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Early HIV infection predictions: role of viral replication errors*

Jessica M. Conway' and Alan S. Perelson?

Abstract. In order to prevent and/or control infections it is necessary to understand their early-time dynamics.
However this is precisely the phase of HIV about which the least is known. To investigate the initial
stages of HIV infection within a host we have developed a multi-type, continuous-time branching
process model. This model is a stochastic extension of the standard viral dynamics model, under
the assumption that the number of cell targets for viral infection is constant. We use our model
to investigate three important clinical characteristics of early HIV infection following intravenous
challenge: risk of infection, time to infection clearance (assuming failed infection), and time to
infection detection. Our focus is on the impact of errors in viral replication that result in non-
infectious virus production on these characteristics. Only a small fraction of circulating virus in
any chronically infected individual is capable of infecting susceptible cells: estimates range from
1/10* —1/10%. Characterization and quantification of the processes by which virus becomes defective
remains incomplete. We consider two mechanisms that result in defective virus: (1) Copying errors,
i.e., lethal errors in reverse transcription, which introduce mutations into the HIV-1 proviral genome,
some of which may cripple the viral genome produced, and (2) Packaging errors, i.e., errors during
viral packaging, at the end of the viral replication cycle, which cause defective virus by packaging
new virions without, for example, viral RNA or key proteins required for infectivity. We show that
assumptions on mechanisms of defective virus production can significantly impact early HIV infection
model predictions. For example, the risk of infection is orders of magnitude higher if all defective
virus is associated with packaging errors, but infection is predicted to be detectable sooner following
HIV exposure if all defective virus is associated with copying errors. Thus, in order to make reliable
predictions of risk, clearance time, and detection time, better characterization of viral replication is
required.

1. Introduction. HIV populations in chronically infected individuals are heterogeneous.
HIV is constantly evolving, with different viral populations competing to become the dominant
strain. But surprisingly, only small fraction of circulating virus in any infected individual is
capable of infecting susceptible cells: estimates range from 1/10* — 1/10% [9,46,60,79]. Our
aim is to investigate the effect of non-infectious viral production in the earliest stages of HIV
infection.

Within-host events following exposure to HIV are critical in predicting whether infection
will occur. We know from epidemiological studies that the probability or risk of infection is
low, on the order of 0.1%-1% per sex act, percutaneous needlestick, or needle-sharing drug
use [47,74]. Further, from phylogenetic studies, we know that many infections arise due to
expansion of a single viral strain [39], called the transmitted /founder virus. However, direct
investigations of the early events in human or animal model infections are very difficult because
viral and infected cell populations are very small. Mathematical modeling can be invaluable in
investigating the earliest phase of infection, but it is important to understand how underlying
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2 J.M. CONWAY AND A.S. PERELSON

model assumptions such as viral infectiousness affect modeling predictions.

Infectious fractions ranging in 1/10* — 1/10 [3,46, 60, 79] are in vivo estimates based
on viral samples taken from chronically infected individuals (a recent study suggests that
that fraction may be larger than previously thought [73]). Though quantified through a
simple fraction, non-infectious virus can arise through a number of mechanisms, such as host
antibodies binding of viral surface proteins necessary for viral entry into a target cell. Here we
focus specifically on viral replication errors that give rise to non-infectious virus. The reverse
transcription step of viral replication, when the RNA of a virion that has penetrated its target
cell, gets copied into DNA, is error prone - mutations, including insertions, deletions, and
base substitutions [31], are introduced in vivo at a rate of ~ O(107°) per base per replication
cycle [1,57,58] (the HIV genome is roughly 10 bases long). Frameshift mutations can also be
introduced into the HIV-1 proviral genome [1]. Mutations are the primary driver of escape
from cytotoxic T lymphocyte (CTL) responses and to the generation of drug-resistant viral
strains. They can also fatally cripple the proviral genome so that any viral genomes produced
by the provirus will not be infectious [22,31]. Virus may also be rendered non-infectious
by errors in virion assembly and packaging. For instance, to be infectious, virions must be
packaged to include two RNA molecules encoding functional virus as well as the HIV enzymes
reverse transcriptase and integrase and have sufficient surface proteins (gp120/gp41) necessary
for viral binding and entry into target cells [51].

