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A B S T R A C T

Recent years have witnessed an increasing frequency of disasters, both natural and human-induced. This applies
pressure to critical infrastructures (CIs). Among all the CI sectors, the energy infrastructure plays a critical role,
as almost all other CIs depend on it. In this paper, 30 energy infrastructure models dedicated for the modeling
and simulation of power or natural gas networks are collected and reviewed using the emerging concept of
resilience. Based on the review, typical modeling approaches for energy infrastructure resilience problems are
summarized and compared. The authors, then, propose five indicators for evaluating a resilience model; namely,
catering to different stakeholders, intervening in development phases, dedicating to certain stressor and failure,
taking into account different interdependencies, and involving socio-economic characteristics. As a supplement,
other modeling features such as data needs and time scale are further discussed. Finally, the paper offers ob-
servations of existing energy infrastructure models as well as future trends for energy infrastructure modeling.

1. Introduction

1.1. Critical infrastructure (CI) protection

A nation's health, wealth, and security rely on the production and
distribution of goods and services. The array of physical assets, processes
and organizations through which these goods and services move are
called infrastructures [1]. Among all infrastructure systems, the critical
infrastructures (CIs) are those systems “whose incapacity or destruction
would have a debilitating impact on the defense and economic security” [2].
Presidential Policy Directives 21 Critical Infrastructure Security and Resi-
lience (PPD-21) identified 16 critical sectors of infrastructures including:
chemical, commercial facilities, communication, critical manufacturing,
dams, defense industrial base, emergency services, energy, financial
services, food and agriculture, government facilities, healthcare and
public health, information technology, nuclear reactors, materials, and
waste, transportation systems, and water and wastewater systems.

However, human-induced and natural disasters, such as the 9/11
terrorist attacks [3] in 2001 and Hurricane Katrina [4] in 2005, further
highlighted the vulnerability of CI systems and raised the awareness
about their protection. In the United States, the National Infrastructure
Simulation and Analysis Center (NISAC) and the Department of

Homeland Security established in 2001 and 2002, respectively, aim at
improving CI protection. PPD-8 and PPD-21 specifically addressed the
national preparedness of CI systems.

Similar organizations and programs have also been developed in
other regions and countries, such as the European Program on Critical
Infrastructure Protection, the Critical Infrastructure Protection
Implementation Plan in Germany and the Critical Infrastructure
Resilience Program in the UK [5]. In Asia, recovering from the earth-
quake and tsunami at Tokushima, the National Resilience Program of
Japan dedicated $210 billion worth investment in 2013 to increase the
overall resilience of energy, water, transportation and other CIs [6].
Being aware that the majority of outages have roots in the distribution
system, the Chinese National Energy Administration allocated 20 tril-
lion CNY for the distribution renovation during 2015–2020 to increase
reliability, power quality, and resilience to disruptions. The modeling
and simulation of CIs for protection and resilience purposes have thus
received significant interests among universities, national laboratories
and private companies.

1.2. The concept of resilience

Resilience, as an emerging concept in the area of engineering, was
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first introduced in 1973 by Holling into the fields of ecology and evo-
lution [7]. This concept was first used to describe the ability of an
ecosystem to continue functioning after changes. Nowadays, resilience
has been broadly applied across many fields, including natural disaster
and risk management [8], civil infrastructure studies [9–11], system
engineering [12], energy systems [13,14], etc.

Though consensus on resilience definition is lacking [15], the essence
of resilience definitions is generally the same, that is, it is an overarching
concept that encompasses the system performance before and after dis-
astrous events. Francis and Bekera [16] reviewed various approaches to
defining and assessing resilience and identified three resilience capa-
cities: adaptive capacity, absorptive capacity, and recoverability. Resi-
lience therefore can be defined as “the ability of an entity to anticipate,
resist, absorb, respond to, adapt to and recover from a disturbance” [17].

Resilience is a multi-dimensional concept. Its qualitative and
quantitative studies often involve interdisciplinary efforts. Meerow
et al. [18] reviewed the literature on urban resilience and concluded
that “applying resilience in different contexts requires answering: Resilience
for whom and to what? When? Where? And Why?” They, thus, pointed
out the key considerations in the application of resilience: the stake-
holder, the stressor, the temporal and spatial scale, and the motivation.
Shaw and IEDM Team [19] developed a Climate Disaster Resilience
Index to measure the existing level of climate disaster resilience of
targeted areas. This index utilizes 25 variables in five resilience-based
dimensions: natural, physical, social, economic and institutional.
Carlson et al. [17] and McManus et al. [20] provided frameworks for
system-level and region-level resilience overview to address personal,
business, governmental, and infrastructure aspects of resilience. Roege
et al. [21] formulated a scoring matrix to evaluate the system's cap-
ability to plan, absorb, recover and adapt from the perspective of
physical, information, cognitive and social.

In this work, reviewing energy infrastructure models from a resilience
perspective implies utilizing different resilience-based dimensions and
considerations during the evaluation of the selected models. Consequently,
the models’ ability to promote resilience in energy infrastructures against
short-term disruptions and long-term degradations is addressed, not only
from a physical perspective, but also socio-economically.

1.3. Energy infrastructure resilience

Energy infrastructures include electric power, natural gas, and fuel
networks. Among all the CI sectors, energy infrastructure might be
identified as the most crucial one due to the enabling functions they
provide across all other CI sectors (PPD-21). For example, water supply
and sewer systems rely on electric power systems to operate their pump
stations. Information and telecommunication systems rely on power
networks to carry out information transmission tasks. Transportation
systems rely on fuel networks to obtain power for all kinds of vehicles.
The dependence of other critical infrastructures on the energy network
can lead to its vulnerability: Disruptions in the energy system may
transverse to other dependent infrastructure systems and possibly even
back to itself, where the failure originated [22,23]. This cascading and
escalating characteristic of failure adds to energy network's vulner-
ability. Energy infrastructures are also vulnerable to climate change.
For example, the rising sea level and increasing frequency of major
storms lead to severe floods in coastal areas, where a lot of energy in-
frastructures are located [24], such as power plants, natural gas facil-
ities, and oil and gas refineries. Moreover, high-impact low-probability
events, such as hurricanes and terrorist attacks, further threaten the
operation of energy infrastructures.

Based on the above-mentioned importance and vulnerability, the
study of energy infrastructure resilience has become an urgent and
significant research topic. Different researchers approach this problem
in various ways. Many scholars simulate energy infrastructure resi-
lience as an optimal operation problem [25–30]. Some adopt agent-
based modeling (ABM) technique to reveal the complex interactions

among energy system components [31–34]. Others improve traditional
topological metrics of power grids by embodying its physical behavior
[35]. Also, in response to the emergence of “big data” resources, some
researches apply large-scale data analysis in the energy resilience stu-
dies, especially for power grid studies [36,37].

Although some researches consider resilience and reliability of en-
ergy infrastructures in the same topic [38,39], it is to note that resi-
lience and reliability are not the same. While reliability is the ultimate
goal that system designers and providers strive for, resilience is the way
to achieve it by recovering fast from and adapting to disruptions [40].
The focus of this review paper is the modeling and simulation of energy
infrastructure resilience.

1.4. Work scope and highlights

The modeling and simulation of CIs has been the topic of a few
critical reviews. Eusgeld et al. [41] reviewed eight modeling and si-
mulation techniques for interdependent CIs; namely, agent-based
modeling, system dynamics, hybrid system modeling, input-output-
model, hierarchical holographic modeling, critical path method, high
level architecture and petri nets. They also proposed seven model
evaluation criteria concerning modeling focus, methodical design
strategies, type of interdependencies, types of events for simulation,
event consequences, data needs and monitoring field. More recently,
Ouyang [05] reviewed existing approaches for CI modeling and simu-
lation grouping them into six types: empirical approaches, agent-based
approaches, system dynamics based approaches, economic theory
based approaches, network based approaches, and others. Existing
studies were categorized and reviewed in terms of fundamental prin-
ciples. Different approaches were further compared concerning the in-
clusion of sampled resilience improvement strategies.

