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Deep learning enables cross-modality
super-resolution in fluorescence microscopy
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We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven
approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is
based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved
ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives,
matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-
resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion
(STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular
structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination
microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and

could serve to democratize super-resolution imaging.

microscopy'™, STED microscopy®, and structured illumina-

tion microscopy (SIM)®* provide unprecedented access to the
inner workings of cells and various biological processes. However,
these methods often rely on relatively sophisticated optical setups,
specific fluorophores and mounting media, and extensive compu-
tational post-processing of acquired image data’"!, which in and of
itself may require a priori knowledge about the sample and/or its
preparation, as well as a physical model of the image-formation pro-
cess'*"", including, for example, the point-spread function (PSF) of
the imaging system. In general, more accurate models yield higher-
quality results, often with a trade-off of exhaustive parameter search
and computational cost.

Here we present a deep-learning-based framework to achieve
super-resolution and cross-modality image transformations
in fluorescence microscopy without the need for making any
assumptions about or modeling of the image-formation process.
We trained a deep neural network using a generative adversarial
network (GAN)'® model to transform an acquired low-resolution
image into a high-resolution one using matched pairs of experi-
mentally acquired low- and higher-resolution images. The success
of this super-resolution approach is a result of a highly accurate
multi-stage image registration and alignment process (discussed
in the Methods section) between the lower-resolution and corre-
sponding higher-resolution images, which allows the network to
solely focus on the task of improving the resolution of a previously
unseen input image.

Once the deep network is trained, it remains fixed and can be
used to rapidly output batches of high-resolution images in, for
example, 0.4s for an image size of 1,024x 1,024 pixels using a
single graphics processing unit (GPU). The network inference is

E ;uper—resolution microscopy methods such as localization

non-iterative and does not require a manual parameter search to
optimize its performance.

We demonstrate the success of this deep-learning-based frame-
work by improving the resolution of raw images captured by dif-
ferent imaging modalities, including wide-field fluorescence,
confocal, and TIRF microscopes. In the wide-field imaging case,
we transformed the images acquired using a 10x/0.4-NA objective
lens into resolution-enhanced images that matched the images of
the same samples acquired with a 20x/0.75-NA objective. In the
second case, we performed cross-modality transformation of dif-
fraction-limited confocal microscopy'” images to match the images
that were acquired using a STED microscope, super-resolving
Histone 3 distributions within HeLa cell nuclei and also showing
a PSF width that improved from ~290nm to ~110 nm. As another
example of this GAN-based cross-modality image transformation
framework, we super-resolved time-lapse TIRF microscopy images
to match TIRF-SIM'® images of endocytic clathrin-coated struc-
tures in SUM159 cells and Drosophila embryos. This deep-learn-
ing-based fluorescence super-resolution approach improves both
the field of view (FOV) and imaging throughput of fluorescence
microscopy and can be used to transform lower-resolution and
wide-field images acquired using various imaging modalities into
higher-resolution ones.

Results

Resolution enhancement in wide-field fluorescence micros-
copy. We initially demonstrated the resolution improvement of the
presented approach by imaging bovine pulmonary artery endo-
thelial cell (BPAEC) structures. In the training stage, for each exci-
tation line (DAPI, FITC, and TxRed) we used a multi-stage image
registration process to accurately align 2,625 pairs of low- and
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Fig. 1| Deep-learning-based super-resolved images of bovine pulmonary artery endothelial cells (BPAECs). a, Network input image acquired with a
10x/0.4-NA objective lens. b-g, Smaller ROls are magnified and shown in (b,c) network input, (d,e) network output, and (f,g) ground truth (20x/0.75-NA).
Experiments were repeated with >250 images, achieving similar results. Color map: magenta for F-actin, green for microtubules, blue for nuclei.

high-resolution image patches to each other, and we trained a sepa-
rate model for each filter set to achieve optimal results (Methods).
Each image patch had a size of 1,024 X 1,024 pixels, and the raw input
images to the network were acquired using a 10x/0.4-NA objec-
tive. The results of the network were compared against the ground
truth images, which were captured using a 20x/0.75-NA objective.
An example of the network input image is shown in Fig. 1a, where
the FOV of the 10x and 20X objectives are also labeled. Figure 1b,c
shows some zoomed-in regions of interest (ROIs) revealing further
details of a cell’s F-actin and microtubules. A pretrained deep neural
network was applied to each color channel of these input images
(10x/0.4-NA), outputting the resolution-enhanced images shown
in Fig. 1d,e, where various features of F-actin, microtubules, and
nuclei are clearly resolved at the network output, providing very
good agreement with the ground truth images (20x/0.75-NA)
shown in Fig. 1f,g. Note that all the network output images shown
in this article were blindly generated by the deep network, that is,
the input images were not previously seen by the network.

Next, we compared the results of deep-learning-based super-
resolution against widely used image deconvolution methods,
specifically, the Lucy-Richardson (LR) deconvolution and the non-
negative least square (NNLS) algorithm'*-*'. For this, we used an esti-
mated model of the PSF of the imaging system, which is required by
these deconvolution algorithms to approximate the forward model.
Following its parameter optimization (Methods), the LR deconvolu-
tion algorithm, as expected, demonstrated resolution improvements
compared to the input images (Fig. 2a,fk); however, compared to
our deep learning results (Fig. 2b,g,l), the improvements observed
with LR deconvolution (Fig. 2c,h,m) were modest, despite the fact
that it used parameter search, optimization, and a priori knowledge
on the PSF of the imaging system. The NNLS algorithm, in contrast,
yielded slightly sharper features (Fig. 2d,i,n) compared to LR decon-
volution results, at the cost of having additional artifacts as shown
in Supplementary Fig. 1; regardless, both of these deconvolution
methods are inferior to our deep learning results reported in Fig. 2,
exhibiting a shallower modulation depth in comparison to the deep
learning results and the ground truth images.

