrodites and males
yield exclusively male progeny. These dynamics are another
strong indication that selection on sex ratio can push the evo-
lution of sperm attributes, in this case via unexpected meiotic
novelties.

Though it is obvious that self-fertility depends upon XX
spermatogenesis, the final step of sperm development—
spermiogenesis or activation—plays another important role
in its evolution. In male nematodes, spermatids are stored in
an inactive state in the seminal vesicle, and are not activated
to become motile spermatozoa until exposure to factors dur-
ing their passage through the vas deferens activates two par-
allel pathways (Ellis and Stanfield 2014). One of these
pathways is composed of SPE-8 and associated sperm pro-
teins, which responds to a signal from the vas deferens
(Nishimura and L’Hernault 2010) that may be zinc cations
(Liu et al. 2013). The other is mediated by the seminal pro-
tease TRY-5 and its inhibitor, SWM-1 (Stanfield and Ville-
neuve 2006; Smith and Stanfield 2011). The requirement
for activators expressed in the male somatic gonad presents
a problem for would-be selfing hermaphrodites, which must
evolve male-independent sperm auto-activation.

C. elegans spe-8 group mutants exhibit hermaphrodite-
specific activation defects, suggesting that only the spe-8
pathway is used to achieve auto-activation. The independent
origins of selfing in C. briggsae and C. tropicalis raise the
question of whether convergently evolved hermaphrodites
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used the identical means to achieve sperm auto-activation.
Wei et al. (2014b) found that genes of both male sperm ac-
tivation pathways are conserved across the genus. Knockout
mutants in multiple spe-8 group genes cause self-sterility in
C. briggsae hermaphrodites (but not males), suggesting par-
allel co-options of the same sperm activation pathway. How-
ever, loss of spe-8 group homologs had no effect on C. tropicalis
hermaphrodites, but try-5 mutant hermaphrodites were self-
sterile. This indicates that, in the C. tropicalis lineage, the
alternative pathway evolved to enable auto-activation (i.e.,
convergence). Surprisingly, C. tropicalis males are also ren-
dered sterile upon loss of only try-5, indicating that the two
pathways are no longer redundant in this species.

Given the need for both XX spermatogenesis and sperm
auto-activation, how did self-fertility ever evolve? In an
elegant experiment, Baldi et al. (2009) simulated this trans-
formation using the gonochoristic C. remanei. Partial loss of
Cre-tra-2 function with RNA interference creates XX pseudo-
hermaphrodites that produce sperm (Haag and Kimble
2000), but these sperm are not active and the animals are
not self-fertile. However, mating with males is sufficient to
activate these sperm and allow production of selfed progeny.
Moreover, when Cre-swm-1 is also knocked down, pseudo-
hermaphrodite self sperm spontaneously activate and sire
self-progeny (Baldi et al. 2009). Because there is no known
role for TRY-5 protease in females, this ability of Cre-swm-1
(RNAi) to activate these XX sperm is surprising. Examination of
sex-specific transcriptome data (Thomas et al. 2012a) reveals
that C. remanei swm-1 is abundantly and comparably expressed
in both females andmales, while try-5 is highlymale-biased. One
possibility is that the low level of TRY-5 expression in C. remanei
females is sufficient to activate self sperm when SWM-1 is elim-
inated. Alternatively, knockdown of tra-2 may elevate TRY-5
levels to a point that potentiates loss of swm-1. In either case,
simultaneous modification of sex determination and sperm acti-
vation factors is sufficient to allow rudimentary selfing.

The above experiments suggest a two-step model for the
evolution of self-fertility (Figure 4). In the first phase, a germ-
line-specific change in the regulation of the sex determina-
tion (discussed above) could have produced a small
population of XX spermatids. By virtue of developing in a
female body, these were initially inactive, and also smaller
than male sperm (Baldi et al. 2011). However, their trans-
activation could be achieved via seminal fluid from conspe-
cific (or closely related) males, as shown by Baldi et al.
(2009). Evolving in a population of gonochoristic conspe-
cifics, such mates would likely be readily available to the in-
cipient selfer. This would produce a mixed-paternity brood
with an XX-skewed sex ratio, which has two potential conse-
quences. First, selfed progeny would retain the maternal ge-
notype that promotes XX spermatogenesis, which is likely a
recessive trait (Woodruff et al. 2010). Second, the XX-biased
broods may be adaptive if population sizes shrink and local
mate competition conditions set in (see above). Such partial
selfing would have the further benefit of allowing recessive
deleteriousmutations to be gradually purged (Garcia-Dorado

2012). Eventually, a greater degree of selfing would become
well tolerated. In the final phase, hermaphrodites could have
evolved sperm auto-activation by upregulating expression of
one of the spermiogenesis signals in their otherwise female
reproductive tract. Baldi et al. (2009) also suggested that the
capacity for XX sperm autoactivation may have evolved as a
neutral polymorphism first, allowing subsequent changes in
sex determination that enable spermatogenesis to achieve
great impact without mating. In either case, an autonomous
selfer would enjoy reproductive assurance at low density with-
out accompanying inbreeding depression, allowing them access
to habitats that would be marginal for obligate outcrossers.

Vulva development

The vulva is an opening in the center of the C. elegans her-
maphrodite (but can be in different positions in other taxa)
that serves for copulation and egg laying through its direct
connection with the uterus. Because of extensive work on the
vulva in C. elegans, it has also become an important evo-devo
model and is a primary exemplar of DSD. The vulva is a
simple organ that originates from a handful of ventral epider-
mal cells during the larval stages (Figure 5). Cellular division
and organogenesis can be tracked by differential interference
contrast (DIC)microscopy. Moreover, C. elegansmutants with
abnormal vulvae remain fertile, which has allowed vulva de-
velopment to be explored in exquisite detail (Sternberg
2005; Gupta et al. 2012). While the morphology of the adult
vulva can be a slit or a round pore depending on the species
(Kiontke et al. 2007), the fate patterns of the vulva precursor
cells (VPCs) are quite conserved between species. Are the
VPCs specified similarly in all species? Where does the induc-
tion signal come from, and is it always the same molecular
signal? Studies that have posed these questions have revealed
an impressive diversity of cryptic changes (i.e., changes inmech-
anism without changes in phenotype), between both closely
and distantly related species, and even strains of the same spe-
cies. The field has also benefited from the establishment of
other selfing species, P. pacificus and Oscheius tipulae, as genet-
ically tractable systems to explore changes in vulval develop-
ment over large evolutionary distances (Félix 2006; Sommer
2006). Cryptic genetic changes have been deciphered further
by exploring different species of the same genus and even dif-
ferent natural isolates of the same species in the three genera,
Caenorhabditis, Oscheius and Pristionchus.

Twelve ventral epidermal cells (P1.p to P12.p) originate
during the L1 stage (Figure 5): P1.p being the most anterior
cell and P12.p the most posterior cell (Sulston and Horvitz
1977). In C. elegans, during the L3 stage, and upon signaling
from a specialized cell of the uterus called the anchor cell
(AC), the central cells P5.p to P7.p divide to give rise to
22 cells that will fuse in late L4 in concentric circles to form
the vulva. The pattern of division of each cell is highly re-
producible and reflects the fate of the cells. While the most
central cell P6.p adopts the 1� fate (“inner” vulval cells that
will detach from the cuticle and involute), P5.p and P7.p
adopt the 2� fate (“outer” vulval cells that remain connected
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to the cuticle to anchor the vulva). P3.p, P4.p and P8.p
daughter cells adopt a 3� (nonvulval) fate, because they do
not form the vulva in wild type animals. All of these P(5–7).p
cells form a vulval competence group, as any of these cells
can replace an ablated cell and become vulval. All the other
Pn.p cells are incapable of forming the vulva, even upon ab-
lation of P3.p to P8.p (Sternberg and Horvitz 1986). This
vulval competence group is defined by expression of two
Hox proteins, with LIN-39 in central cells promoting compe-
tence and MAB-5 repressing it in more posterior Pn.p cells
(Clandinin et al. 1997). The AC sends a LIN-3/EGF signal that
acts as a morphogen on the VPCs (Hill and Sternberg 1992).
Closest proximity to the signal determines the 1� fate (gen-
erally P6.p); P5.p and P7.p receive a lower dose and adopt
the 2� fate. Activation of the EGF/Ras signaling pathway in
P6.p activates the Notch/Delta pathway (Sternberg 1988).