However, both aforementioned studies had a working scope of
general CI systems rather than focusing on energy infrastructures. The
work of Eusgeld et al. [41] only compared different modeling ap-
proaches against each other without reviewing the details of specific
models. The work of Ouyang [05] adopted several resilience improve-
ment strategies to evaluate the modeling approaches but did not ad-
dress other important issues of resilience such as the stakeholder or the
temporal scale.

In this paper, we conduct a comprehensive review of 30 energy
infrastructure models collected from open literature. In the overview
part, we first summarize the modeling scenarios and the problems
tackled by the models, as well as their typical assumptions. Based on the
literature review, typical approaches to study energy infrastructure
resilience are introduced with exemplary models. As the next step, we
propose five selected resilience indicators; namely, catering to different
stakeholders, intervening in development phases, dedicating to certain
stressor and failure, taking into account different interdependencies and
involving socio-economic characteristics. Other features are further
discussed such as model type, data needs, etc. This review highlights
the features and trends of existing models concerning their ability to
address the multi-dimensional aspects of energy infrastructure resi-
lience while stressing the characteristics of different modeling ap-
proaches. From reading the paper, the readers could gain knowledge of:
(1) what are the differences among major energy infrastructure models,
(2) what are the modeling needs from a resilience perspective through
the proposed resilience indicators, (3) what kind of energy infra-
structure model is needed in the future to better equip energy infra-
structure resilience studies.

The remainder of the paper is organized as follows: Section 2 in-
troduces the model-collection procedure, provides an overview of the
models and summarizes typical modeling approaches.Sections 3 pro-
poses the resilience indicators, as well as other selected modeling fea-
tures. Section 4 gives a discussion based on the proposed indicators and
modeling features. Finally, concluding remarks and future trends in the
field are stated in Section 5.
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2. Reviewing existing energy infrastructure models

2.1. Collection of models

The review focus of this paper are models aiming at energy infra-
structure operation, protection, or resilience enhancement. Three
model collection methods have been applied: (1) searching literature
with a variety of keywords, (2) checking the references and citations of
the papers identified through method 1, (3) referring to the publica-
tions of selected research groups in the field.

The keywords used in the literature search are listed in Table 1. The
search strings accounted for the fact that different literature may use
different terms for the same object (i.e. protection and security). As a
result, 210 journal and conference papers from reliability, infra-
structure and energy related journals were initially collected. Related
papers citing or cited by the papers found in the first stage were re-
viewed as well.

Models were also collected by reviewing the work done by active
research groups in CI modeling and simulation field such as NISAC, ANL,
Los Alamos National Laboratory (LANL), etc. NISAC experts use ad-
vanced modeling and simulation capabilities to address CI inter-
dependencies, vulnerabilities, and complexities in the U.S. Scientists at
ANL use the ABM technique to study various aspects of energy network
resilience. They also developed models for the natural gas and petroleum
fuel networks [34]. The Interdependent Energy Infrastructure Simulation
System [42] developed by LANL is an actor-based model that helps de-
cision-makers understand and assess intrinsic vulnerabilities in CIs.

Through the above-mentioned procedure, this study identified 30
models for energy infrastructures. In the selected models, 17 are ap-
plied on power networks, 3 on natural gas networks, 4 on both power
and natural gas networks, and the remaining 6 are applied on other
energy infrastructure systems. When looking at the detailed scenarios of
the models, most models for power networks focus on power trans-
mission networks. Nonetheless, the research on distribution systems is
emerging. Some of the models integrate financial networks, human
activity, or supervisory control and data acquisition (SCADA). The
natural gas network models mainly focus on the analysis and restora-
tion of natural gas transmission pipelines. The models for both power
and natural gas networks are dedicated to studying the inter-
dependencies between the two systems. Other models include energy
generation and storage system model [43], coal distribution network
model [44], crude oil and petroleum product transport pipeline model
[34], and integrated urban energy systems model [32].

2.2. Model overview

To understand what problems the research community of energy
infrastructure resilience is trying to tackle and how the researchers are
approaching these problems, this section first summarizes the research
problems of the selected models and their corresponding key assump-
tions. Then, in the following section, the modeling approaches adopted
by these models are introduced, representing typical methods for con-
ducting energy infrastructure resilience studies.

Given that resilience describes a system's ability to sustain disruptions
and to recover quickly from them, energy infrastructure resilience
models concentrate on solving two major problems: (1) resource

allocation and hardening planning in the preparation stage, (2) power
outage management and service restoration in the immediate aftermath
and recovery stage. Due to the limitation of budgets, how to identify the
most vulnerable components in the system, harden them with minimized
economic costs and gain the most effects out of the hardening measures
is one main topic the research community cares about. The second topic
aims to mitigate the impacts of the disasters and to recover the services
quickly. Typical implementations include models that simulate the re-
storation process or that abstract the restoration process as an optimal
control problem [25]. Common restoration measures include repair crew
dispatch, distributed generation (DG), switch device remote control, etc.

Since the energy infrastructure sector is closely related to other CI
sectors, an emerging number of researches focus on the study of in-
terdependencies within the energy infrastructure sector and across CI
sectors. Within the energy infrastructure sector, the interaction between
the natural gas system and the power grid system is studied [45]. Across
different sectors, researchers try to involve energy, water, transporta-
tion and communication systems into the same modeling and simula-
tion framework and find resilient solutions on a more holistic scale.

For different application focuses, the models are usually developed
under various assumptions of the real world. In models of distributed
generation or microgrid technologies, it is typically assumed that the
remotely controlled automatic switch devices are available in the dis-
tribution network so that lines can be opened/closed and loads can be
connected/disconnected to form multiple microgrids. The switches are
assumed to have local communication capabilities to exchange in-
formation with its neighboring switches [27]. In most resilience models
that simulate the defender and attacker activities, the decision maker
has a budget to harden a maximum of power lines and to place a
maximum of DG units and the system operators are aware of the status
of all the components after the occurrence of the outage [30]. The
worst-case attack scenario occurs and the hardened lines and nodes are
assumed to be able to survive the disasters. For models that study the
weather impact, it is usually assumed the system is exposed to the same
weather conditions at any given time by modeling the weather event as
a standstill event, which reduces the complexity of the modeling pro-
cedure because no regional weather aspects are considered. The re-
storation time during high and extreme wind speed events is equal to
the restoration time during normal wind speeds [46,47]. For models
studying interdependencies between power and gas systems, it is
usually assumed that electricity generation consumes gas and gas
compressors consumes electricity [30]. Other specific assumptions de-
pend on the modeling objectives and the scale of the model.

Table 2 summarizes basic information for the selected models in-
cluding name, developer/author, scenario, and purpose/problem
tackled. “Scenario” gives the specific modeling object of a model.
“Purpose/problem tackled” describes the targeted problem the model
was developed to solve. Among all the models, 15% are for power
outage management and service restoration, 21% are for vulnerability
and reliability analysis, 18% are for resource allocation and hardening
planning, 12% are for infrastructure interdependency analysis. The rest
address problems such as electricity market studies, weather event
impact studies, general presentation and analysis, etc.

2.3. Modeling approaches

In this section, we introduce typical modeling approaches for energy
infrastructure resilience problems. The models collected in this paper
adopt a variety of modeling approaches including optimal operation
modeling, topological network modeling, agent-based modeling, prob-
abilistic modeling, system dynamics modeling, empirical modeling, etc.
Table 3 lists the modeling approaches and the corresponding models
that were collected in this paper.

The most common four approaches will be introduced in detail in the
following subsections. The rest approaches are introduced briefly in “other
approaches”. It should be noted that since the review object of this paper is

Table 1
Keywords for literature search.

