
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-018-0864-7

The local limit theorem on nilpotent Lie groups

Robert Hough1

Received: 19 January 2018 / Revised: 24 July 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
A local limit theorem is proven on connected, simply connected nilpotent Lie groups,
for a class of generating measures satisfying a moment condition and a condition on
the characteristic function of the abelianization. The result extends an earlier local
limit theorem of Alexopoulos which treated absolutely continuous measures with
a continuous density of compact support, and also extends local limit theorems of
Breuillard and Diaconis–Hough which treated general measures on the Heisenberg
group.
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1 Introduction

Local limit theorems are an important tool in the analysis of random walk on a group,
where pointwise or small scale control on the distribution of the walk can be used to
study convergence to equilibrium in strong metrics such as the total variation metric,
see [8,22,23] where local limit theorems on abelian groups are used. In [10,11] Breuil-
lard proved a remarkable local limit theorem on the Heisenberg group, permitting a
general driving measure subject to some technical conditions, and allowing testing
the distribution of the measure against a test function translated arbitrarily on the left
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and the right. An earlier local limit theorem of Alexopoulos, which appeared in this
journal [3], treated the case of a measure with a continuous density with respect to
Haar measure, see also [4] for the lattice case. The main purpose of this article is to
generalize Breuillard’s theorem to an arbitrary connected, simply connected nilpotent
Lie group, with a rate.

Let G be a connected, simply connected nilpotent Lie group. Denote Cc(G) the
continuous functions of compact support on G. A function f ∈ Cc(G) is said to be
Lipschitz if it has Lipschitz push-forward to the Lie algebra g of G via the logarithm
map. Given f ∈ Cc(G) and g ∈ G, let Lg f and Rg f denote the left and right
translation of f by g. For a Borel probability measure μ on G with finite second
homogeneous moments, let Lμ be the corresponding sub-Laplacian and let ut be the
fundamental solution to the heat equation

(
∂
∂t + Lμ

)
ut = 0, t > 0. On a general

nilpotent Lie group, on which there may not be a natural dilation, the heat kernel plays
the role of a limiting Gaussian measure. Given a probability measure ν on R

n , write

ν̂(ξ) =
∫

Rn
e−2π iξ ·x dν(x). (1)

for the characteristic function.

Theorem 1 Let G be a connected, simply connected nilpotent Lie group of step s and
homogeneous degree D. Let μ be a Borel probability measure on G with projection
μab to the abelianization Gab = G/[G, G] satisfying

i. (Centered) μab is mean zero.
ii. (Cramér) There is a constant c > 0 and a neighborhood U of 0 in Ĝab containing

0 such that the characteristic function μ̂ab satisfies

sup
ξ∈U c

∣∣μ̂ab(ξ)
∣∣ < 1 − c. (2)

For all A > 0, there is a constant C = C(A, D) such that, if μ has C(A, D) � 3 finite
homogeneous moments, then uniformly in g, h ∈ G, for all Lipschitz f ∈ Cc(G), as
N → ∞,

〈
Lg Rh f , μ∗N

〉
= 〈

Lg Rh f , uN
〉+ Oμ

(
‖ f ‖1N− D+1

2

)
+ Oμ,A, f

(
N−A

)
. (3)

See Sect. 3 for the definition of homogeneous moments and other terminology related
to nilpotent Lie groups.

The dependence on f in the second error term may be controlled in terms of
the maximum distance of supp f from the identity. The rate is optimal, as may be
seen by projecting to the abelianization. The optimal rate does not hold without some
decay condition on the characteristic function of the abelianization, although a weaker
condition than Cramér would suffice. A different limit is obtained in the lattice case,
again with optimal rate, by [4]. In [20] it is shown that on the the Heisenberg group,
the limit statement without a rate can be obtained with the Cramér condition replaced
with

∣∣μ̂ab(ξ)
∣∣ �= 1 if ξ �= 0; the corresponding statement on a general nilpotent group
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is currently open. Without an arbitrary translation on the right and left, the following
theorem is still obtained.

Theorem 2 Let G be a connected, simply connected nilpotent Lie group of step s and
homogeneous degree D. There is a constant C = C(D) such that, if μ is a centered
Borel probability measure, having C(D) finite homogeneous moments, and satisfying
the non-lattice condition, for all 0 �= ξ ∈ Ĝab,

∣∣μ̂ab(ξ)
∣∣ < 1, then for all f ∈ Cc(G),

as N → ∞, 〈
f , μ∗N

〉
= 〈 f , uN 〉 + oμ, f

(
N− D

2

)
. (4)

This recovers a local limit theorem of Breuillard ([12], Corollary 1.3) as a special
case.

1.1 Discussion of method, and possible extensions

Theorem 1 is of the type proved by Breuillard [10,11] in which an arbitrary transla-
tion to the test function is permitted on the left and right. The proof given there used
the representation theory of the real Heisenberg group. In [11] Breuillard writes that
he expects his analysis to carry through to general Heisenberg groups, but that new
methods would need to be developed to handle the higher step cases treated here.
Alexopoulos’ theorems hold in the greater generality of groups of polynomial volume
growth. The proofs first establish the results in the connected, simply connected nilpo-
tent case using time domain PDE methods. It is of interest to obtain the local theorem
for general measures in this full generality.

Theorem 1 is proved via harmonic analysis on the Lie algebra, extending the ‘char-
acteristic function approach’ from the abelian setting, see e.g. [24]. At phases much
larger than the scale of the distribution, the i.i.d. nature of the increments of the walk
is used with a rearrangement group action, followed by the Gowers–Cauchy–Schwarz
inequality applied to the characteristic function. This has the effect of taking iterated
commutators on the group G to reduce to the abelian case; an early form of this argu-
ment appears in the author’s work with Diaconis in [20] treating random walks on
finite nilpotent groups. Green and Tao [21] studied the parallel problem of the dis-
tribution of polynomial orbits on nilmanifolds. At frequencies near the scale of the
distribution, a Lindeberg replacement scheme is used to replace increments of thewalk
with those of a continuous compactly supported density with the same heat kernel,
thus reducing to Alexopoulos’ theorem. It would be possible to make the replacement
with increments of the heat kernel directly thus making the argument independent of
[3], but the analysis then becomes technically more involved.

1.2 Historical review

Central limit theorems on Lie groups have a long history, with early theorems proven
by Wehn [30] and Tutubalin [28], see also [16,26], and [15]. A central limit theorem
with an optimal rate on stratified nilpotent groups is obtained under a homogeneous
moment condition in [25].
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Alexopoulos, and Alexopoulos and Lohoué have made a detailed study of convolu-
tion powers of continuous densities, heat kernels and related questions on Lie groups,
see [1–6], and [7]. See [17–19] for work of Diaconis and Saloff-Coste in the finite
setting.

A famous local limit theorem was proven by Bougerol [9] for convolutions of
densities on a semi-simple group, which used the group’s representation theory. There
are still relatively few local limit theorems on non-abelian Lie groups that treat a
measure which is not supported on a discrete group, or is not absolutely continuous
with respect to Haar measure, of which [10,11] are an early example. Recently, Varjú
has obtained such a local limit theorem for random walks on Euclidean space with
transitions by a random isometry [29].

