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ABSTRACT

Context: Managing technical debt (TD) associated with potential
security breaches found during design can lead to catching
vulnerabilities (i.e., exploitable weaknesses) earlier in the
software lifecycle; thus, anticipating TD principal and interest that
can have decidedly negative impacts on businesses. Goal: To
establish an approach to help assess TD associated with security
weaknesses by leveraging the Common Weakness Enumeration
(CWE) and its scoring mechanism, the Common Weakness
Scoring System (CWSS). Method: We present a position study
with a five-step approach employing the Quamoco quality model
to operationalize the scoring of architectural CWEs. Results: We
use static analysis to detect design level CWEs, calculate their
CWSS scores, and provide a relative ranking of weaknesses that
help practitioners identify the highest risks in an organization with
a potential to impact TD. Conclusion: CWSS is a community
agreed upon method that should be leveraged to help inform the
ranking of security related TD items.
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1 INTRODUCTION

Various techniques have been used to quantify TD; however,
none have specifically focused on measuring the TD of security
aspects that affect systems. Given all recent security attacks, and
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the ever-increasing frequency and severity of breaches, companies
are starting to pay significantly more attention to security threats
and are shifting resources to address weaknesses earlier in the
software development lifecycle (i.e. with developers and
managers). Many tools exist that provide metrics based analysis in
terms of the number of vulnerabilities found in a system.
Furthermore, sets of agreed upon rules have been established by
the greater community (i.e. CVE [1], CWE [2], and CERT [3]) to
explore these vulnerabilities and weaknesses from different
perspectives, and over the last few years, organizations have been
investing in ways to measure the quality of systems. ISO [4, 5]
continues to evolve these definitions of quality and many
companies and academic groups have started operationalizing
them in open source and commercial tools. For example,
SonarQube [20] (with SQALE [6] and Quamoco [7]), and CAST
[8] are amongst the more pervasive. Security is only one of many
quality aspects that are assessed, yet assessments are merely done
based on counts of issues found by static analysis tools and
practitioners are asking for smarter and more intuitive ways to
assess the quality of security in a system.

In this position study, we use an operationalization of Security
embedded in the Quamoco quality model [9] to identify those
entities that are likely to contribute to TD from a security
perspective. We offer an approach to help with the analysis and
prioritization of TD associated with CWE violations.

1.1 Motivation and Research Objective

Our study explores the usage of agreed upon weaknesses
(CWEs) as a basis for quantifying TD associated with security
issues. Our motivation stems from the fact that a large community
effort has already generated a lot of data informed by experts from
both industry and academia. Specifically, the Common Weakness
Scoring System (CWSS) [17, 22] already provides a mechanism
for prioritizing weaknesses according to relevant importance and
context. CWSS follows the steps of the Common Vulnerability
Scoring System (CVSS), with the former focusing on weaknesses
rather than vulnerabilities. This is an important distinction
because a weakness is “a shortcoming or imperfection in the
software code, design, architecture, or deployment that, could, at
some point become a vulnerability”’[2] and vulnerabilities are
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manifestations of weaknesses at runtime. Thus, since TD is a
phenomenon that is best observed during design (i.e. tradeoffs),
then CWSS is the appropriate scoring mechanism that should be
leveraged. CWSS offers different approaches to calculate a
weakness score, of which the Aggregated and Generalized
methods offer a one-to-one mapping with our implementation [9]
of the Quamoco hierarchical quality model. Further, since TD is
more relevant to design issues, as opposed to code level (non-
design) issues [18], we only focus on those rules (i.e., CWEs)
associated with design at the architectural level [21]. Thus, our
goal in this position study is to explore an approach that uses
CWSS scores relevant to architectural decisions to help rank TD
issues associated with security weaknesses.

1.2 Contribution

Our study provides the following contributions: i) the
operationalization of a subset of CWEs (i.e., architectural) in the
Quamoco framework, implemented as a plug-in into the
SonarQube™ platform, and ii) an approach to the prioritization of
TD associated with common weaknesses using the CWSS scoring
system of design related rules.