This leads to the inhibition of the 1� fate in P5.p and P7.p
through lateral inhibition and to the activation of the 2� fate
in these same cells. The Wnt pathway is also involved in
vulval specification, as loss of negative regulators of Wnt
causes mote than three VPCs to be induced (Gleason et al.
2002). Conversely, VPCs adopt a 3� fate or fuse with the
hypodermis in the absence of positive regulators of the Wnt
pathway (Eisenmann and Kim 2000).

Variation in the position of the vulva: C. elegans has two
gonadal arms extending from the center of the animal, with a
central uterus and vulva derived from the central epidermal
Pn.p cells. Some species have a single gonadal arm (mono-
delphy), which extends anteriorly. The evolution of monodel-
phy per se will not be covered here (but see Félix 1999). In
most cases, monodelphy is accompanied by a posterior shift
of the uterus and the vulva. In the monodelphic species
P. redivivus, the vulva forms at 60% of body length because of
a posterior displacement of the central Pn.p cells and because
the vulva is centered in between P6.p and P7.p (Sternberg
and Horvitz 1982). Within “Rhabditidae,” monodelphy and
a posterior vulva are derived and evolved several times
(Kiontke et al. 2007). In the three posterior-vulva species of
Cruznema,Mesorhabditis, and Teratorhabditis that have been
analyzed, again only the central Pn.p cells (P5.p to P7.p) are
competent, and they migrate posteriorly (Sommer and
Sternberg 1994). However, mechanisms of vulva induction
differ between species. The developing gonad induces the
VPCs in Cruznema, but is not required to induce the VPCs in
Mesorhabditis and Teratorhabditis. Establishment of the
competence group by LIN-39 is conserved in P. pacificus
(Eizinger and Sommer 1997) and O. tipulae (Louvet-Vallee
et al. 2003). HOX specification represents a constraint on
specifying which cells can form the vulva; to make a pos-
terior vulva, this constraint has been overcome in at least
four independent lineages in Rhabditida by a similar
mechanism, i.e., posterior migration of the vulva cells
(Kiontke et al. 2007).

Variation in the number and fate of VPCs: Large variations
are found in the size of the competence group, in the number
of divisions of competent cells, as well as in the fate of the
noncompetent Pn.p cells (for an evolutionary synthesis of
most of these differences among species in Rhabditida, see
Kiontke et al. 2007). While the competence group includes
P3.p up to P10.p in P. redivivus (Sternberg andHorvitz 1982),
much larger than the number of cells that are induced, in
Rhabditophanes and Strongyloides ratti the competence group
is restricted to the cells that form the vulva (Félix et al.
2000a). The size of the competence group can also vary be-
tween closely related species. For instance, P3.p is competent
inC. elegans but not inC. briggsae or in someotherCaenorhabditis
species (Pénigault and Félix 2011). Overexpression of Wnt in
C. briggsae is sufficient to induce the division of P3.p, while
downregulation in C. elegans prevents the division of P3.p
(Pénigault and Félix 2011). Because several Wnt ligands

Figure 4 Scenario for the evolution of self-fertility in Caenorhabditis. (A) In
the gonochoristic/dioecious Caenorhabditis ancestor, males (top) store
gametes as inactive spermatids in the seminal vesicle, maintained in this
state by the protease inhibitor SWM-1. Upon mating and ejaculation, male
spermatids (gray) pass through the glandular vas deferens, where they
encounter active TRY-5 protease and the signal for the spe-8 pathway,
which may be zinc ions. Once inside the female (bottom), they are activated
and migrate from the uterus to the spermatheca, where they await ovula-
tion and a chance to fertilize an egg. (B) A hypothetical first step to self-
fertility is a change in germline sex determination that allows the production
of some self-spermatids (light circles). These cannot activate on their own,
but, after mating and transfer of some male seminal fluid, they are acti-
vated in trans (light spermatozoa). (C) In the second step, hermaphrodites
evolve the ability to activate self-spermatids autonomously, by increasing
the level of active TRY-5 protease (as in C. tropicalis) or the signal for the
spe-8 pathway (in C. elegans and C. briggsae).
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are expressed in a gradient from posterior to anterior in the
C. elegans body (Gleason et al. 2006), one possible explana-
tion is that the lack of competency of P3.p in C. briggsae could
be due to a shorter Wnt gradient in C. briggsae compared to
C. elegans (Figure 5; Pénigault and Félix 2011). It is also
possible that, in C. briggsae, P3.p is less sensitive to Wnt
signals. Within Pristionchus, P8.p is partially competent in
P. pacificus (Sommer 1997), but is a true VPC in P. lheritieri
(Srinivasan et al. 2001).

Within the competence group, the pattern of cell division is
also variable. The numbers of cells that form the vulva vary

between 16 cells in O. tipulae, to 34 cells in Rhabditoides
regina (Sommer and Sternberg 1995). Within Caenorhabditis,
22 cells form the vulva in all species that have been observed
(Félix 2007). However, the division pattern of the competent
cell P3.p is highly variable, between and within Caenorhabditis
species (Delattre and Félix 2001; Félix 2007; Pénigault and
Félix 2011). Similarly, the pattern of P4.p and P8.p division
shows a high degree of intraspecies and interspecies varia-
tion in Oscheius. The fate of the cells that are not competent
to form the vulva also vary. Pn.p cells that do not express
LIN-39 fuse with the hypodermis in C. elegans and inO. tipulae

Figure 5 Variations in vulval development in Caenorhabditis, Pristionchus, and Auanema. Left panel: schematic representation of vulva development in
C. elegans, and some cryptic variations found within Caenorhabditis. From ventral epidermal cells, six competent cells, P3.p to P8.p are defined in
C. elegans. During the L3 larval stage, VPCs are specified and induced by the combined action of a graded EGF signal from the anchor cell (AC), a lateral
Notch signal between the most central cells and a Wnt gradient emanating from the posterior of the body (gray wedge). Blue cells adopt a primary fate
and divide to form the center of the vulva in late L4. Red cells have a secondary fate and form the lateral part of the vulva. Yellow cells form the vulva
only if blue or red cells are absent. The respective contributions of the EGF and Notch pathways vary quantitatively (shown by arrows of different size)
among Caenorhabditis species and even among strains of the same species. In C. briggsae, reduction in Wnt signaling (compared to C. elegans) is
responsible for the lack of competency of P3.p. This could be due to truncation of the Wnt gradient (depicted here), or because of reduced sensitivity of
P3.p to an identical gradient. Middle panel: Schematic representation of vulva development in P. pacificus, and variations found within Pristionchus. In
P. pacificus, the VPCs are induced by redundant Wnt signaling signals sent by the gonad and the AC. The M cell, as well as the P8.p cell (which is only
partially competent), send lateral inhibitory signals to prevent the adoption of 1� Cell fate by P5.p and P7.p. Within Pristionchus, cryptic quantitative
changes in the signaling pathways are observed. In particular, the extent of lateral inhibition by P8.p varies frequently between and within species. Right
panel: example of changes in vulva development between morphs of the same species is shown for Auanema rhodensis SB347. In this species, three
sexes coexist because female larvae that go through the dauer stage become self-fertile hermaphrodite adults. This plasticity is accompanied by changes
in vulva formation between females and hermaphrodites, in the number of inductive signaling steps from the gonad that are required to specify the Pn.p
cells, as well as in the number of divisions of P8.p.
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(Louvet-Vallee et al. 2003), while the expression of LIN-39
prevents cell death in P. pacificus (Eizinger and Sommer
1997). The restriction of the competence group by cell
death is a derived character that is observed several times
in the phylogeny, yet reversals of this restriction are very
rare, constituting an interesting evolutionary bias (Sommer
and Sternberg 1996; Kiontke et al. 2007). In Turbatrix aceti,
as in three other Panagrolaimomorpha species, the survival of
the VPCs depends on a signal emanating from the gonad dur-
ing the L2 stage, in contrast to P. pacificus (Sternberg and
Horvitz 1982; Félix and Sternberg 1997, 1998).