We also noticed that the deep network output image shows
sharper details compared to the ground truth image, especially for

the F-actin structures. This result is in line with the fact that all the
images were captured by finding the autofocusing plane within
the sample using the FITC channel (see, for example, Fig. 2f-j),
and therefore the Texas-Red channel (for example, Fig. 2k-o0) can
remain slightly out of focus owing to the thickness of the cells. This
means the shallow depth of field (DOF) of a 20x/0.75-NA objective
(~1.4um) might have caused some blurring in the F-actin structures
(Fig. 20). This out-of-focus imaging of different color channels did
not affect the network output as much because the input image to
the network was captured with a much larger DOF (~5.1 um), using
a 10%/0.4-NA objective. Therefore, in addition to an increased FOV
resulting from a low-NA input image, the network output image is
also benefiting from an increased DOE, helping to reveal some finer
features that might be out of focus in different color channels with
a high-NA objective.

Next, we tested the generalization of our trained network model
in improving image resolution on new types of samples that were not
present in the training phase; Supplementary Note 1 summarizes
the success of our results. Here, we emphasize that a new network
model should be trained for optimal super-resolution performance
on input images corresponding to different types of samples, or
captured with a new experimental setup. However, in case such
training image pairs are not available to follow our super-resolution
image transformation framework, one can attempt to use an exist-
ing trained model, although this might not produce ideal results in
all cases. To exemplify such a scenario where training image pairs
are not available, we used the network model trained with only the
images of F-actin captured with the Texas Red (TxRed) filter set
to blindly super-resolve the images captured with DAPI and FITC
filter sets (Supplementary Fig. 2a-h). Compared with the optimal
network models trained with the images acquired with the right
filter sets, the model that was trained using a different filter set
(TxRed) was still able to infer almost identical images, although it
was applied on input images that were captured using a different fil-
ter set. In fact, even if the imaging modalities and sample scales are
different, the wide-field TxRed model might still be used to improve
the images of other microscopy modalities, for example, TIRF and
confocal microscopy as shown in Supplementary Fig. 2i-p; how-
ever, the image inference performance in these cases cannot match
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Fig. 2 | Comparison of deep learning results against Lucy-Richardson (LR) and non-negative least square (NNLS) image deconvolution algorithms.
Also see Supplementary Fig. 10. Experiments were repeated with >250 images, achieving similar results.

TxRed

the results obtained with the optimal model, which is trained on the
same imaging platform and same type of samples.

We also quantified the deep network inference results using spa-
tial frequency spectrum analysis and successfully demonstrated the
frequency extrapolation feature of our deep learning framework, as
detailed in Supplementary Note 2. To further quantify the improve-
ment achieved using our approach, we imaged 20-nm fluorescent
beads, and using a model trained only with F-actin images, we
extracted the PSFs from individual nano-beads to demonstrate the
resolution improvement and the enhanced DOF of our network
output images (Supplementary Note 3).

Cross-modality imaging from confocal to STED. We also applied
the presented framework to transform confocal microscopy images
into images that match those obtained by STED microscopy
(Figs. 3 and 4; Supplementary Note 4). Training data were acquired
using 20-nm fluorescent beads (645-nm emission) imaged on the
same instrument using both confocal microscopy and STED modes.
After the training phase, the neural network, as before, blindly takes
an input image (confocal) and outputs a super-resolved image that
matches the STED image of the same sample. Some of the nano-
beads in our samples were spaced close to each other, within the
classical diffraction limit, that is, under ~290nm, as shown in, for
example, Fig. 3d-f, and therefore could not be resolved in the raw
confocal microscopy images. The neural network resolved these
closely spaced nano-particles, providing a good match to STED
images of the same regions of the sample (see Fig. 3g-i vs. Fig. 3j-1).

To further quantify this resolution improvement achieved by the
network, we measured the PSFs arising from the images of single/
isolated nano-beads across the sample FOV?*, repeated for >400
individual nanoparticles that were tracked in the images of the
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confocal microscope and STED microscope, as well as the network
output image (in response to the confocal image). The results are
summarized in Fig. 4, where the FWHM of the confocal microscope
PSF is centered at ~290nm, roughly corresponding to the lateral
resolution of a diffraction-limited imaging system at an emission
wavelength of 645nm. As shown in Fig. 4, the PSF FWHM distri-
bution of the network output provides a very good match to the
PSF results of the STED system, with a mean FWHM of ~110nm
versus ~120 nm, respectively. Also see Supplementary Notes 4 and 5
for related discussions, revealing the spatially varying PSF informa-
tion that is indirectly learned at the end of the training phase of
this confocal-to-STED cross-modality network, without the need
for prior information on, for example, the image formation model
or sensor-specific noise patterns, which are typically required for
standard deconvolution and localization methods.

An additional benefit of using our deep learning approach is
improved SNR, for which we conducted a comparative analysis
using the confocal-to-STED transformation results to quantify this
improvement. Supplementary Note 6 further details that the deep
neural network suppresses noise and improves the SNR compared
to the input (confocal) and the ground truth (STED) images.

