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Abstract. In order to prevent and/or control infections it is necessary to understand their early-time dynamics.4
However this is precisely the phase of HIV about which the least is known. To investigate the initial5
stages of HIV infection within a host we have developed a multi-type, continuous-time branching6
process model. This model is a stochastic extension of the standard viral dynamics model, under7
the assumption that the number of cell targets for viral infection is constant. We use our model8
to investigate three important clinical characteristics of early HIV infection following intravenous9
challenge: risk of infection, time to infection clearance (assuming failed infection), and time to10
infection detection. Our focus is on the impact of errors in viral replication that result in non-11
infectious virus production on these characteristics. Only a small fraction of circulating virus in12
any chronically infected individual is capable of infecting susceptible cells: estimates range from13
1/104−1/103. Characterization and quantification of the processes by which virus becomes defective14
remains incomplete. We consider two mechanisms that result in defective virus: (1) Copying errors,15
i.e., lethal errors in reverse transcription, which introduce mutations into the HIV-1 proviral genome,16
some of which may cripple the viral genome produced, and (2) Packaging errors, i.e., errors during17
viral packaging, at the end of the viral replication cycle, which cause defective virus by packaging18
new virions without, for example, viral RNA or key proteins required for infectivity. We show that19
assumptions on mechanisms of defective virus production can significantly impact early HIV infection20
model predictions. For example, the risk of infection is orders of magnitude higher if all defective21
virus is associated with packaging errors, but infection is predicted to be detectable sooner following22
HIV exposure if all defective virus is associated with copying errors. Thus, in order to make reliable23
predictions of risk, clearance time, and detection time, better characterization of viral replication is24
required.25

1. Introduction. HIV populations in chronically infected individuals are heterogeneous.26

HIV is constantly evolving, with different viral populations competing to become the dominant27

strain. But surprisingly, only small fraction of circulating virus in any infected individual is28

capable of infecting susceptible cells: estimates range from 1/104 − 1/103 [9, 46, 60, 79]. Our29

aim is to investigate the effect of non-infectious viral production in the earliest stages of HIV30

infection.31

Within-host events following exposure to HIV are critical in predicting whether infection32

will occur. We know from epidemiological studies that the probability or risk of infection is33

low, on the order of 0.1%–1% per sex act, percutaneous needlestick, or needle-sharing drug34

use [47, 74]. Further, from phylogenetic studies, we know that many infections arise due to35

expansion of a single viral strain [39], called the transmitted/founder virus. However, direct36

investigations of the early events in human or animal model infections are very difficult because37

viral and infected cell populations are very small. Mathematical modeling can be invaluable in38

investigating the earliest phase of infection, but it is important to understand how underlying39
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model assumptions such as viral infectiousness affect modeling predictions.40

Infectious fractions ranging in 1/104 − 1/103 [3, 46, 60, 79] are in vivo estimates based41

on viral samples taken from chronically infected individuals (a recent study suggests that42

that fraction may be larger than previously thought [73]). Though quantified through a43

simple fraction, non-infectious virus can arise through a number of mechanisms, such as host44

antibodies binding of viral surface proteins necessary for viral entry into a target cell. Here we45

focus specifically on viral replication errors that give rise to non-infectious virus. The reverse46

transcription step of viral replication, when the RNA of a virion that has penetrated its target47

cell, gets copied into DNA, is error prone - mutations, including insertions, deletions, and48

base substitutions [31], are introduced in vivo at a rate of ∼ O(10−5) per base per replication49

cycle [1,57,58] (the HIV genome is roughly 104 bases long). Frameshift mutations can also be50

introduced into the HIV-1 proviral genome [1]. Mutations are the primary driver of escape51

from cytotoxic T lymphocyte (CTL) responses and to the generation of drug-resistant viral52

strains. They can also fatally cripple the proviral genome so that any viral genomes produced53

by the provirus will not be infectious [22, 31]. Virus may also be rendered non-infectious54

by errors in virion assembly and packaging. For instance, to be infectious, virions must be55

packaged to include two RNA molecules encoding functional virus as well as the HIV enzymes56

reverse transcriptase and integrase and have sufficient surface proteins (gp120/gp41) necessary57

for viral binding and entry into target cells [51].58

Our aim in this paper is to investigate how assumptions on viral replication errors leading59

to non-infectious virus affect predictions with regards to important variables in the earliest60

stages of HIV infection: (1) Risk of infection, i.e., the probability of becoming infected after61

exposure to a viral inoculum. Interventions such as prophylactic use of antiretroviral drugs62

(pre- or post-exposure, PrEP or PEP) [23,48], male circumcision [5], immunization [36], all aim63

to reduce risk. Therefore modeling predictions of risk can be of great value and clinical use.64

(2) Time to infection clearance, and (3) time to infection detection, in the case of unsuccessful65

or successful infection respectively. Obtaining these time distributions can help us characterize66

the course of early infection. They can also be of direct clinical use. For example, distributions67

on time to detection can offer some guidance for HIV testing windows [7, 67]. We investigate68

these measures in the context of intravenous exposure to HIV, i.e., via occupational needlestick69

exposure or intravenous drug use, where a well-mixed model with no spatial structure most70

likely applies.71

Deterministic (differential equation) models have been very effective in characterizing HIV72

infection, for example in determining viral and infected cell clearance times [71]. Variants of73

the now-standard viral dynamics model, first developed to investigate HIV [65, 69, 71] have74

since been used to gain insight into a multitude of viral infections, including dengue [15],75

West Nile virus [6], cytomegalovirus [21], hepatitis B [64], hepatitis C [63], influenza [4,27,32],76

and Zika [2, 8, 66]. From a mathematical perspective, differential equation models represent77

average behavior of a system and are appropriate when numbers are large, as viral loads and78

infected cell concentrations certainly are in HIV chronically-infected individuals. Here we are79

interested in the earliest stages of HIV infection, when numbers of virions and in particu-80

lar infected cells can be quite small. A stochastic approach is therefore more appropriate:81

stochastic models can give varying predictions in regimes where deterministic models, focus-82

ing on mean behavior only, cannot. For example, predictions on risk of infection - inaccessible83
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via differential equation modeling - is different if viral production is assumed to be continuous84

through an infected cell’s life, or to occur in a burst at the end of the infected cell’s life, for85

the same mean number of virus particles produced [68].86

Our stochastic model will be built upon the standard viral dynamics model [70,71], involv-87

ing cells susceptible to HIV infection, infected cells, and virus only. This simple model ignores88

spatial effects, the effects of long-lived and latently infected cells, which may affect long-term89

dynamics of HIV infection, as well as the possibility of cell-to-cell infection [24]. The model90

also ignores the delay from the time a virus enters a cell until it begins producing virus, i.e.91

the eclipse phase, although this can be included in the model [18,20,30,61]. Further, since we92

focus on the earliest stages of HIV infection during which time very few cells become infected,93

we will consider no immune response and ignore dynamics in the number of susceptible cells.94

By keeping the number of susceptible cells, i.e., target cells, constant the dynamical equations95

become linear and more amenable to analysis, although we recognize that in certain spatial96

locations target cells may be limiting and need to be accounted for in spatial models. We are97

interested in quantities such as risk of infection, time to viral clearance, and time to detection.98

Our model is best suited to gain qualitative insight into these quantities, for example, the rel-99

ative impact of assumptions on mechanisms producing defective virus on these quantities. To100

get at the early infection quantities of interest, we will extend stochastic approaches used101

in our recent theoretical studies [17, 18, 68], which themselves build on previous stochastic102

modeling literature [29, 50,82,85].103

We formulate our stochastic model as a multi-type branching process [28,37,41]. Branch-104

ing process models have long been used to investigate and model biological processes as they105

are simply expressed, and yet include noise inherent in any biological system. Multi-type106

continuous time branching processes, have been used to gain insight into, for example, fluc-107

tuation theory [41], carcinogenesis [53, 62], cellular processes [55, 56], immunology and T-cell108

population dynamics [77], population dynamics and ecology [26, 44], and epidemiology [35].109

Our own recent modeling of within-host HIV dynamics [17, 18, 68], which we extend in this110

present study, relied on much of this previously developed theory.111

The structure of this paper is as follows. First we give a model overview. We then offer112

details on the calculations of risk of infection, time to clearance, and detection time, and give113

related results. Finally we discuss the results and their broader implications.114

2. Viral dynamics model. Our basic mathematical model of early HIV infection is pre-115

sented schematically in Figure 1(a). There are four compartments: infectious and non-116

infectious virus, V and Vd, respectively, infected cells, I, and infected cells that produce117

only non-infectious virus, Id. Since non-infectious virus is sometimes called defective virus,118

we use the subscript ‘d.’ There may be a continuum of infectivities across virus within a host,119

if we consider variation in envelope protein, but for simplicity we consider only the infectious120

and non-infectious extremes.121

Infected cells I and Id produce virus at rate p. Virions V and Vd are cleared at rate c.122

We assume mass-action kinetics for cell infection: Infectious virus V , infects target cells, T,123

at a rate proportional to their product, with proportionality constant k. We assume T to be124

constant, a necessary assumption since we wish to focus on specific mechanisms pertaining to125

viral replication rather than target cell limitation. We note that this assumption is probably126
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biologically reasonable for intravenous infection since very few cells are infected relative to the127

total number at risk during the earliest stages of HIV infection. Thus in our model, infectious128

virions make new infected cells at rate kT . Infected cells I and Id die at rate δ. In principle,129

rates associated with infected cells Id may differ from those associated with infected cells I.130

However, there are no estimates or qualitative studies to give us insights into how they may131

differ. We therefore make the simplifying assumption that rates associated with I and Id are132

the same.133

Mathematically speaking, the events we model - viral production and clearance, cell infec-134

tion and death - are independent. In the standard model (cf. eq. (SM1)), cell infection is not135

an independent process, as it depends on the density of both virus and target cells. However136

since we make the assumption that the target cell population remains approximately constant137

at the earliest stage of infection, the target cell count is no longer a dependent variable, and138

each virion can infect a cell or clear independently of the remaining viral or infected cell pop-139

ulations. The constant target cell assumption is therefore required for independence to hold,140

and permits the use of branching processes.141

Our focus is on errors in viral replication that result in non-infectious virus. There are142

two such mechanisms: lethal reverse transcription (copying) errors and packaging errors. Re-143

verse transcription, or copying, errors introduce mutations into the HIV-1 proviral genome,144

some of which may cripple the viral genome produced in any of multiple ways, e.g., by the145

introduction of stop codons, large deletions or frameshifts. This can be exacerbated by the146

cellular antiviral enzyme APOBEG3G, that induces hypermutations in HIV DNA during re-147

verse transcription [87,88]. These are our lethal copying errors. Because the host polymerase,148

which transcribes the HIV proviral genome into viral RNA, does so with high fidelity (error149

rate 10−9 per base pair per year [45]) we assume that cells with a crippled proviral genome150

only produce non-infectious virions. Packaging errors occur at the end of the viral replica-151

tion cycle, during the packaging step: for example, virions may be packaged without RNA,152

without HIV enzymes such as reverse transcriptase, protease or integrase or with insufficient153

surface proteins (gp120/gp41) necessary for viral binding to target cells [51]. We’ll assume154

these packaging errors occur at random in any produced virion.155

We consider two classes of mutation.156

1. Mutations that affect all virions produced by an infected cell equally. These are157

the reverse transcription or copying errors. In our model, the probability of a lethal158

copying error is 1−Qc, where Qc is the probability of no, or non-lethal, copying errors.159

Therefore, new cell infection (at rate kT ) yields160

• an infected cell I, containing an infectious proviral viral genome, with probability161

Qc, or162

• an infected cell Id, containing a non-infectious viral genome, with probability 1−Qc.163

2. Mutations that affect individual virions produced by an infected cell. These are pri-164

marily routine packaging errors. In our model, the probability of a packaging error is165

1−Qp, where Qp is the probability of that a virion is correctly packaged. Therefore,166

for infected cells I, viral production (at rate p) yields167

• with probability Qp, correctly packaged - and therefore infectious - virion V168

• with probability 1−Qp, incorrectly packaged - and therefore non-infectious - virion169

Vd170
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Figure 1. Model schematics: (a) Basic model, (b) reduced model. I represent infected cells, V virions, with
Id and Vd representing defective infected cells and virions respectively. Each infected cell, I or Id, dies at rate
δ or produces a virion at rate p. Non-infectious infected cells Id produce only non-infectious virus, Vd, while
infectious infected cells I may also produce infectious virions, V , with probability Qp. The dashed line indicates
viral production without loss of the virus-producing infected cell. Each infectious virion, V , infects a target cell
T with mass-action infectivity k; the newly infected cell is infectious, I, with probability Qc and is otherwise
non-infectious, Id. Note that the number of target cells T is held constant. In the reduced model (b) we neglect
the dynamics of non-infectious cells and virus, Id and Vd.

