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Abstract

A local limit theorem is proven on connected, simply connected nilpotent Lie groups,
for a class of generating measures satisfying a moment condition and a condition on
the characteristic function of the abelianization. The result extends an earlier local
limit theorem of Alexopoulos which treated absolutely continuous measures with
a continuous density of compact support, and also extends local limit theorems of
Breuillard and Diaconis—Hough which treated general measures on the Heisenberg

group.
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1 Introduction

Local limit theorems are an important tool in the analysis of random walk on a group,
where pointwise or small scale control on the distribution of the walk can be used to
study convergence to equilibrium in strong metrics such as the total variation metric,
see [8,22,23] where local limit theorems on abelian groups are used. In [10,11] Breuil-
lard proved a remarkable local limit theorem on the Heisenberg group, permitting a
general driving measure subject to some technical conditions, and allowing testing
the distribution of the measure against a test function translated arbitrarily on the left
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and the right. An earlier local limit theorem of Alexopoulos, which appeared in this
journal [3], treated the case of a measure with a continuous density with respect to
Haar measure, see also [4] for the lattice case. The main purpose of this article is to
generalize Breuillard’s theorem to an arbitrary connected, simply connected nilpotent
Lie group, with a rate.

Let G be a connected, simply connected nilpotent Lie group. Denote C.(G) the
continuous functions of compact support on G. A function f € C.(G) is said to be
Lipschitz if it has Lipschitz push-forward to the Lie algebra g of G via the logarithm
map. Given f € C.(G) and g € G, let L,y f and R, f denote the left and right
translation of f by g. For a Borel probability measure 1 on G with finite second
homogeneous moments, let L, be the corresponding sub-Laplacian and let u, be the
fundamental solution to the heat equation (% + L M) u; = 0, t > 0. On a general
nilpotent Lie group, on which there may not be a natural dilation, the heat kernel plays
the role of a limiting Gaussian measure. Given a probability measure v on R", write

b(E) = / e du(x). (1
Rn

for the characteristic function.

Theorem 1 Let G be a connected, simply connected nilpotent Lie group of step s and
homogeneous degree D. Let |1 be a Borel probability measure on G with projection
Wab to the abelianization G, = G /|G, G] satisfying

1. (Centered) [y is mean zero.
ii. (Cramér) There is a constant ¢ > 0 and a neighborhood U of 0 in G, containing
0 such that the characteristic function [i,y, satisfies

sup | ()| <1—c. 2)
EelUc

Forall A > 0, there is a constant C = C(A, D) such that, if u has C(A, D) > 3 finite
homogeneous moments, then uniformly in g, h € G, for all Lipschitz f € C.(G), as
N — o0,

<Lthf, M*N> = (LgRnf un)+ Oy (||f||1N—”T“) + Opns (N—A) B

See Sect. 3 for the definition of homogeneous moments and other terminology related
to nilpotent Lie groups.

The dependence on f in the second error term may be controlled in terms of
the maximum distance of supp f from the identity. The rate is optimal, as may be
seen by projecting to the abelianization. The optimal rate does not hold without some
decay condition on the characteristic function of the abelianization, although a weaker
condition than Cramér would suffice. A different limit is obtained in the lattice case,
again with optimal rate, by [4]. In [20] it is shown that on the the Heisenberg group,
the limit statement without a rate can be obtained with the Cramér condition replaced
with },&ab(é)} # 11if & # 0; the corresponding statement on a general nilpotent group
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is currently open. Without an arbitrary translation on the right and left, the following
theorem is still obtained.

Theorem 2 Let G be a connected, simply connected nilpotent Lie group of step s and
homogeneous degree D. There is a constant C = C (D) such that, if i is a centered
Borel probability measure, having C (D) finite homogeneous moments, and satisfying
the non-lattice condition, for all 0 # & € Gab, /fLab(S)| < 1, then forall f € C.(G),
as N — oo,

<f7M*N)=<f,MN)+0M,f (N_%>. 4)

This recovers a local limit theorem of Breuillard ([12], Corollary 1.3) as a special
case.

1.1 Discussion of method, and possible extensions

Theorem 1 is of the type proved by Breuillard [10,11] in which an arbitrary transla-
tion to the test function is permitted on the left and right. The proof given there used
the representation theory of the real Heisenberg group. In [11] Breuillard writes that
he expects his analysis to carry through to general Heisenberg groups, but that new
methods would need to be developed to handle the higher step cases treated here.
Alexopoulos’ theorems hold in the greater generality of groups of polynomial volume
growth. The proofs first establish the results in the connected, simply connected nilpo-
tent case using time domain PDE methods. It is of interest to obtain the local theorem
for general measures in this full generality.

Theorem 1 is proved via harmonic analysis on the Lie algebra, extending the ‘char-
acteristic function approach’ from the abelian setting, see e.g. [24]. At phases much
larger than the scale of the distribution, the i.i.d. nature of the increments of the walk
is used with a rearrangement group action, followed by the Gowers—Cauchy—Schwarz
inequality applied to the characteristic function. This has the effect of taking iterated
commutators on the group G to reduce to the abelian case; an early form of this argu-
ment appears in the author’s work with Diaconis in [20] treating random walks on
finite nilpotent groups. Green and Tao [21] studied the parallel problem of the dis-
tribution of polynomial orbits on nilmanifolds. At frequencies near the scale of the
distribution, a Lindeberg replacement scheme is used to replace increments of the walk
with those of a continuous compactly supported density with the same heat kernel,
thus reducing to Alexopoulos’ theorem. It would be possible to make the replacement
with increments of the heat kernel directly thus making the argument independent of
[3], but the analysis then becomes technically more involved.