2 Notation and conventions

The connected, simply connected nilpotent Lie group of the theorems is G, with Lie
algebra g of dimension q. The lower central series of G is

G = G1, Gi+1 = [G, Gi ], i � 1. (5)

The Lie algebra of Gi is gi . The Lie algebra g is identified with R
q by choice of basis,

which is fixed throughout the argument. Vectors x ∈ R
q are written in plain text and

sequences of vectors x ∈ (Rq)N are written with an underscore. The norm ‖ · ‖ refers
to the �2 norm on Euclidean space and is applied to g and ĝ by the fixed choice of
basis. The character on R

q is written eξ (x) = e2π iξ ·x .
A bump function σ on R

q is a non-negative C∞ function of compact support with
integral 1. Its dilation by t > 0 is indicated σt (x) = tqσ(t x).

Convolution of Borel probability measures μ, ν on G is defined weakly by, for
f ∈ Cc(G),

〈 f , μ ∗ ν〉 =
∫

G

∫

G
f (gh)dμ(g)dν(h). (6)

For N � 1, the iterated convolution μ∗N is defined by

μ∗1 = μ, μ∗(i+1) = μ ∗ μ∗i , (i � 1). (7)

The characteristic function of a probability measure ν on R
n , respectively the Fourier

transform of an L1 function f , is defined to be

ν̂(ξ) =
∫

Rn
e−ξ (x)dν(x), f̂ (ξ) =

∫

Rn
f (x)e−ξ (x)dx . (8)

If f ∈ L1 is smooth, then the Fourier inversion integral is absolutely convergent, and

f (x) =
∫

Rn
f̂ (ξ)eξ (x)dξ. (9)
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Let C2 = Z/2Z be the group of two elements. For τ ∈ (C2)
d , |τ | is the Hamming

or �1 norm, which counts the number of non-zero coordinates.
The notation f = OA(g) has the same meaning as f 
A g. Both indicate that

| f | � C(A)g for some constant C(A) > 0 which depends at most on A and possibly
the structure of G.

3 Nilpotent Lie groups

A useful reference for the theory of nilpotent Lie groups is [14].
Given G, a connected, simply connected nilpotent Lie group with Lie algebra g of

dimension q, the exponential map exp is a diffeomorphism which identifies G with
g. Given a probability measure μ on G, denote μg its push-forward by the logarithm
map to a probability measure on the Lie algebra; μ∗k

g should be read (μ∗k)g so that
convolution is performed on G.

Let the lower central series be defined by g1 = g and, for i � 1, gi+1 = [g1, gi ].
Since g is nilpotent, one has the filtration

g = g1 ⊃ g2 ⊃ · · · ⊃ gs ⊃ gs+1 = {0}, gs �= {0}; (10)

s is called the step of g. One can check, for i + j � s + 1, [gi , g j ] ⊂ gi+ j . Also, one
has Gi = exp gi is the i th group in the lower central series of G.

Let a1, . . . , as be subspaces of g such that, for each 1 � i � s,

gi = ai ⊕ · · · ⊕ as . (11)

Let di = dim ai and q = dim g. The homogeneous dimension of G is

D =
s∑

i=1

idi . (12)

Assume given a basis {Xi, j } 1�i�s
1� j�di

of g satisfying {Xi, j }1� j�di is a basis for ai .

Identify g with R
q via

ψ :
⎛

⎜
⎝

x (1,1)

...

x (s,ds )

⎞

⎟
⎠ �→ x (1,1) X1,1 + · · · + x (s,ds ) Xs,ds . (13)

Having made this choice of coordinates, Haar measure on G is normalized by pushing
forward Lebesgue measure on g by the exponential map. Exponential coordinates of
the first kind are defined by
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φ : R
q → G, φ :

⎛

⎜
⎝

x (1,1)

...

x (s,ds )

⎞

⎟
⎠ �→ exp (ψ(x)) . (14)

Write for 1 � n � s,

x (n) =
⎛

⎜
⎝

x (n,1)

...

x (n,dn)

⎞

⎟
⎠ , ξ (n) =

⎛

⎜
⎝

ξ (n,1)

...

ξ (n,dn)

⎞

⎟
⎠ (15)

for the coordinates at level n in the filtration, respectively the corresponding dual
frequencies in ĝ. These coordinates are said to have homogeneous degree n. For

S ⊂ {(i, j) : 1 � i � s, 1 � j � di }, (16)

a monomial mα(x) = ∏
(i, j)∈S

(
x (i, j)

)α(i, j)

with each α(i, j) �= 0 has homogeneous
degree

hom-deg(mα) =
∑

(i, j)∈S

iα(i, j). (17)

The homogeneous degree of a monomial in several variables is defined to be the sum
of the homogeneous degrees in the variables separately. Note that the homogeneous
degree is equal to the degree if and only if for every (i, j) ∈ S, i = 1. A probability
measure μ on G is said to have d finite homogeneous moments if, for all monomials
mα of homogeneous degree at most d,

∫

g
|mα(x)|dμg(x) < ∞. (18)

3.1 Heat kernel and approximating continuousmeasure

Given a centered measure μ with two finite homogeneous moments on G, define the
associated sub-Laplacian

Lμ = −
∑

1�i, j�d1

ai j X1,i X1, j −
∑

i�d2

ai X2,i (19)

with coefficients

ai j = 1

2

∫
x (1,i)x (1, j)dμg(x),

bi =
∫

x (2,i)dμg(x) (20)

123



The local limit theorem on nilpotent Lie groups

and

ai = bi − 1

2

∑

1� j<k�d1

a jk pr2,i [X1, j , X1,k]. (21)

Denote ut (x) the fundamental solution of the heat equation

(
∂

∂t
+ Lμ

)
u = 0, u0 = δid. (22)

The proof of Theorems 1 and 2 is a reduction to the local limit theorem of [3] which
treats a continuous compactly supported probability density ϕ satisfying φ(e) > 0.

Lemma 3 There exists a function ϕ = ϕ(μ) satisfying

(1) ϕ � 0 and
∫

G
ϕ = 1

(2) ϕ is continuous
(3) ϕ(e) > 0 and supp(ϕ) = {x ∈ G : ϕ(x) > 0} is compact

which has first three homogeneous moments matching those of μ.

Proof Letϕg be the push-forward ofϕ to the Lie algebra, considered to be a continuous
function onR

d1 ×R
d2 ×· · ·×R

ds . For the first three homogeneous moments to match,
the conditions on ϕg are as follows:

(1) Projected to R
d1 , ϕg is mean 0 and has first three mixed moments matching those

of μg

(2) OnR
d2 the mean and correlation with theR

d1 coordinates are fixed tomatch those
of μg

(3) The mean on R
d3 is fixed.

Evidently the last condition may be fullfilled with a choice of ϕg in which the coor-
dinates at level 3 and higher in the filtration are independent of the first two levels of
the filtration, so it suffices to consider ϕg and μg as measures on R

d1 × R
d2 .

Note thatμg restricted toR
d1 has a strictly positive definite covariancematrix, since

otherwise μg would be supported on a subspace, and the Cramér condition would not
hold. Thus, once the condition on the projection to R

d1 is satisfied, the condition
on R

d2 may be attained by making the R
d2 coordinates the sum of two independent

random variables Y1 + Y2 where Y1 is a linear function of the R
d1 coordinates, and Y2

is independent of those coordinates, is continuous, compactly supported with positive
density at the identity, and with the appropriate mean.

