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Super-resolution microscopy methods such as localization 
microscopy1–4, STED microscopy5, and structured illumina-
tion microscopy (SIM)6–8 provide unprecedented access to the 

inner workings of cells and various biological processes. However, 
these methods often rely on relatively sophisticated optical setups, 
specific fluorophores and mounting media, and extensive compu-
tational post-processing of acquired image data9–11, which in and of 
itself may require a priori knowledge about the sample and/or its 
preparation, as well as a physical model of the image-formation pro-
cess12–15, including, for example, the point-spread function (PSF) of 
the imaging system. In general, more accurate models yield higher-
quality results, often with a trade-off of exhaustive parameter search 
and computational cost.

Here we present a deep-learning-based framework to achieve 
super-resolution and cross-modality image transformations 
in fluorescence microscopy without the need for making any 
assumptions about or modeling of the image-formation process. 
We trained a deep neural network using a generative adversarial 
network (GAN)16 model to transform an acquired low-resolution 
image into a high-resolution one using matched pairs of experi-
mentally acquired low- and higher-resolution images. The success 
of this super-resolution approach is a result of a highly accurate 
multi-stage image registration and alignment process (discussed 
in the Methods section) between the lower-resolution and corre-
sponding higher-resolution images, which allows the network to 
solely focus on the task of improving the resolution of a previously 
unseen input image.

Once the deep network is trained, it remains fixed and can be 
used to rapidly output batches of high-resolution images in, for 
example, 0.4 s for an image size of 1,024 ×​ 1,024 pixels using a  
single graphics processing unit (GPU). The network inference is 

non-iterative and does not require a manual parameter search to 
optimize its performance.

We demonstrate the success of this deep-learning-based frame-
work by improving the resolution of raw images captured by dif-
ferent imaging modalities, including wide-field fluorescence, 
confocal, and TIRF microscopes. In the wide-field imaging case, 
we transformed the images acquired using a 10×​/0.4-NA objective 
lens into resolution-enhanced images that matched the images of 
the same samples acquired with a 20×​/0.75-NA objective. In the 
second case, we performed cross-modality transformation of dif-
fraction-limited confocal microscopy17 images to match the images 
that were acquired using a STED microscope, super-resolving 
Histone 3 distributions within HeLa cell nuclei and also showing 
a PSF width that improved from ~290 nm to ~110 nm. As another 
example of this GAN-based cross-modality image transformation 
framework, we super-resolved time-lapse TIRF microscopy images 
to match TIRF-SIM18 images of endocytic clathrin-coated struc-
tures in SUM159 cells and Drosophila embryos. This deep-learn-
ing-based fluorescence super-resolution approach improves both 
the field of view (FOV) and imaging throughput of fluorescence 
microscopy and can be used to transform lower-resolution and 
wide-field images acquired using various imaging modalities into 
higher-resolution ones.

Results
Resolution enhancement in wide-field fluorescence micros-
copy. We initially demonstrated the resolution improvement of the 
presented approach by imaging bovine pulmonary artery endo-
thelial cell (BPAEC) structures. In the training stage, for each exci-
tation line (DAPI, FITC, and TxRed) we used a multi-stage image  
registration process to accurately align 2,625 pairs of low- and  
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high-resolution image patches to each other, and we trained a sepa-
rate model for each filter set to achieve optimal results (Methods). 
Each image patch had a size of 1,024 ×​ 1,024 pixels, and the raw input 
images to the network were acquired using a 10×​/0.4-NA objec-
tive. The results of the network were compared against the ground 
truth images, which were captured using a 20×​/0.75-NA objective. 
An example of the network input image is shown in Fig. 1a, where 
the FOV of the 10×​ and 20×​ objectives are also labeled. Figure 1b,c 
shows some zoomed-in regions of interest (ROIs) revealing further 
details of a cell’s F-actin and microtubules. A pretrained deep neural 
network was applied to each color channel of these input images 
(10×​/0.4-NA), outputting the resolution-enhanced images shown 
in Fig. 1d,e, where various features of F-actin, microtubules, and 
nuclei are clearly resolved at the network output, providing very 
good agreement with the ground truth images (20×​/0.75-NA) 
shown in Fig. 1f,g. Note that all the network output images shown 
in this article were blindly generated by the deep network, that is, 
the input images were not previously seen by the network.

Next, we compared the results of deep-learning-based super-
resolution against widely used image deconvolution methods, 
specifically, the Lucy–Richardson (LR) deconvolution and the non-
negative least square (NNLS) algorithm19–21. For this, we used an esti-
mated model of the PSF of the imaging system, which is required by 
these deconvolution algorithms to approximate the forward model. 
Following its parameter optimization (Methods), the LR deconvolu-
tion algorithm, as expected, demonstrated resolution improvements 
compared to the input images (Fig. 2a,f,k); however, compared to 
our deep learning results (Fig. 2b,g,l), the improvements observed 
with LR deconvolution (Fig. 2c,h,m) were modest, despite the fact 
that it used parameter search, optimization, and a priori knowledge 
on the PSF of the imaging system. The NNLS algorithm, in contrast, 
yielded slightly sharper features (Fig. 2d,i,n) compared to LR decon-
volution results, at the cost of having additional artifacts as shown 
in Supplementary Fig. 1; regardless, both of these deconvolution 
methods are inferior to our deep learning results reported in Fig. 2, 
exhibiting a shallower modulation depth in comparison to the deep 
learning results and the ground truth images.