Model*
Energy Infrastructure Simulat*
Power Resilien*
Electric* + Network + Vulnerab*
Gas Protect*
Fuel System Secur*

Risk
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numerical models that could conduct simulations and predict system
performance in the real world, no surveys or qualitative studies were in-
cluded. In the remaining part of this section, each modeling approach is
introduced with exemplary models to address their characteristics.

2.3.1. Optimal operation modeling
Optimal operation modeling is one of the most widely used method

in the research area of energy infrastructure resilience. In this method,
when the system is interrupted, achieving resilience can be interpreted
as an optimization problem to restore the system within a short time
while minimizing the load shedding ratio.

Arif et al. [25] solved the outage management problem by co-opti-
mizing the repair, reconfiguration, and DG dispatch to maximize the
picked-up loads and minimize the repair time considering reconfigura-
tion and repair crew scheduling. Chen et al. [27] and Ding et al. [28]
proposed a microgrid formation mechanism to restore critical loads after
major faults at the grid caused by natural disasters. In this scheme, a
mixed-integer linear program was formulated to maximize the total
prioritized loads restored while satisfying self-adequacy and operation
constraints of each microgrid. Similarly, Chen et al. [26] formulated a
mixed-integer linear program model for the sequential service restora-
tion problem. This model can generate the optimal restoration sequences
to coordinate dispatchable DGs and switchgears to energize the system
on a step-by-step basis. Manshadi and Khodayar [29] proposed a bi-level
optimization methodology which took into consideration the inter-
dependency between natural gas and electricity infrastructures. Through
this model, the identification of most vulnerable components in the
system, as well as the resilient generation and demand scheduling could
be achieved. Yuan et al. [30] proposed a model for resilient distribution
system planning with hardening and DG based on two-stage optimiza-
tion. In this model, a multi-stage and multi-zone-based uncertainty set
was used to capture the uncertainty of natural disasters.

To sum up, existing optimal operation models share common object
functions such as maximizing picked-up loads, minimizing repair time and
economic investments. For restoration strategy development purpose,

frequently considered measures include topology reconfiguration, DG
dispatch, microgrid formulation, repair crew dispatch and switch device
control. The problem is usually represented by mathematical models with
equilibrium equations and certain constraints, including self-adequacy and
operation constraints. An emerging number of researches focus on solving
problems of demand scheduling and load flexibility in response to the
adoption of building-to-grid, vehicle-to-grid technologies.

However, this type of model is usually focused on one single problem,
either protection resource allocation or restoration, which are two sepa-
rate stages of energy infrastructure resilience. On the other hand, the oc-
currence of the disaster is usually not simulated. If all these characteristics
are coupled together, the optimization problem might get very compli-
cated and the computational time problem will arise. Nezamoddini et al.
[48] compared the computational time of different scales of test systems.
The computational time increases from 3 seconds to 4.2 hours when the
system upgrades from IEEE 6-bus to IEEE 57-bus test system.

2.3.2. Topological network modeling
Power networks have been studied as a typical example of real-world

complex networks [51]. They can be modeled by extracting their topology.
In this type of models, the power networks are represented by a set of
vertices connected by a set of edges, where the vertices represent buses
and the edges represent transmission lines. This type of model is typically
applied in the structural vulnerability analysis of power networks.

Topological network models are easy to analyze due to their high
level of abstraction and simplification. Buldyrev et al. [22] used the
topology of the interdependent power system and communication
system to demonstrate the cascading fault evolving between the two
systems. Page et al. [43] proposed a simplified energy network mod-
eling approach. Based on the topology of the original network, they
used clusters that were aggregations of network nodes to build a less
detailed model and calibrated it with detailed simulations. In this way,
the number of variables was significantly reduced.

However, purely topological approaches fail to capture the physical
properties and operational constraints of power systems and, therefore,

Table 3
Modeling approaches for energy infrastructure resilience problems.

Modeling approach Model name

1 Two-stage outage management model [25]
2 Microgrids formation scheme [27]
3 Sequential service restoration framework [26]
4 Optimal operation modeling Multiple energy resilient operation model [29]
5 Two-stage robust optimization model [30]
6 A risk optimization model [48]
7 The planner-attacker-defender model [49]
8 Attack structural vulnerability model [50]
9 CitInES [43]
10 Topological network modeling An improved model for structural vulnerability analysis [51]
11 Graph Model [52]
12 Tri-level defender-attacker-defender model [53]
13 A "proof-of-concept" model [24]
14 Electricity Market Complex Adaptive System [34]
15 Natural Gas Infrastructure Toolset [34]
16 Agent-based modeling Critical Infrastructure Modeling System [31]
17 Critical Infrastructure Simulation by Interdependent Agents [34]
18 Integrated energy system reliability evaluation model [33]
19 SynCity [32]
20 Resilience evaluation model [47]
21 Multi-microgrid reliability assessment framework [54]
22 Probabilistic modeling Critical Infrastructures Interdependencies Integrator [55]
23 Restore [56]
24 A framework for reliability/availability assessment [46]
25 Actor-Based Modeling Interdependent Energy Infrastructure Simulation System (IEISS) [42]
26 Empirical Modeling Framework for Electricity Production Vulnerability Assessment [44]
27 Other approaches System Dynamics Modeling CIPMA Program [34]
28 Physical Modeling Petroleum Fuels Network Analysis Model [34]
29 Integrated Simulation Platform Critical energy infrastructures [45]
30 Integrated Simulation Platform Fast Analysis Infrastructure Tool [34]
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can sometimes provide too optimistic analyses [35]. Hines et al. [57]
compared purely topological network models and higher fidelity models
in the vulnerability modeling of electricity infrastructures. They used
three measures of vulnerability: characteristic path lengths, connectivity
loss, and blackout sizes. Their conclusion was that evaluating vulner-
ability in power networks using purely topological network models can
be misleading. Chen et al. [50] proposed a hybrid model for structural
vulnerability analysis of power networks. Their approach embodied the
traditional topological methodology and took into account important
characteristics of power transmission networks such as the power flow
distribution. Consequently, their hybrid model better approximated real
power grids compared with a traditional topological network model.

Topology modification, or known as reconfiguration, plays an im-
portant role in the study of electric power system resilience, as a section
can be reconnected to another power supply when an outage happens.
Lin and Bie [53] proposed a tri-level defender-attacker-defender model
to harden the distribution system under malicious attacks. In this model,
resilient operational measures such as topology reconfiguration and DG
were simulated to study their impact on distribution system resilience.

2.3.3. Agent-based modeling
Agent-based models consist of dynamically interacting, rule-based

agents [58,59]. A general definition of agent is: “an entity with a loca-
tion, capabilities and memory. The entity location defines where it is in a
physical space… What the entity can perform is defined by its capabilities…
the experience history (for example, overuse or aging) and data defining the
entity state represent the entity's memory.” [60]. An agent-based model
can exhibit complex behavior patterns [61] and provide valuable in-
formation about the dynamics of the simulated real-world system [60].

The application of ABM in the modeling and simulation of energy
infrastructures mainly focuses on the analysis of the interactions between
interdependent systems. Casalicchio et al. [62] used ABM to model a
system composed of a power grid and a communication network with
agents representing the entire infrastructure, its subsystems and the hu-
mans involved in the scenario. In this model, an agent is described by its
attributes, the services it provides to other agents, and the services pro-
vided by other agents. Li et al. [33] modeled the integrated energy
system of electricity and natural gas system. A two-hierarchy smart agent
model is built as the basis for the system reliability analysis. The lower
hierarchy are the component smart agents which represent the power
lines, transformers, and electricity loads while the higher hierarchy are
the zone agents which form the system topology.

Another important application of ABM is to simulate the socio-eco-
nomic activities, such as the electricity market and human activities
within the energy infrastructure framework. Zhou et al. [63] simulated
an electricity market with demand response from commercial buildings.
In this model, agents were used to model different participants of the
market such as power generation companies, load-serving entities,
commercial building aggregators, and an independent system operator.
SynCity [32] is a tool developed by Imperial College London for in-
tegrated modeling of urban energy systems. This tool adopts agent-based
micro-simulations to simulate the daily-activities of citizens of the city.
Each citizen makes stochastic decisions based on the pre-defined rules
and according to the environment around him/her. Solanki et al. [64,65]
used agents to model different operators in restoring the electric system.