Variation in the mechanisms of VPC induction: Laser ab-
lation of the AC or the gonad has been performed in a wide
range of species. These experiments have revealed an impres-
sive diversity of induction mechanisms, apparently evolved
from an ancestral two-step induction signal from the gonad
(Kiontke et al. 2007). Most surprisingly, systematic character-
ization of Caenorhabditis and Pristionchus has uncovered cryp-
tic genetic changes (e.g., changes in the contributions of
different signaling mechanisms, in competence level and even
genetic variation affecting the requirement for induction) be-
tween closely related species and even between strains of the
same species (Srinivasan et al. 2001; Félix 2007; Zauner and
Sommer 2007; Milloz et al. 2008; Kienle and Sommer 2013).

In Clades IV and V (Figure 1), the VPCs can be induced
independently of the gonad, as in Brevibucca, or require con-
tinuous or possibly consecutive signals from the gonad, as in
Halicephalobus sp. (Félix et al. 2000a). As shown above,
Mesorhabditis and Teratorhabditis also do not rely on the
gonad for induction (Sommer and Sternberg 1994), while
two consecutive signals from the AC are required inO. tipulae
and Rhabditella axei (Félix and Sternberg 1997). In O. tipu-
lae, the early and late induction signals depend on the activity
of MEK kinase—a component of the Ras pathway involved
in C. elegans late-only induction (Dichtel-Danjoy and Félix
2004b). One possible evolutionary scenario is that a hetero-
chronic shift occurred in the Caenorhabditis lineage with
regard to both the requirement for, and expression of, the
homologous induction event (Kiontke et al. 2007).

In P. pacificus, a continuous 10-hr induction from several
cells of the somatic gonad is required to induce the VPCs
(Sigrist and Sommer 1999), seemingly comparable to the
two-step induction of O. tipulae (Kiontke et al. 2007). As in
C. elegans (Gleason et al. 2006), simultaneous inactivation of
several Wnt ligands and receptors leads to Vulvaless pheno-
types in P. pacificus (Zheng et al. 2005; Tian et al. 2008;Wang
and Sommer 2011). However, after inactivation of Ppa-bar-
1/b-catenin (the Wnt signal transducer), VPCs do not die of
apoptosis but adopt a 3� fate, similar to the phenotype
obtained after gonad ablation (Tian et al. 2008). Further,
Wnt ligands MOM-2 and LIN-44 are expressed in the AC
before the division of VPCs and in the central cells of the
somatic gonad, respectively (Tian et al. 2008). This suggests
that Wnt signals comprise the gonadal signal that induces
formation of the vulva in P. pacificus (Figure 5), whereas they

are primarily involved in establishing VPC competence to re-
spond to that signal in Caenorhabditis. The involvement of
LIN-3 and its downstream cascade has not been demon-
strated in P. pacificus vulval induction, raising the possibility
that a secondary, largely redundant Wnt pathway in one
species (C. elegans) could be central to the homologous
process in another (P. pacificus). Interestingly, P8.p and the
mesoblast M cell are both responsible for the lateral inhibi-
tion that prevents too many VPCs from adopting a 1� fate
(Jungblut and Sommer 2000). Thus, P8.p inhibits the induc-
tion of VPCs even though it is not a VPC itself. Of note, Wnt
signaling is also used in P. pacificus to shape the distinct “pret-
zel” morphology of the somatic gonad (Rudel et al. 2008).
Selection on either gonad shape or vulva induction would
thus target a pleiotropic Wnt module, with potential conse-
quences (overt or cryptic) for the other trait.

Variation of the induction mechanism of VPCs is also
found between species belonging to the same genus or even
between strains of the same species. For instance, a single
late induction from the AC is required for VPC divisions in
Panagrolaimus sp. PS1579 as in C. elegans, while early and
continuous (or possibly two consecutive) signals from the
gonad are necessary in another Panagrolaimus species, P. sp.
PS1732 (Félix et al. 2000). Within Pristionchus, the system of
induction found in the laboratory strain P. pacificus PS312 is
not widely conserved. For instance, in P. lheritieri and P. mau-
pasi and even different strains of P. pacificus, some VPCs are
induced even when the gonad is ablated just after hatching,
and the extent of the lateral inhibition exerted by P8.p on the
VPCs can vary (Srinivasan et al. 2001; Zauner and Sommer
2007). Mapping of the quantitative trait locus (QTL) respon-
sible for the differences in the gonad-independent induction
of VPCs between P. pacificus strains revealed a new role for
the Notch ligand apx-1/Delta (Kienle and Sommer 2013). In
many wild strains, absence of a binding site for the HAIRY
transcription factor in the cis-regulatory region of apx-1 leads
to its expression in P6.p and confers a gonad-independent
induction of this cell, while in the laboratory strain PS312,
apx-1 is not expressed in the VPCs, which thus require the
gonad for induction (Kienle and Sommer 2013).

While the pattern of division of the VPCs is very conserved
among Caenorhabditis species, cryptic changes in the mech-
anism of induction were revealed by ablation of the AC
or overexpression of the LIN-3/EGF inductive signal (Félix
2007). Early ablation of the AC leads to adoption of the 3�
fate for all VPCs in all species. However, ablation of the AC
during patterning, i.e., mid-L3 stage, has different outcomes
depending on the species or strain within a species (Félix
2007; Milloz et al. 2008). For instance, in C. remanei, the
VPCs adopt a 2�3�2� pattern, suggesting that, in contrast to
C. elegans, a low level of induction from the AC is sufficient for
P6.p to induce its neighboring cells, but not enough for its
own fate acquisition. In C. briggsae, the same experiment
leads to a 2�2�2� pattern. Moreover, mild overexpression of
LIN-3 in C. briggsae generates adjacent 1� cells, a phenotype
that is obtained in C. elegans only after strong overexpression
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of LIN-3 (Katz et al. 1995). Thus, lateral inhibition from P6.p
on adjacent Pn.p cells can be overcome easily in C. briggsae
and less so in C. elegans. Nevertheless, the LIN-12/Notch
pathway is still involved in lateral inhibition in C. briggsae
and LIN-3/EGF acts in a dose-dependent manner on VPC fate
specification (Félix 2007). However, inactivation of genes of
the vulva specification pathways in C. elegans and C. briggsae
often leads to different phenotypes, revealing a difference in
the respective contributions of these pathways (Rudel and
Kimble 2001; Sharanya et al. 2012, 2015; Mahalak et al.
2017). Thus, evolutionary changes in the patterning of the
vulva are not necessarily due to rewiring of the signaling
pathways, but can also be attributed to quantitative changes
of the same network of signaling pathways (Haag and True
2007). Modeling of the vulva induction pathways confirms
that quantitative tuning of the same network parameters
could account for the different vulva patterning obtained
experimentally among Caenorhabditis species (Hoyos et al.
2011).

Other experiments provided indirect evidence of cryptic
genetic changes between species or between strains of the
same species. One approach is mutagenesis screens for vulva
defects. These yielded a different spectrum of mutations
depending on the species. In O. tipulae, although 50,000
gametes were mutagenized, only a handful of hypo- and
hyper-induction mutants were isolated. The far larger cate-
gory was represented by mutations that affect the number
of cell division of VPCs, but not their specification, while
this category of mutants was very rarely found in C. elegans.
These results may indicate a rewiring of the system, depend-
ing on the species. Alternatively, higher pleiotropy of the
genes involved in vulval patterning in O. tipulae could lead
to embryonic death or sterility, thus preventing the detection
of specific classes of mutants (Dichtel et al. 2001; Louvet-
Vallee et al. 2003; Dichtel-Danjoy and Félix 2004a). Simi-
larly, screens in C. briggsae (Sharanya et al. 2012, 2015)
failed to identify mutants lacking VPC induction, and map-
ping of mutants indicates there are novel players relative to
the C. elegans paradigm.