We also noticed that the deep network output image shows 
sharper details compared to the ground truth image, especially for 

the F-actin structures. This result is in line with the fact that all the 
images were captured by finding the autofocusing plane within 
the sample using the FITC channel (see, for example, Fig. 2f–j), 
and therefore the Texas-Red channel (for example, Fig. 2k–o) can 
remain slightly out of focus owing to the thickness of the cells. This 
means the shallow depth of field (DOF) of a 20×​/0.75-NA objective 
(~1.4 µ​m) might have caused some blurring in the F-actin structures 
(Fig. 2o). This out-of-focus imaging of different color channels did 
not affect the network output as much because the input image to 
the network was captured with a much larger DOF (~5.1 µ​m), using 
a 10×​/0.4-NA objective. Therefore, in addition to an increased FOV 
resulting from a low-NA input image, the network output image is 
also benefiting from an increased DOF, helping to reveal some finer 
features that might be out of focus in different color channels with 
a high-NA objective.

Next, we tested the generalization of our trained network model 
in improving image resolution on new types of samples that were not 
present in the training phase; Supplementary Note 1 summarizes 
the success of our results. Here, we emphasize that a new network 
model should be trained for optimal super-resolution performance 
on input images corresponding to different types of samples, or 
captured with a new experimental setup. However, in case such 
training image pairs are not available to follow our super-resolution 
image transformation framework, one can attempt to use an exist-
ing trained model, although this might not produce ideal results in 
all cases. To exemplify such a scenario where training image pairs 
are not available, we used the network model trained with only the 
images of F-actin captured with the Texas Red (TxRed) filter set 
to blindly super-resolve the images captured with DAPI and FITC 
filter sets (Supplementary Fig. 2a–h). Compared with the optimal 
network models trained with the images acquired with the right 
filter sets, the model that was trained using a different filter set 
(TxRed) was still able to infer almost identical images, although it 
was applied on input images that were captured using a different fil-
ter set. In fact, even if the imaging modalities and sample scales are 
different, the wide-field TxRed model might still be used to improve 
the images of other microscopy modalities, for example, TIRF and 
confocal microscopy as shown in Supplementary Fig. 2i–p; how-
ever, the image inference performance in these cases cannot match 
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Fig. 1 | Deep-learning-based super-resolved images of bovine pulmonary artery endothelial cells (BPAECs). a, Network input image acquired with a  
10×​/0.4-NA objective lens. b–g, Smaller ROIs are magnified and shown in (b,c) network input, (d,e) network output, and (f,g) ground truth (20×​/0.75-NA). 
Experiments were repeated with >​250 images, achieving similar results. Color map: magenta for F-actin, green for microtubules, blue for nuclei.
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the results obtained with the optimal model, which is trained on the 
same imaging platform and same type of samples.

We also quantified the deep network inference results using spa-
tial frequency spectrum analysis and successfully demonstrated the 
frequency extrapolation feature of our deep learning framework, as 
detailed in Supplementary Note 2. To further quantify the improve-
ment achieved using our approach, we imaged 20-nm fluorescent 
beads, and using a model trained only with F-actin images, we 
extracted the PSFs from individual nano-beads to demonstrate the 
resolution improvement and the enhanced DOF of our network 
output images (Supplementary Note 3).

Cross-modality imaging from confocal to STED. We also applied 
the presented framework to transform confocal microscopy images 
into images that match those obtained by STED microscopy  
(Figs. 3 and 4; Supplementary Note 4). Training data were acquired 
using 20-nm fluorescent beads (645-nm emission) imaged on the 
same instrument using both confocal microscopy and STED modes. 
After the training phase, the neural network, as before, blindly takes 
an input image (confocal) and outputs a super-resolved image that 
matches the STED image of the same sample. Some of the nano-
beads in our samples were spaced close to each other, within the 
classical diffraction limit, that is, under ~290 nm, as shown in, for 
example, Fig. 3d–f, and therefore could not be resolved in the raw 
confocal microscopy images. The neural network resolved these 
closely spaced nano-particles, providing a good match to STED 
images of the same regions of the sample (see Fig. 3g–i vs. Fig. 3j–l).

To further quantify this resolution improvement achieved by the 
network, we measured the PSFs arising from the images of single/
isolated nano-beads across the sample FOV22, repeated for >​400 
individual nanoparticles that were tracked in the images of the 

confocal microscope and STED microscope, as well as the network 
output image (in response to the confocal image). The results are 
summarized in Fig. 4, where the FWHM of the confocal microscope 
PSF is centered at ~290 nm, roughly corresponding to the lateral 
resolution of a diffraction-limited imaging system at an emission 
wavelength of 645 nm. As shown in Fig. 4, the PSF FWHM distri-
bution of the network output provides a very good match to the 
PSF results of the STED system, with a mean FWHM of ~110 nm 
versus ~120 nm, respectively. Also see Supplementary Notes 4 and 5  
for related discussions, revealing the spatially varying PSF informa-
tion that is indirectly learned at the end of the training phase of 
this confocal-to-STED cross-modality network, without the need 
for prior information on, for example, the image formation model 
or sensor-specific noise patterns, which are typically required for 
standard deconvolution and localization methods.