The ABM technique has proved its advantages in the following as-
pects: (1) It can capture complicated interdependencies by simulating
physical or economic flows among different infrastructures. (2) It en-
ables the study of large-scale problems by avoiding complicated theo-
retical analysis. (3) It allows behavior analysis of customers or decision-
makers by making certain rules. However, ABM still has limitations in
that it is difficult to validate, and not all types of interdependencies can
be included in one single model. Most existing agent-based models can
only simulate one type of interdependencies such as the physical or
logical interdependency [66].

2.3.4. Probabilistic modeling
In energy infrastructure resilience modeling, probabilistic algorithm

is necessarily applied to capture the uncertain characteristics of the
system failure. Many models adopt sequential Monte Carlo simulation
method [46,54,47]. A Monte Carlo simulation uses repeated sampling
to determine the properties of some phenomenon or behavior [67]. The
essential idea is to use randomness solving problems that might be
deterministic in principle. It is useful for gathering information about
random objects, estimating certain numerical quantities, and opti-
mizing complicated objective functions [68].

Monte Carlo simulation in the field of energy infrastructure mod-
eling is often employed for the simulation of weather events due to their
high stochasticity. Panteli and Mancarella [47] developed a time-series
simulation model based on sequential Monte Carlo method to assess the
impact of weather events on power-system resilience. With the
knowledge of the hurricane occurrence frequency and its impact on
power system components, Li et al. [69] developed an algorithm to
evaluate the risks of the power system in face of hurricanes. This
method can be expanded to systems under other stochastic natural
disasters. Similarly, Cadini et al. [46] used a sequential Monte Carlo
simulation scheme to simulate historical failures caused by both normal
and extreme weather events. The simulation results were then used to
evaluate the reliability of the studied power transmission system.

Another common application of Monte Carlo simulation in energy
infrastructure modeling is to simulate the restoration process of dis-
rupted infrastructures. For example, the software tool Critical
Infrastructures Interdependencies Integrator [55] developed by ANL
used Monte Carlo simulation to estimate the time and cost required to
restore a given infrastructure component, a specific infrastructure
system, or a set of interdependent infrastructures.

It should be noted that Monte Carlo simulation can be integrated
into other modeling frameworks, such as optimization-based models, to
simulate the performance of energy systems. For example, Farzin et al.
[54] evaluated the role of outage management with Monte Carlo si-
mulation, while considering the optimal power flow problem of the
electric distribution system.

2.3.5. Other modeling approaches
Actor-based modeling: Similar to an agent-based model, an actor-

based model is composed of actors that can make local decisions, create
more actors, send messages and determine how to respond to messages
received. The Interdependent Energy Infrastructure Simulation System
(IEISS) [42] developed by LANL is an actor-based infrastructure mod-
eling, simulation, and analysis tool designed to understand inter-
dependent energy infrastructures. The actors can realistically simulate
the dynamic interactions within each of the infrastructures, with a
specialization in simulating the interdependent electric power and
natural gas infrastructures.

Empirical modeling: Empirical models are built based on historical
data or expert experience. Shih et al. [44] adopted data warehousing
technique to conduct vulnerability assessment of interdependencies be-
tween coal mines, rail transportation, and electric power plants. A data
warehouse is a system used for reporting and data analysis. It has the
capability of bringing various datasets together and managing historical
data. In this case, the data warehouse allowed an interactive analysis of
historical and multi-dimensional data of varied granularities.

System dynamics modeling: System dynamics is a method for studying
the behavior and the underlying structure of a complex system over
time [70]. It is widely used in the analysis of CI interdependencies. For
example, the CIPMA program [71] in Australia adopts the system dy-
namics model to examine the relationships and dependencies within
and between CI systems, and to demonstrate how a failure in one sector
can greatly affect the operations of other CI sectors.

Physical modeling: Petroleum Fuels Network Analysis Model
(PFNAM) [34] is a physical model developed by ANL to perform hy-
draulic calculations of pipeline transport of crude oil and petroleum
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products. Main outputs of the model include pressure and pipeline ca-
pacity estimates along the pipeline.

Integrated simulation platform: Some models are implemented in a
way that several approaches are adopted for component models and
then coupled together. Erdener et al. [45] proposed an integrated si-
mulation model for electricity and gas systems. The electricity and gas
systems are first modeled separately and then linked by an (MATLAB-
based) interface. The Fast Analysis Infrastructure Tool (FAIT) devel-
oped by SNL [34] consists of a dependency model and an economic
model. The dependency model is an object-oriented expert system
model of infrastructure interdependencies. The economic model utilizes
the input-output method for estimating the economic consequences of
the disruption of an asset. An input-output model is a quantitative
economic technique that represents the interdependencies between
different branches of a national economy or regional economies [72].
This economics-based method has been applied on CIs to capture the
cascading economic effects of a disruption across different sectors [66].

3. Proposed resilience indicators and other features

3.1. Resilience indicators

To address energy infrastructure resilience, a model should take into
account certain dimensions of resilience. Sharifi [73] proposed a fra-
mework for the analysis of community resilience assessment (CRA)
tools. Within this framework, six criteria were proposed to evaluate the
selected CRA tools. These include comprehensiveness in addressing
multiple dimensions of community resilience, considering connections
between different spatial scales, ability to measure changes across
temporal scales, developing suitable measures for capturing un-
certainties, collaboration with stakeholders, and leading to action
plans. Cutter et al. [08] measured the inherent resilience of counties in
the United States according to six capitals identified in the extant lit-
erature: social, economic, housing and infrastructure, institutional,
community, and environmental. Hosseini et al. [15] identified four
domains of resilience: organizational, social, economic, engineering.

Although different researchers may emphasize various aspects when
assessing resilience, they do share some common grounds. Based on lit-
erature review, this paper proposes five indicators for energy infra-
structure models from the resilience perspective. A model that success-
fully helps enhance energy infrastructure resilience should: be dedicated
to certain stakeholders, intervene in one or more resilient infrastructure
development phases, be able to simulate a certain stressor and the failure
it caused, address interdependencies within or between infrastructure
sectors, and integrate socio-economic characteristics.

Indicator 1 – Catering to different stakeholders: Urban infrastructures
are owned and operated by different stakeholders who may not be
aware of the interdependencies between their own infrastructure
system and other systems [74]. Different stakeholders tend to have
different priorities and considerations, when making decisions related
to infrastructure investment, protection, or restoration. Hence, it is
necessary to identify the stakeholder of a selected model before diving
into further details. A stakeholder-oriented lens helps better understand
a model's values and limitations. Francis and Bekera [16] included
stakeholder engagement as a key component in the analysis framework
of engineered and infrastructure systems. Hasan and Foliente [74]
classified stakeholders according to their scales and roles into: inter-
national union, federal/state/local government, advocacy organiza-
tions, donors/financial institutions, insurance, utility companies, busi-
ness, and households, individuals and communities.

Indicator 2 – Intervening in development phases: This indicator evaluates
in which phase of infrastructure development a model can be employed.
Four phases are distinguished: design, operation, restoration, and adap-
tation. Compliance with this indicator is decided as follows. If the model
helps designers recognize the most vulnerable components in an infra-
structure system and enhance the infrastructure resilient design, then the

model is dedicated to the design phase. If the model focuses on the
modeling and simulation of CI operational status, then the model is
dedicated to the operation phase. If the model simulates restoration
processes and helps develop restoration strategies, then the model is
dedicated to the restoration phase. If the model integrates resilience
enhancement techniques and considers the long-term adaptation of CIs to
certain stressors, then the model is dedicated to the adaptation phase.