1.2 Historical review

Central limit theorems on Lie groups have a long history, with early theorems proven
by Wehn [30] and Tutubalin [28], see also [16,26], and [15]. A central limit theorem
with an optimal rate on stratified nilpotent groups is obtained under a homogeneous
moment condition in [25].
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Alexopoulos, and Alexopoulos and Lohoué have made a detailed study of convolu-
tion powers of continuous densities, heat kernels and related questions on Lie groups,
see [1-6], and [7]. See [17-19] for work of Diaconis and Saloff-Coste in the finite
setting.

A famous local limit theorem was proven by Bougerol [9] for convolutions of
densities on a semi-simple group, which used the group’s representation theory. There
are still relatively few local limit theorems on non-abelian Lie groups that treat a
measure which is not supported on a discrete group, or is not absolutely continuous
with respect to Haar measure, of which [10,11] are an early example. Recently, Varji
has obtained such a local limit theorem for random walks on Euclidean space with
transitions by a random isometry [29].

2 Notation and conventions

The connected, simply connected nilpotent Lie group of the theorems is G, with Lie
algebra g of dimension ¢. The lower central series of G is

G=6Gi, Gin=I[6,Gi],i>1 )

The Lie algebra of G; is g;. The Lie algebra g is identified with R? by choice of basis,
which is fixed throughout the argument. Vectors x € R? are written in plain text and
sequences of vectors x € (R?)" are written with an underscore. The norm | - || refers
to the £2 norm on Euclidean space and is applied to g and § by the fixed choice of
basis. The character on RY is written eg (x) = e2mikx,

A bump function o on R? is a non-negative C* function of compact support with
integral 1. Its dilation by # > 0 is indicated oy (x) = t90 (tx).

Convolution of Borel probability measures , v on G is defined weakly by, for
J € C(G),

Fopsv) = fG /G Flghdu(g)dv(h). ©)

For N > 1, the iterated convolution /L*N is defined by

*1

wt =g, WY = e =), (7

The characteristic function of a probability measure v on R”, respectively the Fourier
transform of an L! function f, is defined to be

D) = /R ee(dv(x),  f&) = /R Jf(x)e—g(x)dx. ®)
If f € L' is smooth, then the Fourier inversion integral is absolutely convergent, and

rw = [ Few ©)
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Let C; = 7Z/27 be the group of two elements. For 7 € (C2)?, || is the Hamming
or £! norm, which counts the number of non-zero coordinates.

The notation f = O4(g) has the same meaning as f <4 g. Both indicate that
| f] < C(A)g for some constant C(A) > 0 which depends at most on A and possibly
the structure of G.

3 Nilpotent Lie groups

A useful reference for the theory of nilpotent Lie groups is [14].

Given G, a connected, simply connected nilpotent Lie group with Lie algebra g of
dimension ¢, the exponential map exp is a diffeomorphism which identifies G with
g. Given a probability measure 1 on G, denote (g its push-forward by the logarithm
map to a probability measure on the Lie algebra; /fgk should be read (11*¢) g SO that
convolution is performed on G.

Let the lower central series be defined by g1 = g and, fori > 1, g;+1 = [g1, i ]-
Since g is nilpotent, one has the filtration

g=g1D9 D - Dgs Dgs+1 = {0}, gs # {0}; (10)

s is called the step of g. One can check, fori + j < s+ 1, [g;, g;]1 C gi+j. Also, one
has G; = exp g; is the ith group in the lower central series of G.
Letay, ..., as be subspaces of g such that, foreach 1 <i <,

g =0, D - Day. (11)

Let d; = dim a; and ¢ = dim g. The homogeneous dimension of G is

N
D=Y"id. (12)
i=1
Assume given a basis {X; ;} 1<igs of g satisfying {X; j}1< g is a basis for a;.
1</ <d;
Identify g with R? via
(LD
VS B SR (I IR SRR AL S (13)
x(s’ds)

Having made this choice of coordinates, Haar measure on G is normalized by pushing
forward Lebesgue measure on g by the exponential map. Exponential coordinates of
the first kind are defined by
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(LD
¢ :RY — G, ¢ : : — exp (Y (x)). (14)
x(s’ds)

Write for 1 <n <y,

D) gD

A e (15)
x(.dn) g0dn)

MO

for the coordinates at level n in the filtration, respectively the corresponding dual
frequencies in §. These coordinates are said to have homogeneous degree n. For

Sc{ p:1<i<s 1<j<dl, (16)

)

a monomial mg (x) = []; j)es (x@0) with each «~/) # 0 has homogeneous

degree

hom-deg(my) = Z o0 (17)
(i.j)es

The homogeneous degree of a monomial in several variables is defined to be the sum
of the homogeneous degrees in the variables separately. Note that the homogeneous
degree is equal to the degree if and only if for every (i, j) € S, i = 1. A probability
measure 4 on G is said to have d finite homogeneous moments if, for all monomials
mgq of homogeneous degree at most d,

/ Ima (X)]d g (x) < 00. (18)
g

3.1 Heat kernel and approximating continuous measure

Given a centered measure . with two finite homogeneous moments on G, define the
associated sub-Laplacian

L,=- Z aijX1,iX1,j — Z a;i X2, (19)

I<i,j<di i<dy

with coefficients

1 . .
ajj = E/x(l’l)x(l'j)dﬂg(X),

b; = /x(z’i)dug(x) (20)
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and

1
ai=bi— Y appr X X 1)
1< j<k<d;

Denote u,(x) the fundamental solution of the heat equation

d
(E + LM) u=0, uo = did. (22)

The proof of Theorems 1 and 2 is a reduction to the local limit theorem of [3] which
treats a continuous compactly supported probability density ¢ satisfying ¢ (e) > O.