An additional benefit of using our deep learning approach is 
improved SNR, for which we conducted a comparative analysis 
using the confocal-to-STED transformation results to quantify this 
improvement. Supplementary Note 6 further details that the deep 
neural network suppresses noise and improves the SNR compared 
to the input (confocal) and the ground truth (STED) images.

Next, we applied this confocal-to-STED image transformation 
framework to super-resolve Histone 3 distributions within fixed 
HeLa cell nuclei (see Fig. 5). Because nanoparticles do not accu-
rately represent the spatial feature diversity observed in biologi-
cal specimens, direct application of a network that is trained only 
with nano-beads would not be ideal to image complex biological 
systems (see Supplementary Fig. 3b). Therefore, we made use of 
a concept known as transfer learning23, in which a learned neural 
network (trained, for example, with nanoparticles; Figs. 3 and 4)  
was used to initialize a model to super-resolve cell nuclei using 
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Fig. 2 | Comparison of deep learning results against Lucy–Richardson (LR) and non-negative least square (NNLS) image deconvolution algorithms.  
Also see Supplementary Fig. 10. Experiments were repeated with >​250 images, achieving similar results.
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confocal-to-STED transformation; this transfer learning approach 
also significantly speeds up the training process, as detailed in 
the Methods section. Despite some challenges associated with 
STED imaging of densely labeled specimens and sample drift, 
after transfer learning, the neural network successfully improved 
the resolution of a confocal microscope image (input), matching 
the STED image of the same nuclei (Fig. 5). Some of the discrep-
ancies between the network output and the STED image can be 
related to the fluctuations observed in STED imaging, as shown in  
Fig. 5d–f, where three consecutive STED scans of the same FOV 
show frame-to-frame variations due to fluorophore state changes 
and sample drift. In this case, the network’s output image better 
correlates with the average of three STED images that are drift-cor-
rected (see Fig. 5b,c). Using the same confocal-STED experimental 
data, Supplementary Fig. 4 further illustrates the advantages of the 
presented GAN-based super-resolution approach over a standard 
CNN (convolutional neural network) without the discrimina-
tive loss, which results in a lower-resolution image compared to  
GAN-based inference.

We also emphasize that in the experiments reported in Figs. 3–5, 
the required excitation power for STED was threefold to ten fold 
stronger than that of confocal microscopy (Methods). Furthermore, 
the depletion beam of STED is typically orders of magnitude higher 
than its excitation beam24–26, which highlights an important advan-
tage of our deep-learning-based super-resolution approach for 
imaging biological objects that are vulnerable to photo-bleaching 
or photo-toxicity24,27.

Cross-modality imaging from TIRF to TIRF-SIM. We further 
demonstrated the cross-modality image transformation capability 
of our method by transforming diffraction-limited TIRF images to 
match TIRF-SIM reconstructions (Fig. 6 and Supplementary Fig. 5).  
In these experiments, the sample was exposed to nine different 
structured illumination patterns following a reconstruction method 
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used in SIM18, whereas the low-resolution (diffraction-limited) 
TIRF images were obtained using a simple average of these nine 
exposures28. We trained our neural network model using images of 
gene-edited SUM159 cells expressing eGFP-labeled clathrin adap-
tor AP2, and blindly tested its inference (Fig. 6 and Supplementary 
Video 1). To highlight some examples, the neural network was able 
to detect the dissociation of clathrin-coated pits from larger clathrin 
patches (i.e., plaques18,29) as shown in Fig. 6r,t, as well as the devel-
opment of curvature-bearing clathrin cages18,30, which appear as 
doughnuts under SIM (Fig. 6l–o). Next, to provide another dem-
onstration of the network’s generalization, we blindly applied it 
to amnioserosa tissues of Drosophila embryos (never seen by the 
network) expressing clathrin-mEmerald (Supplementary Fig. 5). 
Highly motile clathrin-coated structures31 within the embryo that 
cannot be resolved in the original TIRF image can be clearly distin-
guished as separate objects in the network output (Supplementary 
Fig. 5). These results demonstrate that our network model can 
super-resolve individual clathrin-coated structures within cultured 
cells and tissues of a developing metazoan embryo.

We note that the aberrations or artifacts potentially observed in 
some of the ground truth training images can couple back into the 
network’s inference and result in some residual artifacts in the net-
work output. If the ground truth training image set is not dominated 
with such artifacts, the impact of this will be negligible, close to the 
noise floor of the output image, as illustrated in our Supplementary 
Protocol. Such residual artifacts can be further reduced by pre-
selection of the training ground truth images to be free from major 
artifacts (if possible) or through an additional loss term applied to 
suppress such features during the training process.