An alternative approach is to characterize the spectrum of
vulval defects in mutation accumulation lines. Phenotypes
observed in C. elegans are quantitatively different from
those obtained in C. briggsae (Braendle et al. 2010). Al-
though the division of the VPCs is highly reproducible within
a strain, developmental errors arise at low frequency (�1%;
Braendle and Félix 2008). Interestingly, the frequency and
type of errors differ between closely related species or
strains of the same species (Zauner and Sommer 2007;
Braendle and Félix 2008). Introgression of a mutant allele
in different strains of C. elegans also revealed intraspecific
cryptic changes. For instance, the impact of different alleles
of the Ras pathway on vulva induction vary, depending on
the genetic background (Milloz et al. 2008). The back-
ground factors that distinguish C. elegans natural isolates
were next explored by introgressing an allele of the EGF
receptor let-23 and performing QTL mapping. This revealed

that C. elegans N2 harbors a mutation in the conserved ace-
tyltransferase NATH-10 that is mainly responsible for the
difference in expressivity of the let-23 allele. Because this
nath-10 allele also confers high fitness on the laboratory
strain N2 compared to others, this experiment demon-
strated that cryptic genetic changes can accumulate in
the genomes by indirect selection and pleiotropic effects
(Duveau and Félix 2012). Even seemingly constant features
of the signaling network are subject to DSD at the molecular
level. For example, while expression of lin-3/EGF remained
constant between Caenorhabditis species and O. tipulae, the
cis-regulatory elements that underlie it have been substan-
tially reconfigured, with elements required for expression in
one species completely missing in the other (Barkoulas
et al. 2016).

Last, but not least, the development of the vulva has been
shown to vary between female and hermaphrodite morphs of
A. rhodensis (Félix 2004; Kanzaki et al. 2017). While both
females and hermaphrodites have a competence group
formed by P(4-8).p, P8.p divides in females but not in her-
maphrodites. Most strikingly, while three successive gonadal
inductions are necessary to form a vulva in hermaphrodites,
two rounds of induction are sufficient in females. Although
the molecular basis of such a switch remains unknown, this
example illustrates that vulva induction can go through dif-
ferent routes even for animals from the same genotype.

The comparative work on vulva development reviewed
above has initiated a virtuous cycle, in which interesting
differences between C. elegans and its relatives have been
appreciated directly, and also motivated further research in
C. elegans. For example, the observation of an intrinsic differ-
ence among Pn.p cells inMesorhabditis (Sommer and Sternberg
1994) led to re-evaluation of thedifferential competence of cells
of the “equivalence” group in C. elegans (Clandinin et al. 1997).
Similarly, C. briggsae pry-1mutants aremulti-vulva (like their C.
elegans counterparts), but also frequently show a failure of P7.p
induction. This led to the discovery of a similar, albeit weakly
penetrant, defect in C. elegans pry-1 mutants (Seetharaman
et al. 2010).

Male tail

Outwardly at least, nematodes appear to vary little with
regard to morphology, especially compared to animals with
appendages, like arthropods. One clear exception is the male
copulatory apparatus, or “male tail.” Because of the abundant
variation in male tail morphology, it has long been used as an
important tool (along with the feeding apparatus) for nema-
tode morphological systematics (Chitwood and Chitwood
1974; Sudhaus 1976; Andrássy 1983, 1984; Fagerholm
1991; Sudhaus and Fitch 2001; Sudhaus and Fürst von
Lieven 2003; Sudhaus 2011; Ragsdale et al. 2015). In the
context of the C. elegans model system, additional “satellite”
model species and the phylogeny of related species, male tail
morphological variation also provides much material for
studying the developmental-genetic basis of morphological
evolution.
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Much of the evolutionary developmental work on the
male tail has involved rhabditid nematodes, on which this
review is primarily focused. Mapping male tail character
states onto the rhabditid phylogeny shows that some char-
acters have evolved uniquely, or nearly uniquely, in some
clades (i.e., are “apomorphic”) and are thus important for
systematics (Sudhaus 2011). On the other hand, several
characters have evolved repeatedly (i.e., are “homoplastic”).
In many ways, these latter characters are the more interest-
ing for EDB, since such repeated evolution provides the po-
tential to address questions about bias or constraints of the
developmental-genetic system on evolutionary trajectories.

These male tail structures all play some role in the series
of stereotypical behaviors involved in copulation (Sudhaus
1976; Loer and Kenyon 1993; Liu and Sternberg 1995; Barr
and Garcia 2006; Koo et al. 2011; Sherlekar and Lints 2014).
External structures that help the male sense contact with a
hermaphrodite and determine correct orientation and body
position include the genital papillae. In many species, these
sensilla are arrayed within a cuticular “bursa velum” or “fan,”
which in different species exist in different sizes and shapes
or can be absent altogether. The mechanosensory genital pa-
pillae (called “rays” when they form finger-like extensions in
the fan) occur in different positional patterns in different
species. Other structures include the precloacal papilla and
any associated structure (e.g., the “hook” in C. elegans), the
chemosensory phasmids (which exist in both sexes but with
some sexual dimorphism, and are found in different positions
relative to the rays in different species), and the tail tip
(which undergoes male-specific morphogenesis in some spe-
cies, like C. elegans, but is sexually monomorphic in other
species). Internal structures include the sclerotic spicules
and the gubernaculum. The spicules are inserted into the
vulva, providing a means of anchorage and sperm delivery;
the gubernaculum covers the roof of the proctodeum and
provides a shield that guides the spicules during their pro-
traction. Both of these structures also show marked morpho-
logical variation among different groups of rhabditid species
(Sudhaus and Fitch 2001; Kiontke et al. 2011).

Evolutionary developmental studies have focused primar-
ily on variation in the patterning of genital papillae/rays and
tail tip morphogenesis (Sternberg and Horvitz 1982; Fitch
and Emmons 1995; Fitch 1997, 2000; Baird 2001; Sudhaus
and Fitch 2001; Sudhaus and Fürst von Lieven 2003; Baird
et al. 2005; Kiontke and Fitch 2005). For C. elegans, much
progress has been made in elucidating the ultrastructural
anatomy, neural connectivity, development, and genetics un-
derlying these structures (Emmons 2005, 2014). Briefly, the
overall form of the male tail is a result of morphogenetic
“retractions” that begin in the second half of the L4 stage
(Figure 6). The first indication of this process occurs as the
tail tip cells detach from the L4 cuticle, become rounded,
fuse, and migrate a short distance anteriorly. This is followed
by the retraction of more anterior hypodermal cells. Because
the inner and outer layers of the adult cuticle in the area of
the fan are not connected, the outer layer folds and flattens in

the wake of the retractions of the cells that are covered by the
inner cuticle layer. As the tips of the rays have fixed points
of attachment to the outer cuticle, they are drawn out into
finger-like projections during the retractions of surrounding
tissue, and sandwiched between the dorsal and ventral layers
of outer cuticle that form the fan.

The cell lineages that produce the nine rays on each side
originate from left-right pairs of the threemost posterior blast
cells of the lateral “seam:” V5, V6 and T (Figure 6) (Sulston
et al. 1980; Emmons 2014). The posterior branch of the T
blast cell lineage produces phasmid socket cells that hold the
phasmid neurons in place; the anterior branch gives rise to
the three most posterior rays. V5 gives rise to the most ante-
rior ray and V6 produces the lineages of the other five rays.
Each sublineage that produces a ray is stereotypic: for each
ray rn (n = 1–9) an Rn blast cell divides at the end of L3 to
produce a posterior Rn.p hypodermal or “tail seam” cell and
an anterior blast cell. Then, at the beginning of the L4 stage,
this blast cell produces four granddaughters, one of which
dies and three of which become the ray components, the RnA
and RnB neurons and the glial-like Rnst “structural cell.” The
structural cell holds the ray in place and forms a clearly vis-
ible papilla on the surface of the tail before the morphoge-
netic retractions reveal the rays.