Lemma 3 There exists a function ¢ = @(u) satisfying

(1)(p>0and/(p:1
G

(2) @ is continuous
(3) @(e) > 0 and supp(p) = {x € G : p(x) > 0} is compact

which has first three homogeneous moments matching those of |L.

Proof Let ¢4 be the push-forward of ¢ to the Lie algebra, considered to be a continuous
function on R x R%2 x . . . x R% . For the first three homogeneous moments to match,
the conditions on ¢4 are as follows:

(1) Projected to R, @g is mean 0 and has first three mixed moments matching those
of g

(2) OnR% the mean and correlation with the R coordinates are fixed to match those
of pug

(3) The mean on R% is fixed.

Evidently the last condition may be fullfilled with a choice of ¢4 in which the coor-
dinates at level 3 and higher in the filtration are independent of the first two levels of
the filtration, so it suffices to consider ¢4 and 4 as measures on R4 x R%,

Note that 4 restricted to R% has a strictly positive definite covariance matrix, since
otherwise gy would be supported on a subspace, and the Cramér condition would not
hold. Thus, once the condition on the projection to RY is satisfied, the condition
on R%2 may be attained by making the R% coordinates the sum of two independent
random variables Y| + Y» where Y] is a linear function of the R%' coordinates, and Y»
is independent of those coordinates, is continuous, compactly supported with positive
density at the identity, and with the appropriate mean.

Thus it suffices to consider uy and ¢4 as measures on R% . The first three mixed
moment condition may be achieved by letting ¢4 be the sum of two independent
random variables X + X» where X is a mean zero sum of finitely many point masses
satisfying

(1) Prob(X; =0) >0
(2) Cov(ug) — Cov(Xy) is positive definite
(3) The third mixed moments of (g match those of X
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and where X5 is a continuous density of compact support assigning positive mass
to a neighborhood of the identity, which is even in the sense that all odd moments
vanish, and such that Cov(X1) + Cov(X3) = Cov(ug). Evidently, Cov(X| + X») =
Cov(X1) + Cov(X7) and the third mixed moments of X| + X» are equal to those of
X by independence, so that the third moment condition is fulfilled. O

Given ¢ as in Lemma 3, since the sub-Laplacian generated by ¢ and ¢ depends only
on the first two moments of the abelianized measures and the mean in G, /G3, the heat
kernels of x and ¢ agree. By [3] Theorem 1.9.1, Theorem 1 holds with 11, = ¢(g)dg
in place of . The argument presented reduces the local limit theorem for p to that
for 1ty.

3.2 The product rule

G is identified with (RY, %) with the group law

x(l,l) (1,1) Z(l,l) x(l,l) (1,1)

y y
: * ; = : =o' o] 9| . (23)
x(sads) y(ssds) Z(S’dx) x(5>ds) y(svds)
Given a sequence of vectors x € (R?)V, write
MM(x) =x; *xp % -k xy € RY (24)

for their product. The basic object of study is the characteristic function, for & € g =
RY,

XNu(§) =E on [es (M@))]. (25)

In the case of a connected, simply connected nilpotent Lie group, the Baker—
Campbell-Hausdorff formula is a finite expression that holds for all X, Y € g,

1 1 1
log (exp X expY) =X+Y+§[X, Y]-I—E[X,[X, Y] - E[Y’ (X, Yl +---.
(26)

Using the Baker—Campbell-Hausdorff formula, the product rule for a sequence of
group elements may be expressed as a polynomial map on the Lie algebra. To describe
this, given a sequence of elements x = ()ck),i\’:1 of elements from RY, sort a list of
triples {(k;, i;, j,)}f‘zl, 1 <k <N,1<i; <s,1 < ji <dj, lexicographically. Say

that the monomial
(@it Jjt)

¢
AN
ma(o) = [T (xf)™ @)
is initial if it has the form

)

mew =TT T (0)" (8)

k=1 (i,j)eSk
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where, for each k, Si is a non-empty subset of {(i, j) : 1 <i <s,1 < j <d;}. lfmgy
is initial, say that monomial m,, is of fype mq if for some £ < £y < -+ < £,

mow =TT T (st ”)ak " 29)

k=1 (i,j)€Sk

Thus m|, is of type m if it is obtained by mapping the indices appearing in m,, forward
by an increasing function.

Lemma4 Let x = (x1,...,xN) be a sequence of vectors from R? identified with

coordinates on the Lie algebra g. There are polynomials [P](\,’ J )} 1<igs on (RN
ISj<d;
satisfying the following conditions

(1) (Degree bound) Each monomial m, in PIE,i‘j) satisfies hom-deg(my) < i

(2) (Stability) If my, appears in Pjg,i’j) and if M > N then my appears in P;,;’j) with
the same leading coefficient
(3) (Invariance) If m), is of type my, and if the maximum index of m|, is at most N,

then m), appears in PIS’“ with the same leading coefficient as m

such that the multiplication is given in coordinates by

SNl (. P(l D)
M(x) = . (30)
P x/ES ) + Pzifs’dS)(i)

Proof This follows from the Baker—Campbell-Hausdorff formula and induction. Write
x' for the string x with x deleted, so that

M(x) = (') % xy. 31)