Depth-of-field enhancement. Another important feature of the 
deep network-based image transformation approach is that it can 
resolve features over an extended DOF because of the lower NA of 
the input image (Fig. 2, Supplementary Figs. 6–8, and Supplementary 
Note 3). We further illustrated this phenomenon by acquiring a 
depth-resolved image set (composed of 34 images, axially sepa-
rated by 0.3 µ​m) corresponding to the blood-vessel sample using a  
20×​/0.75-NA objective, and synthesized an extended-DOF image 
using the ImageJ plugin EDF32, which provides a significantly 
improved ground truth image compared to a single high-resolution 
image. These results and the comparison reported in Supplementary 
Fig. 9 clearly demonstrate the extended-DOF capabilities of our 
super-resolution method. This extended DOF is also favorable in 
terms of photo-damage to the sample, by eliminating the need for 
a fine axial scan within the sample volume, which might reduce the 
overall light delivered to the sample, while also making the imag-
ing process more efficient. Although some thicker samples will 
ultimately require axial scanning, the presented approach will still 
reduce the number of scans required by inferring high-resolution 
images from parts of the sample that would have been defocused 
with higher-NA imaging systems (Supplementary Figs. 6 and 7).

Artifact analysis. A common concern for computational approaches 
that enhance image resolution is the potential emergence of spa-
tial artifacts that may degrade the image quality, such as the Gibbs 
phenomenon in LR deconvolution33. To explore this, we randomly 
selected an example in the test image dataset, and quantified the 
artifacts of the network output using the NanoJ-Squirrel Plugin;13 
this analysis (Supplementary Note 7) revealed that the network  
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output does not generate noticeable super-resolution artifacts and 
in fact has the same level of spatial mismatch error that the ground 
truth image has with respect to the input image of the same sam-
ple (see Supplementary Fig. 1 and Supplementary Note 7). This 
conclusion is further confirmed by Supplementary Fig. 1, which 
overlays the network output image and the ground truth image in 
different colors, revealing no obvious feature mismatch between 
the two. The same conclusion remained consistent for other test 
images as well.

Furthermore, we also calculated the difference of the network 
inference and the ground truth images for all the modalities used 
in our manuscript (Figs. 2–6), to demonstrate the high degree 
of spatial agreement between the two (Supplementary Note 8  
and Supplementary Figs. 10 and 11); these results also indi-
cate that the minor differences between the network output and 

ground truth images are partially due to the extended DOF of our 
output images.

As an additional inquiry of potential artifacts, Supplementary 
Note 2 reports spatial frequency spectrum analysis to demonstrate 
the agreement between the spatial frequencies of the network out-
put and the ground truth images, which further supports the suc-
cess of our inference results.

Discussion
Our deep learning approach allows for the generation of super-
resolution images directly from images acquired on conventional, 
diffraction-limited microscopes without a priori knowledge about 
the sample and/or the image formation process. In addition to 
democratizing super-resolution microscopy, our approach offers 
the benefits of rapidly imaging larger FOVs and DOFs, creating 
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higher-resolution images with fewer frames and/or lower light 
doses, which enables new opportunities for imaging objects with 
reduced photo-bleaching and photo-toxicity24,27.

An essential step of the presented super-resolution framework 
is the accurate alignment and registration between the lower-res-
olution and the higher-resolution label images. This multi-stage 
image registration process (Methods) allows the network to learn 
a pixel-to-pixel transformation and is used as a regularization for 
the network to learn the resolution enhancement, while avoiding 
warping of the input images, which in turn significantly reduces 
potential artifacts. This data-driven cross-modality transformation 
framework is further discussed in Supplementary Note 5 with an 
emphasis on the fact that the input and output distributions share a 
high degree of mutual information, with an output probability dis-
tribution that is conditional upon the input data distribution.

As illustrated in Supplementary Note 6, our deep learning 
approach also improves the image SNR. In fact, the resolution 
limit of a microscopy modality is fundamentally limited by its 
SNR34; stated differently, the lack of some spatial frequencies at 
the image plane (for example, carried by evanescent waves) does 
not pose a fundamental limit for the achievable resolution of a 
computational microscope. These missing spatial frequencies 
(although not detected at the image) can in principle be extrapo-
lated based on the measured or known spatial frequencies of an 
object34. For example, the full spatial frequency spectrum of an 
object function that has a limited spatial extent with finite energy 
can in theory be recovered from the partial knowledge of its spec-
trum using the analytical continuation principle, as its Fourier 
transform defines an entire function35. In practice, however, this 
is a challenging task and the success of such a frequency extrapo-
lation method is strongly dependent on the SNR of the measured 
image information and a priori information regarding the object. 
Although the presented neural-network-based super-resolution 
approach does not include any such analytical continuation 
models or any a priori assumptions about the known frequency 
bands or support information of the object, through image data 
it learns to statistically separate out noise patterns from the struc-
tural information of the object, helping us achieve effectively 
much improved frequency extrapolation (Supplementary Note 2)  
and resolution enhancement compared to the state-of-the-art  
methods as reported in our Results.