2 BACKGROUND AND RELEVANT WORK

2.1 Technical Debt Quantification

In 2016, a group of academics and practitioners participated in
a Dagstuhl [10] where a new definition for TD was crafted. The
definition was repurposed to be more focused. Specifically: “In
software-intensive systems, technical debt is a collection of design
or implementation constructs that are expedient in the short term,
but set up a technical context that can make future changes more
costly or impossible. Technical debt presents an actual or
contingent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability.” This
definition was needed in order to focus further work in our
community. Although a comprehensive synthesis of definitional
literature is beyond the scope of this paper, a notable attempt was
made by Tom et al. [11]. They found that many aspects make up
the field of TD, and were able to build agreed upon definitions of
these numerous features. In particular, they found five main
components of TD: code debt, design and architectural debt,
environmental debt, knowledge distribution and documentation
debt, and testing debt. This meant that anything ranging from a
poorly written block of code to a programmer having a lack of
understanding of the history of the system to issues with the
overall design of the program could compound the value of TD
for a particular system. Further, additional attempts were made to
include socio-technical aspects of organizations as a form of TD.
The work of Tamburri et al. [12] serves as an example.

Four prominent approaches to quantify TD are highlighted —all
differ in their quantification.

SonarQube [16] implemented a widget into their framework
that calculates TD and reports it in terms of days or dollars (i.e.
cost) necessary to repay the debt. The TD metric is defined as the
effort necessary to fix all maintainability issues and its value is

139

Izurieta et al.

obtained by examining the source code’s TD ratio. The ratio is
defined as: Remediation cost / Development cost.

Nugroho et al. [13] describe TD as occurrences where
problems with the quality in software are able to exacerbate and
lead to bigger problems if they are not fixed in a timely manner.
They propose a formula to measure TD connected to the
maintainability of software. By focusing on maintainability, the
formula gives a measurement of how much effort will be needed
in order to repair the amount of TD in the software, so the
software can be easily adapted and improved over time. They use
a rating classification of a five-star scale to describe the quality of
the maintainability in the system with one star being low quality
and five stars being high quality. The TD measurement is found
by multiplying a rework fraction and a rebuild value. The rework
fraction is an estimated percentage of the number of lines in the
code that contribute to the TD. The rebuild value is the estimated
amount of time (in months) that needs to be spent fixing the TD.
They also provide a formula to calculate the interest of TD. They
call this the maintenance effort, and this is found by multiplying
the percentage of lines of code in a system that will change in a
year and the rebuild value. The product of this is then divided by a
quality factor. This interest value can help an organization with an
estimate of how much TD will cost them in terms of repair effort
over time.

Letouzey and Ilkiewicz [14] used the SQALE method, which
estimates the amount of TD based on a quality model. The quality
model used in this method is essentially a set of conditions that a
program needs to meet in order to exhibit “quality.” The SQALE
method requests the organization to pair each condition of the
quality model with a remediation function. The remediation
function’s purpose is to convert the amount of conditions in the
model that are not met to a remediation cost. Different companies
have different concerns that affect how they configure
remediation functions. The SQALE method uses a total of eight
quality features in its process: testability, reliability, changeability,
efficiency, security, maintainability, portability, and reusability.
These features are set up in a pyramid fashion (with testability at
the bottom and reusability at the top) to guide the order in which
the remediation of the TD issues should be completed. For
example, a part of the code that does not meet a condition that is
associated with the quality feature of testability should be rectified
before one that is associated with maintainability. In addition to
requiring the organizations to provide remediation functions
associated with each unmet condition, the SQALE method also
requires a non-remediation function with each condition. The non-
remediation function’s purpose is to estimate the consequence of
not remediating a condition.

Finally, Curtis et al. [15] introduce a way to measure TD that
focuses on converting the amount of TD in code to a quantity in
monetary terms. The formula associates TD with an individual’s
understanding of economic debt. In order to obtain this monetary
value, they use the following terms: should-fix violations,
principal, interest, and TD. Should-fix violations are issues in the
code that contribute to functional problems, principal is how much
it will cost to remediate the should-fix violations, interest is how
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much the should-fix violations will cost the longer they are left
unfixed, and TD is defined as a cost that is comprised of the
should-fix violations, interest, and principal. They utilize a
formula to find the “TD-Principal” with the following variables:
should-fix violations, the estimated amount of hours to fix the
should-fix violations, and the estimated cost of labor to do so. By
classifying each of the should-fix violations to be of either low-,
medium-, or high-severity, the formula assigns a higher weight to
the higher severity violations and a lower weight to the lower
severity violations in the formula. The “TD-Principal” is
calculated by multiplying each level of severity by the number of
violations that need to be fixed, the average number of hours it
will take to fix them, and $75.00 because this was found to be the
average cost per hour for work in IT organizations. After each
level of severity is multiplied by these factors to obtain three
values (one value for each severity level), the sum of the three
values is used to calculate the “TD-Principal.”