To obtain the degree bound, use that fori + j < s+ 1, [g;, g;] C @i+, so that, when
taking commutators, the step in the filtration always increases at least as quickly as the
homogeneous degree of the coefficient. To obtain stability, note that if a contribution
is made with a commutator involving ¥ (x) then the resulting monomial has an xy
dependence, so that monomials without an xy dependence arise in I1(x) only from
the linear term in the Baker—Campbell-Hausdorff formula. To prove invariance, let
m/, be a monomial appearing in Py which depends on xy. Let the type of m/, be
mg. Let TI(x) be obtained from IT(x’) by setting to 0 all x ;j that do not appear in

m,, and write the remaining indices in order ¢; < ¢, < --- < £,_;. By induction,
[I(x") = M(xg,, ..., x¢_,) and thus the coefficients of m, and m|, are equal. o
Let

=11 TI ()" . (32)

k=1 (i,])€Sk
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be an initial monomial of homogeneous degree n. Given x € (R9)V, define the
generalized U -statistic

Uet) = Y. ]_[ I1 ((’”) . (33)

1<l <ly<--<ly k=1 (i, )ESk

Lemma 4 may be summarized as stating that

N
069 @) = 3 o 4 P07 o) (34)

k=1

where PIS /) is alinear combination of generalized U -statistics of homogeneous degree
at most i, with the ¢! norm of the coefficients in the linear combination bounded bya
constant depending on the fixed choice of basis.

3.3 Manipulations regarding the test function

The test function of the theorem takes the form, for x € R? = g,

LgRp f(p(x)) = fy(logg * x s logh). (35)

Applying the Baker—Campbell-Hausdorff formula, there are polynomials p, ; and
qg.n satisfying for 1 <n <, p;n})l qi,n;)l are of homogeneous degree at most n, such

that
=logg*xxlogh = pyp(x), x=qenkx). (36)
The relationship between p(”) and q(”) is linear in x™ and '™ and polynomial in
the lower degree coordmates In partlcular, p can be obtained from ¢ by a polynomial
change, and vice-versa, see [21], Appendix A for a further discussion.
Define the (naive) height ht(p) of a polynomial p to be the sup norm on its coeffi-
cients. In particular,

ht(pgn) <p 1 +ht(ge )P, ht(gen) <p 1+ ht(pgn) V. (37)

Let 0 € C°(R?) be a smooth bump function with dilation, for ¢ > 0, o;(x) =
t90(tx).Let fy; = fy*o; bethe Euclidean convolution. Since f is assumed Lipschitz,

1
I~ fuil=0 ;) &

as t — 00. Also,

<l

@ Springer



The local limit theorem on nilpotent Lie groups

Lemma5 Foreachn > 1 andfor& € RY, ||&|| > 1 and t > 1, the Fourier transform

LgRi fg.i(§) = fR  fos(ogg s x xloghye ¢ (x)dx (39)
satisfies
— 0,(1) r\"
LR o1 (®)] < Onp,r (1) (1+ he(pg)) <H) I/l @0)

Proof Let &) = Hg_l\ and integrate by parts n times in the &y direction to obtain

Lg/R\hfg’,(é)=< )/RDgo[fg,,(logg*x*logh)]e_g(x)dx. (41)

2ri||§|l
Write log g * x * logh = p, 5 (x) and note that for 0 < j < n,
|04, pe ()] < Onp W htCpgn) el 42)

By the compact support of fg, restrict to x” = p, (x) € supp f which is O (1).
Thus

1l = g6 @) = Op, s (ht(gen) = Op, s ((1+ht(pei)® V). 43)
Meanwhile Df fg: = fg * D} o1, and H D{ o K t/. Hence H D fo.1 Y
t7| fl1. The conclusion now follows on applying the chain rule and bounding the
integral in L. O

The following lemma based on [13] Theorem 2 is used to restrict the translations
g, h in Theorem 1 to those for which pg j, has controlled height.

Lemma6 Let p : R? — RY be a polynomial of degree at most s. There is a constant
C =C(q,s) > 0 such that, for any « > 0,

1

1 177 Cas
meas X € [—=, = | [lpX)| < < - (44)
2°2 ht(p)s
Proof The statement
1174 Cas
meas x € [—=, = | :lp@ <a} < - (45)
22 2%
2
(aaprer)

is a specialization of [13] Theorem 2. The conclusion follows since all norms on the
space of degree s polynomials on R? are equivalent. O
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4 Rearrangement group action

In [20] Diaconis and the author used the following group action on strings. The group
cy ~lacts on strings of length kn with the jth factor exchanging the relative order of
the j + 1st block of length k& with the previous jk elements. For instance, in the case

n =4,if x1, ..., x4 each represent a block of k indices, the action is illustrated in
(1 O 0) X = X2X1X3X4
(1 1, 0) X = X3X2X1X4
0,1, 1) - x = xq4x3x1X2. (46)

The relative order within the segments of length & in each x; remains unchanged.
Forn>2,k>1and1 <N < || let

A, = ()" (47)

act on strings of length knN' with, for j > 1, the jth factor of C5~ "in AN acting
as above on the contiguous subsequence of indices of length kn ending at ]kn The
argument below considers A k. acting on substrings of length kn N " within a string of
length N.