Next, we applied this confocal-to-STED image transformation
framework to super-resolve Histone 3 distributions within fixed
HeLa cell nuclei (see Fig. 5). Because nanoparticles do not accu-
rately represent the spatial feature diversity observed in biologi-
cal specimens, direct application of a network that is trained only
with nano-beads would not be ideal to image complex biological
systems (see Supplementary Fig. 3b). Therefore, we made use of
a concept known as transfer learning”, in which a learned neural
network (trained, for example, with nanoparticles; Figs. 3 and 4)
was used to initialize a model to super-resolve cell nuclei using
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Network input (100x/1.4 NA, confocal) Network output (100x/1.4 NA, confocal) Ground truth (100x/1.4 NA, STED)
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Fig. 3 | Image resolution improvement beyond the diffraction limit: from confocal microscopy to STED. a-c, A diffraction-limited confocal microscope image
is used as input to the network and is super-resolved to blindly yield (b) the network output, which is comparable to (¢) a STED image of the same FOV, used
as the ground truth. d-f, Examples of closely spaced nano-beads that cannot be resolved by confocal microscopy. g-1, The trained neural network takes d-f as
input and resolves the individual beads (g-i), very well agreeing with STED microscopy images (j-1). The cross-sectional profiles reported in d-1 are extracted
from the original images. Peak-to-peak distance (d) in these cross-sectional profiles is reported in nanometers. Also see Fig. 5 for further quantification of the

performance of the deep network on confocal images, and its comparison to STED. Experiments were repeated with 75 images, achieving similar results.

confocal-to-STED transformation; this transfer learning approach
also significantly speeds up the training process, as detailed in
the Methods section. Despite some challenges associated with
STED imaging of densely labeled specimens and sample drift,
after transfer learning, the neural network successfully improved
the resolution of a confocal microscope image (input), matching
the STED image of the same nuclei (Fig. 5). Some of the discrep-
ancies between the network output and the STED image can be
related to the fluctuations observed in STED imaging, as shown in
Fig. 5d-f, where three consecutive STED scans of the same FOV
show frame-to-frame variations due to fluorophore state changes
and sample drift. In this case, the network’s output image better
correlates with the average of three STED images that are drift-cor-
rected (see Fig. 5b,c). Using the same confocal-STED experimental
data, Supplementary Fig. 4 further illustrates the advantages of the
presented GAN-based super-resolution approach over a standard
CNN (convolutional neural network) without the discrimina-
tive loss, which results in a lower-resolution image compared to
GAN-based inference.

We also emphasize that in the experiments reported in Figs. 3-5,
the required excitation power for STED was threefold to ten fold
stronger than that of confocal microscopy (Methods). Furthermore,
the depletion beam of STED is typically orders of magnitude higher
than its excitation beam* %, which highlights an important advan-
tage of our deep-learning-based super-resolution approach for
imaging biological objects that are vulnerable to photo-bleaching
or photo-toxicity”>”.

Cross-modality imaging from TIRF to TIRF-SIM. We further
demonstrated the cross-modality image transformation capability
of our method by transforming diffraction-limited TIRF images to
match TIRF-SIM reconstructions (Fig. 6 and Supplementary Fig. 5).
In these experiments, the sample was exposed to nine different
structured illumination patterns following a reconstruction method
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Fig. 4 | PSF characterization, before and after the network, and its
comparison to STED. We extracted more than 400 bright spots from the
same locations of the network input (confocal), network output (confocal),
and the corresponding ground truth (STED) images. Each one of these spots
was fit to a 2D Gaussian function, and the corresponding FWHM distributions
are shown in each histogram. These results show that the resolution of the
network output images is significantly improved from ~290 nm (top row:
network input using a confocal microscope) to ~110 nm (middle row: network
output), which provides a very good fit to the ground truth STED images of
the same nano-particles, summarized in the bottom row.
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Ground truth (3 STED images averaged)
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Fig. 5 | Deep-learning enabled cross-modality image transformation from confocal to STED. a-c, A diffraction-limited confocal microscope image (a) of
Histone 3 distributions within Hela cell nuclei is used as input to the neural network to blindly yield (b) the network output image, which is comparable to
(c) a STED image of the same FOV. d,e f, Three individual STED scans of the same FOV, averaged to create panel ¢. Scale bar in the inset in fis 500 nm and
applies to all insets. Arrows in each image refer to the line of the shown cross-section. Experiments were repeated with 30 images, achieving similar results.

used in SIM', whereas the low-resolution (diffraction-limited)
TIRF images were obtained using a simple average of these nine
exposures”. We trained our neural network model using images of
gene-edited SUM159 cells expressing eGFP-labeled clathrin adap-
tor AP2, and blindly tested its inference (Fig. 6 and Supplementary
Video 1). To highlight some examples, the neural network was able
to detect the dissociation of clathrin-coated pits from larger clathrin
patches (i.e., plaques'®*) as shown in Fig. 6r1,t, as well as the devel-
opment of curvature-bearing clathrin cages'®", which appear as
doughnuts under SIM (Fig. 61-0). Next, to provide another dem-
onstration of the network’s generalization, we blindly applied it
to amnioserosa tissues of Drosophila embryos (never seen by the
network) expressing clathrin-mEmerald (Supplementary Fig. 5).
Highly motile clathrin-coated structures® within the embryo that
cannot be resolved in the original TIRF image can be clearly distin-
guished as separate objects in the network output (Supplementary
Fig. 5). These results demonstrate that our network model can
super-resolve individual clathrin-coated structures within cultured
cells and tissues of a developing metazoan embryo.

We note that the aberrations or artifacts potentially observed in
some of the ground truth training images can couple back into the
network’s inference and result in some residual artifacts in the net-
work output. If the ground truth training image set is not dominated
with such artifacts, the impact of this will be negligible, close to the
noise floor of the output image, as illustrated in our Supplementary
Protocol. Such residual artifacts can be further reduced by pre-
selection of the training ground truth images to be free from major
artifacts (if possible) or through an additional loss term applied to
suppress such features during the training process.
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Depth-of-field enhancement. Another important feature of the
deep network-based image transformation approach is that it can
resolve features over an extended DOF because of the lower NA of
the input image (Fig. 2, Supplementary Figs. 6-8, and Supplementary
Note 3). We further illustrated this phenomenon by acquiring a
depth-resolved image set (composed of 34 images, axially sepa-
rated by 0.3 pum) corresponding to the blood-vessel sample using a
20x/0.75-NA objective, and synthesized an extended-DOF image
using the Image] plugin EDF*”, which provides a significantly
improved ground truth image compared to a single high-resolution
image. These results and the comparison reported in Supplementary
Fig. 9 clearly demonstrate the extended-DOF capabilities of our
super-resolution method. This extended DOF is also favorable in
terms of photo-damage to the sample, by eliminating the need for
a fine axial scan within the sample volume, which might reduce the
overall light delivered to the sample, while also making the imag-
ing process more efficient. Although some thicker samples will
ultimately require axial scanning, the presented approach will still
reduce the number of scans required by inferring high-resolution
images from parts of the sample that would have been defocused
with higher-NA imaging systems (Supplementary Figs. 6 and 7).

