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Abstract—Despite the infrequent occurrence of cascading
power failures, their large sizes and enormous social costs mean
that they contribute substantially to the overall risk to society
from power failures in the grid. Therefore it is important to
accurately understand the risk associated with such events.
A cascading event may be triggered by a small subset of k
components failing simultaneously or in rapid succession. While
most prior work, including our own work into an efficient
“Random Chemistry” method for risk analysis, has assumed that
components fail independently, this paper proposes a method
for deriving correlated outage probabilities such that pairs of
branches that are proximate in space are more likely to fail
together than distant ones. Combining Random Chemistry risk
analysis with this approach to correlated outage probabilities
shows that overall blackout risk can greatly increase with even
small amounts of correlation. Results from the 2383-bus Polish
test case under various load levels illustrate the substantial impact
that correlation has on blackout risk.

Index Terms—blackout risk, cascading failure, cascading out-
age, correlated outages, Random Chemistry

I. INTRODUCTION

A cascading power failure occurs when a small number of

components in a power grid fail, setting off a chain reaction of

subsequent component failures that can lead to large blackouts.

Cascading power failures are rare events, but their vast size

means they pose a significant risk to power grids [1]–[3].

Reliability regulations require that power systems be operated

to be robust to single component failures (N − 1 security)

and increasingly require that grid operators make plans to

ensure N − k security [4]. There is, however, no guarantee

that sets of two or more components failing together will not

cause a cascade. Sets of k simultaneous outages are typically

referred to as N − k contingencies. Furthermore, mechanisms

such as “hidden failures” can exacerbate the risk and impact

of cascades [5]–[7]. In this paper, we consider only branch

outages. We refer to sets of k branch outages that initiate a

cascading failure as N − k malignancies whereas sets of k
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branch outages that do not cause a cascade are referred to as

benign contingencies.

The combinatorial search space of N − k contingencies

makes it difficult to estimate risk in a computationally tractable

manner. A number of existing papers propose methods for

quantifying the risk of cascading failure [8]–[13]. A limitation

of most prior approaches (including our own) is the assump-

tion that branch outages are independent events [1], [11], [12],

[14], [15].

In reality, branch failures are unlikely to be independent

when a common cause is responsible for the outages. For

example, damage caused by weather-related disturbances may

be spatially correlated [16]. Protection system failures can

sometimes cause multiple outages within a small geographic

region [17]. Similarly, terrorist attacks may be spatially local-

ized. This type of geographical correlation was handled in [18]

by assuming 100% correlation of outages within a fixed radius.

In [16] spatial correlation was achieved by probabilistically

determining failure rates of lines adjacent to initial failures

according to a Poisson process. In [19], a random field with

spatial autocorrelation was used in a cascade model to assess

risk from common-cause events. Correlation between outages

can also be associated with non-spatial attributes such as

component age [20].

Another way to correlate component failures is though

copula analysis. Copulas have been applied in many fields,

such as finance [21], neuroscience [22], and climate research

[23]. Within the realm of power systems, copulas are a popular

tool for uncertainty analysis, such as in [24]. In [25], Li

suggests copulas as a useful way to incorporate correlation

between random variables in power systems risk analysis.

Here, we will present the use of a Gaussian copula and show

that incorporating even modest levels of correlation can greatly

increase the risk associated with cascading failures.

A. Finding Triggering Events with “Random Chemistry”

In [26] we introduced an efficient (O(logN)) stochastic set

size reduction algorithm referred to as “Random Chemistry”