4.1 The Gowers—Cauchy-Schwarz inequality

Given two elements
! N/ / n—1
Tp: 14 € Allc\{n = (Cg_l) = (Cév> (48)

write T = (‘L'(l), el t(”_l)) Thus ‘L’ ; 1s the element in C> which belongs to the
ith factor of (C} _1) in A,jx , and W1th1n this factor, the jth factor of C;. Given s €
0,1y 1= C’g_l, define r, = (ré(ll), .. ts(f ,l)) € A,ICV;

Since the increments of (4 in the characteristic function xy , are i.i.d., a further

averaging may be introduced in which the group A ,’(V ;1 acts on a substring of the product
measure. In general, let P(x) be a continuous function of x and let its characteristic
function be

x(&) = EuE’N [ec(P(x))]. (49)
Then

X () =E ox [EfeA,g; [es (P(z - z))]} : (50)
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Writing T = (1(1), 1(2), o L(nfl))’
X () =E e [Eﬂl)ecgﬂ B ey [ee (P(z - £))]] ) (51

Moving one ) to the inside at a time and applying Cauchy—Schwarz to the inner
expectation recovers the Gowers—Cauchy—Schwarz inequality:

n—1
@ <Een [E o lec| D CDMP@on )] 6D
" sef0,1}n-!

In the case x (§) = xn,.(§), denote the right hand side F (S, uw; A,ICV;Z)
A basic lemma, which generalizes Lemma 24 of [20], is as follows.

Lemma7 Let N,N' > 1,letk > 1andn > 2 be suchthatknN' < N. Let x € (R%)N
and let A,]X ;l act on the substring of x with indices in range, for some offset o > 0,
[o+ 1,0+ knN']. Define for 1 <i < nN/,

ik
w; = Z Xo+j- (53)

j=Gi—Dk+1

/ .
Forany ), 1, € A,lcv ., the summation formula holds,

DG DL ¢ K C )

sc{0,1)1
v

=Y | D oI @it ow)) (54)
i=1 \sel0,1}—1

while for all n’ < n,

>, e - x=o0. (55)

scf{o,1}n—1

Moreover,

Y 0RO (1. o)

s€{0, 11

_ DY (DI (@1 o) T T = ()
0 otherwise ’

(56)
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In the (1)"~ ! case, the sum is a vector whose coordinates are non-zero multilinear
polynomials in (a)il), a)él), el a),(,l)).

Proof By the degree bound, all monomials appearing in I1"/) have homogeneous
degree at most n, and hence degree at most n. Given any collection of m < n indices
ki < ky < --- < ky,, if there is any bit b € C'z’_1 of Hamming weight 1 such that
Tz, and T, acton ky, ..., ky, leaving them in the same relative order, then by the
invariance principle any monomials associated to these indices in the alternating sum

G DL s C M) (57)

sc{0,1}7—1
cancel. In particular, this occurs if m < n, or if the indices k] < kp < -+ < k, are
not acted on by the same factor of C;fl in A,?{ . Orif ki, ka, ..., k, do not appear in

distinct blocks in the action, or if the corresponding factor of 7, and 7; do not add to
the all 1’s element. In particular this proves (55).

Since the only surviving monomials have degree n and homogeneous degree n,
the surviving variables are all from the first level of the filtration x") and all of
the monomials are linear in each variable. By the invariance principle, the surviving
polynomial is in fact a polynomial on the sums w1, w2, ..., @;,.

The formula (56) is immediate. To prove that the (1)1 case of (56) is non-
vanishing, in the case k = 1 let g; = exp(w;) € G. The sum

> =IO @ (i, o) (58)

reCS’l
is equal to the X /) coordinate in the logarithm of the iterated commutator

[---[[lg1, g2], &3], 84], ..., gul. (59)

To verify this by induction, note that the commutator may be calculated in G,/ G, +1,
which is abelian, and depends only on g, in G1/G2, so that the calculation may be
performed by truncating the Baker—Campbell-Hausdorff formula at the first commu-
tator.

Since commutators of the type (59) generate G,,, it follows that (58) is non-zero. O

Given probability measure i on G, let i, be the probability measure on G,, /G +1
with distribution

[---llg1. g1, 831, ..., &), & iid . (60)

Thus @1 = pap, and for n > 2, u, has distribution given by

Y I @, @) (61)

n—1
teC,
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in which the w; are drawn i.i.d. from uy. Given & m e Gn//G\,,H = gﬁgn\ﬂ denote
the characteristic function of u, by

Fue (§7) = it (). (62)

Lemma8 Let2 <n <s,k,N >1,andlet N > knN’. Let Aliv;l act on a substring
of x € RN as above. Let & € § satisfy €9 = 0 for all j > n. Then

: I Re[F, . (EM]\"
F(g,u;A;jn):(]—zn_lJr [ ;_"I(S )]> . (63)

Proof The expectation factors through the product structure of A,](v ;l due to the summa-
tion formula (54). In the expectation over A,I{V ;l the probability that 7o ; +11,; = (1 yn—l
is and conditioned on this, the expectation over the corresponding block is

1
n-T>

(—1)lwo.il F, o (E (”)). The real part occurs since conditionally, |7 ;| has parity O and
1 with equal probability. O

4.2 The Cramér condition

A probability measure v on R™ has characteristic function ¥ satisfying the Cramér
condition if there exists 0 < € < 1 such that

sup [P <1 —e (64)
geR™ |5]1>1

The condition is equivalent to the statement, for all r > 0 there exists 0 < €(r) < 1
such that
sup  [D(E)| < 1 —€(r). (65)
§ER™ |§]>r
The equivalence may be checked by noting 1 — [D(§] +&)| < 22— DD — V(€]
see [27] p. 183, where the proof does not use that the probability measure has finite
support.

Lemma9 Let u be a centered probability measure on G satisfying G = (supp i),
whose abelianization [, has characteristic function satisfying the Cramér condition.
Foreach?2 < n < s themeasure p,, on G, /G4 has characteristic function satisfying
the Cramér condition.