Artifactanalysis. A common concern for computational approaches
that enhance image resolution is the potential emergence of spa-
tial artifacts that may degrade the image quality, such as the Gibbs
phenomenon in LR deconvolution®. To explore this, we randomly
selected an example in the test image dataset, and quantified the
artifacts of the network output using the Nano]J-Squirrel Plugin;*’
this analysis (Supplementary Note 7) revealed that the network
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Fig. 6 | Deep-learning enabled cross-modality image transformation from TIRF to TIRF-SIM. a, TIRF image of a gene-edited SUM159 cell expressing
AP2-eGFP. b,c, The network model super-resolves the diffraction-limited TIRF image (input; b) and matches TIRF-SIM reconstruction results (c).

d-u, Zoomed-in regions of a-c at the labeled ROls and time points. Supplementary Video 1shows the same FOV to further highlight the success of
the network’s inference as a function of temporal dynamics within the cell. Also see Supplementary Fig. 5 for additional results, demonstrating the
generalizability of the inference of this network on a new type of sample (amnioserosa tissues of a Drosophila embryo) that it has never seen before.
Scale bar in u represents 500 nm and applies to d-u. Arrows in each image refer to the line of the shown cross-section. Also see Supplementary Fig. 11.

Experiments were repeated with >1,000 images, achieving similar results.

output does not generate noticeable super-resolution artifacts and
in fact has the same level of spatial mismatch error that the ground
truth image has with respect to the input image of the same sam-
ple (see Supplementary Fig. 1 and Supplementary Note 7). This
conclusion is further confirmed by Supplementary Fig. 1, which
overlays the network output image and the ground truth image in
different colors, revealing no obvious feature mismatch between
the two. The same conclusion remained consistent for other test
images as well.

Furthermore, we also calculated the difference of the network
inference and the ground truth images for all the modalities used
in our manuscript (Figs. 2-6), to demonstrate the high degree
of spatial agreement between the two (Supplementary Note 8
and Supplementary Figs. 10 and 11); these results also indi-
cate that the minor differences between the network output and

ground truth images are partially due to the extended DOF of our
output images.

As an additional inquiry of potential artifacts, Supplementary
Note 2 reports spatial frequency spectrum analysis to demonstrate
the agreement between the spatial frequencies of the network out-
put and the ground truth images, which further supports the suc-
cess of our inference results.

Discussion

Our deep learning approach allows for the generation of super-
resolution images directly from images acquired on conventional,
diffraction-limited microscopes without a priori knowledge about
the sample and/or the image formation process. In addition to
democratizing super-resolution microscopy, our approach offers
the benefits of rapidly imaging larger FOVs and DOFs, creating
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higher-resolution images with fewer frames and/or lower light
doses, which enables new opportunities for imaging objects with
reduced photo-bleaching and photo-toxicity***".

An essential step of the presented super-resolution framework
is the accurate alignment and registration between the lower-res-
olution and the higher-resolution label images. This multi-stage
image registration process (Methods) allows the network to learn
a pixel-to-pixel transformation and is used as a regularization for
the network to learn the resolution enhancement, while avoiding
warping of the input images, which in turn significantly reduces
potential artifacts. This data-driven cross-modality transformation
framework is further discussed in Supplementary Note 5 with an
emphasis on the fact that the input and output distributions share a
high degree of mutual information, with an output probability dis-
tribution that is conditional upon the input data distribution.

As illustrated in Supplementary Note 6, our deep learning
approach also improves the image SNR. In fact, the resolution
limit of a microscopy modality is fundamentally limited by its
SNR** stated differently, the lack of some spatial frequencies at
the image plane (for example, carried by evanescent waves) does
not pose a fundamental limit for the achievable resolution of a
computational microscope. These missing spatial frequencies
(although not detected at the image) can in principle be extrapo-
lated based on the measured or known spatial frequencies of an
object*. For example, the full spatial frequency spectrum of an
object function that has a limited spatial extent with finite energy
can in theory be recovered from the partial knowledge of its spec-
trum using the analytical continuation principle, as its Fourier
transform defines an entire function®. In practice, however, this
is a challenging task and the success of such a frequency extrapo-
lation method is strongly dependent on the SNR of the measured
image information and a priori information regarding the object.
Although the presented neural-network-based super-resolution
approach does not include any such analytical continuation
models or any a priori assumptions about the known frequency
bands or support information of the object, through image data
it learns to statistically separate out noise patterns from the struc-
tural information of the object, helping us achieve effectively
much improved frequency extrapolation (Supplementary Note 2)
and resolution enhancement compared to the state-of-the-art
methods as reported in our Results.

To practice our approach on new types of samples or new
imaging systems that were not part of the training process, fresh
application of our presented framework is recommended for get-
ting optimal results, starting with the image registration between
the input images (lower resolution) and the desired labels (higher
resolution), followed by the training of a GAN, as detailed in the
Methods section. Transfer learning from a previously trained net-
work for another type of sample might speed up the convergence
of this learning process; however, this is neither a required step nor
a replacement for the entire image registration and GAN training
processes performed on new sample types of interest. After a suf-
ficiently large number of training iterations (for example, >10,000),
the optimal network model can be selected when the validation loss
value no longer decreases.