(RC) for identifying small minimal sets of initiating events that

trigger some outcome of interest. In [27] we applied RC to the

problem of identifying minimal N − k malignancies that lead

to cascading failures in power grids (Fig. 1), where N is the

total number of branches in the power system. In [11], [12],

[15] we showed that RC can be used to efficiently estimate

the system-wide risk of large cascading failures in power

grids. A comparison of risk estimation to Monte Carlo (MC)
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Figure 2. A visual depiction of the copula method for two components
with hypothetical Gaussian distributions, Xi and Xj . The curves on the
vertical planes represent the marginal distributions of each component, with
the shaded regions of these curves, (Xi ≤ 0) and (Xj ≤ 0), representing the
failure state for each component. The shaded gradient on the horizontal plane
represents the density of the joint distribution (copula) of the two variables,
with darker shading representing higher density. The probability mass within
the red hatched area represents the region of system failure (X ≤ 0), with
the red dotted line depicting the boundaries of this region.
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Figure 3. Change in the correlation between two branches as a function of
the distance between them, assuming (7) with characteristic length L = 2000

and correlation ρo for branches that are 0 units of distance apart.

Using (8) to find each element of the covariance matrix C, we

can then use the probability density function of the multivariate

normal distribution (9) to form our copula.

f(x) =
1

√

(2π)k|C|
exp

{

−
1

2
(x− µ)>C−1(x− µ)

}

(9)

Using our copula function, FX(0) will represent the joint

probability of system failure Pr(X ≤ 0), when all k com-

ponents fail together. To calculate FX(0) we integrate over

the region in the joint distribution that represents failure of all

system components.

FX(x) =

0
∫

−∞

0
∫

−∞

· · ·

0
∫

−∞

f(x1, x2, . . . , xk) dx1 dx2 . . . dxk

(10)

The multiple-integral in (10) represents the generalized solu-

tion for arbitrary k. In this work, we consider only k = 2
and solve the resultant double-integral numerically using the

vectorized adaptive quadrature method [31].

III. CASE STUDY

We extend our previous work assessing cascading failure

risk [11], [12], which also used the Polish test case at peak

winter load [28], to account for spatially correlated outages.

As previously noted, in this proof-of-concept study we only

consider N − 2 malignancies and assume Gaussian copulas.

However, the approach is readily generalizable to greater

values of k (assuming |Ωk| can be estimated) and/or alternative

distribution functions.

Simulations were conducted using the 2383-bus, 2896-

branch Polish power system, at the 1999 peak winter load,

which is available via the MATPOWER simulation package

[28]. As described in [11], [12], we made several modifications

to this test case, including an increase in line limits by a

factor of 1.05 above the pre-contingency line flows that occur

when the system is at 1.10 times actual load. This change was

made to ensure that this “base case” is N −1 secure. We then

examined loads that were 55% to 115% of the base case, to

assess how risk changes under varying load conditions.

The true spatial locations of branches and buses are not

publicly available for this test case, so hypothetical locations

were inferred based on a graph layout of the grid topology,

assuming branches are straight lines between buses (Fig. 4).

Figure 4. Synthetic geographic layout of the Polish test case (in arbitrary
units).

Since the network topography used is thus artificial, all dis-

tances are considered to have “arbitrary units”. Additionally,



as described in [11], [12], we assigned branch failure rates

randomly from a normal distribution with the same mean and

variance as those provided by the RTS-96 test case [32], since

these rates were unavailable for the Polish grid.

A. Distance Metric

The appropriate definition of “distance” may vary depending

on the type of common cause threating the system. Without

loss of generality, we employ a proximity-based metric that

assumes branches are straight lines. Consider branches U with

endpoints (u1, u2) and V with endpoints (v1, v2). Let the

distance from U to V be defined as

Dist(U, V ) =

∑2

i=1
d(ui, V ) +

∑2

i=1
d(vi, U)

2
(11)

where d(ui, V ) is the minimum euclidean distance from the

point ui to the line segment V = (v1, v2), as illustrated in

Fig. 5.

Figure 5. Visual example for calculating the distance between branches U

and V with endpoints (u1, u2) and (v1,v2), respectively.