To practice our approach on new types of samples or new 
imaging systems that were not part of the training process, fresh 
application of our presented framework is recommended for get-
ting optimal results, starting with the image registration between 
the input images (lower resolution) and the desired labels (higher 
resolution), followed by the training of a GAN, as detailed in the 
Methods section. Transfer learning from a previously trained net-
work for another type of sample might speed up the convergence 
of this learning process; however, this is neither a required step nor 
a replacement for the entire image registration and GAN training 
processes performed on new sample types of interest. After a suf-
ficiently large number of training iterations (for example, >​10,000), 
the optimal network model can be selected when the validation loss 
value no longer decreases.

Taken together, our work represents an important step forward 
for the fields of computational microscopy and super-resolution 
imaging, and should help us democratize high-resolution imaging 
systems, potentially enabling new biological observations beyond 
what can be achieved in well-resourced institutions and laboratory 
settings. Our ability to close the gap between lower-resolution and 
higher-resolution imaging systems using a deep learning framework 
is fundamentally tied to image SNR in both the training and blind 
testing phases, and in this sense the presented image transformation 
framework is limited in its performance by noise, very much like all 
the other super-resolution imaging modalities.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0239-0.
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Methods
Wide-field fluorescence microscopy image acquisition. The fluorescence 
microscopy images (Figs. 1 and 2) were captured by scanning a microscope slide 
containing multi-labeled bovine pulmonary artery endothelial cells (BPAECs) 
(FluoCells Prepared Slide #2, Thermo Fisher Scientific) on a standard inverted 
microscope equipped with a motorized stage (IX83, Olympus Life Science). 
The low-resolution (LR) and high-resolution (HR) images were acquired 
using 10×​/0.4-NA (UPLSAPO10X2, Olympus Life Science) and 20×​/0.75-NA 
(UPLSAPO20X, Olympus Life Science) objective lenses, respectively. Three 
bandpass optical filter sets were used to image the three different labeled cell 
structures and organelles: Texas Red for F-actin (OSFI3-TXRED-4040C, EX562/40, 
EM624/40, DM593, Semrock), FITC for microtubules (OSFI3-FITC-2024B, 
EX485/20, EM522/24, DM506, Semrock), and DAPI for cell nuclei (OSFI3-DAPI-
5060C, EX377/50, EM447/60, DM409, Semrock). The imaging experiments were 
controlled by MetaMorph microscope automation software (Molecular Devices), 
which performed translational scanning and auto-focusing at each position of 
the stage. The auto-focusing was performed on the FITC channel, and the DAPI 
and Texas Red channels were both exposed at the same plane as FITC. With a 
130-W fluorescence light source set to 25% output power (U-HGLGPS, Olympus 
Life Science), the exposure time for each channel was set as follows: Texas Red, 
350 ms (10×​) and 150 ms (20×​); FITC, 800 ms (10×​) and 400 ms (20×​); DAPI, 60 
ms (10×​) and 50 ms (20×​). The images were recorded by a monochrome sCMOS 
camera (ORCA-flash4.0 v2, Hamamatsu Photonics K.K.) and saved as 16-bit 
grayscale images with regard to each optical filter set. The additional test images 
(Supplementary Figs. 6 and 7) are captured using the same setup with FluoCells 
Prepared Slide #1 (Thermo Fisher Scientific), with the filter setting of Texas Red 
for mitochondria and FITC for F-actin, and FluoCells Prepared Slide #3 (Thermo 
Fisher Scientific), with the filter setting of Texas Red for actin and FITC for 
glomeruli and convoluted tubules. The mouse brain tumor sample was prepared 
with mouse brains perfused with Dylight-594-conjugated Tomato Lectin (1 mg/ml) 
(Vector Laboratories, CA), fixed in 4% paraformaldehyde for 24 h and incubated 
in 30% sucrose in phosphate-buffered saline, then cut in 50-μ​m-thick sections as 
detailed in ref. 36, and imaged using Texas Red filter set for blood vessels, and FITC 
filter set for tumor cells.

Confocal and STED image acquisition. For the Histone 3 imaging experiments, 
the HeLa cells were grown as a monolayer on high-performance coverslips (170 µ​
m ±​ 10 µ​m) (Carl Zeiss Microscopy) and fixed with methanol. Nuclei were labeled 
with a primary Rabbit anti-Histone H3 trimethyl Lys4 (H3K4me3) antibody 
(Active motif #39159) and a secondary Atto-647N Goat anti-rabbit IgG antibody 
(Active Motif # 15048) using the reagents of the MAXpack Immunostaining Media 
Kit (Active Motif #15251). The labeled cells were then embedded with Mowiol 4-88 
and mounted on a standard microscope slide.

The nano-bead samples for confocal and STED experiments (Figs. 3 and 4) 
were prepared with 20-nm fluorescent nano-beads (FluoSpheres Carboxylate-
Modified Microspheres, crimson fluorescent (625/645), 2% solids, Thermo  
Fisher Scientific) that were diluted 100 times with methanol and sonicated for 
3 ×​ 10 min, and then mounted with antifade reagents (ProLong Diamond,  
Thermo Fisher Scientific) on a standard glass slide, followed by placement  
on high-performance coverslips.