Taken together, our work represents an important step forward
for the fields of computational microscopy and super-resolution
imaging, and should help us democratize high-resolution imaging
systems, potentially enabling new biological observations beyond
what can be achieved in well-resourced institutions and laboratory
settings. Our ability to close the gap between lower-resolution and
higher-resolution imaging systems using a deep learning framework
is fundamentally tied to image SNR in both the training and blind
testing phases, and in this sense the presented image transformation
framework is limited in its performance by noise, very much like all
the other super-resolution imaging modalities.
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Wide-field fluorescence microscopy image acquisition. The fluorescence
microscopy images (Figs. 1 and 2) were captured by scanning a microscope slide
containing multi-labeled bovine pulmonary artery endothelial cells (BPAECs)
(FluoCells Prepared Slide #2, Thermo Fisher Scientific) on a standard inverted
microscope equipped with a motorized stage (IX83, Olympus Life Science).

The low-resolution (LR) and high-resolution (HR) images were acquired

using 10x/0.4-NA (UPLSAPO10X2, Olympus Life Science) and 20x/0.75-NA
(UPLSAPO20X, Olympus Life Science) objective lenses, respectively. Three
bandpass optical filter sets were used to image the three different labeled cell
structures and organelles: Texas Red for F-actin (OSFI3-TXRED-4040C, EX562/40,
EM624/40, DM593, Semrock), FITC for microtubules (OSFI3-FITC-2024B,
EX485/20, EM522/24, DM506, Semrock), and DAPI for cell nuclei (OSFI3-DAPI-
5060C, EX377/50, EM447/60, DM409, Semrock). The imaging experiments were
controlled by MetaMorph microscope automation software (Molecular Devices),
which performed translational scanning and auto-focusing at each position of
the stage. The auto-focusing was performed on the FITC channel, and the DAPI
and Texas Red channels were both exposed at the same plane as FITC. With a
130-W fluorescence light source set to 25% output power (U-HGLGPS, Olympus
Life Science), the exposure time for each channel was set as follows: Texas Red,
350ms (10x) and 150 ms (20x); FITC, 800 ms (10x) and 400 ms (20x); DAPI, 60
ms (10x) and 50 ms (20x). The images were recorded by a monochrome sCMOS
camera (ORCA-flash4.0 v2, Hamamatsu Photonics K.K.) and saved as 16-bit
grayscale images with regard to each optical filter set. The additional test images
(Supplementary Figs. 6 and 7) are captured using the same setup with FluoCells
Prepared Slide #1 (Thermo Fisher Scientific), with the filter setting of Texas Red
for mitochondria and FITC for F-actin, and FluoCells Prepared Slide #3 (Thermo
Fisher Scientific), with the filter setting of Texas Red for actin and FITC for
glomeruli and convoluted tubules. The mouse brain tumor sample was prepared
with mouse brains perfused with Dylight-594-conjugated Tomato Lectin (1 mg/ml)
(Vector Laboratories, CA), fixed in 4% paraformaldehyde for 24 h and incubated
in 30% sucrose in phosphate-buffered saline, then cut in 50-pm-thick sections as
detailed in ref. **, and imaged using Texas Red filter set for blood vessels, and FITC
filter set for tumor cells.

Confocal and STED image acquisition. For the Histone 3 imaging experiments,
the HeLa cells were grown as a monolayer on high-performance coverslips (170 u
m=+ 10um) (Carl Zeiss Microscopy) and fixed with methanol. Nuclei were labeled
with a primary Rabbit anti-Histone H3 trimethyl Lys4 (H3K4me3) antibody
(Active motif #39159) and a secondary Atto-647N Goat anti-rabbit IgG antibody
(Active Motif # 15048) using the reagents of the MAXpack Immunostaining Media
Kit (Active Motif #15251). The labeled cells were then embedded with Mowiol 4-88
and mounted on a standard microscope slide.

The nano-bead samples for confocal and STED experiments (Figs. 3 and 4)
were prepared with 20-nm fluorescent nano-beads (FluoSpheres Carboxylate-
Modified Microspheres, crimson fluorescent (625/645), 2% solids, Thermo
Fisher Scientific) that were diluted 100 times with methanol and sonicated for
3% 10min, and then mounted with antifade reagents (ProLong Diamond,

Thermo Fisher Scientific) on a standard glass slide, followed by placement
on high-performance coverslips.

Samples were imaged on a Leica TCS SP8 STED confocal microscopy using a
Leica HC PL APO 100x/1.40-NA Oil STED White objective. The scanning for each
FOV was performed by a resonant scanner working at 8,000 Hz with 16 times line
average and 30 times frame average for nano-beads, and 8 times line average and 6
times frame average for cell nuclei. The fluorescent nano-beads were excited with a
laser beam at 633-nm wavelength. The emission signal was captured with a hybrid
photodetector (HyD SMD, Leica Microsystems) through a 645-752-nm bandpass
filter. The excitation laser power was set to 5% for confocal imaging and 50% for
STED imaging, so that the signal intensities remained similar while the same
scanning speed and gain voltage were maintained. A depletion beam of 775nm was
also applied when capturing STED images with 100% power. The confocal pinhole
was set to 1 Airy unit (for example, 168.6 um for 645-nm emission wavelength and
100x magnification) for both the confocal and STED imaging experiments. The
cell nuclei samples were excited with a laser beam at 635 nm and captured with the
same photodetector, which was set to 1x gain for confocal and 1.9 gain for STED
with a 650-720-nm bandpass filter. The confocal pinhole was set to 75.8 um (for
example, 0.457 Airy unit for 650-nm emission wavelength and 100X magnification)
for both the confocal and STED imaging experiments. The excitation laser power
was set to 3% and 10% for confocal and STED experiments, respectively. The
scanning step size (i.e., the effective pixel size) for both experiments was ~30 nm
to ensure sufficient sampling rate. All the images were exported and saved as
8-bit grayscale images.

