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Abstract 

Nowadays, to assess and document construction and building performance, 
large amount of visual data are captured and stored through camera equipped 
platforms such as wearable cameras, unmanned aerial/ground vehicles, and smart 
phones. However, due to the nonstop fashion in recording such visual data, not all of 
the frames in captured consecutive footages are intentionally taken, and thus not 
every frame is worthy of being processed for construction and building performance 
analysis. Since many frames will simply have non-construction related contents, 
before processing the visual data, the content of each recorded frame should be 
manually investigated depending on the association with the goal of the visual 
assessment. To address such challenges, this paper aims to automatically filter 
construction big visual data that requires no human annotations. To overcome 
challenges in pure discriminative approach using manually labeled images, we 
construct a generative model with unlabeled visual dataset, and use it to find 
construction-related frames in big visual dataset from jobsites. First, through 
composition-based snap point detection together with domain adaptation, we filter 
and remove most of accidently recorded frames in the footage. Then, we create 
discriminative classifier trained with visual data from jobsites to eliminate non-
construction related images. To evaluate the reliability of the proposed method, we 
have obtained the ground truth based on human judgment for each photo in our 
testing dataset. Despite learning without any explicit labels, the proposed method 
shows a reasonable practical range of accuracy, which generally outperforms prior 
snap point detection. Through the case studies, the fidelity of the algorithm is 
discussed in detail. By being able to focus on selective visual data, practitioners will 
spend less time on browsing large amounts of visual data; rather spend more time on 
looking at how to leverage the visual data to facilitate decision-makings in built 
environments. 
 
INTRODUCTION 
 With an advent of portable devices for visual sensing such as the GoPro 
camera mounted on a hard hat or smartphones & tablets, the as-is state of jobsites is 
effortlessly recorded on daily, weekly or monthly basis. Moreover, recently, there has 
been a substantial growth in the usage of Unmanned Aerial Vehicles (UAVs) 
capturing the as-is conditions of built environments (Ham et al. 2016). Given such 
captured visual data, construction researchers have primarily studied in construction 
scene understanding (e.g., equipment detection & tracking, worker action recognition 
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Detecting Snap Points with Domain Adaptation  
 Detecting snap points in any footage involves numerous challenges to 
overcome. First, snap point images may not share the same object or article between 
each other. In general, their contents could be anything. This variety of objects in 
snap point images requires obtaining a vast variety of training dataset. This is a very 
labor intensive task and demands human judgment on each captured frame. Second, 
the height of camera from which images are taken should match between training and 
testing dataset. Because the videos are captured from different devices such as head-
mounted GoPro cameras or flying drones, the heights where the images are taken 
would be different. This causes poor matches between training and testing domains. 
Third, the quality of images that are captured from portable devices are often low, so 
they may not match well with high quality photos captured intentionally on the web. 
Thus, obtaining training dataset for diverse scenes to match with images from 
different height is not trivial. In this paper, to initially remove accidentally taken 
photos from the captured footage, we build upon the snap point detection of (Xiong 
and Grauman 2014) which is trained on 130K images from the SUN database. The 
SUN dataset involves 130K of human taken photos for 899 categories. Even though 
very small portion of the SUN dataset categories are related to the construction 
domain, performing the snap point detection with such general dataset would 
eliminate large portion of unintentionally taken photos in construction big visual 
dataset.  
 

Feature Extraction 
 First, discriminative features of images for both training and testing dataset is 
extracted. Then, those features extracted from different domains are studied in terms 
of the similarities. The extracted features could be named as Dense-SIFT, HOG, 
GIST, SSIM, line alignment, and motion blur. Because most intentionally taken 
images are aligned with horizon, we intend to extract ‘line alignment feature’ 
(Košecká and Zhang 2002) to remove those photos that are not well aligned with the 
horizon. In addition, the motion blur feature (Crete et al. 2007) is explored to remove 
blurry images, since intentionally taken photos are not typically blurry. Other sets of 
features are studied to see how much testing dataset agrees with the training domain. 
Once features are extracted, their variances are studied through the Principle 
Component Analysis (PCA) to derive eigenvectors that compactly capture higher 
variances of the features and substantially reduce the size of them. Combinations of 
these eigenvectors for each feature are then concatenated. The overall performance 
strongly depends on how many eigenvectors of each feature type are stored in the 
concatenation array. It is noted that more eigenvectors of features in the 
concatenation array does not always guarantee the higher accuracy. We assessed the 
precision of the method over different numbers of eigenvectors for each feature in the 
concatenation array and took the best values that ensured the higher precision. 

 
Domain Adaptation and Computing Similarity 
 Since the recorded footages are sometimes very low resolution, thus they may 
not match well with the high-resolution training dataset. Therefore, there should be a 
domain invariant feature space to connect training and testing domains together. In 
other words, an infinite dimensional geodesic path connecting the training and the 
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testing domains should be established. This will allow two different domains to be 
attached via common feature subspaces in the middle, and ultimately decreases the 
mismatches that are initiated due to the differences in the resolution and camera 
characteristics of the two domains. Building upon (Gong et al. 2012), the geodesic 
path can be expressed as following: ீܭி௄൫ݔ௜	, ௝൯ݔ = 	 ,௜ஶݖ) (௝ஶݖ = න (Ф(ݐ)ܶݔ௜)்(Ф(ݐ)ܶݔ௝)݀ݐଵ

଴  (1) 

 
where ݔ௜	,  ,represent the visual features of training and testing dataset respectively	௝ݔ
and ݖ௜ஶ, ,	௜ݔ ௝ஶdenote the infinite dimension containing all of projections ofݖ  along	௝ݔ
geodesic path shown by Ф(ݐ). The parameter ݐ  is which changes from 0 to 1 to 
represent the distance of projections which transfers from training to testing domains 
respectively. After obtaining a geodesic path for two domains to match, the similarity 
between each other can be obtained, which is shown with ி௄ீܭ	 . The obtained 
similarity is a key parameter to judge if a testing image is an intentionally taken photo 
or not. 
 