Thus it suffices to consider μg and ϕg as measures on R
d1 . The first three mixed

moment condition may be achieved by letting ϕg be the sum of two independent
random variables X1+ X2 where X1 is a mean zero sum of finitely many point masses
satisfying

(1) Prob(X1 = 0) > 0
(2) Cov(μg) − Cov(X1) is positive definite
(3) The third mixed moments of μg match those of X1
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and where X2 is a continuous density of compact support assigning positive mass
to a neighborhood of the identity, which is even in the sense that all odd moments
vanish, and such that Cov(X1) +Cov(X2) = Cov(μg). Evidently, Cov(X1 + X2) =
Cov(X1) + Cov(X2) and the third mixed moments of X1 + X2 are equal to those of
X1 by independence, so that the third moment condition is fulfilled. ��

Given ϕ as in Lemma 3, since the sub-Laplacian generated byμ and ϕ depends only
on the first two moments of the abelianized measures and the mean in G2/G3, the heat
kernels of μ and ϕ agree. By [3] Theorem 1.9.1, Theorem 1 holds with μϕ = ϕ(g)dg
in place of μ. The argument presented reduces the local limit theorem for μ to that
for μϕ .

3.2 The product rule

G is identified with (Rq , ∗) with the group law
⎛

⎜
⎝

x (1,1)

...

x (s,ds )

⎞

⎟
⎠ ∗

⎛

⎜
⎝

y(1,1)

...

y(s,ds )

⎞

⎟
⎠ =

⎛

⎜
⎝

z(1,1)

...

z(s,ds )

⎞

⎟
⎠ = φ−1

⎛

⎜
⎝φ

⎛

⎜
⎝

x (1,1)

...

x (s,ds )

⎞

⎟
⎠ · φ

⎛

⎜
⎝

y(1,1)

...

y(s,ds )

⎞

⎟
⎠

⎞

⎟
⎠ . (23)

Given a sequence of vectors x ∈ (Rq)N , write

�(x) = x1 ∗ x2 ∗ · · · ∗ xN ∈ R
q (24)

for their product. The basic object of study is the characteristic function, for ξ ∈ ĝ ∼=
R

q ,
χN ,μ(ξ) = E

μ⊗N
g

[
eξ (�(x))

]
. (25)

In the case of a connected, simply connected nilpotent Lie group, the Baker–
Campbell–Hausdorff formula is a finite expression that holds for all X , Y ∈ g,

log (exp X exp Y ) = X + Y + 1

2
[X , Y ] + 1

12
[X , [X , Y ]] − 1

12
[Y , [X , Y ]] + · · · .

(26)

Using the Baker–Campbell–Hausdorff formula, the product rule for a sequence of
group elements may be expressed as a polynomial map on the Lie algebra. To describe
this, given a sequence of elements x = (xk)

N
k=1 of elements from R

q , sort a list of
triples {(kt , it , jt )}�t=1, 1 � kt � N , 1 � it � s, 1 � jt � dit lexicographically. Say
that the monomial

mα(x) =
�∏

t=1

(
x (it , jt )

kt

)α
(it , jt )
kt

, (27)

is initial if it has the form

mα(x) =
r∏

k=1

∏

(i, j)∈Sk

(
x (i, j)

k

)α
(i, j)
k

(28)
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where, for each k, Sk is a non-empty subset of {(i, j) : 1 � i � s, 1 � j � di }. If mα

is initial, say that monomial m′
α is of type mα if for some �1 < �2 < · · · < �r ,

m′
α(x) =

r∏

k=1

∏

(i, j)∈Sk

(
x (i, j)
�k

)α
(i, j)
k

. (29)

Thusm′
α is of typemα if it is obtained bymapping the indices appearing inmα forward

by an increasing function.

Lemma 4 Let x = (x1, . . . , xN ) be a sequence of vectors from R
q identified with

coordinates on the Lie algebra g. There are polynomials
{

P(i, j)
N

}
1�i�s
1� j�di

on (Rq)N

satisfying the following conditions

(1) (Degree bound) Each monomial mα in P(i, j)
N satisfies hom-deg(mα) � i

(2) (Stability) If mα appears in P(i, j)
N and if M > N then mα appears in P(i, j)

M with
the same leading coefficient

(3) (Invariance) If m′
α is of type mα , and if the maximum index of m′

α is at most N ,

then m′
α appears in P(i, j)

N with the same leading coefficient as mα

such that the multiplication is given in coordinates by

�(x) =
⎛

⎜
⎝

∑N
k=1 x (1,1)

k + P(1,1)
N (x)

...
∑N

k=1 x (s,ds )
k + P(s,ds )

N (x)

⎞

⎟
⎠ . (30)

Proof This follows from theBaker–Campbell–Hausdorff formula and induction.Write
x ′ for the string x with xN deleted, so that

�(x) = �(x ′) ∗ xN . (31)

To obtain the degree bound, use that for i + j � s + 1, [gi , g j ] ⊂ gi+ j , so that, when
taking commutators, the step in the filtration always increases at least as quickly as the
homogeneous degree of the coefficient. To obtain stability, note that if a contribution
is made with a commutator involving ψ(xN ) then the resulting monomial has an xN

dependence, so that monomials without an xN dependence arise in �(x) only from
the linear term in the Baker–Campbell–Hausdorff formula. To prove invariance, let
m′

α be a monomial appearing in PN which depends on xN . Let the type of m′
α be

mα . Let �̃(x ′) be obtained from �(x ′) by setting to 0 all x j that do not appear in
m′

α and write the remaining indices in order �1 < �2 < · · · < �r−1. By induction,
�̃(x ′) = �(x�1 , . . . , x�r−1) and thus the coefficients of mα and m′

α are equal. ��
Let

mα =
r∏

k=1

∏

(i, j)∈Sk

(
x (i, j)

k

)α
(i, j)
k

(32)
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be an initial monomial of homogeneous degree n. Given x ∈ (Rq)N , define the
generalized U -statistic

Uα(x) =
∑

1��1<�2<···<�r

r∏

k=1

∏

(i, j)∈Sk

(
x (i, j)
�k

)α
(i, j)
k

. (33)

Lemma 4 may be summarized as stating that

�(i, j)(x) =
N∑

k=1

x (i, j)
k + P(i, j)

N (x) (34)

where P(i, j)
N is a linear combination of generalizedU -statistics of homogeneous degree

at most i , with the �1 norm of the coefficients in the linear combination bounded by a
constant depending on the fixed choice of basis.

3.3 Manipulations regarding the test function

The test function of the theorem takes the form, for x ∈ R
q ∼= g,

Lg Rh f (φ(x)) = fg(log g ∗ x ∗ log h). (35)

Applying the Baker–Campbell–Hausdorff formula, there are polynomials pg,h and

qg,h satisfying for 1 � n � s, p(n)
g,h, q(n)

g,h are of homogeneous degree at most n, such
that

x ′ = log g ∗ x ∗ log h = pg,h(x), x = qg,h(x ′). (36)

The relationship between p(n)
g,h and q(n)

g,h is linear in x (n) and x ′(n) and polynomial in
the lower degree coordinates. In particular, p can be obtained from q by a polynomial
change, and vice-versa, see [21], Appendix A for a further discussion.

