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Abstract

Nowadays, to assess and document construction and building performance,
large amount of visual data are captured and stored through camera equipped
platforms such as wearable cameras, unmanned aerial/ground vehicles, and smart
phones. However, due to the nonstop fashion in recording such visual data, not all of
the frames in captured consecutive footages are intentionally taken, and thus not
every frame is worthy of being processed for construction and building performance
analysis. Since many frames will simply have non-construction related contents,
before processing the visual data, the content of each recorded frame should be
manually investigated depending on the association with the goal of the visual
assessment. To address such challenges, this paper aims to automatically filter
construction big visual data that requires no human annotations. To overcome
challenges in pure discriminative approach using manually labeled images, we
construct a generative model with unlabeled visual dataset, and use it to find
construction-related frames in big visual dataset from jobsites. First, through
composition-based snap point detection together with domain adaptation, we filter
and remove most of accidently recorded frames in the footage. Then, we create
discriminative classifier trained with visual data from jobsites to eliminate non-
construction related images. To evaluate the reliability of the proposed method, we
have obtained the ground truth based on human judgment for each photo in our
testing dataset. Despite learning without any explicit labels, the proposed method
shows a reasonable practical range of accuracy, which generally outperforms prior
snap point detection. Through the case studies, the fidelity of the algorithm is
discussed in detail. By being able to focus on selective visual data, practitioners will
spend less time on browsing large amounts of visual data; rather spend more time on
looking at how to leverage the visual data to facilitate decision-makings in built
environments.

INTRODUCTION

With an advent of portable devices for visual sensing such as the GoPro
camera mounted on a hard hat or smartphones & tablets, the as-is state of jobsites is
effortlessly recorded on daily, weekly or monthly basis. Moreover, recently, there has
been a substantial growth in the usage of Unmanned Aerial Vehicles (UAVs)
capturing the as-is conditions of built environments (Ham et al. 2016). Given such
captured visual data, construction researchers have primarily studied in construction
scene understanding (e.g., equipment detection & tracking, worker action recognition
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& classification, or 3D point cloud generation & segmentation) to measure different
performance metrics in given built environments, and yielded promising results with
significant potentials (Yang et al. 2015). For example, to predict potential risks of
wind-induced cascading damages to construction projects and to infer the negative
impacts on neighboring communities, we can collect large-scale visual data
representing the as-is jobsite condition before extreme wind-related events occur
(e.g., during hurricane warning), and recognize potential at-risk construction
resources and at-risk states of equipment in jobsites (Ham et al. 2017). The outcomes
of such visual recognition can directly communicate with people in jobsites, which
enable to identify areas in need of protection, and further can be used for disaster
simulation as an input. In addition, by taking jobsite live-stream footage, a vision-
based detection and classification algorithms would be used to assess the safety of
any workers through detection of their hard hat (Park et al. 2015). Such vision-based
system would have potential to further advance monitoring the safety metrics on daily
basis, and will empower the in-charge jobsite disciplines to constantly keep an eye on
safety metric reports, and minimize possible injuries or death-tolls resulted by
construction activities. On top of those, there have been many other research efforts
to use multimodal visual data from built environments (e.g., thermography-driven
building energy performance modeling and analysis (Ham and Golparvar-Fard 2015),
occupational safety analysis (Han and Lee 2013), pavement management (Koch and
Brilakis 2011), construction performance analytics (Han and Golparvar-Fard 2017),
etc.).

15 minutes of recorded videoin 30
fps rate contains 27,000 frames e
15x 60x 30 fps= 27,000 Recorded Frames

N e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Figure 1. An example of the size of visual data needed to be filtered by site
engineers
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Figure 2. Examples of non-construction related images from jobsites with poor
content relevance (Top), and construction images of great interest containing the
as-is jobsite information (Bottom)