Indicator 3 – Dedicating to certain stressor and failure: In the research
field of resilience, a stressor represents the source that causes the
system to change its original status. For CIs, there are generally two
kinds of stressors: human-induced stressors such as terrorism and
maloperations, and nature-induced stressors such as the climate change
and extreme weather events. Identifying the stressor that a model is
dealing with helps further evaluate the failure mode.

There are three types of infrastructure failures; namely, cascading
failure, escalating failure, and common cause failure [55,75,76]. The
cascading failure refer to the disruption of one single infrastructure that is
caused by a component failure, which is common in power grid disrup-
tions. An escalating failure is a disruption in one infrastructure that ex-
acerbates independent disruptions in other infrastructures. This kind of
escalating effect is due to the complex interdependencies among infra-
structure sectors and often leads to a longer time of restoration. A common
cause failure is a disruption of two or more infrastructures at the same
time resulted from a common cause. Existing models typically don't dis-
tinguish between “cascading failure” and “escalating failure”, englobing
them all under the concept of “cascading failure”. In this paper, they are
distinguished to investigate a models’ temporal scale and the feature in
simulating escalating effects of disasters. For example, a model for esca-
lating failure not only simulates the immediate effects of a disruption, but
also the propagated effects of a disaster among different sectors.

Indicator 4 – Taking into account different interdependencies: The in-
terdependency between CIs is defined by Rinaldi et al. [77] as “a bi-
directional relationship between two infrastructures through which the state
of each infrastructure influences or is correlated to the state of the other.”
Due to the complex relationships among different CI sectors, the vul-
nerability of CI systems is raised. The failure of one single component
can lead to the failure of the entire system, even of the systems that rely
on it. Some research results have proved the necessity to consider in-
terdependencies between infrastructure systems when evaluating resi-
lience and reliability [45,33].

There are four types of interdependencies: physical, cyber, geo-
graphic, and logical [77]. Physical interdependency expresses the
physical reliance on material flow from one infrastructure to another.
Typically, the output of one infrastructure may be the input of another
infrastructure for operation. Cyber interdependency expresses the re-
liance on information transfer between infrastructures. An infra-
structure has cyber interdependency if its state depends on information
transmitted through the communication infrastructure. Geographic in-
terdependency exists if a local environmental event can affect multiple
infrastructures. That is, elements of multiple infrastructures are in close
spatial proximity. Logical interdependency is a dependency that exists
if two infrastructures depend on each other via a mechanism that fall
into none of the above categories. It may be more closely linked to a
control schema that links one infrastructure to another infrastructure
without any direct physical, cyber, or geographic connection. Com-
pliance with this indicator is confirmed if a model considers any of the
four types of interdependencies inner the energy sector, or between
energy and other sectors.

Indicator 5 – Involving socio-economic characteristics: Socio-economic
characteristics are significant aspects of resilience. According to the
City Resilience Framework [78], economy and society is one of the four
basic elements of resilience, which is also recognized as the organiza-
tional resilience. The other three categories include the health and
wellbeing of individuals, urban systems and services and, finally, lea-
dership and strategy, which emphasize the role of people, place and
knowledge in constructing a resilient city. When evaluating the
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resilience of energy infrastructures, a place-based perspective con-
sidering the people, as well as the socio-economics is more compre-
hensive. Many researchers point out that the socio-economic impacts
resulting from the infrastructure disruptions can be very significant and
needs serious considerations [79,80]

This indicator examines if a selected energy infrastructure model
considers the socio-economic impacts of the infrastructure failures or
involves socio-economic activities in the simulation. Typical socio-
economic characteristics include age, ethnic, religion, income, disaster
insurance, and community resources.

3.2. Other modeling features

In order to further evaluate the models and gain insights into the
characteristics of different modeling approaches in the context of energy
infrastructure modeling, some more features of the models are discussed in
this section; namely, data needs, model type, and time scale. Furthermore,
whether the model is dynamic or static and whether the damage and re-
store processes are endogenous or exogenous are also discussed.

Data needs: The input data of a model usually include information
about the layout of the simulated system, commodity flows, func-
tioning, as well as numerical values for modeling parameters [41]. Data
needs can vary largely according to the modeling approaches. A model
with high data needs relies on high quality and large quantity of input
data to provide reasonable outputs. On the contrary, a model with low
data needs can provide plausible outputs, even when little data is ac-
cessible. This indicator analyzes the data needs of modeling approaches
for energy infrastructures. For example, if a model requires databases as
inputs, then the data demand level is high. If a model only has a few
input variables, or only requires a small amount of profile data, then the
data demand level is low. If the situation lies in between, then the
demand level is regarded as medium.

However, it should be noted that there is a trade-off between a model's
data need and its accuracy. High-fidelity models that reproduce the state
and behavior of the real world better will rely more on high quantity and
quality of data [41]. On the other hand, a model with lower data need
might sacrifice its accuracy due to more assumptions. The data need of a
model from a developer's angle is dependent on the development purpose.
In the context of energy infrastructure resilience, for example, a model
intended for impact analysis of weather events on the energy system will
require more data than an optimization model that is developed for re-
storation strategy design. At last, a model's data need is also highly de-
pendent on the data availability. Sometimes, developers have to make
reasonable assumptions to compensate for the inaccessible data.

Model type: This indicator evaluates the computational mechanism
of the models. Three types of models are distinguished: white box, black
box, and grey box, which is their combination. In the white-box

approach, the model uses governing laws of physics and the detailed
knowledge of the underlying process [81]. In the black-box approach,
the system performance data is collected under normal use or under a
specific test and a relationship is found between the input and output
variables using mathematical methods [82]. In the grey-box approach,
the model structure is formed using physics-based methods and the
parameters are determined using estimation algorithms based on the
measured data [81].

Time scale: The simulation time step and time horizon vary with the
purpose and scenario of the energy infrastructure model. Holmgren [52]
simulated different hazard scenarios and gave their time scales. For
major technical failure that disables a station in the sub-transmission or
distribution grid, the corresponding vertices in the model are removed
for 10 hours. For human factors and regular technical failures, the time
scale is 1 to 2 hours. For snowstorm and lightning, the time scales are 8
hours and 0.5 h, respectively. As for the repair time, it usually lasts hours
depending on the damaged component in the system. Li et al. [33] stu-
died the reliability problem of integrated energy systems and gave the
repair time of different components. Each kilometer of gas or heat pi-
peline will take 5 hours to repair. However, for gas-fired boiler, steam
turbine, or absorption cooling plant, it will take 200 to 300 hours to
repair. This indicator examines the time scale each model is designed to
simulate over. Time step and time horizon are distinguished.

Dynamic or static: Dynamic models simulate the system performance
in a time-dependent way, while static models calculate the system in
equilibrium. Given the dynamic characteristics of energy infrastructure
systems and the time-dependent instinct of resilience problems, most
energy infrastructure resilience models are built dynamically. However,
there do exist some static models. Manshadi and Khodayar [29] simu-
lated the resilient microgrid operation problem in a static way to identify
the vulnerable components and the optimal operation plan considering
the interdependency between power and gas systems. Nezamoddini et al.
[48] solved a resilient distribution network planning problem in equili-
brium to coordinate the hardening and distributed generation resource
allocation with the objective of minimizing the system damage. The
physical model Petroleum Fuels Network Analysis Model (2006) con-
ducts the hydraulic calculation of fuel pipelines in an equilibrant way.

Endogenous or exogenous damage/restore: The simulation of damage
and restore processes are dealt with either endogenously or exogenously
in resilience models. Models that don't obtain the disruption signal from
outside but rather embed the disruptions inside the model are en-
dogenous. Typically, the damage of the energy infrastructure is re-
presented by the disconnection of lines, open switch devices, or ran-
domly or intentionally removed nodes. Specially, in some agent-based
models, different types of faults are propagated by agents. In exogenous
models, the damage is generated by external random or non-random
events, such as unit outages or system disruptions. Li et al. [33] adopted

Fig. 1. Number distribution of models with different stakeholders.
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Monte Carlo simulation to evaluate power system reliability by gen-
erating stochastic errors. The Fast Analysis Infrastructure Tool (FAIT)
(2006) couples with other models to get the duration and magnitude of
the disruption and recovery and conducts regional economic analysis.