All virus produced by infected cells Id are defective. Note that the mean number of infectious171

virus produced by infected cells I is Qpp/δ where p/δ is the average number of virus particles172

produced during the infected cell’s lifetime (1/δ), commonly called the “burst size” irrespective173

of whether the virus is produced continuously, as assumed here, or in a burst.174

3. Mathematical approach. Traditionally mathematical modeling of viral dynamics takes175

a deterministic, ordinary differential equations approach. However since we seek to investigate176

events in early HIV infection, it is necessary to use a stochastic approach (see section SM2177

for discussion).178

The modeling framework we will use is continuous-time branching processes [28, 37, 41],179

extending previously-developed theory [17,18,68]. For our model shown in Figure 1(a) define180

Pn,v,m,w;n0,v0,m0,w0(t) = P (I(t) = n, V (t) = v, Id(t) = m,Vd(t) = w181

|I(0) = n0, V (0) = v0, Id(0) = m0, Vd(0) = w0)182183

as the probability that at time t there are n infected cells, v infectious virions, m defective184

infected cells, and w defective virions, given that at time 0 there were n0 infected cells, v0185

infectious virions, m0 defective infected cells, and w0 defective virions.186

For the purposes of computing extinction probabilities we need not explicitly include de-
fective compartments (Id, Vd) - we need only consider the reduced model shown in Figure 1(b).
Infected cells produce (infectious-only) virus at rate pQp, and die at rate δ. Virions infect
susceptible cells T at rate k, producing infected cells at rate QckT .Virions are cleared at rate
c. Define for this reduced model

Pn,v;n0,v0(t) = P (I(t) = n, V (t) = v|I(0) = n0, V (0) = v0),

as the probability that at time t there are n infected cells and v infectious virions, given that187

at time 0 there are n0 infected cells and v0 virions. In the calculations that follow we will188
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6 J.M. CONWAY AND A.S. PERELSON

mainly use this reduced probability. The defective compartments will only be included in the189

of probability of detection calculation, since detection is of total viral load (V +Vd), assuming190

the defective virus still contains HIV RNA.191

We proceed by deriving the probability generating function differential equations for the192

probability Pn,v;n0,v0(t). We will use these to derive expressions for risk of infection and193

time to infection clearance. To derive the time-dependent probability of infection detec-194

tion, we use the extended equations and the associated probability generating function for195

Pn,m,v,w;n0,m0,v0,w0(t).196

3.1. Chapman-Kolmogorov differential equation and the probability generating func-197

tion. We begin with the backwards Chapman-Kolmogorov differential equation (bCKde) for198

the probability Pn,v;n0,v0(t),199

d

dt
Pn,v;n0,v0 =δn0Pn,v;n0−1,v0 + pQpn0Pn,v;n0,v0+1 +QckTv0Pn,v;n0+1,v0−1200

+ (1−Qc)kTv0Pn,v;n0,v0−1 + cv0Pn,v;n0,v0−1201

− ((δ + pQp)n0 + (kT + c)v0)Pn,v;n0,v0(1)202203

with initial condition Pn,v;n0,v0(0) = δn,n0δv,v0 . The derivation of the bCKde is given subsec-204

tion SM3.1.205

Define the probability generating function (PGF) Gn0,v0(x, y; t):206

(2) Gn0,v0(x, y; t) =
∞
∑

n=0

∞
∑

v=0

Pn,v;n0,v0x
nyv.207

We use the generating function because its derivatives give us individual probabilities and208

moments. For example, the marginal probability distribution on the viral load is given by209

derivatives of Gn0,v0(1, y; t), and the mean viral load at time t is given by
∂Gn0,v0 (1,y;t)

∂y

∣

∣

∣

y=1
.210

Multiplying eq. (1) by xnyv and summing over the exponents, we obtain an equation for211

Gn0,v0 :212

∂

∂t
Gn0,v0 =δn0Gn0−1,v0 + pQpn0Gn0,v0+1 +QckTv0Gn0+1,v0−1213

+ (1−Qc)kTv0Gn0,v0−1 + cv0Gn0,v0−1214

− ((δ + pQp)n0 + (kT + c)v0)Gn0,v0(3)215216

with initial condition Gn0,v0(0) = xn0yv0 . We can reduce this infinite-dimensional system to a217

two-dimensional system by exploiting the branching property [37]: Gn0,v0 = (G1,0)
n0 (G0,1)

v0 .218

The branching property derives from our important assumption that cells and virions of each219

type behave identically and independently of all other cells and virions. We derive two ODEs220

from which we can recover the PGF,221

∂G1,0

∂t
=δ + pQpG1,0G0,1 − (δ + pQp)G1,0222

∂G0,1

∂t
=c+ kT ((1−Qc) +QcG1,0)− (c+ kT )G0,1(4)223

224
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with initial conditions G1,0(0) = x, G0,1(0) = y. We will use the PGF and the associated non-225

linear ODEs to compute quantities of interest such as risk of infection and infection clearance226

times.227

We note that the complete derivation of these equations for the probability generating228

function is similar to derivations for other models that rely on continuous time branching229

processes [28, 37, 41]. Different biological processes can be modeled in a similar manner. For230

example, in fluctuation theory [41] and stochastic models of carcinogenesis [53, 62], which fo-231

cus on initially-homogeneous cell populations that accumulate mutants over time, the primary232

“branching” mechanism is mutation. Continuous viral production in our model, (1), is de-233

scribed in the same way as cell division with one identical, and one mutant, daughter cell [41].234

Cell infection in our model is described in the same way as backwards mutation [41]. However235

to our knowledge, no biological processes have been modeled with the same combination of236

mechanisms (Figure 1) and resulting equations ((1) and (4)) as in this present study.237

4. Parameters. Baseline parameters for simulation results are summarized in Table 1.238

Table 1
Model parameters.

Parameter Description Estimate Reference(s)

δ Infected cell death rate 1 day−1 [59, 90]

p Viral production rate 2000 day−1 see text

c Viral clearance rate 23 day−1 [75]

Qc Probability of reverse varied, 10−2 − 1 see text
transcription leading to
infectious provirus

Qp Probability of correct varied, 10−2 − 1 see text
viral packaging

Q Infectious virion fraction 10−3 − 10−1 [54]
in inoculum

Rate parameters during the early and chronic stages of HIV infection may differ. However,
because there are few reported parameter estimates from the earliest stages of HIV infection
we mainly use estimates for their chronic infection counterparts. We use the mean lifetime of
infected cells (1/δ) estimate of 1 day [59]. Estimates on lifetime virion production (burst size)
from a single infected cell vary significantly, from a few hundred virions to tens of thousands
[13, 25]; we’ll use an mid-range value, B = 2000 virions, which gives us a virus production
rate p = Bδ = 2000 day−1. The viral clearance rate estimate we use is c = 23day−1 [75];
while this is an estimate from the chronic stage of infection, there is evidence that suggests
viral clearance is equally rapid during early HIV infection [90]. The infection rate kT we will
compute from the expression for the basic reproduction number

R0 =
QcQppkT

δ(c+ kT )
= Q̃Bγ,

where B = p/δ is the infected cell burst size, γ = kT/(c+ kT ) is the probability that a virion239

will infect a cell [68], and we define Q̃ = QcQp. Models that do not distinguish infectious from240
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8 J.M. CONWAY AND A.S. PERELSON

defective virus have R0 = Bγ (c.f. [68]) as they implicitly assume all virions are equivalent241

and infectious,i.e., Qc = Qp = 1. We will compute kT using within-host estimates of R0 for242

early HIV infection as discussed below [78]. Finally, estimates on the replication-competent243

fraction Q̃ = QcQp range from 10−4 − 10−3 for chronic infection [42, 60, 79]. There is some244

evidence this fraction is higher during the early stages of HIV and SIV infection [42, 54, 86].245

We therefore use the range 10−3 − 1 for each of Qc and Qp.246

We have not given estimates for the inoculum size N and the fraction of replication-247

competent virus in that inoculum Q. This inoculum related Q is distinct from Q̃, the fraction248

of replication competent virus produced by the newly-infected host. Our aim is to show that249

different mechanisms for production of defective virus can effect early-infection predictions250

only, so we will not explore sensitivity of our results to these parameters. An average inoculum251

size, or even a distribution on the inoculum size N , is difficult to determine, as it depends252

on exposure type, severity, and viral load in the HIV+ individual involved in the exposure253

or in a syringe if by needle stick injury. However epidemiological studies do estimate risks254

of infection averaged over all these exposures; the risk of infection from percutaneous needle255

stick, for example, has been estimated to be 0.3% [47]. As in a previous study [18], we will256

assume that exposures are uniformly distributed, and fit the maximum inoculum size to a257

desired risk of infection. Here we use an inoculum size of N = 1000 virions, within the range258

of inoculum sizes that give a risk of infection of 0.3%, corresponding to that of occupational259

exposure [47], if we assume that inoculum sizes are uniformly distributed across infecting260

donors (see subsection 5.3, below). And as briefly discussed above with regards to Qc and261

Qp, estimates on the replication-competent fraction Q during chronic infection range from262

10−4 − 10−3 [42, 60, 79]. For this present study we will set the replication-competent fraction263

of virus in the inoculum Q = 10−3, although as indicated in Table 1, Q could be as high as264

10−1.265

The basic reproduction number R0 is a key parameter in our model: it is the average266

number of new cell infections induced by an infected cell I during its lifetime 1/δ. R0 impacts267

the probability of extinction (risk of infection), time to extinction, and times at which the268

viral load will be detectable. We use the individual R0 estimates from [78], derived from viral269

load data obtained from 47 plasma donors, who were originally HIV− and became HIV+. We270

adjust these measurements to suit our model: the R0 values in [78] account for the delay τ271

between infection of a cell and the beginning of viral production. They measure the viral272

growth r and from their viral dynamics model show R0 ≈ (1+ r/δ)erτ , where δ is the infected273

cell death rate [78]. Since our model does not include the delay τ , the corresponding R0 for274

our model is R0 ≈ (1 + r/δ). We use the reported median R0 value, not accounting for the275

delay τ, R0 = 2.77, and the interquartile range (R25
0 , R75

0 ) = (2.28, 3.06).276

We are interested in how assumptions on different mechanisms for production of defective277

virus, either reverse transcription errors (probability 1−Qc) or packaging errors (probability278