Proof Write

[---[lg1. 821, 83), ..., gnl mod Gy = (A(g1.82,---, 8n—1): &)  (66)

in which A(g1, g2, ..., gn—1) is a linear map from Gy, to G, /G, 41. Recall that A
itself is multilinear in g1, g2, ..., gu—1 mod G3. Given & € G, /G +1, |I€]l = 1 one
has
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E(---[lg1 g21. 831, ..., 8nD) = (- A(g1. 82, ... &n—1)) (&n) - (67)

Since the semigroup generated by supp g, is dense in Gy, and since G, =
[Gn—1, G1] is equal to the set of commutators of the stated type on G, and since

A is multilinear, it follows that & does not annihilate A(gq, ..., g,—1) with positive
probability, and hence for some » > 0, ||§ - A(g1, &2, ..., &n—1)| > r with positive
probability. Integrating, this suffices to obtain the Cramér condition. O

In the case that [i,, satisfies the non-lattice condition, for all 0 # & € éab,
|flab ()| < 1, the same proof yields that fi, is non-lattice.

Lemma 10 There is a constant ¢ = c(ju) > 0 such that, for each 1 < n < s, for all
&M £ 0, when k is assigned by the rule

1 7 ™| <1
k= \‘HE(MH’%J ”E ” , (68)
L, Je™ ] >1

one has |F & (S(”))| <l-—c.

n,pu
Proof For any fixed r > 0, for “f(”) H > r this follows from the Cramér condition.
Otherwise, using the description (56), it follows from the functional central limit
theorem that when x is drawn from (u**)®",

—

il > (=nlflr ™) (69)

n—1
teC,

converges to a continuous probability density. Since |£™ | < k%, the claim follows.
2
O

In the case that [, is non-lattice, the same conclusion holds when & ™ is restricted
to any compact set, with a constant ¢ which possibly depends upon the compact set.

5 Estimates of moments

Throughout this section p is a centered probability measure on G.

Lemma 11 Letm,n, N > 1and suppose that . has 2mn finite homogeneous moments.
For all generalized U -statistics Uy of homogeneous degree n,

E o [|Ua™] < Opmn(ON™. (70)

Proof Let a be the number of indices in m, of homogeneous degree 1, and note that
n 2 a+2(r —a) = 2r —a. On expanding ‘Ua ()_C)’zm and performing expectation,
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any monomials that have indices which appear with homogeneous degree 1 have
expectation 0. Those remaining monomials have homogeneous degree at least 2 in
every coordinate upon which the expectation depends, and hence have expectation
O,.,mn (1) by the moment condition. The total number of indices which may appear
in such a monomial is at most (2m)(r — a) + am < nm. Counting the number of
monomials with non-vanishing expectation by letting L be the number of indices
appearing, the expectation is bounded by

nm

E[|Ua@["] < 0 () )3 ( )LZ"" < Oun(ON™. (71)

m}

Lemma 12 For each A, 5 > O there is C(A, §) > 0 such that, if u has C (A, d) finite
homogeneous moments then

u®v {max Hn“”m” . N5} Op.ns (N’A>. (72)
Proof If p has 2mn homogeneous moments then the estimate
2m
. [HHW@ | ] < Oun(ON™ (73)

follows by repeatedly applying the power mean inequality to first estimate E[ || 1" || 2]
in terms of moments of the individual coordinates E[| 1"/ (x)||?”"] and then in terms
of the moments of individual U statistics of homogeneous degree at most n, to which
Lemma 11 applies.

The claim now follows by taking a high enough moment and applying Markov’s
inequality. O

Lemma 13 Letm > land 1 < n < s, and assume that u has 2mn finite homogeneous

moments. For all N’ <N, when X = xo D x, is the concatenation of strings of length
N and N — N’

t [0 1 [*] < o (). o

Proof By repeatedly applying the power mean inequality it suffices to prove, for any
generalized U -statistic

Ue)= Y. H [T (= ”)ak) (75)

1<l <ly<--<ty k=1 (i, j)ESk
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of homogeneous degree at most 7, the estimate
2m mn N'\"
E,on [ |Ua@) = Uaa) "] < OpnnON™ () - (76)

Define polynomials, for 1 < a < r, U(g’“, ule,

0,a _ 2y
verw= > 1T (%)
1<l <ly<<ly k=1 (i,j)eSk
@.j)

view= Y I1 I1 (&) . )

ISl <by<<la k=1(i,/)ESr—atk

and also, make the convention that U = U0 = 1. Hence,

r

Ua(x) = Ug(x,) = Y U (xg) UL ™ (x,). (78)

a=1

Applying the power mean inequality one further time, it suffices to prove the estimate,
foreach1 <a <r,

UL (x) UL (x,)

2m N\™
] < Ou,mn(l)Nmn <W> . (79)

2m E
=]

the claim follows from Lemma 11, since, foreach 1 <a <r,

Eug;w |:
Since

E o [ U @)Uy (x,)

2m _ 2
US’“(&))‘ ]Eﬂngv/)[’Ué’r “(x,)] m]
(80)

hom-deg(U2%) + hom-deg(UL" ™) < n,  hom-deg(UL" ™) <n—1. (81)

O
Denote IT; (x) the part of IT(x) which depends on x;. Set

n¥w. 073w (82)
the part of IT;(x) which is of homogeneous degree < 3, respectively > 3 in x;, and

ford =1,2,3, H?()_c) the part of IT;(x) which is of homogeneous degree d in x;.