The ray cell sublineages are determined by the proneural
lin-32/atonal gene, which also acts in combination with the
lin-44/Wnt pathway to pattern asymmetry within the subli-
neage (Zhao and Emmons 1995; Portman and Emmons
2000, 2004). Male-specificity provided via DM-domain genes
mab-3, mab-23, and dmd-3 (homologous to Drosophila dsx
and human DMRT) is required for these lineages as well
(Shen and Hodgkin 1988; Yi et al. 2000; Lints and Emmons
2002; Ross et al. 2005; Siehr et al. 2011). Despite identical
sublineage patterns, each bilateral pair of rays has a different
identity from every other pair in terms of its AP position,
whether its terminus opens on the dorsal or ventral surface
of the fan, and what type of neurotransmitters, connectivi-
ties, and behavioral proclivities are associated with it (Loer
and Kenyon 1993; Chow and Emmons 1994; Liu and Sternberg
1995; Chamberlin and Thomas 2000; Lints et al. 2004;
Sherlekar and Lints 2014; Serrano-Saiz et al. 2017b).
These identities are patterned along the AP axis by HOX
genes (mab-5/Antp and egl-5/AbdB) and their Polycomb- and
trithorax-group regulators (sop-2, lin-49, lin-59) (Chow and
Emmons1994;SalserandKenyon1996;Chamberlin andThomas
2000; Lints et al. 2004; Zhang et al. 2004). Identity of the
dopaminergic rays that open dorsally on the fan requires
signaling by a TGFb morphogen, DBL-1 (Savage et al.
1996; Krishna et al. 1999; Lints and Emmons 1999; Morita
et al. 1999; Suzuki et al. 1999; Wong et al. 2010; Siehr et al.
2011). Further differentiation among ray identities is pro-
vided by temporal differences in HOX expression during the
ray lineages (Ferreira et al. 1999) and by additional factors,
including VAB-3/Pax6 (Baird et al. 1991; Zhang and
Emmons 1995), ephrins, and semaphorins (Roy et al. 2000;
Hahn and Emmons 2003), and the probable chromatin
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Figure 6 Male tail development in C. elegans and male tails of some other species. Top left: the left-side cell lineages giving rise to the Rn.p “tail seam”

hypodermal cell, the three cells of each ray rn (with designations v1–v7, ad and pd used for comparing ray homologs across species), and the phasmid
socket cells (see text). These lineages are produced from bilateral pairs of V5, V6 and T blast cells, shown in the L1 larva (Sulston et al. 1980). Red lines
represent apical boundaries of cells as would be visualized by immunostaining with MH27 or AJM-1::GFP. Inset: canonical ray sublineage in which an Rn
neuroblast produces an Rn.p hypodermal cell (part of the “tail seam”), two ray neurons RnA and RnB, a ray structural cell Rnst and a programmed cell death
(“x”). Below the cell lineage: arrangements of these cells in the left lateral hypodermis right after their origins at early L4, and at mid-L4 after the RnA and
RnB neurons have sunk a little below the surface. Tail tip cells hyp(8–11) and phasmid socket are also depicted. At the mid-L4 stage, the tail tip cells fuse and
some of the Rn.p cells fuse together (leading to absence of adherens junctions separating those cells) and begin to change shape (Fitch and Emmons 1995).
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modifier VAB-3 (Chow et al. 1995; Ho et al. 2001). These
patterning systems act combinatorially to establish individ-
ual ray identities (Lints et al. 2004); perturbations to these
systems result in ray losses/gains or changes in ray posi-
tions, including complete homeotic transformations—
different rays adopting the same identity cluster together
and can fuse into a single ray (Baird et al. 1991; Chow and
Emmons 1994).

Evolution of ray pattern: Rays provide a good example of
how developmental analysis can provide information about
organ homologies between different species, a fundamental
step to any evolutionary reconstruction. In P. redivivus—a
member of suborder Tylenchina and thus an outgroup repre-
sentative relative to the rhabditids—the genital papillae are
generated by Rn sublineages identical to those in C. elegans
(Figure 6) (Sternberg and Horvitz 1982). The main differ-
ence is that V5 does not produce a ray lineage, and V6 only
produces rays homologous to C. elegans rays r3–r6; the T
lineage produces the same three rays as in C. elegans. The
spatial pattern of ray cell origins in the L4 hypodermis (Figure
6) is also highly conserved, allowing the ray homologies
among species to be traced (Fitch 1997, 2000). Some rules
have emerged, allowing ray homologies to be inferred with-
out having to follow development in each species: (1) the
rays homologous to rays r5 and r7 of C. elegans are always
dorsal (labeled “ad” and “pd,” the anterior and posterior dor-
sal rays respectively; Figure 6), and (2) the seven other rays
homologous to C. elegans r1–r4, r6, r8 and r9 (relabeled “v1-v7”;
Figure 6) are almost always arranged in that order ventral to
the two dorsal rays (Fitch 1997, 2000; Sudhaus and Fitch
2001; Sudhaus and Fürst von Lieven 2003).

Whereas the pattern of ray and Rn.p cell origins in the L4
hypodermis is highly conserved across Clade V (and likely
even Clade IV, to which Panagrellus belongs), the ray struc-
tural cell tips then migrate to species-specific positions, tend-
ing to be at junctions between Rn.p cells (Fitch and Emmons
1995). This planar array of structural cells prefigures the
species-specific pattern of rays in the adult tail. The two dor-
sal rays can thus be in very different positions relative to the
ventral (v1–v7) rays, which can also cluster together in dif-
ferent groups in different species. The ability to identify the
ray homologies allows evolutionary changes in ray position-
ing to be reconstructed on the phylogeny (Fitch 1997).

The ability to homologize rays also allows identification of
which rays are missing in species with fewer than nine ray

pairs. For example, the R8 cell stopped dividing in the lineage
leading to the Metarhabditis clade, resulting in a loss of v6
(homologous to C. elegans ray r8) (Figure 6) (Fitch and
Emmons 1995; Fitch 1997). It has been noted that this ray
is particularly susceptible to loss in mutants with altered ac-
tivity of the proneural factor LIN-32/Achaete-Scute (Zhao
and Emmons 1995; Fitch 1997). Thus, lin-32 or its regulatory
pathway are good candidate loci in which variation could
cause such an evolutionary change in development and mor-
phology and Metarhabditis would be a good group in which
to test this hypothesis in future work.

Other C. elegans male tail mutants suggest candidate loci
for evolutionary change. For example, in C. elegans and its
close relatives, the first two rays are located anterior of the
cloaca, ray v3 is positioned at the cloaca and the other rays
are clustered in triplets posterior of the cloaca. In C. briggsae,
ray v3 moved posterior of the cloaca and is frequently found
to be fused with ray v4 (Nigon and Dougherty 1949;
Friedman et al. 1977), as if the v3 identity were transformed
partially or fully to a v4 identity (Fitch 1997; Baird 2001;
Baird et al. 2005). This phenotype is mimicked by several
C. elegans mutations, including mutations in HOX genes
mab-5/Antp and egl-5/AbdB or in genes that regulate HOX
genes (Chow and Emmons 1994; Chamberlin and Thomas
2000; Toker et al. 2003; Lints et al. 2004; Zhang et al. 2004;
Baird et al. 2005). The AP position of ray v3 in the fan coin-
cides with the border between mab-5 and egl-5 expression
domains (Ferreira et al. 1999). Thus, variation in HOX genes
or their regulators are likely to underlie evolutionary changes
in ray pattern, a hypothesis that could be tested further, e.g.,
by CRISPR editing experiments in future research.