1 − Qp) affect modeling predictions on the clinical outcomes of risk of infection, time to279

infection clearance, and probability of detection at time t. For the results we show, we focus280

on parameter regimes within which the product QcQp = Q̃ is held constant. We also hold281

R0 = Q̃γB constant, where B is the infected cell viral burst size, and γ = kT/(c+ kT ) is the282

probability that a virion will infect a cell. We choose R0 constant to focus on regimes where283

the deterministic model predictions would be constant (see section SM2 for details). As one284
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cannot simultaneously fix R0 = Q̃γB, B, Q̃, and γ, we allow gamma to vary. γ is a function285

of the infection rate kT (γ = kT/(c + kT )), for which we do not have a reliable estimate,286

even to within an order of magnitude. We choose the product Q̃ = QcQp constant to focus287

on regimes with constant total fractions of replication competent and defective virus.288

We present results as a function of the fraction of errors attributable to reverse transcrip-289

tion, which we call copying errors, relative to the total fraction of defective virus. This fraction290

is291

Copying error fraction = K =
1−Qc

1−QcQp
.292

The quantity K can be derived from the steady-state predictions of the standard viral dy-293

namics ODE model (see eq. (SM1) in section SM2). The steady-state fraction of defective294

infected cells is Id/(Id + I) = 1 − Qc, the copying error probability, while the steady-state295

fraction of defective virus is Vd/(Vd+V ) = p(1−QcQp)/(p−δ) ≈ 1−QcQp, since p ≫ δ. Thus296

K = (1 − Qc)/(1 − QcQp) can be interpreted as a potentially directly measurable quantity297

once the viral load set-point is reached.298

5. On risk of infection. The probability that infected cells/virus go extinct can be inter-299

preted in a clinically useful manner. Risk of infection, can be calculated as (1 - the overall300

probability of extinction (as time → ∞)). Reducing risk is the main goal of HIV prevention301

strategies.302

5.1. Calculation: Risk of infection from extinction as t → ∞. The probability that303

the infection is extinct at or before time t is given by Pext(t) = P0,0;n0,v0(t), since 0 is an304

absorbing boundary. Recall that Pn,v;n0,v0(t) = P (I(t) = n, V (t) = v|I(0) = n0, V (0) = v0),305

the probability that there remain n infected cells and v virions at time t given n0 infected306

cells and v0 virions at time 0. Expressing the probability of extinction Pext(t) in terms of the307

generating function Gn0,v0 in eq. (2),308

(5) Pext(t) = Gn0,v0(0, 0; t).309

We compute the risk of infection from the limiting probability of extinction P∞
ext. As t → ∞,310

P∞
ext = lim

t→∞
Gn0,v0(0, 0; t)311

=
(

lim
t→∞

G1,0(0, 0; t)
)n0

(

lim
t→∞

G0,1(0, 0; t)
)v0

312
313

with limt→∞G1,0(0, 0; t), limt→∞G0,1(0, 0; t) the stable fixed point of eq. (4),314

lim
t→∞

G1,0(0, 0; t) = G∗
1,0 =

{

1, R0 ≤ 1
δ(c+kT )
pkTQcQp

= 1
R0

, R0 > 1
315

lim
t→∞

G0,1(0, 0; t) = G∗
0,1 =

{

1, R0 ≤ 1
δ

pQp
+ c+(1−Qc)kT

c+kT
R0 > 1

316

317

where R0 is the basic reproduction number, R0 = QcQpBγ = pQcQpkT/δ(c + kT ). Recall318

that γ = kT/(c + kT ) is the probability that a single replication-competent virion infects a319
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cell [68], and that B = p/δ is the burst size. If Qc = Qp = 1, G∗
0,1 for R0 > 1 simplifies to320

1− (R0 − 1)/B, in agreement with Pearson et al. (2011) and Conway et al. (2013) [18, 68].321

Starting from a state with n0 infected cells capable of producing infectious virus, and v0322

infectious virions, the probability of extinction as t → ∞ in terms of γ and B is323

P∞
ext =

{

1, QcQpBγ ≤ 1
(

1
QcQpBγ

)n0
(

1
BQp

+ 1−Qcγ
)v0

, QcQpBγ > 1.
324

Now consider a virus-only inoculum as is typically used in non-human primate infection325

experiments. The key piece of information is the probability of extinction starting with a326

single infectious virion, i.e., v0 = 1 and n0 = 0. For R0 > 1,327

(6) P∞
ext =

1

QpB
+ 1−Qcγ,328

It is unlikely that any real viral inoculum will contain infectious virions only. We assume329

that given an inoculum of size N , each virion is infectious with probability Q, and use a330

binomial distribution. From the branching property - that is, the assumption that cells and331

virions of each type behave identically and independently of all other cells and virions - the332

probability that the infection will be extinct at time t, for an inoculum of size N , with each333

virion replication-competent with probability Q, is334

P∞
ext|N =

N
∑

ℓ=0

{(Probability that an inoculum of size N contains ℓ infectious virions)335

× (Probability that the infection goes extinct given an336

inoculum of ℓ infectious virions)}337

=
N
∑

ℓ=0

(

N
ℓ

)

(1−Q)N−ℓQℓ(
1

QpB
+ 1−Qcγ)

ℓ
338

=

(

1−Q

(

Qcγ −
1

QpB

))N

,(7)339
340

for R0 > 1. In the last step we noted that the sum corresponds to the binomial expansion of341

(1−Q (Qcγ − 1/QpB))N . Then risk of infection for an inoculum of size N , when R0 > 1, is342

(8) Risk = 1−

(

1−Q

(

Qcγ −
1

QpB

))N

.343

It is immediately clear that Qc and Qp have different effects on this risk, which we will explore344

in the following.345

5.2. Predicted risk of infection is lowered by copying errors . We begin by examining346

the risk of infection for a constant assumed total fraction of infectious virus Q̃ = QcQp.347

Figure 2(a,b) shows the % risk of infection given a single virus inoculum as a function of K,348
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the fraction of errors attributable to copying errors,349

Risk|N=1 =1−

(

1−Q

(

Qcγ −
1

QpB

))

350

=
Q (R0 − 1)

B

(

1 + (1−K)

(

1

Q̃
− 1

))

(9)351
352

for different total replication competent fractions Q̃ = QcQp = 10−3, 10−2, and 10−1. Recall353

that Q is the probability that a virus in the inoculum N is infectious. We use inoculum size354

N = 1 virion for this calculation to isolate the relative impact of K on risk. In Figure 2(a,b),355

solid lines indicate median R0 and the shaded areas, risk within the 25th and 75th percentile356

in R0 [78]. From eq. (9), single-virus risk linearly decreases with the copying error fraction357

K. In the limiting cases,358

1. all errors attributable to packaging errors, K = 0. The risk |K=0 = Q(R0 − 1)/BQ̃359

decreases as the total replication competent fraction Q̃ increases. This decrease is360

clear upon inspection of the left y−axis in Figure 2(a,b): curves for smallest Q̃ (10−3;361

green) give higher risk than curves for larger Q̃ (10−1; red). Further, as Q̃ increases,362

the range (R25
0 /Q̃, R75

0 /Q̃) decreases, so the range in risk between the 25th and 75th363

percentile in R0 is larger for Q̃ = 10−3 (Figure 2(a), shaded area in green) than for364

Q̃ = 10−1 (Figure 2(a), shaded area in red).365

2. all errors attributable to copying errors, K = 1: Risk = Q(R0−1)/B = 5×10−7(R0−366

1). Risk increases with R0. However the coefficient preceding (R0 − 1) is very small,367

Q/B = 5× 10−7 with our parameter choices of Q = 10−3 and B = 2× 103, and since368

R0 − 1 ∼ O(1) the differences are slight on the scale of % risk shown in Figure 2(a,b).369

In the intermediate cases where errors are a combination of copying errors and packaging370

errors, 0 < K < 1, the risk decreases as the copying error fraction K increases. Further, as371

that fraction K increases to 1, the impact of replication errors decreases and, with it, the372

interquartile range in risk associated with the interquartile range in R0 also decreases.373

That single-virus risk of infection decreases as the total fraction of replication-competent374

fraction Q̃ increases seems counter-intuitive. This result is an artifact of keeping R0 fixed.375

R0 = QcQpγB = Q̃γB; in order to keep R0 fixed while varying Q̃ we adjust the probability376

of infection γ = kT/(c + kT ). As Q̃ increases, that probability of infection γ decreases377

accordingly, and thus the single-virus risk of infection decreases as well.378

We note similar trends in the sensitivity of risk and inoculum size to the assumed viral379

production rate p (see Figure SM1). This is unsurprising since the viral production rate p is in380

the numerator of R0. Higher p leads to higher per-virion risk of infection (Fig S2a,b) and lower381

required inoculum for a fixed risk of infection (Fig S2c). Note however that the sensitivity to p382

is more significant, given the uncertainty in p: as we move p through a biologically reasonable383

range of 200 to 20000 virions per day [13, 25], we recover commensurate order-of-magnitude384

changes in risk of infection.385

Taken together, predictions on single-virus risk of infection increase - by orders of magni-386

tude, see Figure 2(b) - with the assumed fraction of replication-incompetent virus attributable387

to packaging errors, and also with the basic reproduction number R0. Practically speaking,388

the reason single-virus risk is lower assuming copying errors dominate relates to the two-step389
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Figure 2. Risk of infection and inoculum size for different total replication competent fractions Q̃ =
QcQp = 10−3, 10−2, and 10−1. (a-b) % risk of infection given a single virus inoculum as a function of the
fraction of errors attributable to copying errors, (9), on a (a) linear and (b) log scale. (c) Maximum inoculum
size assuming a risk of infection of 0.3%, assuming inoculums to be uniformly distributed, computed from (10)
using a nonlinear solver. Solid lines indicate median R0 = 2.77 and the shaded areas, risk within the 25th and
75th percentile in R0, (R

25
0 , R75

0 ) = (2.28, 3.06) [78]. Remaining parameters can be found in Table 1.

process of viral replication: in order to avoid extinction, inoculum virus must first infect cells390

(probability QckT/(c + kT )), and only then those cells make viable virus. Hampering cell391

infection, as copying errors do, prevents the first step, successful cell infection, halting the392

potential of a propagating infection. Assuming packaging errors only, i.e., Qc = 1, permits393

cell infection with much higher probability (kT/(c+ kT )).394

5.3. Inoculum size predictions increase with copying error fraction. Viral inoculum395

sizes associated with different high-HIV risk activities (e.g. needlestick exposure in hospital396

setting, unprotected vaginal intercourse) are unknown. However, epidemiological estimates of397

risk associated with these activities do exist; for example, occupational exposure in a hospital398

setting (e.g. needlestick) carries with it a risk of 0.3% [47]. These measures can be used to399

back-calculate the required inoculum size [18], in turn giving model-based insight into early400

infection dynamics. In the previous section we discussed risk of infection given an inoculum401

containing a single virus. To achieve a fixed risk of infection, the lower the single-virus risk,402

the higher the total viral inoculum required. The risk of infection initiated with a single virion403

decreases as the fraction of errors attributable to copying errors increases (as K increases from404

0 to 1, cf. Figure 2(a,b)). We therefore anticipate that, to achieve a fixed risk of infection, as405

in occupational exposure, the required total inoculum increases with K.406

To investigate total inoculum, assume that the risk of infection is 0.3%, corresponding to407

that of occupational exposure [47]. Occupational exposures vary in severity from needlestick408

exposures to blood splashes, and vary also according to the viral load of the donor, which409

can span orders of magnitude. In absence of information on a probability distribution on410

occupational-exposure inoculum size we assume a uniform distribution, N ∼ U(0, Nmax), as411
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in [18]. Nmax is the maximum inoculum size. The total risk of infection is then412

Risk |N∼U(0,Nmax)
=1−

1

Nmax

Nmax
∑

j=0

(P∞
ext|N=1)

j
413

=1−
1

Nmax

(

1− (P∞
ext|N=1)

Nmax+1

1− P∞
ext|N=1

)

(10)414

415

where P∞
ext|N=1 is the probability of extinction P∞

ext|N=1 =
(

1−Q
(

Qcγ − 1
QpB

))

, from

eq. (7). We use a nonlinear solver to compute Nmax such that the risk is fixed,

Risk |N∼U(0,Nmax)
= 0.3%,

and the total replication competent fraction Q̃ = QcQp is fixed, while varying the relative416

contributions of copying and packaging errors (increasing K from 0 to 1).417

The result is shown in Figure 2(c) for different values of Q̃ and R0 (as before, solid lines
give R0 median, with the shaded area giving the interquartile range (R25

0 , R75
0 ) from [78].