4. Discussions

This section applies the above-proposed resilience indicators and
other modeling features to evaluate the collected energy infrastructure
models. The evaluation results can be found in Appendices 1 and 2.
Findings regarding the resilience-related performance of the models
and comparisons between different modeling approaches are discussed
in the following text.

Stakeholder: Regarding “resilience for whom”, Fig. 1 shows the
number of models with different stakeholders revealing that the stake-
holders taken into account by most selected models are the decision-
makers, including the government. They serve the decision-makers
during the infrastructure protection tasks, investment-related proce-
dures, or when faced with infrastructure emergencies. The second most
common stakeholders are infrastructure providers and operators, as over
one third of the selected models were developed for their needs. Infra-
structure providers and operators have significant impact on energy in-
frastructure resilience as they take charge of the operation and main-
tenance of infrastructures. Only two models include the consumers as
relevant stakeholders. Although both decision-makers (especially the
government), as well as providers and operators are in the service of
consumers, surprisingly little attention has been paid to energy

consumers when developing energy infrastructure models. Given that the
ultimate goal of energy infrastructure resilience promotion is to better
serve the consumers, it would be beneficial to consider their demands on
energy supply and their response to energy infrastructure emergencies
when seeking a holistic solution of energy resilience. Other stakeholders
include research institutes, emergency responders, and engineers.

Intervention phase: Regarding the infrastructure development phase in
which a model is employed, most models in this study are found to be
dedicated to the operation phase (Fig. 2). Another considerable proportion
of models conduct restoration simulations of the energy infrastructures.
The least number of models take adaptational evolutions of energy in-
frastructures into account. This distribution indicates that existing energy
infrastructure models for resilience studies have been focusing on the
operation phase. On the other hand, they are limited in integrating long-
term adaptation strategies into the modeling framework, which should be
an important dimension of resilience enhancement.

Stressor: Nearly 40% of the models simulating general disruptions of
energy infrastructures. Instead of identifying a specific cause, these
models focus on the failure of the infrastructure after the occurrence of
a disaster and are generally applicable for disruption studies. 28% of
the models are developed against intentional attacks while 19% are
against extreme weather events such as natural disasters. Only 3% of
the selected models take economic disruptions as the stressor.

Failure: 40% of the models simulate cascading failures of energy in-
frastructures while 27% are for common cause failures, where several
locations of disruptions occur together. However, only 16% of the models
are able to simulate escalating failures of the critical infrastructures

Fig. 2. Number distribution of modeling approaches intervening in different phases.

Fig. 3. Number distribution of modeling approaches with different data needs.
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revealing that most existing energy infrastructure models don't account
for the escalating effects of a failure. They tend to only focus on the
immediate effects of a disruption. The varying temporal scale in the
aftermath of disasters have been neglected by most selected models.

Interdependency: Regarding CI interdependencies, 43% of the se-
lected models consider some types of interdependencies. The model
“Critical energy infrastructures” [45] studies the interdependency inner
the energy sector between the natural gas and electric power system.
Other models consider interdependencies between energy and other
sectors such as transportation ([32,43,44,55,56]) and telecommunica-
tion ([34,55,56]). The rest of the models do not consider inter-
dependencies but rather focus on the energy sector.

Socio-economic characteristics: 50% of the selected models involve
socio-economic characteristics during the modeling and simulation
process. However, most of these models only consider economic char-
acteristics, such as economic impacts of infrastructure disruptions
[83,34] and investment optimization [49,48,43]. Only four of all the
selected models consider social impacts of a disaster, such as public
hazards [25] or effects on population and housing [24,32,34].

Data needs: Fig. 3 depicts the number distribution of modeling ap-
proaches with different data needs. Agent-based models tend to have
the highest data needs, as 86% of them fall in medium and high data
need columns. As for optimal operation models, topological network
models and probabilistic models, most of them fall in the columns of
low or medium data needs. This phenomenon is consistent with the
characteristics of ABM, as historical data and attribute data will be
needed to define each agent and certain interaction rules,

Model type: Concerning the model type, 93.3% of the selected
models are white box. Only 3.3% of them are grey box and 3.3% are
black box. In the grey box model [47], historical weather data are used
to first determine the frequency distribution of certain weather events.
The weather profile is then used as an input of the physics-based model.
In the black box model [44], data warehousing and visualization
techniques are used to manage non-spatial historical data which are
then merged with geospatial data to model the potential impacts of a
disruption to one or more mines, rail lines, or power plants.

Other features: When looking at other features of the models, the
time horizon varies from the short term of several hours to the long
term of several years, depending on the problem tackled. Accordingly,
the time step ranges from 1 minute or 1 h to 1 week. Most models deal
with energy infrastructure resilience problems dynamically. 63.3% of
the models have endogenous damage or restoration while 16.7% have
exogenous. For more details, the reader could refer to Appendix 2.

5. Conclusions

Energy infrastructures are becoming more vulnerable due to the rising
frequency of both nature- and human-induced disasters. Hence, the resi-
lience of energy infrastructures has gained much attention in recent years.
This paper reviewed 30 energy infrastructure models from a resilience
perspective. Through the review, research problems tackled by the models
and typical modeling approaches adopted by researchers were summar-
ized. Specifically, the authors proposed five resilience-based indicators to
comprehensively address a model's capability in promoting energy infra-
structure resilience. At last, other modeling features such as data needs
and time scale were discussed to further evaluate the models.

The models collected in this work involve representative state-of-
the-art energy infrastructure models implemented through various ap-
proaches. The addressed problems include optimal resource allocation
and hardening planning, interdependency analysis, outage manage-
ment and restoration, weather impact study, etc. The models intervene
across planning, operation, restoration and adaptation phases of energy
infrastructures. Based upon the review, the following observations are
gained: The dominant stakeholder of the models are decision-makers,
including government and regulators. Most selected models serve en-
ergy consumers indirectly as little attention is paid to energy consumers

during the development stage. Most selected models focus on the op-
eration and restoration phases of energy infrastructures. Long-term
adaptation strategies are not integrated into the modeling framework
by most models. Existent models tend to only consider immediate ef-
fects of system disruptions. The study on the propagated effects of the
failure among different sectors is typically neglected. Although many
selected models involve economic impact evaluation, only a few models
take into account social parameters or consider social impacts of dis-
asters. Concerning other modeling features, physics-based models are
still the trend in energy infrastructure modeling, rather than data-
driven techniques. Among others, agent-based models tend to have
higher data needs than topological models and optimal operation
models. The time horizon and time step vary significantly among the
models, ranging from several hours to several years.

Based on the discussions above, future trends in the modeling and
simulation of energy infrastructures are as follows:

Addressing larger temporal and spatial scale: As most existing energy
infrastructure models focus on immediate effects of disruptions but
are limited in capturing the dynamic behavior during longer terms,
it remains to be explored how the models could be scaled over a
larger temporal scale. Also, including the complex interactions
across multiple CI sectors over different spatial scales helps making
the model more realistic. However, the challenge of scalability lies
in the computational time. How to employ more complexity in the
model while reducing the computational time remains a challenge
for future researchers.
Integrating more human and social aspects: Though existent models
serve mostly the needs of decision-makers, energy consumers’ be-
havior and potential in helping achieving energy infrastructure re-
silience would be more considered in the future. The emerging focus
on human-in-loop control and demand response technologies also
implies this trend. Also, since the impact of disasters eventually take
place on the human and the society, it would be drawing more at-
tention to integrate social characteristics in the modeling frame-
works and study the social impacts of CI disruptions. However, the
uncertainty in human behavior and the quantification of social
factors remain a challenge.
Employing more smart resources and solutions: It was noticed from the
review that smart technologies such as energy storage, demand re-
sponse with flexible loads (e.g. electrical vehicles, flexible building
loads) are integrated by some models to explore future possibilities
of energy resilience. In the future, as these technologies develop and
become more accepted, involving them in energy infrastructure
models would be a trend.