In this formulation, it is worth noting that d(ui, V ) 6=
d(vi, U). This makes sense when considering branches of

different lengths. For example, consider branches A and B in

Fig. 6. All of B’s span overlaps with A while only a portion

of A’s span overlaps with B, so it follows that B is in some

sense closer to A than A is to B. This asymmetry is handled by

averaging d(ui, V ) and d(vi, U) in (11). This distance metric

conforms with what would be intuitively expected when con-

sidering spatially correlated damage, as seen in Fig. 6, where

Dist(A,B) > Dist(C,D) and Dist(E,F ) > Dist(G,H).

Figure 6. Branch pairs used for pairwise distance examples described in the
text.

Using this metric, a pair of branches will have distance 0

only if they are parallel branches between the same buses.

This definition of distance can be extended to larger subsets

of branches by taking the average of the pairwise distances:

Dist(U1, U2, . . . , Uk) =
2
∑k−1

i=1

∑k

j=i+1
Dist(Ui, Uj)

k(k − 1)
(12)

The distribution of pairwise branch distances in the 2896-

branch Polish grid, according to (11) and assuming the topog-

raphy shown in Fig. 4, is shown in Fig. 7. Branch pairs that

cause cascading failures are relatively rare, with only 0.013%

of branch pairs comprising N−2 malignancies. While there is

a significant relationship between branch distance and blackout

size (p < 0.01), the amount of difference explained by branch

distance is very low (R2 = 0.019). However malignant pairs

tend to be much closer to each other than benign pairs (Fig.

8), as supported by a two-sample Kolmogorov-Smirnov test

on the two distributions (p � 0.01). This tendency for branch

pairs in N−2 malignancies to be close together will exacerbate

the impact of spatial correlation to our cascading failure risk

calculations.

Figure 7. Distribution of pairwise branch distances in the Polish grid using
the proposed proximity-based distance method, in arbitrary units.

B. Results

The total system risk contributed by N − 2 malignan-

cies was calculated for spatially correlated branch outages

across a range of scenarios. Risk was calculated for vary-

ing load levels from 55%-115% of 2004 peak winter load

in the adjusted Polish grid, for all combinations of L ∈
{0, 500, 1000, 1500, 2000} and ρo ∈ {0, 0.05, 0.10, 0.15}.

Changes in the total system risk as a function of load at

L = 2000 (the longest characteristic correlation length tested),

over the different values tested for ρo, are shown in Fig. 9. As

noted in [12], risk varies non-monotonically with load, in part

due to variations in the proximity of generation to demand

that result from optimal power flow dispatch at different load

levels. With this characteristic length, even at ρo = 0.05, risk

in the correlated case from load levels 98%-111% surpass

the maximum risk seen in the uncorrelated case at any load
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Figure 8. Comparison of distance between branches pairs that form N − 2

malignancies vs. benign pairs that do not lead to cascading failure, using the
proposed proximity-based distance metric from (11). The horizontal red line
on the boxplot represents the median, the top and bottom of the blue box
represent the 25th and 75th quartiles, respectively, and the red “+” signs are
outliers.

level tested (up to 115%). The highest overall system risk

found occurred at 105% load with L = 2000 and ρo = 0.15,

where risk increased 225% over the uncorrelated estimate. The

greatest relative increase in risk, as a function of ρo, occurred

at the lowest load levels, where overall system risk was lowest.

However, the greatest absolute increases in risk, as a function

of ρo, occurred at load levels of 95%-112%, where there were

the most N − 2 malignancies. For a given load level, risk

increases faster than linearly as ρo increases (Fig. 10).

Just as ρo can influence risk, so too can the characteristic

length (L), as shown in Fig. 11. Results are included from

load levels 80%-115% for ρo = 0.15. As expected, increasing

L for a given ρo increases risk. However, in this case the

rate of increase is non-monotonic, with the largest increases

at intermediate values of L (Fig. 10), because the effect of

increasing L diminishes as L approaches the diameter of the

grid topography.