Define the (naive) height ht(p) of a polynomial p to be the sup norm on its coeffi-
cients. In particular,

ht(pg,h) 
D 1 + ht(qg,h)Os (1), ht(qg,h) 
D 1 + ht(pg,h)Os (1). (37)

Let σ ∈ C∞
c (Rq) be a smooth bump function with dilation, for t > 0, σt (x) =

tqσ(t x). Let fg,t = fg∗σt be theEuclidean convolution. Since f is assumedLipschitz,

∥
∥ fg − fg,t

∥
∥∞ = O

(
1

t

)
(38)

as t → ∞. Also,
∥∥ fg,t

∥∥
1 �

∥∥ fg
∥∥
1.
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Lemma 5 For each n � 1 and for ξ ∈ R
q , ‖ξ‖ � 1 and t > 1, the Fourier transform

̂Lg Rh fg,t (ξ) =
∫

Rq
fg,t (log g ∗ x ∗ log h)e−ξ (x)dx (39)

satisfies

∣
∣∣ ̂Lg Rh fg,t (ξ)

∣
∣∣ � On,D, f (1)

(
1 + ht(pg,h)

)Os (1)
(

t

‖ξ‖
)n

‖ f ‖1. (40)

Proof Let ξ0 = ξ
‖ξ‖ and integrate by parts n times in the ξ0 direction to obtain

̂Lg Rh fg,t (ξ) =
(

1

2π i‖ξ‖
)n ∫

Rq
Dn

ξ0

[
fg,t (log g ∗ x ∗ log h)

]
e−ξ (x)dx . (41)

Write log g ∗ x ∗ log h = pg,h(x) and note that for 0 � j � n,

∣∣∣D j
ξ0

pg,h(x)

∣∣∣ � On,D(1) ht(pg,h)‖x‖s− j (42)

By the compact support of fg, restrict to x ′ = pg,h(x) ∈ supp f which is O f (1).
Thus

‖x‖ = ∥∥qg,h(x ′)
∥∥ = OD, f (ht(qg,h)) = OD, f

(
(1 + ht(pg,h))Os (1)

)
. (43)

Meanwhile D j
ξ0

fg,t = fg ∗ D j
ξ0

σt , and
∥∥∥D j

ξ0
σt

∥∥∥
1


 j t j . Hence
∥∥∥D j

ξ0
fg,t

∥∥∥
1


 j

t j‖ f ‖1. The conclusion now follows on applying the chain rule and bounding the
integral in L1. ��

The following lemma based on [13] Theorem 2 is used to restrict the translations
g, h in Theorem 1 to those for which pg,h has controlled height.

Lemma 6 Let p : R
q → R

q be a polynomial of degree at most s. There is a constant
C = C(q, s) > 0 such that, for any α > 0,

meas

{
x ∈

[
−1

2
,
1

2

]q

: ‖p(x)‖ � α

}
� Cα

1
s

ht(p)
1
s

. (44)

Proof The statement

meas

{
x ∈

[
−1

2
,
1

2

]q

: ‖p(x)‖ � α

}
� Cα

1
s

(∫
[
− 1

2 , 12

]q ‖p‖2
) 1

2s

. (45)

is a specialization of [13] Theorem 2. The conclusion follows since all norms on the
space of degree s polynomials on R

q are equivalent. ��
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4 Rearrangement group action

In [20] Diaconis and the author used the following group action on strings. The group
Cn−1
2 acts on strings of length kn with the j th factor exchanging the relative order of

the j + 1st block of length k with the previous jk elements. For instance, in the case
n = 4, if x1, . . . , x4 each represent a block of k indices, the action is illustrated in

(1, 0, 0) · x = x2x1x3x4
(1, 1, 0) · x = x3x2x1x4
(0, 1, 1) · x = x4x3x1x2. (46)

The relative order within the segments of length k in each xi remains unchanged.
For n � 2, k � 1 and 1 � N ′ �

⌊ N
kn

⌋
let

AN ′
k,n =

(
Cn−1
2

)N ′
(47)

act on strings of length knN ′ with, for j � 1, the j th factor of Cn−1
2 in AN ′

k,n acting
as above on the contiguous subsequence of indices of length kn ending at jkn. The
argument below considers AN ′

k,n acting on substrings of length knN ′ within a string of
length N .

4.1 The Gowers–Cauchy–Schwarz inequality

Given two elements

τ 0, τ 1 ∈ AN ′
k,n =

(
Cn−1
2

)N ′
=
(

C N ′
2

)n−1
(48)

write τ = (
τ (1), . . . , τ (n−1)

)
. Thus τ

( j)
0,i is the element in C2 which belongs to the

i th factor of (Cn−1
2 ) in AN ′

k,n and within this factor, the j th factor of C2. Given s ∈
{0, 1}n−1 ∼= Cn−1

2 , define τ s =
(
τ

(1)
s1 , . . . , τ

(n−1)
sn−1

)
∈ AN ′

k,n .

Since the increments of μg in the characteristic function χN ,μ are i.i.d., a further
averagingmay be introduced in which the group AN ′

k,n acts on a substring of the product
measure. In general, let P(x) be a continuous function of x and let its characteristic
function be

χ(ξ) = E
μ⊗N
g

[
eξ (P(x))

]
. (49)

Then

χ(ξ) = E
μ⊗N
g

[
E

τ∈AN ′
k,n

[
eξ

(
P(τ · x)

)]]
. (50)
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Writing τ = (τ (1), τ (2), . . . , τ (n−1)),

χ(ξ) = E
μ⊗N
g

[
E

τ (1)∈C N ′
2

· · ·E
τ (n−1)∈C N ′

2

[
eξ

(
P(τ · x)

)]]
. (51)

Moving one τ (i) to the inside at a time and applying Cauchy–Schwarz to the inner
expectation recovers the Gowers–Cauchy–Schwarz inequality:

|χ(ξ)|2n−1 � E
μ⊗N
g

⎡

⎣E
τ 0,τ 1∈AN ′

k,n

⎡

⎣eξ

⎛

⎝
∑

s∈{0,1}n−1

(−1)|s| P(τ s · x)

⎞

⎠

⎤

⎦

⎤

⎦ . (52)

In the case χ(ξ) = χN ,μ(ξ), denote the right hand side F
(
ξ, μ; AN ′

k,n

)
.

A basic lemma, which generalizes Lemma 24 of [20], is as follows.

Lemma 7 Let N , N ′ � 1, let k � 1 and n � 2 be such that knN ′ � N. Let x ∈ (Rq)N

and let AN ′
k,n act on the substring of x with indices in range, for some offset o � 0,

[o + 1, o + knN ′]. Define for 1 � i � nN ′,

ωi =
ik∑

j=(i−1)k+1

xo+ j . (53)

For any τ 0, τ 1 ∈ AN ′
k,n the summation formula holds,

∑

s⊂{0,1}n−1

(−1)|s|�(n)(τ s · x)

=
N ′∑

i=1

⎛

⎝
∑

s∈{0,1}n−1

(−1)|s|�(n)(τs,i · (ωn(i−1)+1, . . . , ωni ))

⎞

⎠ (54)

while for all n′ < n,

∑

s⊂{0,1}n−1

(−1)|s|�(n′)(τ s · x) = 0. (55)

Moreover,

∑

s∈{0,1}n−1

(−1)|s|�(n)(τs,i · (ω1, . . . , ωn))

=
{

(−1)|τ0,i |
∑

τ∈Cn−1
2

(−1)|τ |�(n) (τ · (ω1, . . . , ωn)) τ0,i + τ1,i = (1)n−1

0 otherwise
.