TIRF-SIM image acquisition. Gene-edited SUM159 cells expressing AP2-eGFP*
were grown in F-12 medium containing hydrocortisone, penicillin-streptomycin
and 5% FBS. Transient expression of mRuby-CLTB (Addgene; Plasmid #55852)
was carried out with the Gene Pulser Xcell electroporation system (Bio-Rad
Laboratories, CA, USA) according to the manufacturer’s instructions, and
imaging was performed 24-48 h after transfection. Cells were imaged in
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phenol-red-free L15 (Thermo Fisher Scientific) supplemented with 5% FBS at
37°C ambient temperature. Clathrin dynamics were monitored in lateral epidermis
and amnioserosa tissues of Drosophila embryos using the UAS/GAL4 system as
described in ref. **. Drosophila embryos were gently pressed against the coverslip
to position the apical surface of the lateral epidermis and amnioserosa cells within
the evanescence field of the TIRF system. Arm-GAL4 strain was provided by the
Bloomington Drosophila Stock Center; CLC-mEmerald strain was provided by
Dr. Henry Chang (Purdue University, USA). TIRF-SIM images were acquired
with a 100%x/1.49-NA objective lens (Olympus Life Science, CA, USA) fitted on an
inverted microscope (Axio Observer; ZEISS) equipped with an sSCMOS camera
(ORCA-Flash4.0; Hamamatsu). Structured illumination was provided by a spatial
light modulator as described in ref. '*.

Image pre-processing. For wide-field images (Figs. 1 and 2, and Supplementary
Figs 1, 2a-h, and 6-9), a low intensity threshold was applied to subtract
background noise and auto-fluorescence, as a common practice in fluorescence
microscopy. The threshold value was estimated from the mean intensity value

of a region without objects, which is ~300 out of 65,535 in our 16-bit images.

The LR images are then linearly interpolated two times to match the effective
pixel size of the HR images. Accurate registration of the corresponding LR and
HR training image pairs is of crucial importance because the objective function
of our network consists of adversarial loss and pixel-wise loss. We employed

a two-step registration workflow to achieve the needed registration with sub-
pixel-level accuracy. First, the FOVs of LR and HR images are digitally stitched

in a MATLARB script interfaced with the Fiji*” Grid/Collection stitching plugin®
through MIJ*, and matched by fitting of their normalized cross-correlation map
to a 2D Gaussian function and identification of the peak location (Supplementary
Note 9). However, because of optical distortions and color aberrations of different
objective lenses, the local features might still not be exactly matched. To address
this, the globally matched images are fed into a pyramidal elastic registration
algorithm to achieve sub-pixel-level matching accuracy, which is an iterative
version of the registration module in Fiji Plugin Nano], with a shrinking block
size (Supplementary Fig. 12)"**%#*, This registration step starts with a block size
of 256 X 256 and stops at a block size of 64 X 64, with the block size shrunk by 1.2
times every 5 iterations with a shift tolerance of 0.2 pixels. Because of the slightly
different placement and the distortion of the optical filter sets, we performed the
pyramidal elastic registration for each fluorescence channel independently. At the
last step, the precisely registered images were cropped 10 pixels on each side to
avoid registration artifacts, and converted to single-precision floating data type and
scaled to a dynamic range of 0-255. This scaling step is not mandatory but creates
convenience for fine tuning of hyper-parameters when working with images from
different microscopes/sources.

For confocal and STED images (Figs. 3-5) that were scanned in sequence on
the same platform, only a drift correction step was required, which was calculated
from the 2D Gaussian fit of the cross-correlation map. The drift was found to
be ~10nm for each scanning FOV between the confocal and STED images. We
did not perform thresholding to the nano-bead dataset for the network training.
However, after the test images were enhanced by the network, we subtracted a
constant value (calculated by taking the mean value of an empty region) from the
confocal (network input), the super-resolved (network output), and the STED
(ground truth) images, respectively, for better visualization and comparison of the
images. The total number of images used for training, validation and blind testing
of each network are summarized in Supplementary Table 1.

Generative adversarial network structure and training. In this work, our

deep neural network was trained following the generative adversarial network
(GAN) framework'®, which has two sub-networks being trained simultaneously, a
generative model which enhances the input LR image, and a discriminative model
which returns an adversarial loss to the resolution-enhanced image, as illustrated
in Supplementary Fig. 13. We designed our objective function as the combination
of the adversarial loss with two regularization terms: the mean square error (MSE),
and the structural similarity (SSIM) index*. Specifically, we aim to minimize

L(G;D) =-logD (G (x)) + AX MSE(G (x),y)

—uxlog[(1+SSIM(G (x),y)) /2] )
L(D;G) =—logD(y)-log[1-D(G (x))]

where x is the LR input, G(x) is the generative model output, D(-) is the
discriminative model prediction of an image (network output or ground truth
image), and y is the HR image used as ground truth. The structural similarity index
is defined as

(Zﬂxﬂy +c) (20'ny +c,)

2 2 2 2
(7 +4, +¢) (0, +0,+c))

SSIM (x, y) = (2)

. 2 2 . . .
where y , u are the averages of x,y; 6, 5, are the variances of x,; o, , is the
covariance of x and y; and ¢, ¢, are the variables used to stabilize the division with a


http://www.nature.com/naturemethods

ARTICLES

NATURE METHODS

small denominator. An SSIM value of 1.0 refers to identical images. When training
with the wide-field fluorescence images, the regularization constants 4 and v were
set to accommodate the MSE loss and the SSIM loss to be ~1-10% of the combined
generative model loss £(G; D), depending on the noise level of the image dataset.
When training with the confocal-STED image datasets, we kept 4 the same and set
v to 0. While the adversarial loss guides the generative model to map the LR images
into HR, the two regularization terms assure that the generator output image

is established on the input image with matched intensity profile and structural
features. These two regularization terms also help us stabilize the training schedule
and smooth out the spikes on the training loss curve before it reaches equilibrium.
For the sub-network models, we employed a similar network structure as described
in ref. . The relatively low weight that is given to the MSE and SSIM terms is due
to the fact that these values already represent a high degree of agreement between
the low-resolution input and the gold standard label (for example, ~0.87-0.94 for
the wide-field microscopy experiments). Hence, a large weight given to these loss
terms will drive the network to converge to a local minimum that will strongly
resemble the low-resolution input and not learn the desired (super-resolved)
output distribution. Therefore, it might be beneficial for some other applications

to increase the weights of these terms, for example, for low SNR images, where the
task of denoising might be of main interest for automated segmentation and related
image processing tasks.