Due to the limited number of models collected in this paper, there
are certain limitations of the work: only four of the commonly used
modeling approaches are deeply analyzed and the working scope is
limited to the energy sector. In the future, the same evaluation meth-
odology could be applied to transportation, water supply and sewer,
communication and other CI sectors.
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Appendix 2. Other modeling features and the evaluation results of the selected models.

Modeling approach Data needs Model type Output format Time scale Dynamic or
static

Endogenous or exogenous
damage/Restore

1 Medium White box Data charts Several-hour time horizon Dynamic Endogenous
2 Low White box Plan N/A Dynamic Endogenous
3 Optimal operation

modeling
Medium White box Plan N/A Dynamic Endogenous

4 Medium White box Plan N/A Static Endogenous
5 Medium White box Data and plan N/A Dynamic Endogenous
6 Low White box Data and plan N/A Static Endogenous
7 Low White box Plan N/A Static Endogenous
8 Low White box Data charts N/A Dynamic Endogenous
9 High White box Potential costs and CO2

emission
N/A Dynamic N/A

10 Topological network
modeling

Low White box Data charts N/A Dynamic Endogenous

11 Low White box Data charts Several-hour time horizon Dynamic Endogenous
12 Medium White box Plan N/A Static Endogenous
13 Medium White box Metrics 1-week time step Dynamic N/A
14 Medium White box Economic impacts 1-hour time step Dynamic Exogenous
15 Low White box GIS N/A Dynamic Exogenous
16 Agent-based modeling High White box 3D visualized model N/A Dynamic Endogenous
17 High White box Graphic models N/A Dynamic Endogenous
18 Medium White box Data charts 1-minute or 1-hour time

step
Dynamic Exogenous

19 High White box Map 1-year time horizon Dynamic N/A
20 Low Grey box Index 10-hour to 50-hour time

horizon
Dynamic Endogenous

21 Probabilistic modeling Medium White box Plan 1-hour time step Dynamic Endogenous
22 Low White box Graphs and tables N/A Dynamic Endogenous
23 Low White box Graphs N/A Dynamic Endogenous
24 High White and grey

box*
Data charts 1 year Dynamic Endogenous

25 High White box Map N/A Dynamic N/A
26 Other modeling

approaches
High Black box GIS Between 1-month and 5-

year time horizon
Dynamic Endogenous

27 High White box GIS N/A Dynamic N/A
28 High White box Graphs and tables N/A Static N/A
29 Medium White box Data charts N/A Dynamic Exogenous
30 Medium White box Reports 1-week to 1-month time

horizon
Dynamic Exogenous

N/A: not enough information provided.
⁎ :This model has two sub-models that adopt different modeling methods. The restoration model is white box and the cascading failure model is grey box.

J. Wang et al. Reliability Engineering and System Safety 183 (2019) 360–373

372

http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0058
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0058
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0064
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0064
http://www.history.com/topics/9-11-attacks
http://www.history.com/topics/9-11-attacks
https://www.history.com/topics/hurricane-katrina
https://www.history.com/topics/hurricane-katrina
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0060
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0060
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0026
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0026
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0043
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0043
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0023
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0023
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0009
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0009
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0009
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0010
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0010
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0010
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0037
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0037
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0037
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0025
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0025
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0008
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0008
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0079
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0079
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0079
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0045
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0045
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0036
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0036
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0016
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0016
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0016
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0057
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0057
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0073
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0073
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0056
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0056
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0056
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0069
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0069
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0014
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0014
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0046
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0046
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0011
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0011
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0005
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0005
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0005
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0018
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0018
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0018
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0019
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0019
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0027
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0027
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0055
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0055
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0081
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0081
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0081
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0029
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0029


on winter simulation. 2006.
[32] Keirstead J, Samsatli N, Shah N. SynCity: an integrated tool kit for urban energy

systems modeling. Energy efficient cities: assessment tools and benchmarking
practices. Washington, DC, USA: The World Bank, Place published; 2010. p. 21–42.

[33] Li G, Bie Z, Kou Y, Jiang J, Bettinelli M. Reliability evaluation of integrated energy
systems based on smart agent communication. Appl Energy 2016;167:397–406.

[34] Pederson P, Dudenhoeffer D, Hartley S, Permann M. Critical infrastructure inter-
dependency modeling: a survey of US and international research 25. Idaho Falls,
USA: Idaho National Lab; 2006.

[35] Bompard E, Napoli R, Xue F. Analysis of structural vulnerabilities in power trans-
mission grids. Int J Crit Infrastruct Protect 2009;2(1):5–12.

[36] Ji C, Wei Y, Mei H, Calzada J, Carey M, Church S, Hayes T, et al. Large-scale data
analysis of power grid resilience across multiple US service regions. Nat Energy
2016;1(5):16052.

[37] Peter HL, Kristina Hamachi L, Joseph HE, James LS. Assessing changes in the re-
liability of the U.S. electric power system. Berkeley, USA: Lawrence Berkeley
National Lab; 2015.

[38] Albasrawi MN, Jarus N, Joshi KA, Sarvestani SS. Analysis of reliability and resi-
lience for smart grids. Proceedings of the IEEE thirty eighth annual computer
software and applications conference. 2014.

[39] Amin M. Challenges in reliability, security, efficiency, and resilience of energy in-
frastructure: toward smart self-healing electric power grid. Proceedings of the IEEE
power and energy society general meeting - conversion and delivery of electrical
energy in the 21st century. 2008.

[40] Clark-Ginsberg A. What's the difference between reliability and resilience?
Standford, USA: Standford University; 2016.

[41] Eusgeld I, Henzi D, Kröger W. Comparative evaluation of modeling and simulation
techniques for interdependent critical infrastructures Laboratory for Safety
Analysis, ETH Zurich; 2008. p. 6–8. Scientific Report.

[42] Toole GL, McCown AW. Interdependent energy infrastructure simulation system. In:
Voeller. JG, editor. Wiley handbook of science and technology for homeland se-
curity. New York, USA: John Wiley & Sons; 2008.

[43] Page J, Basciotti D, Pol O, Fidalgo JN, Couto M, Aron R, Chiche A, Fournié L. A
multi-energy modeling, simulation and optimization environment for urban energy
infrastructure planning. Proceedings of the thirteenth conference of international
building performance simulation association. 2013.

[44] Shih CY, Scown CD, Soibelman L, Matthews HS, Garrett Jr JH, Dodrill K, McSurdy
S. Data management for geospatial vulnerability assessment of interdependencies in
US power generation. J Infrastruct Syst 2009;15(3):179–89.

[45] Erdener BC, Pambour KA, Lavin RB, Dengiz B. An integrated simulation model for
analysing electricity and gas systems. Int J Electr Power Energy Syst
2014;61:410–20.

[46] Cadini F, Agliardi GL, Zio E. A modeling and simulation framework for the relia-
bility/availability assessment of a power transmission grid subject to cascading
failures under extreme weather conditions. Appl Energy 2017;185:267–79.

[47] Panteli M, Mancarella P. Modeling and evaluating the resilience of critical electrical
power infrastructure to extreme weather events. IEEE Syst J 2017;11(3):1733–42.

[48] Nezamoddini N, Mousavian S, Erol-Kantarci M. A risk optimization model for en-
hanced power grid resilience against physical attacks. Electr Power Syst Res
2017;143:329–38.

[49] Fang Y, Sansavini G. Optimizing power system investments and resilience against
attacks. Reliab Eng Syst Saf 2017;159:161–73.

[50] Chen G, Dong ZY, Hill DJ, Zhang GH, Hua KQ. Attack structural vulnerability of
power grids: a hybrid approach based on complex networks. Phys A Stat Mech Appl
2010;389(3):595–603.