It is also informative to investigate the degree to which

each branch contributes to overall risk as a function of

spatial correlation. Given branch i with independent outage

probability of pi, we can measure i’s contribution to total risk

posed by N −k malignancies by finding the sensitivity, Sk(i)
of risk to pi. As discussed in [11], [12], this equates to a partial

derivative of risk with respect to pi. Here, we estimate these

sensitivities using a finite difference approximation:

Sk(i) =
∂Rk(pi)

∂pi
≈

Rk(pi +∆pi)−Rk(pi)

∆pi
(13)

where Rk(pi +∆pi) is the total risk of the system posed by

N − k malignancies when pi is increased by a small amount

∆pi. In our calculations, we used ∆pi = 10−15; empirical

tests showed that further decreasing ∆pi did not substantially

change the results. Branch sensitivities were calculated at the

Figure 9. Overall system risk posed by spatially-correlated N − 2 malignan-
cies with a characteristic correlation length of L = 2000 and various values
of maximum correlation ρo, at load levels that are 80%-115% of the 2004
Polish peak winter load.

Figure 10. Comparing change in total system risk for varying L (ρo fixed at
0.15) vs. varying ρo (L fixed at 2000) for the 100% load level of the 2004
Polish peak winter load

100% load level with ρo = 0.15 and L = 500. Branch

sensitivities in the correlated case described above are approx-

imately 1.4 times that of the uncorrelated case (Fig. 12). The

overall relative order of branch sensitivity is largely, but not

entirely, preserved (Spearman’s rank correlation rs = 0.947).

For example, if we look just at the ten most sensitive branches

(i.e., those of greatest concern) there are notable changes in the

relative ordering of branch sensitivity between the uncorrelated

and correlated case (rs = 0.758).

IV. DISCUSSION

A number of recent papers on cascading failure risk assume

that branch outages are statistically independent events. This

assumption neglects the possibility of common cause failures

such as relay failures, weather events, or terrorist attacks.

This paper presents a systematic method to account for spatial

correlations among branch outages. The copula-based method



Figure 11. Overall system risk posed by spatially-correlated N−2 malignan-
cies with a maximum correlation coefficient of ρo = 0.15 and various values
of characteristic correlation length L, at load levels that are 80%-115% of the
2004 Polish peak winter load. .
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Figure 12. Comparison of branch sensitivities for each branch in uncorrelated
(L = 0) vs. correlated (L = 500) risk estimates associated with N − 2

malignancies in the Polish Grid at 2004 peak winter load, and with ρo = 0.15.

described and demonstrated here is general in that it can be

tailored to the details of a specific power system and dis-

turbance category. Parametric choices include the correlation

function and associated constants, the distance metric, and the

distribution of the copula function.

The application of the method to a large power systems test

case shows that even small correlations between component

failures can lead to significant increases in system risk posed

by N−2 malignancies. This increase in risk is exacerbated by

the fact that branch pairs that are close together in this system

are more likely to cause cascading failures than are branch

pairs that are farther apart.

Prior studies have shown that, in the spatially uncorrelated

case, the sensitivity of risk to individual branch outages

exhibits a very heavy-tailed distribution, with a few branches

contributing disproportionately to risk [12]. Adding spatial

correlation to branch outages magnifies this disparity in the

relative contributions of each branch to the overall system risk.

Futhermore, the relative sensitivity of risk to different branch

outages can differ between the uncorrelated and correlated

cases, especially in the branches with the highest sensitivi-

ties. These observations may have important implications for

proposed strategies to mitigate risk by reducing the flow on

the most sensitive branches [11].

The results presented in this paper suggest that practical

approaches to N − k cascading failure risk is possible. Re-

liability regulations (e.g., NERC TOP-004-1.R3) increasingly

require that transmission system operators study and protect

their systems against the risk of cascading failures triggered

by N − k outages. The method presented here has sufficient

computational efficiency to be useful in operations planning

tools that quantify the risk of N−k events and quickly identify

important sources of that risk. A key element needed to make

this sort of tool practical is better data about the probability of

transmission branch outages and the ways in which different

types of common causes impact those probabilities. Some data

that would be helpful for tuning this model are available to

industry through systems such as the NERC TADS database,

but these data are not typically available for research.