The maximum inoculum size Nmax required to achieve a risk of infection of 0.3% increases
with copying error fraction K, as anticipated. Nmax also increases with Q̃: since single-virus
risk increases monotonically with Q̃, the required maximum inoculum size correspondingly
decreases. If instead we assumed a Dirac-delta distribution on the inoculum size around a
mean value Nm, i.e.,

Risk = 1− (P∞
ext|N=1)

Nm ⇒ Nm =
1− Risk

P∞
ext|N=1

,

we recover qualitatively similar results. Quantitatively, Nm < Nmax, which is not surprising418

since Nmax must compensate for the equal-probability, very low inoculum sizes.419

Inoculum size predictions are far more sensitive to assumptions on the viral production rate420

p within biologically reasonable ranges for p, p = 200− 20000 virions per day, showing order421

of magnitude differences in prediction, Figure SM1c. But this should be anticipated, since422

our inoculum size calculation relies on the risk of infection, which also exhibits this sensitivity423

(see Figure SM1a,b), itself relying on R0 which is linear in p, R0 = Q1Q2pkT/(δ(c+ kT )).424

6. On time to infection clearance. We define infection clearance as viral and infected425

cell clearance, V = I = 0. We therefore interpret the time to extinction as the time to426

infection clearance. Distributions of times to infection clearance may be useful in guiding427

experiments. For example, when dosing a rhesus macaque with an SIV inoculum (e.g. [38]),428

systemic infection may not develop. It would be useful to know when one can reasonably429

assume that a monkey who shows no detectable infection will not develop systemic infection430

and has cleared all infected cells and virus.431

6.1. Calculating the time to infection clearance (extinction). In deriving from our432

model an expression for the risk of infection eq. (8), in subsection 5.1, we discussed the cumula-433

tive probability of infection extinction at time t, given by Pext(t) = P0,0;n0,v0(t) = Gn0,v0(0, 0; t)434

in eq. (5), where Gn0,v0(x, y; t) is the probability generating function, eq. (2). We assume a435
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virus-only inoculum; since we assume that the virions behave identically and independently of436

all other cells and virus in the system, given v infectious virions, the probability of extinction437

at time t is Pext(t) = G0,1(0, 0; t)
v with G0,1(x, y; t) given by the solution of eq. (4).438

As in our calculation of risk of infection in subsection 5.1, we assume an inoculum of size439

N , with each virion replication-competent with probability Q. Then440

Pext(t)|N =

N
∑

ℓ=0

{(Probability that the size-N inoculum contains ℓ infectious virions)441

× (Probability that the infection is extinct at time t given442

an inoculum of ℓ infectious virions)}443

=

N
∑

ℓ=0

((

N
ℓ

)

Qℓ(1−Q)N−ℓ

)

(

G0,1(0, 0; t)
ℓ
)

444

=(QG0,1(0, 0; t) + (1−Q))N ,(11)445446

noting again that the sum corresponds to the binomial expansion of (QG0,1(0, 0; t)+(1−Q))N .447

Thus we can calculate the cumulative probability of extinction at time t from the solution of448

eq. (4) for x = y = 0.449

Differentiating Pext(t)|N with respect to t and normalizing gives us the probability density450

(under the condition that the infection goes extinct),451

(12) pext(t) =
1

limt→∞ Pext(t)|N

d Pext(t)|N
dt

.452

We can integrate this probability density to compute moments of the time to extinction.453

6.2. Copying errors induce longer viral clearance times. We have seen that the single-454

virus risk of infection is orders of magnitude smaller if we assume that the only mechanism for455

defective virus production is copying errors. We now assume that infection will clear (so the456

normalized risk of infection is 0) and investigate the time to infection clearance. The inoculum457

size assumption does not affect qualitative results since inoculum affects risk and we condition458

on viral clearance. For convenience we take inoculum size N = 1000 virions, each replication459

competent with probability Q = 10−3, in the range of inoculum sizes required to produce a460

risk of infection of 0.3%, see Figure 2(c).461

If we assume that the source of defective virus is solely copying errors, predictions on462

time to infection clearance are longer in duration than if we assume that the only errors463

are packaging errors, given that the infection will clear. Figure 3(a) shows the normalized464

cumulative distribution of clearance times, computed from eq. (11), for median R0 = Rmed
0 =465

2.77. Note that for higher copying error fraction K the tail of the distribution increases.466

Recall that the probability of extinction for N virions is467

P∞
ext =

(

1−
Q

BQp
(R0 − 1)

)N

,468

from eq. (7) re-written in terms of R0 = BγQcQp. This probability of extinction increases as469

Qp ↑ 1; since we keep the total error Q̃ = QcQp fixed, Qp ↑ 1 corresponds to Qc ↓ Q̃ (copying470
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Figure 3. Viral clearance times conditioned on viral extinction for basic reproduction number R0 at its
median value Rmed

0 = 2.77 [78]. Remaining parameters can be found in Table 1. (a) Cumulative distribution
on time to viral clearance for different copying error fractions, computed from eq. (11) with generating function
G0,1(0, 0; t) calculated numerically from eq. (4) with zero initial conditions and normalized. (b) Mean clearance
times computed from associated cumulative distributions. Note that the timescale is in hours.

error fraction K ↑ 1). The probability of extinction decreases more slowly with the number471

of virions N if we assume defective virus is mainly attributable to copying errors. Therefore472

infection extinction, given a few rounds of viral replication yielding circulating virus, is more473

likely if we assume defective virus arises from copying errors rather than packaging errors.474

This trend is not altered by the number of circulating infected cells since the probability of475

extinction arising from an infected cell is 1/R0, R0 is kept fixed. As a result, the tail of the476

clearance probability distribution - for longer times, after a few rounds of viral replication -477

is wider. We confirm this result with the probability distribution function for the cumulative478

number of infected cells, conditioned on infection clearance, see Figure SM3. The probability479

of accumulating any infected cells is higher if we assume that defective virus are solely at-480

tributable to copying errors. We then anticipate that the mean clearance time would increase481

with the copying error fraction K, as shown in Figure 3(b). There also appears to be a max-482

imum in the clearance time near, but not at, K = 1 (Figure 3(b)). This maximum will be483

addressed in the next section.484

6.3. Error assumption changes clearance time dependence on R0 . In the previous485

section we discussed clearance time for the basic reproduction number fixed to its median486

value Rmed
0 from [78]. Extending to R0 values at the limits of the interquartile range we487

again see increasing mean clearance times with the copying error fraction K (Figure 4(a)),488

computed by integrating the associated cumulative distributions computed from eqs. (4) and489

(11). Intriguingly, however, we find that this increase is not monotonic in R0: the mean490

clearance time curves for different values of R0 in Figure 4(a) intersect.491

Figure 4(b) shows contours in mean clearance time (in hours) to better illustrate the492

non-monoticity, with dashed and solid lines indicating Rmed
0 = 2.77, and the limits of the493

interquartile range (R25
0 , R75

0 ) = (2.28, 3.06), respectively. In the extreme case of copying494

error fraction K = 0, all defective virus associated with packaging errors, the mean clearance495

time decreases with basic reproduction number R0 (Figure 4(c)). As R0 increases, more496

new cell infections are engendered, on average, by each infected cell, and the probability of497
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extinction (eq. (7)) is reduced; after a few rounds of viral replication the viral load grows498

too large to expect the infection to go extinct. This concept is clear from the clearance time499

probability density functions, computed from eq. (12), shown in Figure 5(a). Observe that500

the mode height decreases only very slightly with increasing R0: the most likely path to501

extinction is that the initial viral inoculum clears without infecting any target cells, each with502

rate c, thus the position of the peak doesn’t change. But the probability that the initial viral503

inoculum clears without infecting any target cells, c/(c+ kT ) = 1−R0/(BQ̃) for each virion504

in the inoculum, decreases with increasing R0 < BQ̃, and therefore the peak height drops505

very slightly. However, as R0 increases, the size of the tail of the clearance time distribution506

shrinks, because as the viral load grows, the probability of infection extinction decreases. The507

mean of the distribution must also correspondingly decrease.508

In the extreme case of copying error fraction K = 1, when all defective virus are at-509

tributable to copying errors, the mean clearance time increases with basic reproduction num-510

ber R0. This result counters the intuition discussed above. Figure 5(b) shows the clearance511

time PDFs in the case K = 1 and different values of R0. As with the K = 0 case, the mode512

height decreases slightly: for early times, the clearance time cumulative density function for513

K = 0 and K = 1 (Figures 5(a) and (b)) are the same. The most likely scenario is inocu-514

lum clearance, which occurs at the same rate and with the same probability. In the K = 1515

case however the tail of the distribution increases with R0, see Figure 5(b), and so the mean516

clearance time increases with R0. The clearance time probability density tail size increases517

because the density is computed with the condition that the infection goes extinct. A larger518

R0 means that, on average, a larger number of secondary cell infections are induced by a519

single infected cell and - since K = 1 - all these infected cells will produce infectious virus. If520

the viral inoculum does not immediately clear, there will be more infected cells and virus to521

clear. Therefore, assuming that the infection does go extinct, clearance takes longer time.522

The maximum mean clearance times in Figure 3(a) and Figure 4(a), near but away from523

K = 1, is the result of a transition between regimes where the mean clearance time decreases524

with R0 (all packaging errors, K = 0) or increases with R0 (all copying errors, K = 1).525

7. On time to infection detection. We have seen that in general, copying errors reduce526

predicted risk of infection and accelerate viral clearance. We now investigate how error as-527

sumptions affect predictions on viral detection, assuming that the infection is not cleared, i.e.,528

does not go extinct. With improvements in technology, HIV tests are becoming more sensi-529

tive, and can detect increasingly small amounts of virus [14] and/or virus-associated proteins530

(for example, p24, an HIV viral capsid protein [89]). Further, there is an increased premium531

on early detection of HIV infection: early treatment has been shown to improve long-term532

patient outcomes in terms of quality and length of life [83], and very early treatment is also533

associated with post-treatment control of HIV [80]. Mathematical modeling predictions on534

infection detection times can offer insight and guidance into testing windows, that is, the time535

frame after exposure to HIV within which to get tested and be confident of the positive or536

negative result.537

7.1. Calculating time to infection detection. In a clinical setting, HIV is measured in a538

blood sample and is only detectable above a certain threshold, determined by the sensitivity of539

the assay. We define the probability of detection as the probability that, given some exposure540
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Figure 4. Viral clearance times as a function of the copying error fraction K and basic reproduction number
R0. (a-c) Mean clearance time, in hours, (a) as a function of K for R0 at its median value Rmed