2.2 Quamoco

The Quamoco quality model is an extensible meta-model
based on the ISO/IEC 25010:2011[19]. It allows for quantifiable
measures to be tied to more abstract quality attributes. “The
central concept of the model is a factor, meant to represent an
attribute or property of an entity; where the latter represents an
important aspect of quality we want to measure. Two types of
factors exist: quality aspects and product factors. The former
represents the more abstract qualities found in theoretical models
such as the ISO standards. The latter represents the measurable
parts of a software component and has an impact on their
associated quality aspect. Factors form hierarchies; where
factors can further refine some aspect of quality.” [9] Because
the Quamoco definition and operationalization is hierarchical, it
matches the Aggregated scoring methods from CWSS.

2.3 The Common Weakness Scoring System

The Common Weakness Scoring System (CWSS) is a

recommendation for a community agreed upon set of

CAWE/CWE Architectural Hierarchy
(catalog)

Tactic
CWE 114 @ CWE 391

Source
Code

Static
Analysis

Vignette
Technical
Impact
Scorecard

CWE 450 Scoring
CWE 84

CWE 239

TechDebt’18, May 2018, Gothenburg, Sweden

characteristics and technical impacts of software weaknesses. This
recommendation allows practitioners to use a common language
when scoring weaknesses in software that could manifest as
vulnerabilities when a system is operational. CWSS offers a
quantitative approach to measuring potential weaknesses that is
based on a formula developed through community involvement.
The formula is dependent on three metric groups: Base Findings
(BF), Attack Surface (AS) and Environmental (E), where each
group is made up of sub-factors. Each group is assigned a
numeric value, and when multiplied with each other, generate a
final CWSS score in the rage of 0-100. For a detailed explanation
of the formula see [2] and [22]. Explanations are also
complemented by detailed examples.

Although CWSS provides a customizable approach to scoring
weaknesses, results could be highly subjective due to the large
number of contexts in which software is developed and run. Thus,
in conjunction with CWSS, the Common Weakness Risk Analysis
Framework (CWRAF) [23] helps remove some subjectivity in
scoring by providing vignettes (use cases) in the context of their
domains to inform the calculation of a CWSS score. Further,
CWRAF helps generate consistent scores that reflect the mission
of a specific organization by allowing stakeholders to i) define a
Business Value Context (BVC), and ii) generate a Technical
Impact (TI) scorecard. Although defining new BVCs, and
generating new TI scorecards is possible, this activity requires
significant development; so many practitioners can use existing
resources and fine-tune them to their organizations.

3 PILOT STUDY

In order to address our ensuing goal to develop an index for
TD associated with security weaknesses, we have developed the
following approach (in five steps) depicted in Fig. 1:

1. Define a CWRAF TD vignette by selecting a list of
relevant CWE entries and map the CWE hierarchy onto a
Quamoco hierarchical model,

Quamoco Hierarchy
(operational)

Security TD Aggregated CWSS Score

quality aspect

Figure 1. Steps associated with approach to prioritizing security related technical debt items
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2. Run static analysis tools on source code to obtain the list
of relevant potential security weaknesses,

3. Use the CWRAF vignette to inform a CWSS score for
each weakness,

4. Aggregate CWSS scores, and

5. Calculate a relative ranking of CWEs based on the CWSS
scores to inform the TD prioritization of tasks

3.1 Rationale

The CWE hierarchy is composed of over 1000 separate
weaknesses and many views are provided by the community. A
view is a way for stakeholders to visualize the hierarchy from a
chosen perspective. Three major perspectives are provided by
Mitre®: Research, Development, and Architectural concepts. We
chose the Architectural view [21] because according to Ernst et al.
[18], decisions that affect TD occur during the design stages of
software. Further, the security tactics employed at an architectural
design level can have significant consequences (in the form of TD
principal and interest) if not addressed. Santos et al. [21] state that
“security architectural design decisions are often based on well-
known security tactics,” and these decisions can have decidedly
negative consequences on the TD of a system as it evolves. Thus,
the first step in our approach uses the Common Architectural
Weakness Enumeration (CAWE) [24] that is directly mapped (1-
1) to the CWE Architectural view. The CAWE hierarchy is a
catalog that contains 224 flaws organized along 11 security
tactics. The CAWE hierarchy has many levels, where lower level
nodes represent specializations. This hierarchy represents the
subset of weaknesses (224/1000+) that influence TD and form
part of the CWRAF vignette that is used to influence the CWSS
score from our business perspective. Because the organization of
these weaknesses is a hierarchy, it facilitates a mapping directly to
our implementation of the Quamoco quality model. Security
tactics map to either quality aspects or factors in a Quamoco tree.
The Quamoco tree represents the operationalization of the