Snap Point Prediction 
 For any given testing frames, set of images from the training domain with the 
highest similarity to them, in other words the highest Geodesic Flow Kernel (GFK) 
values could be retrieved. Let’s say we have retrieved k number of photos in training 
domain that are similar to the testing frame. Now, the intentionally taken confidence 
for the testing frame could be calculated from the summation of similarities of k 
number of retrieved images to that testing frame, as shown below: 

(௘ݔ)ܵ  =෍ீܭி௄൫ݔ௘, ௪௝൯௞ݔ
௝ୀଵ  (2) 

where, ݔ௘  denotes the testing frame descriptor, and 	ݔ௪  be the retrieved similar 
images from given training dataset. The parameter ݇  is the number of retrieved 
similar photos from the training dataset and ܵ(ݔ௘) represents the confidence of snap 
point for the testing frame. The higher values of ܵ(ݔ௘) indicates the higher chance of 
a testing frame to be on purposely recorded. With all these parameters, we now can 
predict snap point frames for any given footages. 
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Input:  Ranking snap point images with specific order (SnpRank: 0<SnpRank<1) 
             Related/non-related classification results with the same specific order (ClsRank: 
ClsRank =0 or 1)  
Output: Modified ranking for testing dataset (ModfdRank) 
1ModfdRank = SnpRank 
2 for i = 1 to number of images 
3    if ith member of array ClsRank equals 0 (image content is non-construction related) 
4       Assign (0.01 + rand/100) to ith member of ModfdRank 
5    end  
6 end  
7 Return ModfdRank 

 
Figure 5. Algorithmic scheme for integrating snap point ranking and 
classification results 
 
EXPERIMENTAL RESULTS AND DISCUSSIONS 
 
 To validate the proposed method, we obtained image scores based on human 
judgment and compared them with the scores coming out of our method. Initially, we 
implemented an interface to load each image and a slider enabling to assign scores for 
each image based on the importance and the level of details they provide in the 
construction domain. The value of slider could be altered from 0 to 100. For 
comparison, we categorized scores within three main classes: 1- poor, 2-fair, and 3-
good. In this paper, as a proof of concept, images receiving scores from 0 to 33 were 
considered within the “poor” category, score of images from 33 to 66 range were 
assigned to the “fair” category, and images getting scores more than 66 were 
specified in the “good” category. We asked people to consider images as higher 
category if large portion of them cover construction-related content. Later, we can 
consider images in the “poor” and “good” category to better train our classifier. To 
avoid biased human judgment, we have carried out the scoring tasks for multiple 
times, and averaged scores for each image before comparing all of them with scores 
obtained via our method. Figure 6 represents examples of the categorization of our 
testing visual data. As a proof of concept, Figure 7 shows the confusion matrix for 
our SVM classifier, which shows the practical reasonable level of accuracy in 
recognition for the purpose of filtering big visual data. 
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Figure 8. Performance gain from the proposed method in the precision-recall 
curve 
 
CONCLUSION 

To easily and quickly obtain visual data from evolving construction jobsites, 
buildings, landscapes and infrastructures, UAVs are widely used to constantly cruise 
around them. Despite their benefits, it is likely that more than half of recorded visual 
data are completely irrelevant or are taken from poor view point. This paper proposed 
a two-step method to automatically filter construction big visual data recoded from 
UAVs. Our method eliminates time-consuming human judgment to select 
construction-relevant frames from recorded big visual dataset. Experimental results 
show the performance gain from the proposed two-step filtering over the existing 
approach. Automated approach for filtering big visual data enables jobsite engineers 
and practitioners to obtain very dense and yet focused images they need for project 
management. Ultimately, by being able to focus on selective frames, practitioners can 
spend less time on browsing large amounts of visual data; rather spend more time on 
looking at performance problems potentially occurred in jobsites. 

In addition to the impact on jobsite management in the practical aspect, 
selective photo log would be treated as a benchmark to train advanced image 
classifiers or to carry out image segmentation tasks. Furthermore, more fluent process 
to generate point clouds could be achieved through automated removal of non-
construction related images that would confuse the algorithms to generate 3D point 
clouds. By coupling with autonomous UAV navigation platforms, the proposed 
method can also support to obtain better viewpoints to provide better snapshots taken 
from jobsites. This can provide the freedom to proceed or quit the task of recording 
visual data thanks to constantly evaluating the quality of recorded frames. 

Future works involve exploring visual data obtained from head-mounted 
GoPro cameras in jobsites and validating the reliability of using ground-level big 
visual data from jobsites. We believe it can enhance the accuracy of the algorithm 
through enhancing training domain. In addition, in the near future, we will leverage 
more visual data to feed snap point detection platforms and increase the level of 
accuracy. All these are currently being explored as part of our ongoing research. 
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