0 = 2.77 and at
the limits of the interquartile range (R25

0 , R75
0 ) = (2.28, 3.06) [78]; (b) as contours in (R0, K), with solid line

indicating median Rmed

0 , dashed the interquartile limiting values (R25
0 , R75

0 ); (c) as a function of R0 for K = 0
(all packaging errors) and K = 1 (all copying errors). Remaining parameters can be found in Table 1.
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Figure 5. Probability densities of viral clearance times conditioned on viral extinction for basic reproduction
numbers R0 at interquartile limit values (R25

0 , R75
0 ) = (2.28, 3.06) and smaller/larger values R0 = 1.5 and 5, for

copying error fraction (a) K = 0 and (b) K = 1. Curves computed using eq. (4), (11), and (12). Remaining
parameters can be found in Table 1.

at time 0, the viral load is above that detection threshold at time t.541

For our model, the probability of detection is Pdet(t) = P (V (t) + Vd(t) ≥ Vdet) = 1 −542

P (V (t)+Vd(t) < Vdet) where Vdet is the viral load detection threshold. Here we are assuming543

that the defective virus Vd does not have deletions that make the virus undetectable by544

standard viral nucleic acid blood assays [72]. Now,545

P (V (t) + Vd(t) < Vdet) =

Vdet−1
∑

k=0

P (V (t) + Vd(t) = k),546

547

where P (V (t) + Vd(t) = k) is the probability that the total viral load at time t is k. Note548

that we have dropped the initial condition for brevity; Pdet(t) = P (V (t)+Vd(t) ≥ Vdet|I(0) =549

n0, V (0) = v0, Id(0) = m0, Vd(0) = w0). The probability of detection involves defective550

infected cells and virions, which we have not so far included in our calculations.551

To calculate the probability of detection we return to the full model in Figure 1(a) and552
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use553

Pn,v,m,w;n0,v0,m0,w0(t) = P (I(t) = n, V (t) = v, Id(t) = m,Vd(t) = w554

|I(0) = n0, V (0) = v0, Id(0) = m0, Vd(0) = w0).555556

Define the corresponding probability generating function as557

Gn0,v0,m0,w0(x, y, r, s; t) =

∞
∑

n=0

∞
∑

v=0

∞
∑

m=0

∞
∑

w=0

Pn,v,m,w;n0,v0,m0,w0(t)x
nyvrmsw.558

But for the additional terms and indices, the derivation of the related bCKde and differen-559

tial equations for Gn0,v0,m0,w0(x, y, r, s; t) is identical to the derivations in subsection 3.1 and560

subsection SM3.1.561

We can write the probability of detection in terms of the PGF,562

P (V (t) + Vd(t) = k) =
k
∑

j=0

P (V = j, Vd = k − j)563

=
k
∑

j=0

1

j!

1

(k − j)!

∂k

∂rj∂sk−j
Gn0,v0,m0,w0

∣

∣

∣

∣

x=r=1,y=s=0

564

=

k
∑

j=0

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0(1, z1, 1, z2)

zj+1
1 zk−j+1

2

dz2dz1.565

=
1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0(1, z1, 1, z2)

(

z
−(k+1)
2 − z

−(k+1)
1

z1 − z2

)

dz2dz1.566

567

We used the Cauchy Gauss integral formula [10] to express derivatives as contour integrals for568

the third step, and summed the finite series in the fourth. Then the probability of not being569

detected at time t is570

P (V (t) + Vd(t) < Vdet) =

Vdet−1
∑

k=0

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

(

z
−(k+1)
2 − z

−(k+1)
1

z1 − z2

)

dz2dz1571

=
1

π
R

{
∫ π

0

Gn0,v0,m0,w0
(1, eiθ, 1, eiθ; t)

(

1− e−iVdetθ

1− e−iθ

)

dθ

}

572
573

using the Residue Theorem [10] to reduce the double integral to a single integral, and using574

the unit circle eiθ as our contour Cz1 (for details see the subsection SM3.2). Finally, if we575

want to take into account a virus-only inoculum of size N , each virion being infectious with576

probability Q, again assuming a binomial distribution,577

Pdet(t) = 1−

N
∑

j=0

(

N
j

)

Qj(1−Q)N−j

(

1

π
R

{
∫ π

0

G0,j,0,N−j(1, e
iθ, 1, eiθ; t)

(

1− e−iVdetθ

1− e−iθ

)

dθ

})

578

=1−
1

π
R

{
∫ π

0

(

QG0,1,0,0(1, e
iθ, 1, eiθ; t) + (1−Q)G0,0,0,1(1, e

iθ, 1, eiθ; t)
)N
(

1− e−iVdetθ

1− e−iθ

)

dθ

}

,

(13)

579
580
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where we have made use of the branching property

Gn0,v0,m0,w0 = (G1,0,0,0)
n0(G0,1,0,0)

v0(G0,0,1,0)
m0(G0,0,0,1)

w0

and the binomial theorem to re-write the series

N
∑

j=0

(

N
j

)

(QG0,1,0,0)
j ((1−Q)G0,0,0,1)

N−j = (QG0,1,0,0 + (1−Q)G0,0,0,1)
N .

Note that for our purposes Pdet(t) will converge to 1: since we condition on no infection581

clearance, the viral load will eventually grow exponentially large, and the probability that the582

infection will go extinct → 0. The detection threshold Vdet, given by clinical constraints and583

explicitly quantified below, is very large and well into the exponential phase of infection. We584

can therefore consider the cumulative probability that the viral load will exceed the detection585

threshold at time t, Pdet(t), to be the probability of infection detection on or before time t.586

Clinical investigations on early-time HIV and SIV infections seldom focus on cases where587

exposure does not result in infection. Data on viral load and CD4+ T-cell counts can only be588

collected when infection initiates. The probability of detection, above, includes the probability589

that the infection clears, and therefore may not be useful for some studies. If we only want to590

consider cases where infection does not clear we must condition the probability Pn0,v0,m0,w0(t)591

on the infection not going extinct.592

The probability of detection at time t conditioned on infection P̃det|inf(t) is593

P̃det|inf(t) =P (detection at time t|infection)594

=
P (detection at time t)

P (infection)
595

=
Pdet(t)

Risk
,(14)596

597

from the law of total probability, where Pdet(t) is given by eq. (13) and Risk is given by598

eq. (8). Note that as t → ∞, Pdet(t) → Risk, and therefore P̃det|inf(t) → 1, as expected. The599

probability of not detecting infection at time t, given that infection occurs, is P̃no det|inf(t) =600

1− P̃det|inf(t) = 1− Pdet(t)/Risk.601

Of greater clinical interest perhaps is the conditional risk of infection given an undetectable602

infection at time t. As tests for HIV viral load are becoming more sophisticated with a lower603

threshold of detection, this calculation can give insight into testing windows. That is, a blood604

bank, for example, might want to know times t beyond which this risk is sufficiently small, so605

that, in essence, an undetectable viral load means no infection. Using Bayes’ rule we can write606

an expression for this conditional risk in terms of the risk of infection and the probability of607

detection:608
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P (infection|no detection at time t) =
P (no detection at time t|infection)P (infection)

P (no detection at time t)
609

=
(1− P (detection at time t|infection))P (infection)

1− P (detection at time t)
610

P (infection|no detection at time t) =

(

1− P̃det|inf(t)

1− Pdet(t)

)

Risk(15)611

612

for Pdet(t) given by eq. (13) and P̃det|inf(t) given by eq. (14). Observe that as t → ∞, since613

P̃det|inf(t) → 1, the probability of infection given no detection at time t goes to 0, again as614

expected.615

7.2. Packaging errors delay infection detection. We assume that the detection threshold616

is 50 HIV RNA copies per mL, corresponding to the detection threshold for current commercial617

HIV testing assays. Unlike deterministic dynamics, in which the dynamics measured in 1 mL618

of intracellular fluid corresponds to the scaled version of full-body viral dynamics, stochastic619

dynamics do not scale, so we must compute the total viral load in an individual. Assuming620

an average person’s total body extracellular fluid is 15 L, the total viral detection level is621

Vdet = 750 000 HIV RNA copies. We numerically integrate eq. (13) with, and calculate622

the conditional probability of detection as in eq. (14), with Vdet = 750 000, to obtain the623

probability of infection detection at time t.624

Figure 6(a) shows the cumulative probability of the viral load exceeding the detection625

threshold at time t, conditioned on no extinction eq. (14). Assuming packaging errors only626

(K = 0) yields delayed model-based predictions on detection of infection relative to model627

predictions relying on copying error assumptions only (K = 1), see Figure 6(a). As shown in628

subsection 5.2, risk of infection decreases with copying error fraction, since for high copying629

error fractions, newly infected cells are more likely to produce only defective virus. However630

if we condition on no extinction, we eliminate the cases where the first few infected cells make631

defective virus (those cases lead to extinction). As a result the infectious viral load increases632

rapidly and we anticipate a more rapidly spreading infection, and therefore more rapid de-633

tection. In mathematical terms, from eq. (14) the probability of detection is normalized by634

the risk of infection. Smaller risk in the denominator translates to more rapid detection, i.e.,635

higher probability of detection at time t.636

Mean detection times decrease monotonically with the copying error fraction, as shown637

in Figure 6(b): a higher fraction of packaging errors delays the detection time. Figure 6(b)638

shows mean detection times assuming median Rmed
0 and its interquartile range (R25

0 , R75
0 ). The639

trend of delayed detection-time predictions due to higher packaging error fraction (decreasing640

K) remains regardless of R0. We also observe that as R0 increases (R25
0 < Rmed

0 < R75
0 )641

mean detection times shorten. A larger value of R0 indicates that each cell engenders, on642

average, more new cell infections, leading to increased viral load, which will therefore cross643

the detection threshold sooner, regardless of assumed error types.644

As copying errors come to dominate, mean detection time increases, but the variability645

in detection time decreases. Predictions on variability in detection time are essential when646

using modeling predictions to gain insight into testing windows; if variability is small, the647
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Figure 6. Probability of detection at time t. (a) Cumulative probability of detection at time t for median
Rmed

0 = 2.77 assuming that the copying error fraction is 0 (all packaging errors), 0.5, or 1 (all copying errors).
(b) Mean detection time as a a function of the copying error fraction, for median basic reproduction number
Rmed

0 and interquartile values (R25
0 , R75

0 ) = (2.28, 3.06). (c) Coefficient of variation in detection time as a a
function of the copying error fraction, for median basic reproduction number Rmed

0 and interquartile values
(R25

0 , R75
0 ). Remaining parameters can be found in Table 1.

mean may be a good guide, but if variability is large, it will not be. We use the coefficient of648

variation σ/µ (standard deviation over the mean), and plot against the copying error fraction,649

for median basic reproduction number Rmed
0 and interquartile range values (R25

0 , R75
0 ), as650

shown in Figure 6(c). The coefficient of variation decreases with copying error, indicating less651

variability in detection times as copying errors come to dominate, across different R0 values.652

Intuitively, decreased variability goes with shorter detection times. That is, there is a smaller653

time frame in which virus/infected cell “paths” can widen. We find that not only do packaging654

errors create delayed detection time predictions, they also increase the variability. However655

we should note that, for our parameters at least, the differences in the coefficient of variation656

are small - only very near the limiting case of copying error fraction K = 1 do the differences657

approach 10%.658

Finally, using our simple model we can comment on the delay time between exposure659

and HIV testing. We use the basic reproduction number R25
0 since it produces the slowest660

detection times. Figure 7 shows the probability of infection given a negative HIV test, that661

is, no detection, at time t. The y−intercepts in Figure 7(a) gives the total risk of infection;662

to compare timing we condition on the process not going extinct, as seen in Figure 7(b).663

Assuming copying error fraction K = 0, since again it produces the slowest detection times,664

our model predicts that, assuming infection is successful, an HIV test should return a positive665

result at approximately 9.5 days, with 95% probability (Prob(infection — detectable at t ≤ 10666

days)≈ 0.05), given our baseline inoculum size of 1000 virions which gives the high risk of667

infection of 6.2%. However, if we assume R0 = R75
0 and copying error fraction K = 1 the668

estimate gets as small as 3.6 days (not shown).669

Rough empirical estimates for the window period between infection and first detection670

of HIV RNA lie in the 7-21 day range [16], within the same order of magnitude as our own671

predictions, albeit higher, understandable since our model neglects some of the complexity of672

early infection. We can only improve such estimates with better understanding of the different673

mechanisms underlying viral replication.674
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Figure 7. Probability of infection given no detection at time t for basic reproduction number R25
0 = 2.28,

computed numerically from eq. (15). (a) Cumulative probability. (b) Normalized version of (a). Remaining
parameters can be found in Table 1.