Despite the benefits from easily and quickly securing large amount of visual
data and analyzing them to extract domain knowledge, the critical challenge is now
the ‘Scale’ issue: how to efficiently process ‘Big’ visual data, large number of images
or long sequence videos, beyond colleting and storing them. In practice, most vision-
based platforms involve the three main phases: (1) data acquisition, (2) data
classification, and (3) processing. In most cases, because of a lot of unintentionally
taken frames that are not related to performance metrics and/or decision-makings, the
selection of photoworthy or storytelling frames from big visual dataset should be
carried out for more efficient level of assessments. For example, as can be seen in
Figure 1, jobsite video at 30 fps captured for 15 minutes involves 27,000 frames.
Dealing with this number of photos on daily basis for the aforementioned project-
related decision-makings is not a trivial task. This poses a daily challenge for site
engineers or practitioners to browse and select well-intentioned sets of construction
images (Figure 2) before processing them. To avoid such time-consuming and labor-
intensive tasks by practitioners, it would be easy to think of the problem in
discriminative terms (i.e., training large dataset and performing classifiers). While
training a discriminative classifier using manually labeled exemplars has proven
successful for learning high-level image properties, it is not trivial to secure adequate
and unbiased labeled visual data that people manually mark frames that likely appear
intentional, which would be susceptible to bias and/or difficult to scale. To address
such challenges in training a discriminative classifier based on manually labeled
exemplars, there has been an effort to select optimal key frames in the recorded
footage to generate point clouds (Rashidi et al. 2013). In the case of point could
generations, not all frames in given video are worth being processed. This method
involves high quality frame filtering, assessing overlaps between adjacent frames,
measuring the baseline length, excluding blurry frames, computing distributions of
features in each frame, and optimizing numbers of the selected key frames. Despite
their benefits for image-based point cloud generations, there is a lack of the human-
like judgment capability to assess the contents in each frame of big visual dataset and
filter important storytelling images. In this sense, this prior work may not be fully
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served as a benchmark to perform a robust photo documentation platform, since it is
hard to assess the importance of domain-specific contents in given images.

To address challenges in pure discriminative approach (that uses manually
labeled frames to train a classifier) and to select domain-specific key frames based on
the importance of the contents in the frames, this paper aims to automatically filter
big visual data from jobsites, enabling to find construction-related frames for a
variety of project-related decision-makings. To evaluate the reliability of the
proposed method, we have obtained the ground truth based on human judgment for
each photo in our testing dataset. Then, we have explored the performance gain from
the proposed approach for detecting photoworthy frames in construction big visual
data. Finally, we have concluded a considerable improvement in precision with our
two-step filtering approach.

METHODOLOGY

The goal of this paper is to automatically filter construction big visual data of
great interest without manual human annotations. Figure 3 illustrates the overview.
First, every single frame in the entire footage (obtained from Unmanned Aerial
Vehicles (UAVs)) is given a score which assess their likelihood of being an
intentionally taken photo (i.e., snap point). In this step, training with the SUN image
database (Xiao et al. 2010) enables to filter and remove most of accidently recorded
frames in the footage. Next, we leverage a discriminative classifier that is trained with
big visual data from jobsites to accurately eliminate non-construction related images.

Big visual data
from jobsites

Snap Pointimages with related

Snap point detection with domain adaptation
RP P & non-related content

| Accidently taken photos ‘ | Snap Point images |

*Non-related

HOG feature extraction

Related/Non-related image
classifier

Snap Pointimages with
construction-related content

ST
Related

Process L

Figure 3. An overview of the data and the process proposed in this paper
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Detecting Snap Points with Domain Adaptation

Detecting snap points in any footage involves numerous challenges to
overcome. First, snap point images may not share the same object or article between
each other. In general, their contents could be anything. This variety of objects in
snap point images requires obtaining a vast variety of training dataset. This is a very
labor intensive task and demands human judgment on each captured frame. Second,
the height of camera from which images are taken should match between training and
testing dataset. Because the videos are captured from different devices such as head-
mounted GoPro cameras or flying drones, the heights where the images are taken
would be different. This causes poor matches between training and testing domains.
Third, the quality of images that are captured from portable devices are often low, so
they may not match well with high quality photos captured intentionally on the web.
Thus, obtaining training dataset for diverse scenes to match with images from
different height is not trivial. In this paper, to initially remove accidentally taken
photos from the captured footage, we build upon the snap point detection of (Xiong
and Grauman 2014) which is trained on 130K images from the SUN database. The
SUN dataset involves 130K of human taken photos for 899 categories. Even though
very small portion of the SUN dataset categories are related to the construction
domain, performing the snap point detection with such general dataset would
eliminate large portion of unintentionally taken photos in construction big visual
dataset.