Future work will study the impact of parametric choices and

design details on risk in a variety of test cases, including those

with more accurate geographical data (e.g., [33]), and will

apply a more sophisticated AC cascading failure simulator.

In addition, we will extend this work to analyze spatially

correlated N − k malignancies for k > 2. This will yield

insights as to whether spatial correlation increases or decreases

the relative importance of higher-order N − k malignacies

on risk, with important practical implications for methods

designed to estimate the risk of cascading failures.

REFERENCES

[1] Q. Chen, C. Jiang, W. Qiu, and J. D. McCalley, “Probability models
for estimating the probabilities of cascading outages in high-voltage
transmission network,” IEEE Transactions on Power Systems, vol. 21,
no. 3, pp. 1423–1431, Aug. 2006.

[2] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex
systems analysis of series of blackouts: Cascading failure, critical points,
and self-organization,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, vol. 17, no. 2, p. 026103, Jun. 2007.
[3] D. P. Nedic, I. Dobson, D. S. Kirschen, B. A. Carreras, and V. E. Lynch,

“Criticality in a cascading failure blackout model,” International Journal

of Electrical Power & Energy Systems, vol. 28, no. 9, pp. 627–633, Nov.
2006.

[4] S. NERC, “Top-004–2: Transmission operations,” North American Elec-

tric Reliability Corporation, 2007.
[5] J. Chen, J. S. Thorp, and I. Dobson, “Cascading dynamics and mitigation

assessment in power system disturbances via a hidden failure model,”
International Journal of Electrical Power & Energy Systems, vol. 27,
no. 4, pp. 318–326, 2005.

[6] X. Yu and C. Singh, “A practical approach for integrated power system
vulnerability analysis with protection failures,” IEEE Transactions on

Power Systems, vol. 19, no. 4, pp. 1811–1820, 2004.
[7] D. C. Elizondo, J. de La Ree, A. G. Phadke, and S. Horowitz, “Hidden

failures in protection systems and their impact on wide-area distur-
bances,” in Power Engineering Society Winter Meeting, 2001. IEEE,
vol. 2. IEEE, 2001, pp. 710–714.



[8] I. Dobson, K. R. Wierzbicki, J. Kim, and H. Ren, “Towards quantifying
cascading blackout risk,” in Bulk Power System Dynamics and Control-

VII. Revitalizing Operational Reliability, 2007 iREP Symposium. IEEE,
2007, pp. 1–12.

[9] M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines,
M. Papic, S. Miller, and P. Zhang, “Risk assessment of cascading
outages: Methodologies and challenges,” IEEE Transactions on Power

Systems, vol. 27, no. 2, p. 631, 2012.

[10] Q. Chen and L. Mili, “Composite power system vulnerability evaluation
to cascading failures using importance sampling and antithetic variates,”
Power Systems, IEEE Transactions on, vol. 28, no. 3, pp. 2321–2330,
Aug 2013.

[11] P. Rezaei, M. J. Eppstein, and P. D. H. Hines, “Rapid Assessment,
Visualization, and Mitigation of Cascading Failure Risk in Power
Systems,” in 2015 48th Hawaii International Conference on System

Sciences, Jan. 2015, pp. 2748–2758.

[12] P. Rezaei, P. D. Hines, and M. J. Eppstein, “Estimating cascading failure
risk with random chemistry,” IEEE Transactions on Power Systems,
vol. 30, no. 5, pp. 2726–2735, 2015.

[13] P. D. Hines, I. Dobson, and P. Rezaei, “Cascading power outages
propagate locally in an influence graph that is not the actual grid
topology,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp.
958–967, 2017.

[14] K. Kck, H. Renner, and J. Stadler, “Probabilistic cascading event risk
assessment,” in 2014 Power Systems Computation Conference, Aug.
2014, pp. 1–7.