Generative model. U-net is a CNN architecture that was first proposed for medical
image segmentation, yielding high performance with very few training datasets*.

A similar network architecture has also been successfully applied in recent image
reconstruction and virtual staining applications*>*. The structure of the generative
network used in this work is illustrated in Supplementary Fig. 13, which consists of
four downsampling blocks and four upsampling blocks. Each downsampling block
consists of three residual convolutional blocks, within which it performs

X = X;_;+LReLU[Conv{LReLU[Conv{LReLU [Conv{x;_,}]}]}],

3
k = 1,2,3,4 3
where x; represents the output of the kth downsampling block, and x, is the LR
input image. Conv{} is the convolution operation, LReU[] is the leaky rectified
linear unit activation function with a slope of @=0.1, that is,

LReLU (x; a) = max(0, x) — a X max(0, —x) (4)

The input of each downsampling block is zero-padded and added to the output
of the same block. The spatial downsampling is achieved by an average pooling
layer after each downsampling block. A convolutional layer lies at the bottom of
this U-shape structure that connects the downsampling and upsampling blocks.

Each upsampling block also consists of three convolutional blocks, within
which it performs

Y = LRelU
[Conv{LReLU [Conv{LReLU [Conv{Concat(xs_sy,_)}I}1}], (5)
k = 1,2,3,4

where y, represents the output of the kth upsampling block, and y, is the input

of the first upsampling block. Concat() is the concatenation operation of the
downsampling block output and the upsampling block input on the same level in
the U-shape structure. The last layer is another convolutional layer that maps the
32 channels into 1 channel that corresponds to a monochrome grayscale image.

Discriminative Model. As shown in Supplementary Fig. 13, the structure of the
discriminative model begins with a convolutional layer, which is followed by 5
convolutional blocks, each of which performs the following operation:

z,=LReLU[Conv{LReLU [Conv{z,_,}]}],k=1,2,3,4,5 (6)

where z, represents the output of the kth convolutional block, and z, is the input
of the first convolutional block. The output of the last convolutional block is fed
into an average pooling layer whose filter shape is the same as the patch size,
that is, H X W. This layer is followed by two fully connected layers for dimension
reduction. The last layer is a sigmoid activation function whose output is the
probability of an input image being ground truth, defined as

1
PO e ”

Network training schedule. During our training the patch size is set as 64 X 64,
with a batch size of 12 on each of the two GPUs. Within each iteration, the
generative model and the discriminative model are each updated once while the
other is kept unchanged. Both the generative model and the discriminative model
were randomly initialized and optimized using the adaptive moment estimation

(Adam) optimizer” with a starting learning rate of 1x10~* and 1x10%, respectively.
This framework was implemented with TensorFlow framework version 1.7.0" and
Python version 3.6.4 in the Microsoft Windows 10 operating system. The training
was performed on a consumer-grade laptop (EON17-SLX, Origin PC) equipped
with dual GeForce GTX1080 graphic cards (NVDIA) and a Core i7-8700K CPU

@ 3.7 GHz (Intel). The final models for wide-field images were selected with the
smallest validation loss at around the 50,000th iteration, which took ~10h to train.
The final model for confocal-STED transformation (Figs. 3 and 4) is selected with
the smallest validation loss at around the 500,000th iteration, which took ~90h

to train. The transfer learning for the confocal-STED transformation network
(Fig. 5) was implemented with the same framework on a desktop computer with
dual GTX1080Ti graphic cards, with the patch size set as 256 X 256 with 4 patches
on each GPU. It was first initialized with the confocal-STED model trained with
nano-beads, and then refined with cell nuclei image data with ~20,000 iterations,
which took ~24h. The training of the TIRF to TIRF-SIM transformation network
was also implemented with dual GTX1080Ti graphic cards, with the patch size

set as 64 X 64, and 64 patches on each GPU. The final model was trained for
~20,000 iterations, which took ~18h. A typical plot of the loss functions during
the GAN training is shown in Supplementary Fig. 14, where the generative and
discriminative models compete in an equilibrium state for ~60,000 iterations
before they start to diverge. The iteration time is also dependent on the patch

and batch size. We also demonstrate in Supplementary Fig. 4 that the role of

the discriminative model of GAN is critical to achieving super-resolution, as it
provides an adaptive loss function and helps the generative model to jump out of
local minima. Training without the discriminative loss can result in over-smoothed
images (see, for example, Supplementary Fig. 4), as the generative model optimizes
only a specific group of statistical metrics. A step-by-step training instruction and
guideline, with several critical steps discussed and emphasized, are provided in
Supplementary Note 10.

Implementation of LR and NNLS deconvolution. For a fair comparison, the
lower-resolution images were upsampled 2 times by bilinear interpolation before
being deconvolved. We used the Born and Wolf PSF model**’, with parameters
set to match our experimental setup, that is, NA = 0.4, immersion refractive
index= 1.0, pixel size=325nm. The PSF is generated by a Fiji PSF Generator
Plugin®>'. We performed an exhaustive parameter search by running the LR
algorithm with 1-100 iterations and damping threshold 0-10%. The results were
visually assessed, with the best one obtained at 10 iterations and 0.1% damping
threshold (Fig. 2, third column). The NNLS deconvolution was performed

with Fiji Plugin DeconvolutionLab2* with 100 iterations and a step size of 0.5.
The deconvolutions for Texas Red, FITC, and DAPI channels were performed
separately, assuming the central emission wavelengths to be 630 nm, 532nm, and
450 nm, respectively.