(56)
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In the (1)n−1 case, the sum is a vector whose coordinates are non-zero multilinear

polynomials in
(
ω

(1)
1 , ω

(1)
2 , . . . , ω

(1)
n

)
.

Proof By the degree bound, all monomials appearing in �(n, j) have homogeneous
degree at most n, and hence degree at most n. Given any collection of m � n indices
k1 < k2 < · · · < km , if there is any bit b ∈ Cn−1

2 of Hamming weight 1 such that
τ s and τ s+b act on k1, . . . , km leaving them in the same relative order, then by the
invariance principle any monomials associated to these indices in the alternating sum

∑

s⊂{0,1}n−1

(−1)|s|�(n, j)(τ s · x) (57)

cancel. In particular, this occurs if m < n, or if the indices k1 < k2 < · · · < km are
not acted on by the same factor of Cn−1

2 in AN ′
k,n , or if k1, k2, . . . , kn do not appear in

distinct blocks in the action, or if the corresponding factor of τ 0 and τ 1 do not add to
the all 1’s element. In particular this proves (55).

Since the only surviving monomials have degree n and homogeneous degree n,
the surviving variables are all from the first level of the filtration x (1) and all of
the monomials are linear in each variable. By the invariance principle, the surviving
polynomial is in fact a polynomial on the sums ω1, ω2, . . . , ωn .

The formula (56) is immediate. To prove that the (1)n−1 case of (56) is non-
vanishing, in the case k = 1 let gi = exp(ωi ) ∈ G. The sum

∑

τ∈Cn−1
2

(−1)|τ |�(n, j) (τ · (ω1, . . . , ωn)) (58)

is equal to the X (n, j) coordinate in the logarithm of the iterated commutator

[· · · [[[g1, g2] , g3] , g4] , . . . , gn] . (59)

To verify this by induction, note that the commutator may be calculated in Gn/Gn+1,
which is abelian, and depends only on gn in G1/G2, so that the calculation may be
performed by truncating the Baker–Campbell–Hausdorff formula at the first commu-
tator.

Since commutators of the type (59) generate Gn , it follows that (58) is non-zero. ��
Given probability measure μ on G, let μn be the probability measure on Gn/Gn+1

with distribution

[· · · [[g1, g2] , g3] , . . . , gn] , gi i.i.d. μ. (60)

Thus μ1 = μab, and for n � 2, μn has distribution given by

∑

τ∈Cn−1
2

(−1)|τ |�(n) (τ · (ω1, . . . , ωn)) (61)
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in which the ωi are drawn i.i.d. from μg. Given ξ (n) ∈ ̂Gn/Gn+1 ∼= ̂gn/gn+1 denote
the characteristic function of μn by

Fn,μ

(
ξ (n)

)
= μ̂n

(
ξ (n)

)
. (62)

Lemma 8 Let 2 � n � s, k, N ′ � 1, and let N � knN ′. Let AN ′
k,n act on a substring

of x ∈ (Rq)N as above. Let ξ ∈ ĝ satisfy ξ ( j) = 0 for all j > n. Then

F
(
ξ, μ; AN ′

k,n

)
=
(

1 − 1

2n−1 + Re
[
Fn,μ∗k

(
ξ (n)

)]

2n−1

)N ′

. (63)

Proof The expectation factors through the product structure of AN ′
k,n due to the summa-

tion formula (54). In the expectation over AN ′
k,n the probability that τ0, j +τ1, j = (1)n−1

is 1
2n−1 , and conditioned on this, the expectation over the corresponding block is

(−1)|τ0,i |Fn,μ∗k

(
ξ (n)

)
. The real part occurs since conditionally, |τ0,i | has parity 0 and

1 with equal probability. ��

4.2 The Cramér condition

A probability measure ν on R
m has characteristic function ν̂ satisfying the Cramér

condition if there exists 0 < ε < 1 such that

sup
ξ∈Rm ,‖ξ‖>1

|ν̂(ξ)| � 1 − ε. (64)

The condition is equivalent to the statement, for all r > 0 there exists 0 < ε(r) < 1
such that

sup
ξ∈Rm ,‖ξ‖>r

|ν̂(ξ)| � 1 − ε(r). (65)

The equivalence may be checked by noting 1−|ν̂(ξ1+ξ2)| � 2(2−|ν̂(ξ1)|−|ν̂(ξ2)|),
see [27] p. 183, where the proof does not use that the probability measure has finite
support.

Lemma 9 Let μ be a centered probability measure on G satisfying G = 〈suppμ〉,
whose abelianization μab has characteristic function satisfying the Cramér condition.
For each 2 � n � s the measure μn on Gn/Gn+1 has characteristic function satisfying
the Cramér condition.

Proof Write

[· · · [[g1, g2] , g3] , . . . , gn] mod Gn+1 = 〈λ(g1, g2, . . . , gn−1), gn〉 (66)

in which λ(g1, g2, . . . , gn−1) is a linear map from Gab to Gn/Gn+1. Recall that λ

itself is multilinear in g1, g2, . . . , gn−1 mod G2. Given ξ ∈ ̂Gn/Gn+1, ‖ξ‖ � 1 one
has
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ξ ([· · · [[g1, g2] , g3] , . . . , gn]) = (ξ · λ(g1, g2, . . . , gn−1)) (gn) . (67)

Since the semigroup generated by suppμab is dense in Gab, and since Gn =
[Gn−1, G1] is equal to the set of commutators of the stated type on G, and since
λ is multilinear, it follows that ξ does not annihilate λ(g1, . . . , gn−1) with positive
probability, and hence for some r > 0, ‖ξ · λ(g1, g2, . . . , gn−1)‖ > r with positive
probability. Integrating, this suffices to obtain the Cramér condition. ��

In the case that μ̂ab satisfies the non-lattice condition, for all 0 �= ξ ∈ Ĝab,∣∣μ̂ab(ξ)
∣∣ < 1, the same proof yields that μ̂n is non-lattice.

Lemma 10 There is a constant c = c(μ) > 0 such that, for each 1 � n � s, for all
ξ (n) �= 0, when k is assigned by the rule

k =

⎧
⎪⎨

⎪⎩

⌊
1

‖ξ (n)‖ 2
n

⌋

,
∥
∥ξ (n)

∥
∥ � 1

1,
∥∥ξ (n)

∥∥ > 1

, (68)

one has
∣∣Fn,μ∗k

(
ξ (n)

)∣∣ � 1 − c.

Proof For any fixed r > 0, for
∥∥ξ (n)

∥∥ � r this follows from the Cramér condition.
Otherwise, using the description (56), it follows from the functional central limit
theorem that when x is drawn from (μ∗k)⊗n ,

1

k
n
2

⎛

⎜
⎝

∑

τ∈Cn−1
2

(−1)|τ |τ · �(n)(x)

⎞

⎟
⎠ (69)

converges to a continuous probability density. Since
∥∥ξ (n)

∥∥ � 1

k
n
2
, the claim follows.

��
In the case that μ̂ab is non-lattice, the same conclusion holds when ξ (n) is restricted

to any compact set, with a constant c which possibly depends upon the compact set.

5 Estimates of moments

Throughout this section μ is a centered probability measure on G.