Our aim in this paper is to investigate how assumptions on viral replication errors leading
to non-infectious virus affect predictions with regards to important variables in the earliest
stages of HIV infection: (1) Risk of infection, i.e., the probability of becoming infected after
exposure to a viral inoculum. Interventions such as prophylactic use of antiretroviral drugs
(pre- or post-exposure, PrEP or PEP) [23,48], male circumcision [5], immunization [36], all aim
to reduce risk. Therefore modeling predictions of risk can be of great value and clinical use.
(2) Time to infection clearance, and (3) time to infection detection, in the case of unsuccessful
or successful infection respectively. Obtaining these time distributions can help us characterize
the course of early infection. They can also be of direct clinical use. For example, distributions
on time to detection can offer some guidance for HIV testing windows [7,67]. We investigate
these measures in the context of intravenous exposure to HIV, i.e., via occupational needlestick
exposure or intravenous drug use, where a well-mixed model with no spatial structure most
likely applies.

Deterministic (differential equation) models have been very effective in characterizing HIV
infection, for example in determining viral and infected cell clearance times [71]. Variants of
the now-standard viral dynamics model, first developed to investigate HIV [65,69,71] have
since been used to gain insight into a multitude of viral infections, including dengue [15],
West Nile virus [6], cytomegalovirus [21], hepatitis B [64], hepatitis C [63], influenza [4,27,32],
and Zika [2,8,66]. From a mathematical perspective, differential equation models represent
average behavior of a system and are appropriate when numbers are large, as viral loads and
infected cell concentrations certainly are in HIV chronically-infected individuals. Here we are
interested in the earliest stages of HIV infection, when numbers of virions and in particu-
lar infected cells can be quite small. A stochastic approach is therefore more appropriate:
stochastic models can give varying predictions in regimes where deterministic models, focus-
ing on mean behavior only, cannot. For example, predictions on risk of infection - inaccessible
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EARLY HIV INFECTION PREDICTIONS: ROLE OF VIRAL REPLICATION ERRORS 3

via differential equation modeling - is different if viral production is assumed to be continuous
through an infected cell’s life, or to occur in a burst at the end of the infected cell’s life, for
the same mean number of virus particles produced [68].

Our stochastic model will be built upon the standard viral dynamics model [70,71], involv-
ing cells susceptible to HIV infection, infected cells, and virus only. This simple model ignores
spatial effects, the effects of long-lived and latently infected cells, which may affect long-term
dynamics of HIV infection, as well as the possibility of cell-to-cell infection [24]. The model
also ignores the delay from the time a virus enters a cell until it begins producing virus, i.e.
the eclipse phase, although this can be included in the model [18,20,30,61]. Further, since we
focus on the earliest stages of HIV infection during which time very few cells become infected,
we will consider no immune response and ignore dynamics in the number of susceptible cells.
By keeping the number of susceptible cells, i.e., target cells, constant the dynamical equations
become linear and more amenable to analysis, although we recognize that in certain spatial
locations target cells may be limiting and need to be accounted for in spatial models. We are
interested in quantities such as risk of infection, time to viral clearance, and time to detection.
Our model is best suited to gain qualitative insight into these quantities, for example, the rel-
ative impact of assumptions on mechanisms producing defective virus on these quantities. To
get at the early infection quantities of interest, we will extend stochastic approaches used
in our recent theoretical studies [17, 18, 68], which themselves build on previous stochastic
modeling literature [29,50,82,85].