Samples were imaged on a Leica TCS SP8 STED confocal microscopy using a 
Leica HC PL APO 100×​/1.40-NA Oil STED White objective. The scanning for each 
FOV was performed by a resonant scanner working at 8,000 Hz with 16 times line 
average and 30 times frame average for nano-beads, and 8 times line average and 6 
times frame average for cell nuclei. The fluorescent nano-beads were excited with a 
laser beam at 633-nm wavelength. The emission signal was captured with a hybrid 
photodetector (HyD SMD, Leica Microsystems) through a 645–752-nm bandpass 
filter. The excitation laser power was set to 5% for confocal imaging and 50% for 
STED imaging, so that the signal intensities remained similar while the same 
scanning speed and gain voltage were maintained. A depletion beam of 775 nm was 
also applied when capturing STED images with 100% power. The confocal pinhole 
was set to 1 Airy unit (for example, 168.6 µ​m for 645-nm emission wavelength and 
100×​ magnification) for both the confocal and STED imaging experiments. The 
cell nuclei samples were excited with a laser beam at 635 nm and captured with the 
same photodetector, which was set to 1×​ gain for confocal and 1.9×​ gain for STED 
with a 650–720-nm bandpass filter. The confocal pinhole was set to 75.8 µ​m (for 
example, 0.457 Airy unit for 650-nm emission wavelength and 100×​ magnification) 
for both the confocal and STED imaging experiments. The excitation laser power 
was set to 3% and 10% for confocal and STED experiments, respectively. The 
scanning step size (i.e., the effective pixel size) for both experiments was ~30 nm  
to ensure sufficient sampling rate. All the images were exported and saved as  
8-bit grayscale images.

TIRF-SIM image acquisition. Gene-edited SUM159 cells expressing AP2-eGFP37 
were grown in F-12 medium containing hydrocortisone, penicillin–streptomycin 
and 5% FBS. Transient expression of mRuby-CLTB (Addgene; Plasmid #55852) 
was carried out with the Gene Pulser Xcell electroporation system (Bio-Rad 
Laboratories, CA, USA) according to the manufacturer’s instructions, and  
imaging was performed 24–48 h after transfection. Cells were imaged in  

phenol-red-free L15 (Thermo Fisher Scientific) supplemented with 5% FBS at 
37 °C ambient temperature. Clathrin dynamics were monitored in lateral epidermis 
and amnioserosa tissues of Drosophila embryos using the UAS/GAL4 system as 
described in ref. 38. Drosophila embryos were gently pressed against the coverslip 
to position the apical surface of the lateral epidermis and amnioserosa cells within 
the evanescence field of the TIRF system. Arm-GAL4 strain was provided by the 
Bloomington Drosophila Stock Center; CLC-mEmerald strain was provided by 
Dr. Henry Chang (Purdue University, USA). TIRF-SIM images were acquired 
with a 100×​/1.49-NA objective lens (Olympus Life Science, CA, USA) fitted on an 
inverted microscope (Axio Observer; ZEISS) equipped with an sCMOS camera 
(ORCA-Flash4.0; Hamamatsu). Structured illumination was provided by a spatial 
light modulator as described in ref. 18.

Image pre-processing. For wide-field images (Figs. 1 and 2, and Supplementary 
Figs 1, 2a–h, and 6–9), a low intensity threshold was applied to subtract 
background noise and auto-fluorescence, as a common practice in fluorescence 
microscopy. The threshold value was estimated from the mean intensity value 
of a region without objects, which is ~300 out of 65,535 in our 16-bit images. 
The LR images are then linearly interpolated two times to match the effective 
pixel size of the HR images. Accurate registration of the corresponding LR and 
HR training image pairs is of crucial importance because the objective function 
of our network consists of adversarial loss and pixel-wise loss. We employed 
a two-step registration workflow to achieve the needed registration with sub-
pixel-level accuracy. First, the FOVs of LR and HR images are digitally stitched 
in a MATLAB script interfaced with the Fiji39 Grid/Collection stitching plugin40 
through MIJ41, and matched by fitting of their normalized cross-correlation map 
to a 2D Gaussian function and identification of the peak location (Supplementary 
Note 9). However, because of optical distortions and color aberrations of different 
objective lenses, the local features might still not be exactly matched. To address 
this, the globally matched images are fed into a pyramidal elastic registration 
algorithm to achieve sub-pixel-level matching accuracy, which is an iterative 
version of the registration module in Fiji Plugin NanoJ, with a shrinking block 
size (Supplementary Fig. 12)13,39,42,43. This registration step starts with a block size 
of 256 ×​ 256 and stops at a block size of 64 ×​ 64, with the block size shrunk by 1.2 
times every 5 iterations with a shift tolerance of 0.2 pixels. Because of the slightly 
different placement and the distortion of the optical filter sets, we performed the 
pyramidal elastic registration for each fluorescence channel independently. At the 
last step, the precisely registered images were cropped 10 pixels on each side to 
avoid registration artifacts, and converted to single-precision floating data type and 
scaled to a dynamic range of 0–255. This scaling step is not mandatory but creates 
convenience for fine tuning of hyper-parameters when working with images from 
different microscopes/sources.