Lemma 11 Let m, n, N � 1 and suppose that μ has 2mn finite homogeneous moments.
For all generalized U-statistics Uα of homogeneous degree n,

E
μ⊗N
g

[∣∣Uα(x)
∣∣2m

]
� Oμ,mn(1)N mn . (70)

Proof Let a be the number of indices in mα of homogeneous degree 1, and note that
n � a + 2(r − a) = 2r − a. On expanding

∣∣Uα(x)
∣∣2m and performing expectation,
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any monomials that have indices which appear with homogeneous degree 1 have
expectation 0. Those remaining monomials have homogeneous degree at least 2 in
every coordinate upon which the expectation depends, and hence have expectation
Oμ,mn(1) by the moment condition. The total number of indices which may appear
in such a monomial is at most (2m)(r − a) + am � nm. Counting the number of
monomials with non-vanishing expectation by letting L be the number of indices
appearing, the expectation is bounded by

E
[∣∣Uα(x)

∣∣2m
]

� Oμ,mn(1)
nm∑

L=1

(
N

L

)
L2rm � Oμ,mn(1)N nm . (71)

��

Lemma 12 For each A, δ > 0 there is C(A, δ) > 0 such that, if μ has C(A, δ) finite
homogeneous moments then

μ⊗N
g

{
max

n

1

N
n
2

∥
∥∥�(n)(x)

∥
∥∥ > N δ

}
= Oμ,A,δ

(
N−A

)
. (72)

Proof If μ has 2mn homogeneous moments then the estimate

E
μ⊗N
g

[∥∥
∥�(n)(x)

∥∥
∥
2m
]

� Oμ,mn(1)N mn (73)

followsby repeatedly applying thepowermean inequality tofirst estimateE[‖�(n)‖2m]
in terms of moments of the individual coordinatesE[‖�(n, j)(x)‖2m] and then in terms
of the moments of individual U statistics of homogeneous degree at most n, to which
Lemma 11 applies.

The claim now follows by taking a high enough moment and applying Markov’s
inequality. ��

Lemma 13 Let m � 1 and 1 � n � s, and assume that μ has 2mn finite homogeneous
moments. For all N ′ � N, when x = x0 ⊕ xt is the concatenation of strings of length
N ′ and N − N ′

E
μ⊗N
g

[∥∥
∥�(n)(x) − �(n)(xt )

∥∥
∥
2m
]

� Oμ,mn(1)N mn
(

N ′

N

)m

. (74)

Proof By repeatedly applying the power mean inequality it suffices to prove, for any
generalized U -statistic

Uα(x) =
∑

1��1<�2<···<�r

r∏

k=1

∏

(i, j)∈Sk

(
x (i, j)
�k

)α
(i, j)
k

(75)
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of homogeneous degree at most n, the estimate

E
μ⊗N
g

[∣
∣Uα(x) − Uα(xt )

∣
∣2m

]
� Oμ,mn(1)N mn

(
N ′

N

)m

. (76)

Define polynomials, for 1 � a � r , U 0,a
α , U t,a

α ,

U 0,a
α (x) =

∑

1��1<�2<···<�a

a∏

k=1

∏

(i, j)∈Sk

(
x (i, j)
�k

)α
(i, j)
k

U t,a
α (x) =

∑

1��1<�2<···<�a

a∏

k=1

∏

(i, j)∈Sr−a+k

(
x (i, j)
�k

)α
(i, j)
k

, (77)

and also, make the convention that U 0,0
α = U t,0

α = 1. Hence,

Uα(x) − Uα(xt ) =
r∑

a=1

U 0,a
α (x0)U

t,r−a
α (xt ). (78)

Applying the power mean inequality one further time, it suffices to prove the estimate,
for each 1 � a � r ,

E
μ⊗N
g

[∣∣
∣U 0,a

α (x0)U
t,r−a
α (xt )

∣∣
∣
2m
]

� Oμ,mn(1)N mn
(

N ′

N

)m

. (79)

Since

E
μ⊗N
g

[∣
∣∣U 0,a

α (x0)U
t,r−a
α (xt )

∣
∣∣
2m
]
=E

μ⊗N ′
g

[∣
∣∣U 0,a

α (x0)
∣
∣∣
2m
]
E

μ
⊗(N−N ′)
g

[∣∣U t,r−a
α (xt )

∣∣2m
]

(80)

the claim follows from Lemma 11, since, for each 1 � a � r ,

hom-deg(U 0,a
α ) + hom-deg(U t,r−a

α ) � n, hom-deg(U t,r−a
α ) � n − 1. (81)

��
Denote � j (x) the part of �(x) which depends on x j . Set

�
�3
j (x), �>3

j (x) (82)

the part of � j (x) which is of homogeneous degree � 3, respectively > 3 in x j , and
for d = 1, 2, 3, �d

j (x) the part of � j (x) which is of homogeneous degree d in x j .

�
∗,(n)
j denotes the part of �∗

j at level n. Use the same notation with � replaced with
a U -statistic Uα .

Recall that μϕ is the measure of the continuous density ϕ.
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Lemma 14 Assume that μ has at least 6s homogeneous moments. Let N � 1, 1 �
j � N and μ = μ⊗( j−1) ⊗ μ

⊗(N− j+1)
ϕ or μ = μ⊗ j ⊗ μ

⊗(N− j)
ϕ . For k = 1, 2, 3, and

m � 3,

Eμ

[∣∣∣ξ · �k
j (x)

∣∣∣
2m
]

= Oμ

(
s∑

�=k

‖ξ�‖2m N (�−k)m

)

(83)

and

Eμ

[∣
∣∣ξ · �>3

j (x)

∣
∣∣
2
]

= Oμ

(
s∑

�=4

‖ξ�‖2N �−4

)

. (84)

Proof By the power mean inequality, then Cauchy–Schwarz,

Eμ

[∣∣∣ξ · �k
j (x)

∣∣∣
2m
]


s

s∑

�=k

Eμ

[∣∣∣ξ (�) · �
k,(�)
j (x)

∣∣∣
2m
]

�
s∑

�=k

∥∥∥ξ (�)
∥∥∥
2m

Eμ

[∥∥∥�k,(�)
j (x)

∥∥∥
2m
]

. (85)

Applying the power mean inequality several further times to first replace �
k,(�)
j with

its individual coordinates, then with an individual generalized U -statistic reduces to
proving the bound for a U -statistic Uα of homogeneous degree � � k,

Eμ

[∣∣∣U k
α, j (x)

∣∣∣
2m
]

= Oμ

(
N (�−k)m

)
. (86)

Let x0, xt denote the substrings of x prior to j and after j respectively. The claim
follows from Lemma 11 after factoring

U k
α, j (x) = U1(x0)m(x j )U2(xt ) (87)

where m is a monomial of homogeneous degree k and U1 and U2 are U -statistics
satisfying hom-deg(U1) + hom-deg(U2) = � − k.

The proof of (84) is similar. ��

6 Proof of Theorems

The following lemma is used to truncate in frequency space to the scale of the distri-
bution.

Lemma 15 Let N � 1, A > 0 and let 1 > ε1 > ε2 > · · · > εs > εs+1 = 0 be a
collection of constants satisfying for all 1 � n < s, εn > nεn+1. Suppose that μ has
C(A, ε) finite homogeneous moments for some constant C(A, ε) > 0. If

max
{∥∥∥ξ (n)

∥∥∥ N
n
2−εn : 1 � n � s

}
> 1, (88)
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then |χN ,μ(ξ)| = Oμ,A,ε

(
N−A

)
.