[51] Chen G, Dong ZY, Hill DJ, Zhang GH. An improved model for structural vulner-
ability analysis of power networks. Phys A Stat Mech Appl 2009;388(19):4259–66.

[52] Holmgren ÅJ. Using graph models to analyze the vulnerability of electric power
networks. Risk Anal 2006;26(4):955–69.

[53] Lin Y, Bie Z. Tri-level optimal hardening plan for a resilient distribution system
considering reconfiguration and DG islanding. Appl Energy 2018;210:1266–79.

[54] Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M. Role of outage management
strategy in reliability performance of multi-microgrid distribution systems. IEEE
Trans Power Syst 2017;33(3):2359–69.

[55] Gillette J, Fisher R, Peerenboom J, Whitfield R. Analyzing water/wastewater

infrastructure interdependencies. Argonne, USA: Argonne National Lab; 2002.
[56] ANL. "Restore: modeling interdependent repair/restoration processes Accessed on

09/15 http://www.anl.gov/sites/anl.gov/files/60362.pdf; 2017.
[57] Hines P, Cotilla-Sanchez E, Blumsack S. Do topological models provide good in-

formation about electricity infrastructure vulnerability. Chaos: Interdiscip J
Nonlinear Sci 2010;20(3):033122.

[58] d'Inverno M, Luck M. Understanding agent systems. Berlin, Germany: Springer
Science & Business Media; 2004.

[59] Wooldridge M, Jennings NR. Intelligent agents: theory and practice. Knowl Eng Rev
1995;10(2):115–52.

[60] Bonabeau E. Agent-based modeling: methods and techniques for simulating human
systems. Proc Natl Acad Sci 2002;99(suppl 3):7280–7.

[61] Reynolds CW. Flocks, herds and schools: a distributed behavioral model.
Proceedings of the ACM SIGGRAPH Computer Graphics. 21. 1987. p. 25–34.

[62] Casalicchio E, Galli E, Tucci S. Agent-based modelling of interdependent critical
infrastructures. Int J Syst Syst Eng 2010;2(1):60–75.

[63] Zhou Z, Zhao F, Wang J. Agent-based electricity market simulation with demand
response from commercial buildings. IEEE Trans Smart Grid 2011;2(4):580–8.

[64] Solanki JM, Khushalani S, Schulz NN. A multi-agent solution to distribution systems
restoration. IEEE Trans Power Syst 2007;22(3):1026–34.

[65] Solanki JM, Solanki SK, Schulz N. Multi-agent-based reconfiguration for restoration
of distribution systems with distributed generators. Integr Comput Aided Eng
2010;17(4):331–46.

[66] Zhang P, Peeta S. A generalized modeling framework to analyze interdependencies
among infrastructure systems. Transp Res Part B Methodol 2011;45(3):553–79.

[67] Fishman G. Monte Carlo: concepts, algorithms, and applications. Berlin, Germany:
Springer Science & Business Media; 2013.

[68] Kroese DP, Brereton T, Taimre T, Botev ZI. Why the Monte Carlo method is so
important today. Wiley Interdiscip Rev Comput Stat 2014;6(6):386–92.

[69] Li G, Zhang P, Luh PB, Li W, Bie Z, Serna C, Zhao Z. Risk analysis for distribution
systems in the northeast U.S. under wind storms. IEEE Trans Power Syst
2014;29(2):889–98.

[70] Kirkwood CW. System dynamics methods. Tempe, USA: College of Business,
Arizona State University; 1998.

[71] Scott G. Protecting the nation Accessed on 09/15 http://www.ga.gov.au/
ausgeonews/ausgeonews200509/cip.jsp; 2017.

[72] Ten Raa T. Input-output economics: theory and Applications: featuring Asian
economies. Singapore: World Scientific; 2010.

[73] Sharifi A. A critical review of selected tools for assessing community resilience. Ecol
Indic 2016;69:629–47.

[74] Hasan S, Foliente G. Modeling infrastructure system interdependencies and socio-
economic impacts of failure in extreme events: emerging R&D challenges. Nat
Hazards 2015;78(3):2143–68.

[75] Khosravi F, Glaß M, Teich J. Automatic reliability analysis in the presence of
probabilistic common cause failures. IEEE Trans Reliab 2017;66(2):319–38.

[76] Sanghavi M, Tadepalli S, Boyle TJ, Downey M, Nakayama MK. Efficient algorithms
for analyzing cascading failures in a Markovian dependability model. IEEE Trans
Reliab 2017;66(2):258–80.

[77] Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing
critical infrastructure interdependencies. IEEE Control Syst 2001;21(6):11–25.

[78] ARUP. City resilience framework - the rockerfeller foundation. London, UK: ARUP
Group; 2015.

[79] Dore M, Etkin D. The importance of measuring the social costs of natural disasters at
a time of climate change. Aust J Emerg Manag 2000;15(3):46.

[80] Field CB, Barros V, Stocker TF. Managing the risks of extreme events and disasters
to advance climate change adaptation: special report of the intergovernmental
panel on climate change. In: Dahe Q, editor. Cambridge, England: Cambridge
University Press; 2012.

[81] Afram A, Janabi-Sharifi F. Review of modeling methods for HVAC systems. Appl
Therm Eng 2014;67(1–2):507–19.

[82] Owen MS, Kennedy HE. ASHRAE handbook: fundamentals. SI ed. Atlanta, USA:
ASHRAE; 2009.

[83] Baker GH, Redwine S, Blandino J. Network security risk assessment modeling tools
for critical infrastructure assessment. Proceedings of the critical infrastructure
protection project workshop. 2003.

J. Wang et al. Reliability Engineering and System Safety 183 (2019) 360–373

373

http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0029
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0048
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0048
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0048
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0052
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0052
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0065
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0065
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0065
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0012
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0012
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0047
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0047
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0047
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0066
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0066
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0066
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0002
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0002
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0002
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0003
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0003
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0003
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0003
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0022
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0022
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0031
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0031
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0031
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0078
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0078
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0078
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0062
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0062
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0062
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0062
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0074
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0074
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0074
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0030
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0030
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0030
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0015
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0015
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0015
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0063
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0063
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0059
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0059
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0059
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0032
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0032
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0021
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0021
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0021
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0020
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0020
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0044
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0044
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0054
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0054
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0033
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0033
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0033
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0038
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0038
http://www.anl.gov/sites/anl.gov/files/60362.pdf
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0040
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0040
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0040
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0024
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0024
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0080
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0080
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0013
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0013
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0067
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0067
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0017
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0017
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0083
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0083
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0075
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0075
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0076
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0076
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0076
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0082
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0082
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0035
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0035
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0051
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0051
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0053
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0053
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0053
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0050
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0050
http://www.ga.gov.au/ausgeonews/ausgeonews200509/cip.jsp
http://www.ga.gov.au/ausgeonews/ausgeonews200509/cip.jsp
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0077
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0077
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0072
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0072
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0039
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0039
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0039
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0049
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0049
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0070
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0070
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0070
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0068
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0068
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0006
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0006
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0028
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0028
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0034
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0034
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0034
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0034
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0001
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0001
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0061
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0061
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0007
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0007
http://refhub.elsevier.com/S0951-8320(17)31397-2/sbref0007

	Literature review on modeling and simulation of energy infrastructures from a resilience perspective
	Introduction
	Critical infrastructure (CI) protection
	The concept of resilience
	Energy infrastructure resilience
	Work scope and highlights

	Reviewing existing energy infrastructure models
	Collection of models
	Model overview
	Modeling approaches
	Optimal operation modeling
	Topological network modeling
	Agent-based modeling
	Probabilistic modeling
	Other modeling approaches


	Proposed resilience indicators and other features
	Resilience indicators
	Other modeling features

	Discussions
	Conclusions
	Acknowledgment
	Supplementary materials
	Appendices
	References