[15] P. Rezaei, P. D. H. Hines, and M. Eppstein, “Estimating cascading failure
risk: Comparing Monte Carlo sampling and Random Chemistry,” in 2014

IEEE PES General Meeting | Conference Exposition, Jul. 2014, pp. 1–5.

[16] I. Dobson, N. Carrington, K. Zhou, Z. Wang, B. Carreras, and
J. Reynolds-Barredos, “Exploring Cascading Outages and Weather via
Processing Historic Data,” in Proc. 51st Hawaii International Confer-

ence on System Sciences, 2018.

[17] K. Jiang and C. Singh, “New models and concepts for power system
reliability evaluation including protection system failures,” IEEE Trans-

actions on Power Systems, vol. 26, no. 4, pp. 1845–1855, 2011.

[18] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Power grid vulnerability to geographically correlated failuresanalysis
and control implications,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 2634–2642.

[19] A. Scherb, L. Garr, and D. Straub, “Reliability and Component Impor-
tance in Networks Subject to Spatially Distributed Hazards Followed by
Cascading Failures,” ASCE-ASME Journal of Risk and Uncertainty in

Engineering Systems, Part B: Mechanical Engineering, vol. 3, no. 2, pp.
021 007–021 007–9, Mar. 2017.

[20] W. Li, “Incorporating aging failures in power system reliability evalua-
tion,” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 918–923,
Aug 2002.

[21] U. Cherubini, E. Luciano, and W. Vecchiato, Copula Methods in

Finance. John Wiley & Sons, Oct. 2004.

[22] A. Onken, S. Grnewlder, M. H. J. Munk, and K. Obermayer, “Analyzing
Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal
Cortex Using Copulas and the Flashlight Transformation,” PLOS Com-

putational Biology, vol. 5, no. 11, p. e1000577, Nov. 2009.

[23] C. Schlzel and P. Friederichs, “Multivariate non-normally distributed
random variables in climate research introduction to the copula ap-
proach,” Nonlin. Processes Geophys., vol. 15, no. 5, pp. 761–772, Oct.
2008.

[24] G. Papaefthymiou and D. Kurowicka, “Using copulas for modeling
stochastic dependence in power system uncertainty analysis,” IEEE

Transactions on Power Systems, vol. 24, no. 1, pp. 40–49, 2009.

[25] W. Li, IEEE Press, and John Wiley & Sons, Risk assessment of power

systems: models, methods, and applications. Piscataway, NJ; Hoboken:
IEEE Press ; John Wiley & Sons . Inc., 2014.

[26] M. J. Eppstein, J. L. Payne, B. C. White, and J. H. Moore, “Genomic
mining for complex disease traits with “Random Chemistry”,” Genetic

Programming and Evolvable Machines, vol. 8, no. 4, pp. 395–411, Dec.
2007.

[27] M. J. Eppstein and P. D. H. Hines, “A “Random Chemistry”; Algorithm
for Identifying Collections of Multiple Contingencies That Initiate
Cascading Failure,” IEEE Transactions on Power Systems, vol. 27, no. 3,
pp. 1698–1705, Aug. 2012.

[28] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for

Power Systems Research and Education,” IEEE Transactions on Power

Systems, vol. 26, no. 1, pp. 12–19, Feb. 2011.
[29] P. Hines and P. Rezaei, Smart Grid Handbook. John Wiley & Sons,

2016, ch. Cascading Failures in Power Systems.
[30] R. B. Nelsen, An introduction to copulas. New York: Springer, 2010.
[31] L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” Journal

of Computational and Applied Mathematics, vol. 211, no. 2, pp. 131–
140, Feb. 2008.

[32] R. T. Force, “The ieee reliability test system-1996,” IEEE Trans. Power

Syst, vol. 14, no. 3, pp. 1010–1020, 1999.
[33] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Over-

bye, “Grid structural characteristics as validation criteria for synthetic
networks,” IEEE Transactions on power systems, vol. 32, no. 4, pp.
3258–3265, 2017.