8. Discussion. Elucidating events that occur between exposure to HIV and detectable675

infection is crucial in developing prevention strategies. Directly investigating these events in676

humans is very difficult, as are indirect investigations using animal models, since infected cell677

and viral populations are very small during this period. In this study we developed a simple678

mathematical model that permits us to make predictions on important clinical characteristics679

of early HIV infection: risk of infection, time to infection clearance (assuming failed infection),680

and probability of detection (assuming successful infection).681

Since cell and viral populations are small during the earliest phases of HIV infection,682

we used a stochastic modeling approach. We employed continuous-time branching processes,683

using and extending methods previously presented [17, 18, 68]. In particular we used tools684

from complex analysis to derive an integral expression for the probability of detection, which685

is, to our knowledge, a novel calculation.686

We used our model to investigate the effect of viral replication errors, resulting in non-687

infectious virus, on early-infection predictions. Estimates on the non-infectious viral fraction688

are as high as 99.99% [46, 60, 79]. We focused on two mechanisms: (1) that a mutation689

during reverse transcription fatally cripples the proviral genome so that any viral genomes690

produced by the provirus will not be infectious [22] (here called copying errors), and (2) that691

virus may also be rendered non-infectious by errors in the assembly and release phase of692

viral replication (here called packaging errors), e.g. virions may be packaged with insufficient693

surface proteins (gp120/gp41) necessary for viral infection or lack essential HIV enzymes such694

as reverse transcriptase or integrase [51]. In summary, assuming a constant basic reproduction695

number R0 and non-infectious viral fraction, we found that:696

Risk: The predicted risk of infection is much higher if we assume the source of non-infectious697

virus is mainly packaging errors.698

Time to clearance: For failed infections, exposures are predicted to clear more rapidly if699

we assume the source of non-infectious virus is again mainly packaging errors.700

Probability of detection: For successful infections, the infection is predicted to be de-701

tectable earlier if we assume the source of non-infectious virus is mainly copying errors.702

We also uncovered intriguing behavior in our investigation of clearance times. Mean clearance703
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times, conditioned on failed infection, are predicted to differ only by hours across a wide704

range of R0 and copying error fraction K; no modern experiment could distinguish between 8-705

and 12-hour clearance time in tissues. Nonetheless, these mean clearance times are predicted706

to decrease with increasing R0 if one assumes that all non-infectious virus is attributable707

to packaging errors. Intuitively, this is because we increased R0 by increasing the infection708

rate kT . With increased kT, the infection spreads more rapidly, and therefore the associated709

probability of extinction (clearance) goes to 0 more rapidly. However, the mean clearance710

time increases with increasing R0 assuming all non-infectious virus is attributable to copying711

errors. We traced this counter-intuitive result to the tail of the extinction-time distribution712

(Figure 5) and our conditioning the probability of clearance on infection extinction.713

These results arise because we employed a stochastic model. In the deterministic version714

of the model (see eq. (SM1) in section SM2) the parameters dictating error type are not715

identifiable and results are not affected by error type, only total error. The deterministic716

model is appropriate for chronic infection, when viral and cell populations are very large.717

Early after exposure to HIV, these populations are small, and it is therefore inappropriate718

to use a deterministic model. When accounting for stochastic effects it is clear that the719

mechanism of defective virus production makes a significant and important difference.720

Here we focused on errors in the viral replication cycle which lead to non-infectious virus.721

However there are other mechanisms. For example, neutralizing antibodies may bind free722

virus, rendering the virus non-infectious. But these events likely only occur in the deterministic723

limit, after viral populations are large, and our focus in this present study is events in early724

infection while viral populations are still small. APOBEC3G, an enzyme in cellular anti-viral725

immunity, is another important factor [33, 40, 43, 88]. APOBEC3G’s primary mode of action726

is to interfere with reverse transcription, inducing hypermutation (copying errors) [43, 88].727

Interestingly, infected cells generate APOBEC3G and the enzyme is packaged in the virions728

budding off the infected cell. Thus, APOBEC3G-induced hypermutation only occurs in cells729

infected by those budding virions. The HIV protein Vif acts against APOBEC3G, by both730

triggering its degradation and preventing its incorporation into HIV virions [88]. Thus the731

anti-viral action of APOBEC3G involves both viral packaging and reverse transcription, and732

its dynamics cannot be investigated with our simple model. To investigate the dynamics of733

APOBEC3G we must extend the model, which we leave for future work.734

The existence of other mechanisms is one of the limitations of this present study. It is735

possible non-infectious or defective virus may help drive infection [22], potentially by stimu-736

lating an immune response [49] and creating more target cells. It is also possible that copying737

errors cause defects in the packaging signaling site of the genome, inducing packaging errors:738

an investigation of infected cells in treated, chronically-infected HIV+ individuals showed that739

approximately 5% had deletions in the packaging signal portion of the genome [11]. These740

effects are also not included in our model. Further, our model is very simple, which facili-741

tates the extensive analysis above. However, it does not account for some of the complexity742

involved in the earliest stages of infection. For example, our estimates for clearance focus on743

viral populations in the blood, the best indicator for humans. But even in needlestick injury,744

the virus will move into tissue, and clearance in the blood could therefore precede clearance745

in tissue. For vaginal sexual exposure, the viral inoculum has to cross vaginal tissues to reach746

target cells and the bloodstream. Dendritic cells are thought to take up virus and transport747
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them to lymph nodes. This is hypothesized to be one of the triggering events in HIV infec-748

tion [34], which we previously modeled in [18]. In the very earliest stages, before there is much749

viral dissemination, target cells may be limiting at particular spatial locations. Therefore, our750

model is too simple to gain direct insight into animal model observations following vaginal751

or rectal infection with SIV [52, 76], or to aid in design of such experiments. To address this752

more complicated scenario, we would apply the mathematics developed in this current work to753

compute, in particular, time to infection detection and clearance, to an extended model that754

captures viral transport dynamics, such as [18]. Note that such an extended model would755

retain considerable uncertainty, since viral dissemination dynamics following HIV exposure756

remain poorly understood.757

Even so, our simple model would be an appropriate starting point to investigate and design758

experiments focusing on intravenous infection of HIV, when the viral inoculum is delivered759

directly to the blood [19, 81]. Bruner et al. (2016) also showed that 40% of proviruses760

generated after a single round of in vitro infection were defective [11]. In such studies and761

experiments, focusing on intravenous infection of HIV, this 40% may inform the fraction of762

errors associated with copying Qc, suggesting Qc = 0.6 as an upper bound. The intravenous763

route of HIV infection is relevant to HIV epidemiology: in 2015, 6-9% of new infections in the764

United States were associated with injection drug use [12].765

In spite of limitations, stochastic modeling can be invaluable in investigations of early HIV766

infection. In a previous study, it was shown that better understanding of viral production767

would improve risk-of-infection predictions [68]. We have shown that in order to make reliable768

predictions on risk, clearance time, and detection time, better characterization of viral repli-769

cation is required. We can then use models such as ours to make practical predictions on HIV770

testing windows, or to generate theoretical hypotheses on the potential impact of target cell771

limitation, which we have neglected here but likely plays a role in sexual infection, as there are772

normally very few CD4+ T cells in the genital mucosa. However, improved stochastic models773

of early infection also have other uses such as predicting the effect of vaccines on preventing774

the establishment of infection. It remains to be determined if the mode of defective virus775

production can impact vaccine efficacy, but this is a topic worthy of investigation.776

Lastly, the viral dynamics model that we used (Figure 1) as a starting point or slight777

variants have been used to model many viral infections, such as those due to hepatitis C [63],778

hepatitis B [84], West Nile virus [6], Zika virus [8] and influenza [4]. As both infectious and779

noninfectious viruses are produced in all of these infections, the techniques used here and the780

results we derived should have applicability to these as well as other viral infections.781
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SUPPLEMENTARY MATERIALS: Early HIV infection predictions: role of viral1

replication errors∗2

Jessica M. Conway† and Alan S. Perelson‡3

4

SM1. Supporting figures. hello

(a) (b) (c)

Figure SM1. Sensitivity of risk of infection and inoculum size to viral production rate p for different total
replication competent fractions, Q̃ = QcQp = 10−3 and 10−1. (a-b) % risk of infection given a single virus
inoculum as a function of the fraction of errors attributable to copying errors, on a (a) linear and (b) log
scale. (c) Maximum inoculum size assuming a risk of infection of 0.3%, assuming inoculums to be uniformly
distributed. Solid lines indicate baseline viral production rate p = 2000 virions per cell per day, and the shaded
areas, within viral production rates p = 200 and p = 20000 virions per day. Remaining parameters can be found
in Table 1.
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Figure SM2. Inoculum size prediction assuming a Delta-Dirac distribution. Mean inoculum size assuming
a risk of infection of 0.3%, assuming a peaked, Delta-Dirac distribution on inoculum sizes. Solid lines indicate
median R0 = 2.77 and the shaded areas, risk within the 25th and 75th percentile in R0, (R

25
0 , R75

0 ) = (2.28, 3.06)
[SM12]. Remaining parameters can be found in Table 1.
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Figure SM3. Probabilities on number of cells infected in a cleared infection assuming R0 = 2.77 for copying
error fractions K = 0 (all packaging errors), 0.5, 1 (all copying errors). (a) Cumulative probability distribution
on the number of cells infected in a cleared infection. (b) Probability of any cell infection in a cleared infection.
Calculation described in subsection SM3.3. Remaining parameters can be found in Table 1.
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TION ERRORS SM3