Proof Let n bemaximal such that
∥∥ξ (n)

∥∥ N
n
2−εn > 1. If n = s, set N ′ = N , otherwise,

set N ′ =
⌊

N 1− εn
n −εn+1

⌋
. Let x0 and xt be strings of vectors from R

q of lengths N ′

and N − N ′ and let x = x0 ⊕ xt be the concatenation. Let

�n+1(x) =
s∑

j=n+1

ξ ( j) · �( j)(x). (89)

Denote T2m−1(x) = ∑2m−1
j=0

(2π i x) j

j ! the degree 2m − 1 Taylor expansion of e2π i x and
recall that Taylor’s theorem with remainder gives

∣∣∣T2m−1(x) − e2π i x
∣∣∣ � (2πx)2m

(2m)! . (90)

It follows that

χN ,μ(ξ)

= E
μ⊗N
g

⎡

⎣
n∏

j=1

eξ ( j) (�
( j)(x))

s∏

�=n+1

eξ (�) (�
(�)(xt ))T2m−1

(
�n+1(x) − �n+1(xt )

)
⎤

⎦

+ Om

(
E

μ⊗N
g

[∣∣�n+1(x) − �n+1(xt )
∣∣2m

])
. (91)

By Lemma 13 and Hölder’s inequality, if μ has sufficiently many homogeneous
moments,

E
μ⊗N
g

[∣∣�n+1(x) − �n+1(xt )
∣∣2m

]

μ,m

s∑

j=n+1

∥∥∥ξ ( j)
∥∥∥
2m

2m
N m( j−1)(N ′)m

�
s∑

j=n+1

(
N− j

2+ε j
)2m

N m( j−1)(N ′)m

�
s∑

j=n+1

N m(2ε j − εn
n −εn+1). (92)

Since each exponent is negative, the sum may be made Oμ,A,ε

(
N−A

)
by choosing m

sufficiently large in terms of A and ε.
Expand T2m−1

(
�n+1(x) − �n+1(xt )

)
intomonomials of degree bounded by (2m−

1)s with coefficients of �1 normbounded by
B N B . Set N1 =
⌊

N ′
2ms

⌋
. Given a typical

monomial M , let [J +1, J + N1] be a set of indices from [1, N ′]which does not meet
M .
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Define,

k =

⎧
⎪⎨

⎪⎩

⌊
1

‖ξ (n)‖ 2
n

⌋

, ‖ξ (n)‖ � 1

1, ‖ξ (n)‖ > 1

, N ′
1 =

⌊
N1

kn

⌋
. (93)

Let A
N ′
1

k,n = (Cn−1
2 )N ′

1 act on the substring [J +1, J +N1] as described in Sect. 4. Since
the monomial M is invariant under the group action, its contribution to the expectation
(91) is given by

E
xt ∼μ

⊗(N−N ′)
g

⎡

⎣M
s∏

j=n+1

eξ ( j) (�
( j)(xt ))Ex0∼μ⊗N ′

g

⎡

⎣Eτ∈Ak,n

⎡

⎣
n∏

j=1
eξ ( j) (�

( j)(τ · x))

⎤

⎦

⎤

⎦

⎤

⎦.

(94)

By Cauchy–Schwarz,

|(94)|2 �E
xt ∼μ

⊗(N−N ′)
g

[
|M |2

]

× E
xt ∼μ

⊗(N−N ′)
g

⎡

⎢
⎣

∣∣∣∣∣
∣
E

x0∼μ⊗N ′
g

⎡

⎣Eτ∈Ak,n

⎡

⎣
n∏

j=1

eξ ( j) (�
( j)(τ · x)))

⎤

⎦

⎤

⎦

∣∣∣∣∣
∣

2
⎤

⎥
⎦ .

Bound the first expectation by a constant. In the case n � 2, apply Gowers–Cauchy–
Schwarz to bound the second expectation, using Lemma 8 to evaluate the expectation
that results. In either the case n = 1 or n � 2, it follows from Lemma 10 that

|(94)|2n−1 
μ

⎛

⎝1 − 1

2n−1 +
∣∣∣Fn,μ∗k

g
(ξ (n))

∣∣∣

2n−1

⎞

⎠

N ′
1


μ exp
(−C N ′

1

)
. (95)

Since

N ′
1 � N1

k
� min

(
1,
∥
∥∥ξ (n)

∥
∥∥

2
n
)

N 1− εn
n −εn+1 � N

εn
n −εn+1 (96)

tends to infinity with N like a small power of N , the exponential savings dominates
the polynomial bound on the coefficients of the monomials, which proves the lemma.

��
Recall that ϕ = ϕ(μ) has been fixed as in Lemma 3, such that ϕ is a continu-

ous, compactly supported density, ϕ(e) > 0 with first three homogeneous moments
matching those of μ. The following Lindeberg exchange lemma approximates the
distribution of μ∗N with that of μ∗N

ϕ .

Lemma 16 Let N � 1. Let 1 > ε1 > ε2 > · · · > εs > εs+1 = 0 be a collection of
constants satisfying for all 1 � n < s, εn > nεn+1. Assume that

max
{∥∥∥ξ (n)

∥∥∥ N
n
2−εn : 1 � n � s

}
� 1. (97)
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Then ∣∣χN ,μ(ξ) − χN ,μϕ (ξ)
∣∣ = Oμ

(
N−1+O(ε1)

)
. (98)

Proof Define

� j = E
μ

⊗ j
g ⊗μ

⊗(N− j)
ϕ,g

[
eξ (�(x))

]− E
μ

⊗( j−1)
g ⊗μ

⊗(N− j+1)
ϕ,g

[
eξ (�(x))

]
(99)

so that, by the triangle inequality,

∣∣χN ,μ(ξ) − χN ,μϕ (ξ)
∣∣ �

N∑

j=1

|� j |. (100)

For 1 � j � N bound, moving expectation against x j to the inside and using the
triangle inequality,

|� j | � E
μ

⊗( j−1)
g ⊗μ

⊗(N− j)
ϕ,g

[∣∣∣∣

∫

g
eξ (� j (x))dμg(x j ) −

∫

g
eξ (� j (x))ϕg(x j )dx j

∣∣∣∣

]
.

(101)

Using |e(x) − e(y)| � 2π |x − y| and the triangle inequality, the right hand side is
bounded by a constant times

E
μ

⊗ j
g ⊗μ

⊗(N− j)
ϕ,g

[∣∣
∣ξ · �>3

j (x)

∣∣
∣
]

+ E
μ

⊗( j−1)
g ⊗μ

⊗(N− j+1)
ϕ,g

[∣∣
∣ξ · �>3

j (x)

∣∣
∣
]

+ E
μ

⊗( j−1)
g ⊗μ

⊗(N− j)
ϕ,g

[∣∣∣∣

∫

g
eξ

(
�

�3
j (x)

)
dμg(x j ) −

∫

g
eξ

(
�

�3
j (x)

)
ϕg(x j )dx j

∣∣∣∣

]
.

(102)

Note that �
(n),>3
j is of homogeneous degree � n − 4 in the variables other than x j ,

while ‖ξ (n)‖ � N− n
2+εn . Thus, by Cauchy–Schwarz and (84) of Lemma 14, the top

line is Oμ

(
N−2+O(ε1)

)
.