Feature Extraction

First, discriminative features of images for both training and testing dataset is
extracted. Then, those features extracted from different domains are studied in terms
of the similarities. The extracted features could be named as Dense-SIFT, HOG,
GIST, SSIM, line alignment, and motion blur. Because most intentionally taken
images are aligned with horizon, we intend to extract ‘line alignment feature’
(KoSecka and Zhang 2002) to remove those photos that are not well aligned with the
horizon. In addition, the motion blur feature (Crete et al. 2007) is explored to remove
blurry images, since intentionally taken photos are not typically blurry. Other sets of
features are studied to see how much testing dataset agrees with the training domain.
Once features are extracted, their variances are studied through the Principle
Component Analysis (PCA) to derive eigenvectors that compactly capture higher
variances of the features and substantially reduce the size of them. Combinations of
these eigenvectors for each feature are then concatenated. The overall performance
strongly depends on how many eigenvectors of each feature type are stored in the
concatenation array. It is noted that more eigenvectors of features in the
concatenation array does not always guarantee the higher accuracy. We assessed the
precision of the method over different numbers of eigenvectors for each feature in the
concatenation array and took the best values that ensured the higher precision.

Domain Adaptation and Computing Similarity

Since the recorded footages are sometimes very low resolution, thus they may
not match well with the high-resolution training dataset. Therefore, there should be a
domain invariant feature space to connect training and testing domains together. In
other words, an infinite dimensional geodesic path connecting the training and the
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testing domains should be established. This will allow two different domains to be
attached via common feature subspaces in the middle, and ultimately decreases the
mismatches that are initiated due to the differences in the resolution and camera
characteristics of the two domains. Building upon (Gong et al. 2012), the geodesic
path can be expressed as following:

1
Kerk(xi,x;) = (2%, 2) :f (@®"x)T (@) x;)dt (1)
0

where x; , x; represent the visual features of training and testing dataset respectively,
and z;”, z;”denote the infinite dimension containing all of projections of x;, x; along
geodesic path shown by ®(t). The parameter t is which changes from 0 to 1 to
represent the distance of projections which transfers from training to testing domains
respectively. After obtaining a geodesic path for two domains to match, the similarity
between each other can be obtained, which is shown with K;rx. The obtained
similarity is a key parameter to judge if a testing image is an intentionally taken photo
or not.

Snap Point Prediction

For any given testing frames, set of images from the training domain with the
highest similarity to them, in other words the highest Geodesic Flow Kernel (GFK)
values could be retrieved. Let’s say we have retrieved & number of photos in training
domain that are similar to the testing frame. Now, the intentionally taken confidence
for the testing frame could be calculated from the summation of similarities of &
number of retrieved images to that testing frame, as shown below:

k
S(x€) = Z KGFK(xe' ij) (2)
j=1

where, x¢ denotes the testing frame descriptor, and x" be the retrieved similar
images from given training dataset. The parameter k is the number of retrieved
similar photos from the training dataset and S(x¢) represents the confidence of snap
point for the testing frame. The higher values of S(x¢) indicates the higher chance of
a testing frame to be on purposely recorded. With all these parameters, we now can
predict snap point frames for any given footages.
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Figure 4. Snap point detection in our two-step filtering approach to screen
construction big visual data of great interest without manual human annotations

Filtering Non-Construction Related Frames

Despite the initial filtering of large portions of unworthy visual data, the
outcomes are most likely to still include many images without construction-related
contents. This is because of the comprehensiveness of the SUN database used for
training during initial filtering, not focused on the construction domain. Therefore, to
automatically detect a handful of highly ranked snap point frames in construction, we
need to further investigate the domain-specific content and eliminate the images that
are not related to our purpose. In this regard, as a proof of concept, we leveraged 538
construction photos from UAVs with construction related content as “positive”
sample, and 60 images with non-construction related content as “negative” one. Then,
we extracted the HOG features and trained a Support Vector Machine (SVM)
classifier based on positive and negative datasets. To put the effect of our trained
classifier in place and combine the results with the obtained snap point rankings, we
first explore construction related and non-construction related contents in our testing
dataset through our trained classifier. After obtaining related and non-related
classification for all the testing frames, we assign a very low ranking for images with
non-construction related content, but for images with construction related content, we
leave the snap point score as they are. This will allow us to obtain the modified
rankings for our testing dataset. It is noted that images used to train the classifier were
not used for testing purposes, and both groups were taken at different stages in an
ongoing construction jobsite. Figure 5 represent the algorithmic scheme for ranking
modification.
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Input: Ranking snap point images with specific order (SnpRank: 0<SnpRank<1I)
Related/non-related classification results with the same specific order (ClsRank:

ClsRank =0 or I)

Output: Modified ranking for testing dataset (ModfdRank)

1ModfdRank = SnpRank

2 for i = I to number of images

3 if ith member of array ClsRank equals 0 (image content is non-construction related)
4  Assign (0.01 + rand/100) to ith member of ModfdRank

5 end

6 end

7 Return ModfdRank

Figure 5. Algorithmic scheme for integrating snap point ranking and
classification results

EXPERIMENTAL RESULTS AND DISCUSSIONS

To validate the proposed method, we obtained image scores based on human
judgment and compared them with the scores coming out of our method. Initially, we
implemented an interface to load each image and a slider enabling to assign scores for
each image based on the importance and the level of details they provide in the
construction domain. The value of slider could be altered from 0 to 100. For
comparison, we categorized scores within three main classes: 1- poor, 2-fair, and 3-
good. In this paper, as a proof of concept, images receiving scores from 0 to 33 were
considered within the “poor” category, score of images from 33 to 66 range were
assigned to the “fair” category, and images getting scores more than 66 were
specified in the “good” category. We asked people to consider images as higher
category if large portion of them cover construction-related content. Later, we can
consider images in the “poor” and “good” category to better train our classifier. To
avoid biased human judgment, we have carried out the scoring tasks for multiple
times, and averaged scores for each image before comparing all of them with scores
obtained via our method. Figure 6 represents examples of the categorization of our
testing visual data. As a proof of concept, Figure 7 shows the confusion matrix for
our SVM classifier, which shows the practical reasonable level of accuracy in
recognition for the purpose of filtering big visual data.
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HOG feature Training the
extraction SVM classifier

Confusion matrix

Figure 7. Training a discriminative classifier in our two-step filtering approach
for construction visual dataset from jobsites

Having the ground-truth data and the scores of images from the proposed two-
step filtering method in hand, we now can report the precision-recall curve to validate
the reliability of our method. To report the performance gain, we benchmarked our
method with the outcomes from prior snap point detection in web photo prior (Xiong
and Grauman 2014). Figure 8 shows the improved performance of our method over
(Xiong and Grauman 2014). The precision-recall curve indicates that with our trained
classifier in place, the given big visual data from jobsites could be filtered more
accurately. This is because as discussed above, we have implemented two-step
classifiers to better assess the confidence of snap points that are related to the
construction domain. The outcomes of the proposed method would be further refined
to achieve more focused and related results.
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Figure 8. Performance gain from the proposed method in the precision-recall
curve

CONCLUSION

To easily and quickly obtain visual data from evolving construction jobsites,
buildings, landscapes and infrastructures, UAVs are widely used to constantly cruise
around them. Despite their benefits, it is likely that more than half of recorded visual
data are completely irrelevant or are taken from poor view point. This paper proposed
a two-step method to automatically filter construction big visual data recoded from
UAVs. Our method eliminates time-consuming human judgment to select
construction-relevant frames from recorded big visual dataset. Experimental results
show the performance gain from the proposed two-step filtering over the existing
approach. Automated approach for filtering big visual data enables jobsite engineers
and practitioners to obtain very dense and yet focused images they need for project
management. Ultimately, by being able to focus on selective frames, practitioners can
spend less time on browsing large amounts of visual data; rather spend more time on
looking at performance problems potentially occurred in jobsites.

In addition to the impact on jobsite management in the practical aspect,
selective photo log would be treated as a benchmark to train advanced image
classifiers or to carry out image segmentation tasks. Furthermore, more fluent process
to generate point clouds could be achieved through automated removal of non-
construction related images that would confuse the algorithms to generate 3D point
clouds. By coupling with autonomous UAV navigation platforms, the proposed
method can also support to obtain better viewpoints to provide better snapshots taken
from jobsites. This can provide the freedom to proceed or quit the task of recording
visual data thanks to constantly evaluating the quality of recorded frames.

Future works involve exploring visual data obtained from head-mounted
GoPro cameras in jobsites and validating the reliability of using ground-level big
visual data from jobsites. We believe it can enhance the accuracy of the algorithm
through enhancing training domain. In addition, in the near future, we will leverage
more visual data to feed snap point detection platforms and increase the level of
accuracy. All these are currently being explored as part of our ongoing research.
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