Although the posterior placement of ray v3 is canonical for
C. briggsae, there is considerable strain-specific variation with
respect to the frequency of the derived vs. ancestral v3 posi-
tions (Baird 2001; Baird et al. 2005). Using recombinant in-
bred lines (RILs) between these different strains, it has been
shown that as few as two loci—the C. briggsae HOX genes
mab-5 and egl-5 or closely linked loci—are sufficient to ex-
plain the posterior v3 localization, but that at least two addi-
tional loci are involved, one of which only affects the
frequency of v3+v4 fusion (Baird et al. 2005). A similar RIL
approach revealed cryptic genetic variation, i.e., trans-
gressive variation in v3 position, likely due to epistatic
interactions between different alleles at different loci from
different C. elegans strains (Guess 2008). Such intraspecific
genetic variation has the potential for leading to the types of

DIC photomicrographs at the right: tail morphogenesis, left side view. The first visual sign of morphogenesis occurs when the tail tip cells separate from the
pointed L4 cuticle, round up and retract anteriorly at mid-L4. At late L4, because the tips of the rays are attached to the adult outer cuticle (beneath the L4
cuticle), the rays are formed as the rest of the body retracts and the fan folds flat around them. The fully formed adult emerges after the pointed-tailed L4
cuticle is molted off. These events do not occur in hermaphrodites/females, which retain the pointed shape of the larval tails. Bottom: left side views of adult
male tails of C. elegans and four other species: Pelodera strongyloides,Metarhabditis blumi, Rhabditella axei, and Panagrellus redivivus. Outlines of the body
and fan (if any) are depicted as gray lines, the internal left spicule (or fused left-right spicule in P. strongyloides) and gubernaculum are in brown, and the rays
are outlined in black and labeled using the ray homolog designations. Also shown is the position of the phasmid. The tail tip cells retract to make the
independently evolved peloderan tails of C. elegans and P. strongyloides, and do not retract in R. axei andM. blumi (derived, “apomorphic” leptoderan) and
P. redivivus (ancestrally, “plesiomorphic” leptoderan) (see references cited in text).
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evolutionary differences in ray pattern that we now observe
between species.

Evolution of phasmid position: Several rhabditid species
have been described as having ten bilateral pairs of rays, but
one of these is actually the phasmid, which is positioned
anterior (instead of posterior) to the posterior-most three
rays (Fitch and Emmons 1995; Kiontke and Sudhaus 2000;
Sudhaus and Fitch 2001). Because the phasmid tip is usually
attached to the outer cuticle that makes the fan, the phasmid
is drawn out like the rays, and was often mistaken as a
10th ray in original species descriptions. Evolutionary
switches between “anterior” and “posterior” positions of
phasmids occurred independently in at least three lineages in
Clade V: in the clade including Haematozoon+ Pleiorhabditis
(e.g., Pelodera strongyloides; Figure 6), in the lineage to
Cruznema, and in Diplogastridae; Figure 1 and Figure 6;
Fitch and Emmons 1995; Kiontke and Sudhaus 2000). These
apparently “saltational” changes in phasmid positions have
been hypothesized to be due to a simple developmental
change: i.e., a reversal in T blast cell division polarity (Fitch
1997; Kiontke and Sudhaus 2000). In C. elegans, the three
most posterior rays derive from T.a and the phasmid sockets
derive from T.p, the anterior and posterior daughters of the T
blast cell, respectively (Figure 6) (Sulston and Horvitz 1977;
Sulston et al. 1980). Reversal of the T division, as occurs in
mutants of the lin-44/Wnt signaling pathway (Herman and
Horvitz 1994; Herman et al. 1995), would place phasmids in
the anterior position. Similar cell division polarity differences
have been observed in other nematode species comparisons
(Sternberg and Horvitz 1981, 1982). However, an alternative
hypothesis is that the polarity of the T division has not
changed and there have been subsequent migrations of ray
or phasmid precursors along the AP axis. These hypotheses
are currently being tested.

Male-specific tail tip morphogenesis and its evolution: In
C. elegans, the four cells (hyp8-11) that constitute the tip of
the tail in both sexes originate during embryogenesis and
form their tapered, pointed shape during elongation (Hall
and Altun 2008). This pointed shape is maintained through-
out development in both sexes and into the adult stage of
the hermaphrodite. In L4 males, however, these cells fuse,
round up, and migrate inwardly and anteriorly (Nguyen
et al. 1999). An associated sex-shared neuron is also exten-
sively remodeled (Serrano-Saiz et al. 2017a). As a result of
these processes, the tail tip of the adult male is rounded, or
“peloderan” (Gk. “bowl” + “skin”). It is noteworthy that this
is a case of sexual dimorphism at the level of homologous,
sex-shared cells.

Tail tip morphogenesis has changed repeatedly during the
evolution of rhabditid nematodes (Sudhaus and Fitch 2001;
Kiontke and Fitch 2005). Besides peloderan species like C.
elegans (and M. blumi and P. strongyloides; Figure 6), there
are “leptoderan” (Gk. “narrow”+ “skin”) species in which tail
tip retraction does not occur in males, and in which the tail

tips (but not the rest of the tails) are thus sexually mono-
morphic. In leptoderan males, the pointed tail tips nearly
always stick out behind the fan (e.g., Rhabditella axei; Figure
6). Within rhabditids, species with peloderan tails have
evolved from leptoderan ancestors and vice versa several
times (Kiontke and Fitch 2005). Such repeated evolution
provides an opportunity to explore the extent to which evo-
lutionary trajectories are constrained by genetic architecture,
“developmental constraints” or other biases in the production
of morphological variation (Funk and Brooks 1990; Harvey
and Pagel 1991; Brooks 1996; Kiontke et al. 2007; Gompel
and Prud’homme 2009).

DMD-3 is a transcription factor required and sufficient for
initiation ofmale tail tipmorphogenesis, as well as the remod-
eling of associated neurons (Mason et al.2008; Serrano-Saiz et al.
2017a). Mutants of dmd-3 generate males with leptoderan tails.
DMD-3 appears to be at the center of a “bow-tie” gene-
regulatory network, in which it integrates temporal (the het-
erochronic pathway), spatial (HOX genes), sexual and other
cues and coordinates downstream processes associated with
cell fusion, vesicular trafficking, and regulation of cytoskele-
tal architecture (Nelson et al. 2011). Such DMRT factors have
been repeatedly recruited for the production of male-specific
features (Kopp 2012); whether or not DMD-3 has been
recruited in the repeated evolution of tail tip sexual dimor-
phism is a focus of current studies.

An obvious question with regard to male tail variation is
whether or not a particular feature of an organism is an
adaptation crafted by natural selection. Though fundamental,
this can be difficult to test. The “comparativemethod” tests for
phylogenetic correlations between traits that indicate if one
trait is dependent on another; repeated, homoplastic evolu-
tionary events provide the power to test such correlations
(Funk and Brooks 1990; Harvey and Pagel 1991; Brooks
1996). One hypothesis is that the shape of the male tail
is an adaptation to mating behavior or mating position
(Sudhaus 1976; Fitch 2000). For example, according to the
most parsimonious reconstruction of trait evolution, ances-
tral rhabditids had no fan and were leptoderan. A fan then
arose independently in the Pleiorhabditis and Eurhabditis
clades (also in diplogastrids) and was subsequently lost or
greatly reduced several times independently (Fitch 2000;
Sudhaus and Fitch 2001; Sudhaus and Fürst von Lieven
2003). Males with broad fans (often but not always pelo-
deran) tend to use their tails sort of like suction cups and
mate in a “parallel” body position relative to the female,
whereas leptoderan males with reduced or no fans mate in
a “spiral” fashion, wrapping around the female’s body
(Sudhaus 1976). Consistent with selection imposing interde-
pendency on these characters, there is a significant correla-
tion between retaining a fan and retaining parallel mating
(Fitch 2000). It is conceivable that some mating positions
may bemore favorable in some ecological environments than
others; e.g., spiral mating may provide stability in fluid envi-
ronments, whereas parallel positions may be more efficient
on solid substrates. Essentially nothing is known about the
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natural conditions of living for most of these species—an
open field for future investigations.

Although this selectionist explanation seems reason-
able for overall morphological differences in male tails,
other aspects of male tail variation may have alternative
explanations. For example, there is considerable redundancy
among different rays regarding their functions in mating
behavior, probably to ensure robustness and efficiency of
mating success (Liu and Sternberg 1995; Koo et al. 2011;
Sherlekar and Lints 2014). Variations in ray position might
therefore contribute little, if any, advantage to mating suc-
cess, but might instead be due to pleiotropic effects of selec-
tion on AP patterning of other parts of the body. Alternatively,
variation in ray positionmay have little to dowith selection at
all, and instead be due to the fixation of particular variants by
genetic drift. Whatever the ultimate cause of this variation,
themale tail holds great promise to uncover proximatemech-
anisms underlying developmental changes important for mor-
phological evolution.