For confocal and STED images (Figs. 3–5) that were scanned in sequence on 
the same platform, only a drift correction step was required, which was calculated 
from the 2D Gaussian fit of the cross-correlation map. The drift was found to 
be ~10 nm for each scanning FOV between the confocal and STED images. We 
did not perform thresholding to the nano-bead dataset for the network training. 
However, after the test images were enhanced by the network, we subtracted a 
constant value (calculated by taking the mean value of an empty region) from the 
confocal (network input), the super-resolved (network output), and the STED 
(ground truth) images, respectively, for better visualization and comparison of the 
images. The total number of images used for training, validation and blind testing 
of each network are summarized in Supplementary Table 1.

Generative adversarial network structure and training. In this work, our 
deep neural network was trained following the generative adversarial network 
(GAN) framework16, which has two sub-networks being trained simultaneously, a 
generative model which enhances the input LR image, and a discriminative model 
which returns an adversarial loss to the resolution-enhanced image, as illustrated 
in Supplementary Fig. 13. We designed our objective function as the combination 
of the adversarial loss with two regularization terms: the mean square error (MSE), 
and the structural similarity (SSIM) index44. Specifically, we aim to minimize

L
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where x is the LR input, G(x) is the generative model output, D(·) is the 
discriminative model prediction of an image (network output or ground truth 
image), and y is the HR image used as ground truth. The structural similarity index 
is defined as
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where μ μ,x y are the averages of x,y; σ σ,x y
2 2 are the variances of x,y; σx y,  is the 

covariance of x and y; and c c,1 2 are the variables used to stabilize the division with a 
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small denominator. An SSIM value of 1.0 refers to identical images. When training 
with the wide-field fluorescence images, the regularization constants λ and v were 
set to accommodate the MSE loss and the SSIM loss to be ~1–10% of the combined 
generative model loss L G D( ; ) , depending on the noise level of the image dataset. 
When training with the confocal-STED image datasets, we kept λ the same and set 
v to 0. While the adversarial loss guides the generative model to map the LR images 
into HR, the two regularization terms assure that the generator output image 
is established on the input image with matched intensity profile and structural 
features. These two regularization terms also help us stabilize the training schedule 
and smooth out the spikes on the training loss curve before it reaches equilibrium. 
For the sub-network models, we employed a similar network structure as described 
in ref. 43. The relatively low weight that is given to the MSE and SSIM terms is due 
to the fact that these values already represent a high degree of agreement between 
the low-resolution input and the gold standard label (for example, ~0.87–0.94 for 
the wide-field microscopy experiments). Hence, a large weight given to these loss 
terms will drive the network to converge to a local minimum that will strongly 
resemble the low-resolution input and not learn the desired (super-resolved) 
output distribution. Therefore, it might be beneficial for some other applications 
to increase the weights of these terms, for example, for low SNR images, where the 
task of denoising might be of main interest for automated segmentation and related 
image processing tasks.

Generative model. U-net is a CNN architecture that was first proposed for medical 
image segmentation, yielding high performance with very few training datasets45. 
A similar network architecture has also been successfully applied in recent image 
reconstruction and virtual staining applications43,46. The structure of the generative 
network used in this work is illustrated in Supplementary Fig. 13, which consists of 
four downsampling blocks and four upsampling blocks. Each downsampling block 
consists of three residual convolutional blocks, within which it performs

= +
=

− − (3)
x x x
k

LReLU[Conv{LReLU[Conv{LReLU[Conv{ }]}]}] ,
1, 2, 3, 4

k k k1 1

where xk represents the output of the kth downsampling block, and x0 is the LR 
input image. Conv{} is the convolution operation, LReU[] is the leaky rectified 
linear unit activation function with a slope of α =​ 0.1, that is,

α α= − × −x x xLReLU( ; ) max(0, ) max(0, ) (4)

The input of each downsampling block is zero-padded and added to the output 
of the same block. The spatial downsampling is achieved by an average pooling 
layer after each downsampling block. A convolutional layer lies at the bottom of 
this U-shape structure that connects the downsampling and upsampling blocks.

Each upsampling block also consists of three convolutional blocks, within 
which it performs

=

=
− − (5)

y
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k

LReLU
[Conv{LReLU[Conv{LReLU[Conv{Concat( , )}]}]}] ,
1, 2, 3, 4

k
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where yk represents the output of the kth upsampling block, and y0 is the input 
of the first upsampling block. Concat() is the concatenation operation of the 
downsampling block output and the upsampling block input on the same level in 
the U-shape structure. The last layer is another convolutional layer that maps the 
32 channels into 1 channel that corresponds to a monochrome grayscale image.