Hj’(") denotes the part of 1'[7 at level n. Use the same notation with IT replaced with
a U-statistic Uy,.
Recall that 1, is the measure of the continuous density ¢.
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Lemma 14 Assume that w has at least 6s homogeneous moments. Let N > 1, 1 <
J<N andﬁ = /L®(j*1) ®M§(N_l+l) orp = M®j ®M§(N_‘/). Fork =1,2,3, and

m < 3,
2m 5
Eu[(s M) ] = 0, (Z ||se||2mzv“—k>m) (83)
L=k
and
2 S
EM[)E 7| } =0, (Z ||se||2zv‘—4> . (34)
(=4

Proof By the power mean inequality, then Cauchy—Schwarz,
k 2m $ ) k.(0) 2m
By |[g - mho| " | < R, | MO
=k

) 0 [ R
=k

Applying the power mean inequality several further times to first replace % ® with
its individual coordinates, then with an individual generalized U -statistic reduces to
proving the bound for a U-statistic U, of homogeneous degree ¢ > k,

E, UU(’;J@)’M} ~0, (N“’k)’”) . (86)

Let x(, x, denote the substrings of x prior to j and after j respectively. The claim
follows from Lemma 11 after factoring

UL ;0 = Uiag)m () Ua(x,) (87)

where m is a monomial of homogeneous degree k and U; and U, are U-statistics
satisfying hom-deg(U;) + hom-deg(U>) = £ — k.
The proof of (84) is similar. O

6 Proof of Theorems

The following lemma is used to truncate in frequency space to the scale of the distri-
bution.

Lemma15 Let N > 1, A > Oandlet1 > €] > € > -+ > € > €541 = 0bea
collection of constants satisfying for all 1 < n <s, €, > ne,+1. Suppose that | has
C (A, €) finite homogeneous moments for some constant C(A, €) > 0. If

max { HS(")

N%—fn:lgngs} >, (88)
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then | XN, (§)]l = Ou.a,e (NiA) :

Proof Letn be maximal such that HS ) || Ni~é > 1.Ifn = s,set N = N, otherwise,
set N/ = LNI_ETH_e"*' . Let x, and x, be strings of vectors from R? of lengths N’

and N — N’ and let x = x;, @ x, be the concatenation. Let

N

B = Y £V .1V ). (89)
j=n+1
Denote Toyn—1(x) = Zﬁ”;g ! M the degree 2m — 1 Taylor expansion of ¢27* and
recall that Taylor’s theorem Wiﬂ{l remainder gives
2mwix (an)Zm
[ Tom 1) — 277 < 222, (90)
2m)!

It follows that
XN.u (E)

n N
=Eov | [Tecn MV @) [T eco M@ 721 (Bns1 @) — Enri,))
j=1 {=n+1

+ On (Eyon [|En1 @) = Bann )] 1)

By Lemma 13 and Holder’s inequality, if © has sufficiently many homogeneous
moments,

\)
— _ 2 . .\ || 2m .
E,on [|Brn10) = Buri )] < 3 6] MO0 vy

j=n+1
s i 2m
< Z (N7%+E-") Nm(jfl)(N/)m
j=n+1
S
< Y NmCaTRan), (92)
j=n+1

Since each exponent is negative, the sum may be made O 4, ¢ (N _A) by choosing m
sufficiently large in terms of A and €.

Expand T2,,—1 (En+1 (x) — Eng1 (iz)) into monomials of degree bounded by (2m —
1)s with coefficients of £! normboundedby <3 N2.Set N| = {%J .Givenatypical

monomial M, let[J + 1, J 4+ Ni] be a set of indices from [1, N'] which does not meet
M.
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Define,

1 ™| <1 N
k= {MWW%J’ LA N{:{%iJ. (93)
n
1, €™ > 1

N! Z1N . o .
LetA, il = (CE’ 1)Nl acton the substring [J+1, J+ Np] as described in Sect. 4. Since
the monomial M is invariant under the group action, its contribution to the expectation
(91) is given by

N n
S (W) N2
E, oo |M ] ecor@MP@OE, oy Eren,, |[ecn M@ 2))
j=n+1 Jj=l
(94)

By Cauchy-Schwarz,

(O <E, oo, [1M]
1

2

n
/ / .
By g By e | Breac, [Teco M@ x)

j=1

Bound the first expectation by a constant. In the case n > 2, apply Gowers—Cauchy—
Schwarz to bound the second expectation, using Lemma 8 to evaluate the expectation
that results. In either the case n = 1 or n > 2, it follows from Lemma 10 that

N

1B @™
2n—1 2n—1

10HPF <, [1- <uexp(=CN}). (95

Since

N % n €n
Ni > 55> min <1’ & ) NI N (96)
tends to infinity with N like a small power of N, the exponential savings dominates
the polynomial bound on the coefficients of the monomials, which proves the lemma.
]

Recall that ¢ = ¢(u) has been fixed as in Lemma 3, such that ¢ is a continu-
ous, compactly supported density, ¢(e) > 0 with first three homogeneous moments
matching those of n. The following Lindeberg exchange lemma approximates the
distribution of p*V with that of /L:;N .