SM2. Motivation for stochastic approach.6

SM2.1. Early infection models: stochastic approach required. The standard approach7

in viral dynamics modeling is to use ordinary differential equations; the equations one would8

use to for our model, shown in the main text, Figure 1(a), are9

dI

dt
=QckT V − δI10

dId
dt

=(1−Qc)kT V − δId11

dV

dt
=QppI − (c+ kT )V12

dVd

dt
=(1−Qp)pI + pId − cVd.(SM1)13

14

These ODEs are recognizable as the standard viral dynamics model [SM7, SM9, SM11], ex-15

tended to include defective infected cells and virus, assuming the number of target cells T16

remain constant. Such deterministic models are suitable when populations of virus and cells17

are large, since ODEs give average system behavior.18

We seek to investigate the following questions, which can only be addressed using a stochas-19

tic approach:20

1. Risk of infection: The basic reproduction number R0 gives the average number of21

secondary cell infections caused by the introduction of a single virus into the system;22

it is used as a measure of severity of infection (or epidemic). Using the next generation23

method [SM5,SM6] we compute R0 = pQcQpkT/(δ(c + kT )). For R0 > 1 the deter-24

ministic model eq. (SM1) gives exponential growth only, suggesting a risk of infection25

of 1. It is well-established (see for example [SM1, SM4, SM8]), and clear from our26

calculations below, that for stochastic models the probability of extinction for R0 > 127

is non-zero, giving a risk of infection (1-probability of extinction) less than 1.28

2. Time to infection clearance (extinction): For R0 > 1, the model eq. (SM1) gives29

no extinction. For R0 < 1, the quantities (I(t), Id(t), V (t), Vd(t)) → 0 as t → ∞.30

Traditionally to compute the eradication time using ODEs, one would set some small31

threshold and claim the extinction occurs when (I(t), Id(t), V (t), Vd(t)) crosses that32

threshold. The linear system has eigenvalues33

−c, −δ, −
1

2
(c+ δ)±

1

2

√

(c− δ)2 + 4QcQppkT34

with decay ∼ exp
(

−1
2(c+ δ)± 1

2

√

(c− δ)2 + 4QcQppkT
)

for R0 < 1. Therefore35

crossing the threshold in the ODE model depends only on the exponential decay rate.36

Hence changing dynamic parameters but keeping the decay rate constant will yield37

identical threshold-crossing times in the ODE model. In stochastic models, the times38

to clearance differ [SM3]. Stochastic modeling will also yield a distribution of clearance39

times. Deterministic models are not the ideal approach to investigate clearance.40

3. Probability of detection: As with the time to extinction, the approach to calculating41

the time to detection of infection with the ODE model (SM1) would be to set some42
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threshold, say in the viral load V + Vd, and call the time τ that the mean viral load43

crosses the detection threshold, the mean time to detection. Again, we rely on the44

system eigenvalues, and find that the viral load expansion will be dominated by the45

exponential growth rate ∼ exp
(

−1
2(c+ δ)± 1

2

√

(c− δ)2 + 4QcQppkT
)

for R0 > 1.46

For small amounts of virus, the individual dynamic parameters will play a role and47

influence the distribution of detection probabilities [SM3,SM8], an effect not captured48

using exponential growth only. Deterministic models are not the ideal approach to49

investigate detection.50

Therefore if we seek to investigate events in early HIV infection it is necessary to use a51

stochastic approach.52

SM2.2. Identifiability of defective virus fractions. Past models that account for non-53

infectious virus have focused on chronic HIV infection and employed a deterministic (ODE)54

approach [SM10]. The focus has mainly been to evaluate efficacy of protease inhibitors, the55

class of anti-retroviral drugs which interferes with maturation of viral particles. Therefore56

the theoretical emphases have been on errors in individual virions (which occur in our model57

with probability 1-Qp). But practically speaking, the emphasis doesn’t matter: the different58

mechanisms generating defective virus are non-identifiable in deterministic models. In the59

previous section we discussed R0 and eigenvalues giving decay or growth - in each of these60

Qc and Qp appear as a product QcQp only. This non-identifiability is arguably a strength.61

That is, while the different mechanisms are poorly characterized, we only need know the total62

non-infectious fraction. With improved understanding individual estimates may change but63

modeling predictions will remain.64

For small viral populations, as is the case in the earliest stages of HIV infection, a stochastic65

approach is the appropriate choice. When employing a stochastic approach we must be more66

careful about the underlying mechanisms we model. For example, a previous investigation67

showed that the assumption on viral production - continuous production by an infected cell or68

burst production at infected cell death only - will change predictions on risk [SM8]. We will see69

below that when using a stochastic approach, the individual viral replication error probabilities70

(lethal copying errors with probability 1−Qc and packaging errors with probability 1−Qp)71

will alter predictions on risk, clearance, and probability of detection.72
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SM3. Details of mathematical derivation.73

SM3.1. Backwards Chapman Kolmogorov Differential Equation. In the main text we74

use a multi-type branching process model of viral dynamics, main text Figure 1. Underpinning75

the calculations that followed was the backwards Chapman Kolmogorov differential equation76

(bCKde) for the probability Pn,v;n0,v0(t) = P (I(t) = n, V (t) = v|I(0) = n0, V (0) = v0). We77

provide here the derivation of the bCKde for the interested reader.78

The probability P (I(t + τ) = n, V (t + τ) = v|I(τ) = n0, V (τ) = v0) is a transition79

probability between the state at time τ , (I(τ), V (τ)) = (n0, v0), and the state at time t + τ ,80

(I(t + τ), V (t + τ)) = (n, v). We assume the probabilities are homogeneous in time, i.e.,81

that they they depend on the duration of the transition time t but not the individual times82

t + τ or τ. Therefore, when computing the transition probability, we can directly consider83

Pn,v;n0,v0(t) = P (I(t) = n, V (t) = v|I(0) = n0, V (0) = v0), setting τ = 0, only.84

To model the system in main text Figure 1, we assume the transition probabilities obey85

the following postulates as h ↓ 0 :86

1. Pn−1,v;n,v(h) = δnh+ o(h)87

2. Pn,v+1;n,v(h) = pQpnh+ o(h)88

3. Pn+1,v−1;n,v(h) = QckTvh+ o(h)89

4. Pn,v−1;n,v(h) = (c+ (1−Qc)kT )vh+ o(h)90

5. Pn,v;n,v(h) = 1− ((δ + pQp)n+ (c+ kT )v)h+ o(h)91

6. Pn,v;n0,v0(h) = δnn0δvv092

for n, v ≥ 0, where δjk is the Kronecker-Delta function. That is, we assume a Poisson process.93

Because we assume Pn,v;n0,v0(t) is homogeneous in time, the Chapman-Kolmogorov equa-94

tion holds:95

(SM2) Pn,v;n0,v0(t+ h) =

∞
∑

j,k=0

Pn,v;j,k(t)Pj,k;n0,v0(h).96

The (0, t + h) time interval is split into (0, h) and (h, t + h); this equation says that the97

probability of transitioning from (n0, v0) to (n, v) in time t+ h is equal to the probability of98

starting at (n0, v0) at 0 and stopping at some midpoint (j, k) at time h, then going from (j, k)99

to (n, v) in time t+ h, summed over all possible midpoints (j, k). We can re-write eq. (SM2)100

as101

Pn,v;n0,v0(t+ h) =Pn,v;n0−1,v0(t)Pn0−1,v0;n0,v0(h) + Pn,v;n0,v0+1(t)Pn0,v0+1;n0,v0(h)102

+ Pn,v;n0+1,v0−1(t)Pn0+1,v0−1;n0,v0(h) + Pn,v;n0,v0−1(t)Pn0,v0−1;n0,v0(h)103

+ Pn,v;n0,v0(t)Pn0,v0;n0,v0(h) +





∞
∑

j,k=0

Pn,v;j,k(t)Pj,k;n0,v0(h)





′

.(SM3)104

105

(

∑∞
j,k=0 Pn,v;j,k(t)Pj,k;n0,v0(h)

)′

denotes the remaining terms, where j and k do not take on106

values used in the previous terms. Using the postulates we can show that these remaining107
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terms are o(h),108





∞
∑

j,k=0

Pn,v;j,k(t)Pj,k;n0,v0(h)





′ ≤





∞
∑

j,k=0

Pj,k;n0,v0(h)





′

109

=1− (Pn0−1,v0;n0,v0(h) + Pn0,v0+1;n0,v0(h) + Pn0+1,v0−1;n0,v0(h)110

+Pn0,v0−1;n0,v0(h) + Pn0,v0;n0,v0(h))111

=1− (o(h) + δn0h+ pQpn0h+QckTv0h+ (c+ (1−Qc)kT )v0h112

+1− ((δ + pQp)n0 + (c+ kT )v0)h)113

=o(h).114115

Thus,
(

∑∞
j,k=0 Pn,v;j,k(t)Pj,k;n0,v0(h)

)′

≤ o(h). With this and the postulates we can re-write116

eq. (SM3) as117

Pn,v;n0,v0(t+ h) =δn0hPn,v;n0−1,v0(t) + pQpn0hPn,v;n0,v0+1(t) +QckTv0hPn,v;n0+1,v0−1(t)118

+ (1− ((δ + pQp)n0 + (c+ kT )v0)h)Pn,v;n0,v0(t)119

+ (c+ (1−Qc)kT )v0hPn,v;n0,v0−1(t) + o(h)120

=Pn,v;n0,v0(t) + h (δn0Pn,v;n0−1,v0(t) + pQpn0Pn,v;n0,v0+1(t)121

+QckTv0Pn,v;n0+1,v0−1(t) + (c+ (1−Qc)kT )v0Pn,v;n0,v0−1(t)122

− ((δ + pQp)n0 + (c+ kT )v0)Pn,v;n0,v0(t)) + o(h).123124

Moving Pn,v;n0,v0(t) to the left side, dividing by h, and taking the limit h → 0, we obtain the125

differential equation126

d

dt
Pn,v;n0,v0 =δn0Pn,v;n0−1,v0 + pQpn0Pn,v;n0,v0+1 +QckTv0Pn,v;n0+1,v0−1127

+ (1−Qc)kTv0Pn,v;n0,v0−1 + cv0Pn,v;n0,v0−1128

− ((δ + pQp)n0 + (kT + c)v0)Pn,v;n0,v0(SM4)129130

From postulate 3 we have the initial condition is Pn0,v0(0) = δn,n0δv,v0 . This is the backward131

Chapman Kolmogorov differential equation (bCKde) for the probability Pn0,v0(t). We cannot132

solve eq. (SM4) directly analytically, and numerically we can only solve it by simulating exact133

solution paths, using the SSA (Gillespie) algorithm and plotting the resulting histogram.134

From eq. (SM4), however, we can derive differential equations for the probability generating135

function, discussed in the main text and given by eqs. (3,refeq:PGFodes). These will allow us136

to compute probabilities.137

Had we instead incremented time as (0, t) and (t, t + h), using instead the Chapman-138

Kolmogorov equation139

(SM5) Pn,v;n0,v0(t+ h) =

∞
∑

j,k=0

Pn,v;j,k(t+ h)Pj,k;n0,v0(t).140

and followed a similar derivation, we would obtain the corresponding forward Chapman Kol-141

mogorov differential equation for our probability Pn0,v0(t), also commonly referred to as the142
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Master Equation. We use the bCKde instead of the more often-used Master equation because143

the resulting equations for the generating function, are more tractable.144

SM3.2. Probability of detection. The probability of detection is Pdet(t) = P (V (t) +
Vd(t) ≥ Vdet) = 1 − P (V (t) + Vd(t) < Vdet), where Vdet is the viral load detection threshold.
Now,

P (V (t) + Vd(t) < Vdet) =

Vdet−1
∑

k=0

P (V (t) + Vd(t) = k),

where P (V (t)+Vd(t) = k) is the probability that the viral load at time t is k. Note that we have145

dropped the initial condition for brevity; Pdet(t) = P (V (t) + Vd(t) ≥ Vdet|I(0) = n0, V (0) =146

v0, Id(0) = m0, Vd(0) = w0). The probability of detection involves defective infected cells and147

virions, which we have not so far included in our calculations. For the probability of detection148

we return to the full model in main text Figure 1(a) and use149

Pn,v,m,w;n0,v0,m0,w0(t) = P (I(t) = n, V (t) = v, Id(t) = m,Vd(t) = w150

|I(0) = n0, V (0) = v0, Id(0) = m0, Vd(0) = w0).151152

Define the corresponding probability generating function as153

Gn0,v0,m0,w0(x, y, r, s; t) =
∞
∑

n=0

∞
∑

v=0

∞
∑

m=0

∞
∑

w=0

Pn,v,m,w;n0,v0,m0,w0(t)x
nyvrmsw.154

But for the additional terms and indices, the derivation of the related bCKde and differential155

equations for Gn0,v0,m0,w0(x, y, r, s; t) is identical to the derivations in Sec. SM3.1.156

We can write the probability of detection in terms of the PGF,157

P (V (t) + Vd(t) = k) =

k
∑

j=0

P (V = j, Vd = k − j)158

=

k
∑

j=0

1

j!