Dauer formation and phenotypic plasticity

Though C. elegans is famous for having invariant embryonic
development, it also presents one of the best characterized
examples of developmental plasticity. In response to crowd-
ing (via a pheromone), starvation (via reduction of insulin
and TGF-b signaling), and/or heat stress during the second
larval stage (L2), an alternative form of the L3 larva de-
velops that is highly resistant to subsequent stresses. The
dauer is crucial across nematode diversity for dispersal and
survival of adverse conditions (Perry and Wharton 2011),
and, in Caenorhabditis, differs from the reproductive L3
in many ways (Androwski et al. 2017). We refer readers
interested in the details of dauer regulation in C. elegans
to other reviews (Hu 2007; Fielenbach and Antebi 2008),
and focus here on conservation and variation across the
nematodes.

Akey roleof insulin signaling in the transition fromdauer to
postdauer reproductive development is conserved in di-
verse nematodes. For example, pharmacological inhibi-
tion of PI3 kinase (AGE-1 in C. elegans) blocks dauer exit
in the hookwoork Ancyclostoma (Brand and Hawdon 2004)
and the related strongylid Nippostrongylus (Huang et al.
2010). Similarly, loss-of-function mutations in the DAF-
16/FOXO homolog of Pristionchus pacificus block dauer
entry (Ogawa et al. 2011). It is thus likely that a canonical
insulin pathway regulated the entry and exit from the dauer,
including its infective variant that enables parasitic life cy-
cles (Crook 2014), in an ancestor to Rhabditida (Sudhaus
2010).

Beyond serving as a trait that may facilitate parasitism,
dauer formation is tied to other variable phenotypes. As noted
above, Auanema XX larvae develop into either selfing her-
maphrodites or obligately outcrossing females, depending
upon whether they pass through dauer or not. Because ap-
plication of dafachronic acid blocks both dauer formation
and hermaphrodite development (Chaudhuri et al. 2011),

it appears that control of this sexual mode polyphenism is
downstream of the same DAF-12 nuclear hormone recep-
tor that integrates various sensory inputs to the dauer de-
cision. Thus, a pre-existing switch mechanism has been
co-opted to regulate a new trait: gonad development. A
similar co-option appears to have evolved with regard to
the mouth form of Pristionchus pacificus. This species ex-
hibits a polyphenism, in which adults show either a narrow-
mouthed (stenostomatous) bacteriovore or a wide-mouthed
(eurystomatous) predator-omnivore morphology. The lat-
ter is likely to be adaptive when bacteria become limiting
(Serobyan et al. 2014), and thus would be expected to form
under dauer-inducing conditions. Indeed, starvation or ap-
plication of crowding pheromones greatly increase the fre-
quency of the eurystomatous form (Bento et al. 2010).
Consistent with dauer signaling co-option, loss of P. pacif-
icus daf-12 activity via mutations or application of exoge-
nous dafachronic acid ligands greatly reduces formation of
both dauer larvae and the eurystomatous form. Interest-
ingly, though these perturbations block dauer formation
(Ogawa et al. 2009), they do not eliminate the eurystom-
atous form completely, suggesting that other factors also
play a role. In line with this, forward genetic screens have
identified other genes that have no obvious relationship to
C. elegans dauer formation with stronger effects (Ragsdale
et al. 2013; Kieninger et al. 2016).

Discussion

The findings above concern a wide range of developmental
processes, from the earliest embryonic divisions to adult
reproduction, and were produced by applying the devel-
opmental genetic tools of C. elegans to a growing list of
other nematodes (Table 1). From the details of these
processes and how they vary, several principles can be
inferred that are likely to be general for the evolution of
animal development. Some of these ideas are incorporated
into the review above, but some of the most salient are the
following:

An accurate, well-resolved phylogeny is essential for EDB

A phylogeny provides the framework for interspecific com-
parisons. For example, it is required for testing if compared
genes, cells, developmental processes or traits in different
species are homologous or independently evolved (nonho-
mologous). It allows directionality of evolutionary changes to
be inferred (what was ancestral or derived), and how many
times such changes occurred repeatedly. A phylogeny is re-
quired for tests of correlated evolution in different traits.
Finally, a phylogeny allows informed selection of species for
further research that are representative of the phylogenetic
diversity. A good phylogenetic framework for nematodes,
particularly for Rhabditida, and, especially, for Caenorhabditis,
is now available, although improvements to resolution (e.g.,
using multilocus or whole-genome data) and species represen-
tation continue.
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Many genes, pathways, and cells are highly conserved

Though variation was emphasized here, the very ability to
describe the nature of that variation hinges upon recognition
of homologous genes, pathways, and cells (which hinges
upon a good phylogeny). For example, we are only able to
say that gld-1 has opposite roles in hermaphrodite sper-
matogenesis, because unambiguous gld-1 orthologs exist
in the species compared. Similarly, conserved developmen-
tal origins provide evidence for the homology of VPC and
Rn cells and early blastomeres, supporting the many infer-
ences of evolutionary changes made in the development of
the vulva, male tail, and embryo.

Early events are surprisingly evolvable

Though the final outcome of nematode embryogenesis is
predictably vermiform, there appear to bemanyways to begin
that all lead to this shape. Early variation appears to funnel
into a more constrained “phylotypic stage,” with relatively
constant morphogenetic processes and gene expression. This
early variation is often apparent in the zygote and first embry-
onic cell cycle, indicating that the evolution of development
can emerge from cell-level behaviors (polarity, lineage, signal-
ing, etc.). Nematodes thus represent an excellent system for
evolutionary cell biology and its interface with development.
Similar variation in the earliest postfertilization events is seen

Table 1 Status of methods for developmental genetics in various nematode species

C. elegans method C. briggsae C. nigoni C. remanei C. brenneri C. tropicalis O. tipulae P. pacificus
Other

Rhabditida

Forward mutagenesis:
Spontaneous

Nigon and
Dougherty
(1950)

Forward mutagenesis:
Chemical

Hill et al.
(2006)

a Le et al.
(2017)

Félix et al.
(2000b)

Sommer and
Sternberg
(1996)

In Auanema
rhodensis
Tandonnet
et al. 2018)

Forward mutagenesis:
Insertional

Winter et al.
(2007)

Positional cloning
of a novel mutation

Guo et al.
(2009)

Besnard et al.
(2017)

Eizinger and
Sommer
(1997)

RNA interference Kuwabara
(1996)

Ting et al.
(2014)

Haag and
Kimble
(2000)

Winston et al.
(2007)b

Nuez and
Félix (2012)

Cinkornpumin
and
Hong (2011)

In Diploscapter
species
Fradin et al.
(2017)

Nontargeted
gene deletion

Hill et al.
(2006)

Gutierrez and
Sommer
(2007)

Genome editing:
TALENs

Wei et al.
(2014a)

Lo et al.
(2013)

Wei et al.
(2014a)

Lo et al. (2013)

Genome editing: Zinc
finger nucleases

Wood et al.
(2011)

Genome editing:
CRISPR

Yin et al.
(2018)

Vargas-
Velazquez
et al. (2018)

Witte et al.
(2015)

Transgenesis:
Injection

Félix (2007) Nuez and
Félix (2012)

Nuez and
Félix (2012)

Nuez and
Félix (2012)

Nuez and
Félix (2012)

Schlager et al.
(2009)

Transgenesis:
Bombardment

Zhao et al.
(2010),
Semple
et al. (2010)

Semple et al.
(2012)

Semple et al.
(2012)

Namai and
Sugimoto
(2018)

mRNA in situ
hybridization

Lin et al.
(2009)

Coroian et al.
(2006)

Barkoulas et al.
(2016)

Rudel et al.
(2008)

Immunohistochemistry Dufourcq et al.
(1999)

Geldziler et al.
(2006)

Jud et al.
(2007)

Louvet-Vallee
et al. (2003)

Jungblut and
Sommer
(2000)

Several species
Fitch and
Emmons
(1995)

Methods for perturbing or measuring gene activity in C. elegans (left column) have been employed successfully in a number of other free-living nematodes. The reference
given is generally the first published example, but others often exist.
a No published studies, but C. remanei dpy and unc mutants (isolated by K.L. Chow lab at Hong Kong University of Science and Technology) are available from the
Caenorhabditis Genetics Center (https://cgc.umn.edu).

b Susceptible only via gonadal injection.
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in insects (El-Sherif et al. 2012) and vertebrates (Hasley et al.
2017). The same principle applies to the cellular differences
underlying the evolution of sex determination, such as meiotic
modifications that produce a nullo-X germ cell or an XO par-
thenogenic male via chromosome diminution.