Instruments perform the Measures determine
code-level static analysis existence of parent CWEs
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CWE/CAWE catalog hierarchy. The second step is the static
analysis assessment of a target source code. Many static analysis
tools exist to help with the identification of potential weaknesses.
Each identified weakness has a unique id, and we only focus on
those weaknesses that can be found on the CWE hierarchy from
step one (i.e., architectural design decisions). In the third step, we
use the CWRAF vignette defined in step one (i.e., that
characterizes our TD domain) to inform the CWSS scoring of the
node in the tree that represents a specific CWE.  Our
implementation of Quamoco allows for the aggregation of quality
scores up the hierarchy of a tree. Examples of functions for
aggregating scores include max, min, average, median, or
customized functions. The aggregation of CWSS scores is not a
TD calculation; rather, it is a way to generalize scores to ISO
defined levels. This is performed in the fourth step and facilitates
the relative ranking of weaknesses to inform TD prioritization.

3.2 Example

To demonstrate our approach, we cut a small contour of the
CWE hierarchy (see Fig. 2) and followed the steps in our
approach as follows:

1.  We mapped a subset of the architectural concepts CWE
catalogue hierarchy to our Quamoco implementation —
manual step

2. We ran a static analysis tool (FxCop) to detect security
issues, and selected two weaknesses (CWE 114 and 391)
—automated step

3. We used an existing CWRAF vignette from the financial
trading domain to inform scoring for each weakness —
automated step

4.  We aggregated the CWE 114 and CWE 391 scores into
categories CWE 1011, and CWE 1020 respectively. The
categories represent security tactics —automated step

5. Produce relative ranking of CWEs to inform TD
prioritization of tasks —manual step

Calculated by CWSS/CWRAF
score formula

Factor values determined through aggregation of child values

I 1 I 1 I
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Figure 2. Example of Architectural CWE Hierarchy
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4 POSITION ON TECHNICAL DEBT

The position we take on the development of a security index
for TD is as follows: the quantification of an index is a difficult
problem because it is highly dependent on context; however,
taking advantage of a community informed mechanism that
specifically takes into account environmental factors and technical
impacts according to specific domains is a process that needs to
be leveraged. Further, the comprehensive catalogue of weaknesses
maintained by Mitre® is robust and our study reveals that using a
hierarchical quality model (i.e., Quamoco) to operationalize the
CWE catalogue from an architectural perspective (i.e. the CAWE
hierarchy) is a natural mapping that provides choices in how
measures can be aggregated. The development of a view that
focuses on architectural concerns alone narrows down the CWE
hierarchy to only capture weaknesses that may impact the design
of software and thus TD. Vignettes provide input to the scoring
mechanism by removing subjectivity. It does this through
technical impact and business value scores. Thus,

Principalrp.secuity = Cost of the maintenance and refactoring
associated with fixing architectural CWEs

The scoring generated by CWSS allows for a relative ranking
of CWEs; which also allows practitioners to address TD items that
may be of higher consequence to their organization. Addressing
architectural issues early is directly aligned with reducing TD at
design time, before the weaknesses represented by CWEs turn
into actionable vulnerabilities. The longer a weakness remains
unaddressed in a system, the higher the chances of it becoming a
vulnerability. If a weakness turns into a vulnerability, then the
technical and business impact have the potential to significantly
increase the costs incurred by an organization because cost will
not only be measured in terms of maintenance but also in terms of
other factors that affect the technical capital of an organization
(e.g., market share, reputation, loss of customers, etc.). The
interest associated with the TD principal of a CWE is also hard to
quantify, however, our position is that regardless of the equation
used to model TD interest, there exists a significant event in the
lifecycle of a CWE, which occurs when the weakness is exploited
(i.e., it turns into a vulnerability). At that point in time, the cost of
refactoring the CWE increases significantly due to the potentially
irreparable impacts to an organization.

5 CONCLUSION AND FUTURE WORK

Although the Dagstuhl definition of TD limits contingencies to
internal quality attributes, it is our position that security is a
special case. When security weaknesses are identified in software,
it is imperative that they are addressed expediently because
although the maintenance associated with fixing a design flaw
(i.e., TD principal) may not be cost prohibitive, the potential for
damage to a business is. If a weakness is successfully exploited
(as a vulnerability), then repairing the damage can be very costly.
The TD interest associated with such a weakness can grow
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significantly at the moment an attacker is successful. The
approach we have presented leverages an existing catalog and
scoring mechanism to aid practitioners in prioritizing weaknesses
as technical debt items hopefully informing the decision making
process. We have successfully mapped a CWE hierarchy to an
operationalization of Quamoco and have provided an example of
using CWSS as a way to help prioritize TD items.
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