1

(k − j)!

∂k

∂rj∂sk−j
Gn0,v0,m0,w0

∣

∣

∣

∣

x=r=1,y=s=0

159

=

k
∑

j=0

1

(2πi)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0(1, z1, 1, z2)

zj+1
1 zk−j+1

2

dz2dz1160

=
1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0(1, z1, 1, z2)

(

z
−(k+1)
2 − z

−(k+1)
1

z1 − z2

)

dz2dz1.161

162

We used the Cauchy Gauss integral formula [SM2] in the third step, and summed the finite163
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series in the fourth. Then our probability of detection is164

P (V (t) + Vd(t) < Vdet) =

Vdet−1
∑

k=0

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

(

z
−(k+1)
2 − z

−(k+1)
1

z1 − z2

)

dz2dz1165

=
1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

Vdet−1
∑

k=0

(

z
−(k+1)
2 − z

−(k+1)
1

z1 − z2

)

dz2dz1166

=
1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

z1 − z2

(

1− z
−Vdet

2

z2 − 1
−

1− z
−Vdet

1

z1 − 1

)

dz2dz1167

=−

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

z2 − z1

(

1− z
−Vdet

2

z2 − 1

)

dz2dz1168

−

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

z1 − z2

(

1− z
−Vdet

1

z1 − 1

)

dz2dz1.169
170

In the last step we split the integrals so that we can evaluate them. We start with the171

second integral, exchanging the order of integration.172

1

(2π)2

∮

Cz2

∮

Cz1

Gn0,v0,m0,w0(1, z1, 1, z2; t)

z1 − z2

(

1− z−Vdet
1

z1 − 1

)

dz2dz1.173

Taking the inner integral only, holding z constant, we note that the contour integral174

∮

Cz1

Gn0,v0,m0,w0(1, z1, 1, z2; t)

z1 − z2

(

1− z−Vdet
1

z1 − 1

)

dz2175

is over a function that is analytic everywhere except at z1 = z2 (singularity at z1 = 1 is176

removable). Using the residue theorem,177

∮

Cz1

Gn0,v0,m0,w0
(1, z1, 1, z2; t)

z1 − z2

(

1− z
−Vdet

1

z1 − 1

)

dz2 = πiGn0,v0,m0,w0
(1, z2, 1, z2; t)

(

1− z
−Vdet

2

z2 − 1

)

178

(note that w is on the contour boundary so the residue is multiplied by πi only) and the179

second integral becomes180

1

(2π)2

∮

Cz2

∮

Cz1

Gn0,v0,m0,w0(1, z1, 1, z2; t)

z1 − z2

(

1− z−Vdet
1

z1 − 1

)

dz2dz1 =181

i

4π

∮

Cz2

Gn0,v0,m0,w0(1, z2, 1, z2; t)

(

1− z−Vdet
2

z2 − 1

)

dz2.182

183

Similarly,184

1

(2π)2

∮

Cz1

∮

Cz2

Gn0,v0,m0,w0(1, z1, 1, z2; t)

z2 − z1

(

1− z−Vdet
2

z2 − 1

)

dz2dz1 =185

i

4π

∮

Cz1

Gn0,v0,m0,w0(1, z1, 1, z1; t)

(

1− z−Vdet
1

z1 − 1

)

dz1.186

187
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Then188

P (V (t) + Vd(t) < Vdet) =−
i

2π

∮

Cz

Gn0,v0,m0,w0(1, z, 1, z; t)

(

1− z−Vdet

z − 1

)

dz189
190

The contour Cz is the unit circle, z = eiθ, dz = ieiθdθ, and191

P (V (t) + Vd(t) < Vdet) =−
i

2π

∫ 2π

0
Gn0,v0,m0,w0(1, e

iθ, 1, eiθ; t)

(

1− e−iVdetθ

eiθ − 1

)

ieiθ dθ192

=
1

2π

∫ 2π

0
Gn0,v0,m0,w0(1, e

iθ, 1, eiθ; t)

(

1− e−iVdetθ

1− e−iθ

)

dθ193

=
1

π
R

{∫ π

0
Gn0,v0,m0,w0(1, e

iθ, 1, eiθ; t)

(

1− e−iVdetθ

1− e−iθ

)

dθ

}

.194
195

This result of this integration subtracted from 1 gives us the probability of detection at time196

t. Finally, if we want to take into account a virus-only inoculum of size N , each virion being197

infectious with probability Q, again assuming a binomial distribution,198

Pdet(t) =1 −

N
∑

j=0

(

N

j

)

Q
j
(1 − Q)

N−j

(

1

π
R

{

∫

π

0

G0,j,0,N−j(1, e
iθ

, 1, e
iθ

; t)

(

1 − e−iVdetθ

1 − e−iθ

)

dθ

})

199

=1 −

N
∑

j=0

(

N

j

)

Q
j
(1 − Q)

N−j

(

1

π
R

{

∫

π

0

(

G0,1,0,0(1, e
iθ

, 1, e
iθ

; t)
)j (

G4(1, e
iθ

, 1, e
iθ

; t)
)N−j

(

1 − e−iVdetθ

1 − e−iθ

)

dθ

})

200

=1 −
1

π
R

{

∫

π

0

(

QG0,1,0,0(1, e
iθ

, 1, e
iθ

; t) + (1 − Q)G4(1, e
iθ

, 1, e
iθ

; t)
)N

(

1 − e−iVdetθ

1 − e−iθ

)

dθ

}

,(SM6)201
202

where we have made use of the branching property,

Gn0,v0,m0,w0 = (G1,0,0,0)
n0(G0,1,0,0)

v0(G0,0,1,0)
m0(G0,0,0,1)

w0 .

SM3.3. Probability distribution on the number of cumulative number of cell infections.203

In Supporting Figure S3 we show the probability distribution on the cumulative number of204

cell infections conditioned on infection clearance. Here we provide details of that calculation.205

In order to count the number of cell infections, we extend our model to include the state206

variable C which increases with every cell infection and does not otherwise alter infection dy-207

namics. Define Pn,v,c;n0,v0,c0(t) = P (I(t) = n, V (t) = v, C(t) = c|I(0) = n0, V (0) = v0, C(0) =208

c0). Note that c0 = 0 for the purposes of calculation below.209

We then assume that the transition probabilities obey the following postulates as h ↓ 0 :210

1. Pn−1,v,c;n,v,c(h) = δnh+ o(h)211

2. Pn,v+1,c;n,v,c(h) = pQpnh+ o(h)212

3. Pn+1,v−1,c+1;n,v,c(h) = QckTvh+ o(h)213

4. Pn,v−1,c+1;n,v,c(h) = (1−Qc)kTvh+ o(h)214

5. Pn,v−1,c;n,v,c(h) = cvh+ o(h)215

6. Pn,v,c;n,v,c(h) = 1− ((δ + pQp)n+ (c+ kT )v)h+ o(h)216

7. Pn,v,c;n0,v0,c0(h) = δnn0δvv0δcc0217

for n, v, c ≥ 0, where δjk is the Kronecker-Delta function.218

Following the derivation in subsection SM3.1, the bCKde for the probability Pn,v,c;n0,v0,c0 ,219

associated with this process, is220
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d

dt
Pn,v,c;n0,v0,c0 =δn0Pn,v,c;n0−1,v0,c0 + pQpn0Pn,v,c;n0,v0+1,c0221

+QckTv0Pn,v,c;n0+1,v0−1,c0+1 + (1−Qc)kTv0Pn,v,c;n0,v0−1,c0+1222

+ cv0Pn,v,c;n0,v0−1,c0 − ((δ + pQp)n0 + (kT + c)v0)Pn,v,c;n0,v0,c0 .(SM7)223224

We then define the generating function

Hn0,v0,c0(x, y, r; t) =
∞
∑

n=0

∞
∑

v=0

∞
∑

c=0

Pn,v,c;n0,v0,c0(t)x
nyvrc

and following subsection 3.1 in the main text, we can derive from (SM7) equations for the225

probability generating function,226

∂H1,0,0

∂t
=δ + pQpH1,0,0H0,1,0 − (δ + pQp)H1,0,0227

∂H0,1,0

∂t
=c+ kT ((1−Qc) +QcH1,0,0)H0,0,1 − (c+ kT )H0,1,0(SM8)228

∂H0,0,1

∂t
=0229

230

whereHn0,v0,c0 = Hn0
1,0,0H

v0
0,1,0H

c0
0,0,1. Using the probability generating function we can compute231

the probability for the cumulative number of cell infections.232

We want the cumulative number of cell infections as t → ∞ conditioned on infection
clearance. To get at this quantity, we will take the limit

lim
t→∞

P0,0,c;0,v0,0(t),

that is, the limit as t → ∞ of the probability that there are c cumulative cell infections but233

no infected cells or virus. From the pgf Hn0,v0,c0 ,234

P0,0,c;0,v0,0(t) =
1

c!

∂c

∂rc
Hn0,v0,c0(0, 0, r; t)|r=0235

=

∮

Cz

Hn0,v0,c0(0, 0, z; t)

zc+1
dz236

=
1

2π

∫ 2π

0
Hn0,v0,c0(0, 0, e

iθ; t)e−icθ dθ237
238

using the Cauchy Gauss integral formula [SM2] in the second step, and take the contour Cz

as the unit circle z = eiθ in the third. Noting that Hn0,v0,c0 = Hn0
1,0,0H

v0
0,1,0H

c0
0,0,1 with c0 = 0,

and that we take a virus-only inoculum, so n0 = 0, and simplifying, we recover

P0,0,c;0,v0,0(t) =
1

π

∫ π

0
(H0,1,0(0, 0, e

iθ; t))v0e−icθ dθ.
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Finally, as in subsection 3.1, we assume that our inoculum of size N is mixed, with each virus239

infectious with probability Q. Therefore the probability of accumulating c cell infections at240

time t, with no circulating virus or infected cells, is241

Prob =

N
∑

j=0

(

N
j

)

(1−Q)N−jQjP0,0,c;0,j,0(t)242

=
N
∑

j=0

(

N
j

)

(1−Q)N−jQj 1

π

∫ π

0
(H0,1,0(0, 0, e

iθ; t))je−icθ dθ243

=
1

π

∫ π

0

(

1−Q+QH0,1,0(0, 0, e
iθ; t)

)N

e−icθ dθ,(SM9)244
245

summing the series in the last step.246

Thus to compute the probability of accumulating c infected cells before clearing infection247

as shown in Figure SM3, we compute eq. SM9 together with eq. SM8 numerically, evaluating248

the limit by computing over long times and verifying convergence, and normalizing to condition249

on infection clearance.250
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