Characterization of the lateral resolution by PSF fitting. We characterized the
resolution differences among the network input (confocal), the network output
(confocal), and the ground truth (STED) images by fitting their PSFs to a 2D
Gaussian profile, as shown in Fig. 4. For this, more than 400 independent bright
spots were selected from the ground truth STED images and cropped out with the
surrounding 19 X 19-pixel regions, that is, ~577 X 577 nm?. The same locations were
also projected to the network input and output images, followed by cropping of
the same image regions as in the ground truth STED images. Each cropped region
was then fitted to a 2D Gaussian profile. The FWHM values of all these 2D profiles
were plotted as histograms, shown in Fig. 4. For each category of images, the
histogram profile within the main peak region was fitted to a 1D Gaussian
function (Fig. 4). A similar process was repeated for the results reported in
Supplementary Fig. 8d.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

We declare that all the data supporting the findings of this work are available within
the manuscript and Supplementary Information files. Raw images can be requested
from the corresponding author. Deep learning models reported in this work

used standard libraries and scripts that are publicly available in TensorFlow. The
instruction manual for our Fiji/Image] plugin and trained models (available online
as Supplementary Software 1-7) is provided as a Supplementary Protocol.
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Policy information about availability of computer code

Data collection For the widefield fluorescence image data collection, we used a conventional fluorescence microscope (IX83, Olympus Corporation,
Tokyo, Japan) equipped with a motorized stage, where the image acquisition process was controlled by MetaMorph® microscope
automation software (Molecular Devices, LLC).

For the confocal and stimulated emission depletion (STED) microscopy, we have used TCS SP8 (Leica Microsystems), which was
controlled by the LAS X (Leica Microsystems) software, version 3.5.0.

For total-internal reflection microscopy (TIRF), we used an inverted microscope (Axio Observer, ZEISS) equipped with a SCMOS camera
(ORCA-Flash4.0; Hamamatsu).

Data analysis Deep learning models reported in this work used standard libraries and scripts that are publicly available in TensorFlow v1.7.0 (Google
Inc.). The custom codes were written in Python v3.6.4 (Anaconda modified version). Image matching procedures were all performed
using custom Matlab vR2017a codes (The MathWorks Inc.). For the global patch matching, the Matlab script interfaced to a Fiji (ImageJ)
plugin "Stitching"->"Grid/Collection stitching" (version 1.2, Preibisch et. al, Bioinformatics 2009), through Miji version 1.3.9 (available at
https://imagej.net/Miji) java package.

All the software was developed and executed on a Windows 10 (Home Edition) operating system.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

We declare that all the data supporting the findings of this work are available within the manuscript and Supplementary Information files. Raw images can be
requested from the corresponding author.
The instruction manual on our Fiji/ImageJ plugin and trained models (available online as Supplementary Software) is provided as a Supplementary Protocol.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the widefield fluorescence image data, we have trained and tested the approach on 2 different fluorescently labeled samples with 2x2657
separate images, each with 1024x1024 pixels.
For the confocal to STED cross modality transformation we have used 2x757 images of nano-beads, each with 1024x1024 pixels, and 2x1230
images for transfer learning to resolve cell nuclei, each with 1024x1024 pixels.
For the TIRF to TIRF-SIM cross modality transformation we have used 2x4473 images, each with 1024x1024 pixels

Data exclusions  None.

Replication For the widefield deep network, following its training, it was blindly tested with a total of 280 images (of size 1024x1024 pixels) and for the
confocal to STED cross modality, we have tested the trained network on 138 images (of size 1024x1024 pixels). For the TIRF to TIRF-SIM cross
modality transformation we have tested the network with 1100 images (of size 1024x1024 pixels).

Randomization  Training, validation and testing images were randomly selected.

Blinding All the performance testing of the deep neural network results was blindly performed on images that were not included in the training or
validation phase of the deep learning method, or were performed on new structures that the network was not trained for.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information
(e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving
existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale
for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria
were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, =
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether g
the researcher was blind to experimental condition and/or the study hypothesis during data collection. g
I
Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale

behind them, indicating whether exclusion criteria were pre-established.




Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale | /ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [ ] Yes [ Ino

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Obtaining unique materials  N/A

Antibodies
Antibodies used N/A
Validation N/A

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) N/A
Authentication N/A
Mycoplasma contamination N/A

Commonly misidentified lines  n/A
(See ICLAC register)

Palaeontology

Specimen provenance N/A
Specimen deposition N/A
Dating methods N/A

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals N/A
Wild animals N/A
Field-collected samples N/A

Human research participants

Policy information about studies involving human research participants

judy
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Population characteristics All the samples were obtained after de-identification of the patient related information, and were prepared from existing
specimen. Therefore, this work did not interfere with standard practices of care or sample collection procedures, and is exempt
from IRB.
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links N/A
May remain private before publication.
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Files in database submission N/A
Genome browser session N/A
(e.g. UCSC)
Methodology

Replicates N/A
Sequencing depth N/A
Antibodies N/A
Peak calling parameters N/A
Data quality N/A
Software N/A

Flow Cytometry

Plots

Confirm that:
D The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

D The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation N/A
Instrument N/A
Software N/A

Cell population abundance  N/A

Gating strategy N/A

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type N/A
Design specifications N/A

Behavioral performance measures ~ N/A
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Acquisition

Imaging type(s) N/A
Field strength N/A
Sequence & imaging parameters N/A
Area of acquisition N/A
Diffusion MRI [ ]Used [ ] Not used
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Preprocessing software N/A
Normalization N/A
Normalization template N/A
Noise and artifact removal N/A
Volume censoring N/A

Statistical modeling & inference

Model type and settings N/A

Effect(s) tested N/A

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference N/A
(See Eklund et al. 2016)

Correction N/A

Models & analysis

n/a | Involved in the study
IX’ D Functional and/or effective connectivity

IX’ D Graph analysis

IX’ D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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