Lemma16 Let N > 1. Let 1 > €1 > €3 > -+ > €5 > €541 = 0 be a collection of
constants satisfying forall 1 < n < s, €, > ne,41. Assume that

max { HE(")

N%ﬂzlgngs}gl. 97)
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Then
() = a0, )] = O, (NT1HOE). 98)

Proof Define
Aj = Eufj@)u?(g’v_") [es(TT(x)] — Euf('/_l)®u§(gN_"+'> [e (TT(x))] 99)

so that, by the triangle inequality,
N
XV &) = xn g, )] <D 1A (100)
j=1

For 1 < j < N bound, moving expectation against x; to the inside and using the
triangle inequality,

(101)

Ail <E gi-1 N—j
A < 8U=D g ON=1)

/eg(nj(i))dug(xj) —/es(nj(i))fﬂg(xj)dxj
g g

Using |e(x) — e(y)| < 2m|x — y| and the triangle inequality, the right hand side is
bounded by a constant times

Eyousg o [B P[]+ B 1700

[ e (7)) dusgx) = [ ee (15°) vt ] .
g g
(102)

E &i-1 N—j
+ uff(’ )®u% 7

Note that 1'[5.")’>3 is of homogeneous degree < n — 4 in the variables other than x;,

while ||| < N~2%¢. Thus, by Cauchy—Schwarz and (84) of Lemma 14, the top
line is 0, (N~2F0(D),
By Taylor expansion,

e (NP ) = 1+ i2ns - M@ - 3 (2x6 M) - & (2n6 -1} )’
+i2mE (0 — 47 (€ - @) (¢ - ) + 276 - 1T (x)
4
+0(\s @[ +(1+1e mF) (18 M@+ n;wﬁ)).
(103)

Since the main term has homogeneous degree at most 3 in x;, and since the first three
homogeneous moments of 1 and j, agree, the integral of these terms cancel. In the
error term, separate | - H}(QP from |& - H?(QF and |& - H?()_c)|2 with Cauchy—
Schwarz. Now applying (83) of Lemma 14, the error term is bounded in expectation
by 0, (N72T0D) as before. O
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Proof of Theorem 1 Let f be the Lipschitz, compactly supported test function of the
theorem, let fg be the push-forward by the logarithm map to the Lie algebra, and
identify fy as a Lipschitz function on RY. By [3] Theorem 1.9.1, integrating the
pointwise approximation to the heat kernel u ,

(LeRf i) = (LeRaf un)+ 0 (1F1NTF). (104)
Thus it suffices to show that
Lokt ™) = (LeRn oz} = 0u (IFINT5)+0ua s (N4 (105)
As in Sect. 3.3, let p, , and g, 5 be polynomials such that
=logg*x xlogh = pyp(x), x=qenkx). (106)
Thus
(LoRaf. ™) = /G F(gxmydp*N (x)

:/ fa (log g % TI(x) % logh) du&™ / fa(PenM@Ndud™
B
(107)

First consider the case that ht(gg ) > N € for a constant C depending at most on
D, and A. Let for some B > 0, supp f3 C [—7, 7](], let § > 0 and let

Senall = 11 € —E-E‘ﬁnmquw N—%}<N‘S (108)
sma. 2 ’ 2 . n g,h X .
If C is sufficiently large then Lemma 6 implies that
meas(Syman) = 0,5 (N4). (109)

with the dependence on f arising from dilating the box [—2, £]% to [-1, 1]%. Let

f = fl +f2,Wlth fgvl = fglssmall'Use

I fillh < I f lloo meas(Ssman) (110)
and hence
(LoRnfi, V) (LoRifi, 1) = Oap (N4 (a1
Meanwhile, by Lemma 12,
M®N{nmx{HH“”u)HN_%}>>N6}::0%A<N_A>, (112)
n
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and similarly for 1,,. Since x" € supp f\Ssman implies that

nmx{HxW> N’%}>»N5 (113)
n

it follows that
(LoRi for k™), (Lo R fo, 1Y) = Oa s (N4). (114)

Together (111) and (114) imply Theorem 1 in this case.
Now suppose thatht(gg ;) < N€ sothat ht(pg.n) K N€ forsome C’ > 0.Leto be
acompactly supported bump function on R? with dilation, for¢ > 0,0;(x) = t90 (tx).

Let fy; = fg * o be the Euclidean convolution. Choose t > | f ||1_1N o so that

H fa— fg’t”oo < ||f||1N’%. It thus suffices to prove (105) with f replaced by f;.
Expand, using the Fourier transform,

LgRufoo )= | for (logg * T(x) * logh) dug™ (x)
a¥ !
= f LeRnf ¢ (§E, on [es ()] dé. (115)
9

Since the test function fj, is smooth, the integral converges absolutely.
Lete; > e > .-+ > € > 0 be a collection of constants as in Lemmas 15 and 16.
Define

Esman = {E €g: max{Hg(n)

N%ﬂzlgngs}gly (116)

Thus meas(Egman) < N—2+0(n), Apply Lemma 15, and Lemma 5 with n = g + 2,
to obtain

/E  LeRif g &) xn.u(E)dE

c
small

<

XN,;/,|Er

small

EC

small

HLthfg,t =OuAers (N_A)- (117)
o0

1

Thus

(LeRafio ™) =Opncr (N74) + / LeRif o, ©xnu@ds,  (118)

Esman

and similarly with p replaced by 1.
On the remainder of the integral, apply Lemma 16 to obtain

/E LRt 5., ) (v ®) = X0, ) ds‘
small

| Esmall

<UL | G, ®) = a1, ©))

meas(Esman)
00
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D+2
Ly I fIINF 0D, (119)

Choose ¢ sufficiently small but fixed so that the error term is O ( IfhN _DTH>,

which proves Theorem 1 in the remaining case.

Evidently the argument presented requires only finitely many moments of the mea-
sure w, but how many? To gain convergence in the Fourier integral (117) it was
necessary to integrate by parts n = g +2 times, which costs a factor of ht(p, p)@ra D),
Hence the number of moments depends on A, the dimension g and the step s, and
hence is controlled by A and the homogeneous dimension D. O

To obtain Theorem 2, approximate fj; from above and below in L' by functions
having Fourier transforms of compact support. The argument in the small height case
then goes through as before.
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