Gene duplication allows partition and gain of
gene functions

Gene duplication and divergence has long been recognized
as an important phenomenon in evolution (Ono 1972), and
nematodes provide excellent examples. Both fog-2 and she-1,
lineage-specific genes that allow hermaphrodite spermatogen-
esis discussed above, are duplicated and diverged members of
the large F-box protein family. Novel features crucial to the role
of she-1 have yet to be determined, but for fog-2 it appears that
acquisition of a C-terminal GLD-1-binding domain was a key
event that allowed its co-option into the sex determination
pathway (Nayak et al. 2005). Gene duplication and divergence
can also underlie DSD, as exemplified by C. briggsae puf-2.
Though Cbr-PUF-2 shares the same RNA-binding properties
as its closest paralogs, it alone is required for pharyngeal de-
velopment (Liu and Haag 2014). This is true even as the phar-
ynx itself has not changed in any obvious way.

Genetic network architecture may influence
evolutionary trajectories

Certain nodes in the GRNs, such as central nodes of “bow-tie”
or “hour-glass” networks (Nelson et al. 2011), may be op-
timally positioned for evolutionary changes to produce tar-
geted effects on particular traits (Kopp 2009). Examples
include the DM-domain genes that coordinate the production
of many male-specific traits in nematodes, flies, and other
animals (Kopp 2012). Regulators of such genes (e.g., signaling
or HOX patterningmodules) as well as effectors (e.g., cytoskel-
etal components and other machinery involved in cellular
morphogenesis) may themselves be too pleiotropic (and thus
constrained) to be effective targets for specific evolutionary
change. Regulatory elements of DM-domain genes them-
selves, however, could conceivably be more pliable and effec-
tive agents of evolutionary change (Kopp 2012). GLD-1 may
represent a similar “sweet spot” or “hot-spot,” as indicated by
its independent co-option in germline sex determination. As
another example, the HOX specification of VPC fates appears
to constrain which Pn.p cells can become vulval precursors;
this constraint is overcome in posterior-vulva species by pos-
teriad migration of the VPCs.

On the other hand, EDB research on the vulva has dem-
onstrated that quantitative changes to the regulation of even
very pleiotropic genes, such as those comprising the Wnt and
Ras signalingmodules, are surprisingly evolvable. There seem
to be near-infinite combinations of signaling factors, targets,
and quantitative variants in the strength of their interaction
that can all produce a functional vulva. This has some bearing
on the oft-discussed role of constraints in the evolution of
development (Brakefield 2006; Vermeij 2015). Nematode
EDB shows that for many traits we do not yet know how

many paths within developmental network space are avail-
able to build a phenotype, and thus how many potential
routes there may be to an adaptive variant. As a result, even
factors that appear to constitute constraints at present may
instead reflect insufficient sampling.

Pervasive DSD and its implications for research

Another major theme emerging from the above studies is the
astonishing ubiquity of DSD. At the level of developmental
gene regulation, rapid evolution of cis-regulatory sequences
occurs, but often remains cryptic due to the action of stabi-
lizing selection. Because stabilizing selection mandates an
outcome, but not a mechanism, compensatory evolution [or
apparently compensatory, see Haag (2007)] proceeds un-
checked. This process can be accelerated by directional selec-
tion on other loci that share trans-regulators (Johnson and
Porter 2007), and generates complex dependencies between
distinct promoter regions (Ludwig et al. 2000). The facilita-
tion of DSD by pleiotropy is expected at higher levels of or-
ganization; selection on one output of a pleiotropic locus is
likely to also change its (cryptic) contribution to a second
output not under selection. Here, we have seen such exam-
ples of DSD as the different contributions of different sig-
naling modules to vulval induction, the conservation of
core components and interactions in the sex determination
pathway despite rapid evolution at protein–protein recog-
nition domains, and transgressive variation underlying
conserved ray positions in the male tail. Other studies have
provided further evidence of DSD from genome-scale com-
parisons of gene function. For example, systematic RNAi
knockdown of essential genes in wild isolates of C. elegans
(Paaby et al. 2015), and of their C. briggsae orthologs
(Verster et al. 2014) revealed many instances of distinct
phenotypes in both cases that could not be explained by
knockdown efficacy. Cryptic genetic changes underlying
canalized developmental processes are thus apparently
rampant.

In hindsight, the choice of species for initial characteriza-
tion of a developmental process has a large influence on the
path of research. For example, selection of P. pacificus for the
first genetic analyses of vulva development would have led to
focus on the Wnt pathway rather than Notch and EGF, while
choosing Diploscapter for the oocyte-to-embryo transition
would have led to a complete different picture of cellular
interactions and embryo polarization.

Microevolution is reflected in macroevolution

Cryptic genetic variation in the development of a conserved
phenotypic output abounds in nematodes, and variation be-
tween species ismirroredbyvariationwithin them.This is true
bothqualitativelyandquantitatively,providing strongsupport
for the existence of biases in the introduction of variation
(mutation and its impact on networks), and their influence on
interspecies divergence. The interaction between these biases
and natural selection offer a more complete view of evolu-
tionary causation (Stoltzfus 2006). Intraspecific variation
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also suggests that using a “representative strain” may some-
times lead to a false sense of species divergence. This is par-
ticularly true concerning the laboratory strain of C. elegans,
which has adapted to laboratory conditions and fixed muta-
tions that improve fitness but indirectly affect developmental
processes (McGrath et al. 2009, 2011; Duveau and Félix
2012; Andersen et al. 2014).

Nematodes like Caenorhabditis offer the ability to connect
specific developmental processes with the general phenome-
non of cryptic variation. Beyond being interesting, such con-
nections are fundamental to understanding the genetic
architecture of non-Mendelian disease, the response to selec-
tion in agriculture, the resistance of pathogens and cancer
cells to drugs, and the mechanisms that underlie cellular
and organismal homeostasis (Gibson and Dworkin 2004).
For example, susceptibility to the topoisomerase-targeting
chemotherapy agent etoposide varies among C. elegans iso-
lates, and much of this can be explained by a single amino
acid polymorphism that appears to be neutral in the absence
of the drug (Zdraljevic et al. 2017). Amazingly, the same
polymorphism distinguishes topoisomerase paralogs in hu-
mans as well.

Repeated evolution involves both reproducible co-options
and idiosyncratic components

As pointed out by others (Kopp 2009), repeated evolution
(phylogenetic replication) in a clade of experimentally
tractable species (a “metamodel”) provides the opportu-
nity to look for more general principles in the evolution
of developmental-genetic systems. The research summa-
rized above abundantly demonstrates the utility of nem-
atodes in such a research program. For example, the
convergent evolution of self-fertility has shown how spe-
cific conserved genes (e.g., tra-2 and gld-1) or the same
gene classes (e.g., those encoding F-box proteins like
fog-2 and she-1) are repeatedly co-opted (parallel evolution).
Another example is the involvement of spe-8 in the activa-
tion of hermaphrodite sperm in two independent lineages
of Caenorhabditis. At the same time, repeated evolution
can involve idiosyncratic solutions (convergent evolution).
Sticking with self-fertility, we see that the sperm activation
program deployed in hermaphrodites can vary, as does the
precise role of GLD-1 in germline sex determination. Evolu-
tionary biases may also be revealed; e.g., once programmed
cell death evolves as the mechanism to restrict the VPC
group, reversal is rare. Given the advantages of nematodes
for EDB, we can look forward to many more discoveries.
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