Discriminative Model. As shown in Supplementary Fig. 13, the structure of the 
discriminative model begins with a convolutional layer, which is followed by 5 
convolutional blocks, each of which performs the following operation:

= =−z z kLReLU[Conv{LReLU[Conv{ }]}], 1, 2, 3, 4, 5 (6)k k 1

where zk represents the output of the kth convolutional block, and z0 is the input 
of the first convolutional block. The output of the last convolutional block is fed 
into an average pooling layer whose filter shape is the same as the patch size, 
that is, H ×​ W. This layer is followed by two fully connected layers for dimension 
reduction. The last layer is a sigmoid activation function whose output is the 
probability of an input image being ground truth, defined as

=
+ −

D z
z

( ) 1
1 exp( ) (7)

Network training schedule. During our training the patch size is set as 64 ×​ 64,  
with a batch size of 12 on each of the two GPUs. Within each iteration, the 
generative model and the discriminative model are each updated once while the 
other is kept unchanged. Both the generative model and the discriminative model 
were randomly initialized and optimized using the adaptive moment estimation 

(Adam) optimizer47 with a starting learning rate of 1×​10−4 and 1×​10−5, respectively. 
This framework was implemented with TensorFlow framework version 1.7.048 and 
Python version 3.6.4 in the Microsoft Windows 10 operating system. The training 
was performed on a consumer-grade laptop (EON17-SLX, Origin PC) equipped 
with dual GeForce GTX1080 graphic cards (NVDIA) and a Core i7-8700K CPU 
@ 3.7 GHz (Intel). The final models for wide-field images were selected with the 
smallest validation loss at around the 50,000th iteration, which took ~10 h to train. 
The final model for confocal-STED transformation (Figs. 3 and 4) is selected with 
the smallest validation loss at around the 500,000th iteration, which took ~90 h 
to train. The transfer learning for the confocal-STED transformation network 
(Fig. 5) was implemented with the same framework on a desktop computer with 
dual GTX1080Ti graphic cards, with the patch size set as 256 ×​ 256 with 4 patches 
on each GPU. It was first initialized with the confocal-STED model trained with 
nano-beads, and then refined with cell nuclei image data with ~20,000 iterations, 
which took ~24 h. The training of the TIRF to TIRF-SIM transformation network 
was also implemented with dual GTX1080Ti graphic cards, with the patch size 
set as 64 ×​ 64, and 64 patches on each GPU. The final model was trained for 
~20,000 iterations, which took ~18 h. A typical plot of the loss functions during 
the GAN training is shown in Supplementary Fig. 14, where the generative and 
discriminative models compete in an equilibrium state for ~60,000 iterations 
before they start to diverge. The iteration time is also dependent on the patch 
and batch size. We also demonstrate in Supplementary Fig. 4 that the role of 
the discriminative model of GAN is critical to achieving super-resolution, as it 
provides an adaptive loss function and helps the generative model to jump out of 
local minima. Training without the discriminative loss can result in over-smoothed 
images (see, for example, Supplementary Fig. 4), as the generative model optimizes 
only a specific group of statistical metrics. A step-by-step training instruction and 
guideline, with several critical steps discussed and emphasized, are provided in 
Supplementary Note 10.

Implementation of LR and NNLS deconvolution. For a fair comparison, the 
lower-resolution images were upsampled 2 times by bilinear interpolation before 
being deconvolved. We used the Born and Wolf PSF model49,50, with parameters 
set to match our experimental setup, that is, NA =​ 0.4, immersion refractive 
index =​ 1.0, pixel size =​ 325 nm. The PSF is generated by a Fiji PSF Generator 
Plugin39,51. We performed an exhaustive parameter search by running the LR 
algorithm with 1–100 iterations and damping threshold 0–10%. The results were 
visually assessed, with the best one obtained at 10 iterations and 0.1% damping 
threshold (Fig. 2, third column). The NNLS deconvolution was performed 
with Fiji Plugin DeconvolutionLab252 with 100 iterations and a step size of 0.5. 
The deconvolutions for Texas Red, FITC, and DAPI channels were performed 
separately, assuming the central emission wavelengths to be 630 nm, 532 nm, and 
450 nm, respectively.

Characterization of the lateral resolution by PSF fitting. We characterized the 
resolution differences among the network input (confocal), the network output 
(confocal), and the ground truth (STED) images by fitting their PSFs to a 2D 
Gaussian profile, as shown in Fig. 4. For this, more than 400 independent bright 
spots were selected from the ground truth STED images and cropped out with the 
surrounding 19 ×​ 19-pixel regions, that is, ~577 ×​ 577 nm2. The same locations were 
also projected to the network input and output images, followed by cropping of 
the same image regions as in the ground truth STED images. Each cropped region 
was then fitted to a 2D Gaussian profile. The FWHM values of all these 2D profiles 
were plotted as histograms, shown in Fig. 4. For each category of images, the 
histogram profile within the main peak region was fitted to a 1D Gaussian  
function (Fig. 4). A similar process was repeated for the results reported in 
Supplementary Fig. 8d.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We declare that all the data supporting the findings of this work are available within 
the manuscript and Supplementary Information files. Raw images can be requested 
from the corresponding author. Deep learning models reported in this work 
used standard libraries and scripts that are publicly available in TensorFlow. The 
instruction manual for our Fiji/ImageJ plugin and trained models (available online 
as Supplementary Software 1–7) is provided as a Supplementary Protocol.
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