By Taylor expansion,

eξ

(
�

�3
j (x)

)
= 1 + i2πξ · �1

j (x) − 1

2

(
2πξ · �1

j (x)
)2 − i

6

(
2πξ · �1

j (x)
)3

+ i2πξ · �2
j (x) − 4π2(ξ · �1

j (x))(ξ · �2
j (x)) + i2πξ · �3

j (x)

+O

(∣∣∣ξ · �1
j (x)

∣∣∣
4+

(
1+|ξ ·�1

j (x)|3
) (

|ξ ·�2
j (x)|2+|ξ · �3

j (x)|2
))

.

(103)

Since the main term has homogeneous degree at most 3 in x j , and since the first three
homogeneous moments of μ and μϕ agree, the integral of these terms cancel. In the
error term, separate |ξ · �1

j (x)|3 from |ξ · �2
j (x)|2 and |ξ · �3

j (x)|2 with Cauchy–
Schwarz. Now applying (83) of Lemma 14, the error term is bounded in expectation
by Oμ

(
N−2+O(ε1)

)
as before. ��
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Proof of Theorem 1 Let f be the Lipschitz, compactly supported test function of the
theorem, let fg be the push-forward by the logarithm map to the Lie algebra, and
identify fg as a Lipschitz function on R

q . By [3] Theorem 1.9.1, integrating the
pointwise approximation to the heat kernel uN ,

〈
Lg Rh f , μ∗N

ϕ

〉
= 〈

Lg Rh f , uN
〉+ O

(
‖ f ‖1N− D+1

2

)
. (104)

Thus it suffices to show that
∣∣
∣
〈
Lg Rh f , μ∗N

〉
−
〈
Lg Rh f , μ∗N

ϕ

〉∣∣
∣ = Oμ

(
‖ f ‖1N− D+1

2

)
+Oμ,A, f

(
N−A

)
. (105)

As in Sect. 3.3, let pg,h and qg,h be polynomials such that

x ′ = log g ∗ x ∗ log h = pg,h(x), x = qg,h(x ′). (106)

Thus

〈
Lg Rh f , μ∗N

〉
=
∫

G
f (gxh)dμ∗N (x)

=
∫

gN
fg
(
log g ∗ �(x) ∗ log h

)
dμ⊗N

g =
∫

gN
fg(pg,h(�(x)))dμ⊗N

g .

(107)

First consider the case that ht(qg,h) � N C for a constant C depending at most on
D, and A. Let for some B > 0, supp fg ⊂ [− B

2 , B
2

]q
, let δ > 0 and let

Ssmall =
{

x ′ ∈
[
− B

2
,

B

2

]q

: max
n

{∥∥∥q(n)
g,h(x ′)

∥∥∥ N− n
2

}
� N δ

}
. (108)

If C is sufficiently large then Lemma 6 implies that

meas(Ssmall) = OA,D, f

(
N−A

)
, (109)

with the dependence on f arising from dilating the box
[− B

2 , B
2

]q
to
[− 1

2 ,
1
2

]q
. Let

f = f1 + f2, with fg,1 = fg|Ssmall . Use

‖ f1‖1 � ‖ f ‖∞ meas(Ssmall) (110)

and hence
〈Lg Rh f1, μ

∗N 〉, 〈Lg Rh f1, μ
∗N
ϕ 〉 = OA, f

(
N−A

)
. (111)

Meanwhile, by Lemma 12,

μ⊗N
{
max

n

{∥∥∥�(n)(x)

∥∥∥ N− n
2

}
> N δ

}
= Oμ,A

(
N−A

)
, (112)
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and similarly for μϕ . Since x ′ ∈ supp f \Ssmall implies that

max
n

{∥∥∥x (n)
∥∥∥ N− n

2

}
> N δ (113)

it follows that

〈Lg Rh f2, μ
∗N 〉, 〈Lg Rh f2, μ

∗N
ϕ 〉 = Oμ,A, f

(
N−A

)
. (114)

Together (111) and (114) imply Theorem 1 in this case.
Now suppose that ht(qg,h) � N C so that ht(pg,h) 
 N C ′

for someC ′ > 0. Letσ be
a compactly supported bump function onR

q with dilation, for t > 0,σt (x) = tqσ (t x).

Let fg,t = fg ∗ σt be the Euclidean convolution. Choose t � ‖ f ‖−1
1 N

D+1
2 so that

∥∥ fg − fg,t
∥∥∞ 
 ‖ f ‖1N− D+1

2 . It thus suffices to prove (105) with f replaced by ft .
Expand, using the Fourier transform,

〈
Lg Rh ft , μ

∗N
〉
=
∫

gN
fg,t

(
log g ∗ �(x) ∗ log h

)
dμ⊗N

g (x)

=
∫

ĝ
L̂g Rh f g,t (ξ)E

μ⊗N
g

[
eξ (�(x))

]
dξ. (115)

Since the test function fg,t is smooth, the integral converges absolutely.
Let ε1 > ε2 > · · · > εs > 0 be a collection of constants as in Lemmas 15 and 16.

Define
Esmall =

{
ξ ∈ ĝ : max

{∥∥∥ξ (n)
∥
∥∥ N

n
2−εn : 1 � n � s

}
� 1

}
. (116)

Thus meas(Esmall) 
 N− D
2 +O(ε1). Apply Lemma 15, and Lemma 5 with n = q + 2,

to obtain
∣∣∣∣
∣

∫

Ec
small

L̂g Rh f g,t (ξ)χN ,μ(ξ)dξ

∣∣∣∣
∣

�
∥
∥∥χN ,μ

∣∣
Ec
small

∥
∥∥∞

∥
∥∥L̂g Rh f g,t

∣∣
Ec
small

∥
∥∥
1

= Oμ,A,ε, f

(
N−A

)
. (117)

Thus

〈
Lg Rh ft , μ

∗N
〉
=Oμ,A,ε, f

(
N−A

)
+
∫

Esmall

L̂g Rh f g,t (ξ)χN ,μ(ξ)dξ, (118)

and similarly with μ replaced by μϕ .
On the remainder of the integral, apply Lemma 16 to obtain

∣∣∣∣

∫

Esmall

L̂g Rh f g,t (ξ)
(
χN ,μ(ξ) − χN ,μϕ (ξ)

)
dξ

∣∣∣∣

� ‖ f ‖1
∥∥∥
(
χN ,μ(ξ) − χN ,μϕ (ξ)

) ∣∣
Esmall

∥∥∥∞ meas(Esmall)
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μ ‖ f ‖1N− D+2
2 +O(ε1). (119)

Choose ε1 sufficiently small but fixed so that the error term is Oμ

(
‖ f ‖1N− D+1

2

)
,

which proves Theorem 1 in the remaining case.
Evidently the argument presented requires only finitely many moments of the mea-

sure μ, but how many? To gain convergence in the Fourier integral (117) it was
necessary to integrate by parts n = q +2 times, which costs a factor of ht(pg,h)Os,q (1).
Hence the number of moments depends on A, the dimension q and the step s, and
hence is controlled by A and the homogeneous dimension D. ��

To obtain Theorem 2, approximate fg from above and below in L1 by functions
having Fourier transforms of compact support. The argument in the small height case
then goes through as before.
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