We formulate our stochastic model as a multi-type branching process [28,37,41]. Branch-
ing process models have long been used to investigate and model biological processes as they
are simply expressed, and yet include noise inherent in any biological system. Multi-type
continuous time branching processes, have been used to gain insight into, for example, fluc-
tuation theory [41], carcinogenesis [53,62], cellular processes [55,56], immunology and T-cell
population dynamics [77], population dynamics and ecology [26,44], and epidemiology [35].
Our own recent modeling of within-host HIV dynamics [17, 18, 68], which we extend in this
present study, relied on much of this previously developed theory.

The structure of this paper is as follows. First we give a model overview. We then offer
details on the calculations of risk of infection, time to clearance, and detection time, and give
related results. Finally we discuss the results and their broader implications.

2. Viral dynamics model. Our basic mathematical model of early HIV infection is pre-
sented schematically in Figure 1(a). There are four compartments: infectious and non-
infectious virus, V and Vj, respectively, infected cells, I, and infected cells that produce
only non-infectious virus, I;. Since non-infectious virus is sometimes called defective virus,
we use the subscript ‘d.” There may be a continuum of infectivities across virus within a host,
if we consider variation in envelope protein, but for simplicity we consider only the infectious
and non-infectious extremes.

Infected cells I and I; produce virus at rate p. Virions V and V; are cleared at rate c.
We assume mass-action kinetics for cell infection: Infectious virus V, infects target cells, T,
at a rate proportional to their product, with proportionality constant k. We assume 7" to be
constant, a necessary assumption since we wish to focus on specific mechanisms pertaining to
viral replication rather than target cell limitation. We note that this assumption is probably
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4 J.M. CONWAY AND A.S. PERELSON

biologically reasonable for intravenous infection since very few cells are infected relative to the
total number at risk during the earliest stages of HIV infection. Thus in our model, infectious
virions make new infected cells at rate k7. Infected cells I and I; die at rate §. In principle,
rates associated with infected cells I; may differ from those associated with infected cells I.
However, there are no estimates or qualitative studies to give us insights into how they may
differ. We therefore make the simplifying assumption that rates associated with I and I; are
the same.

Mathematically speaking, the events we model - viral production and clearance, cell infec-
tion and death - are independent. In the standard model (cf. eq. (SM1)), cell infection is not
an independent process, as it depends on the density of both virus and target cells. However
since we make the assumption that the target cell population remains approximately constant
at the earliest stage of infection, the target cell count is no longer a dependent variable, and
each virion can infect a cell or clear independently of the remaining viral or infected cell pop-
ulations. The constant target cell assumption is therefore required for independence to hold,
and permits the use of branching processes.

Our focus is on errors in viral replication that result in non-infectious virus. There are
two such mechanisms: lethal reverse transcription (copying) errors and packaging errors. Re-
verse transcription, or copying, errors introduce mutations into the HIV-1 proviral genome,
some of which may cripple the viral genome produced in any of multiple ways, e.g., by the
introduction of stop codons, large deletions or frameshifts. This can be exacerbated by the
cellular antiviral enzyme APOBEG3G, that induces hypermutations in HIV DNA during re-
verse transcription [87,88]. These are our lethal copying errors. Because the host polymerase,
which transcribes the HIV proviral genome into viral RNA, does so with high fidelity (error
rate 107 per base pair per year [45]) we assume that cells with a crippled proviral genome
only produce non-infectious virions. Packaging errors occur at the end of the viral replica-
tion cycle, during the packaging step: for example, virions may be packaged without RNA,
without HIV enzymes such as reverse transcriptase, protease or integrase or with insufficient
surface proteins (gp120/gp41) necessary for viral binding to target cells [51]. We’ll assume
these packaging errors occur at random in any produced virion.

We consider two classes of mutation.

1. Mutations that affect all virions produced by an infected cell equally. These are
the reverse transcription or copying errors. In our model, the probability of a lethal
copying error is 1 —Q., where Q). is the probability of no, or non-lethal, copying errors.
Therefore, new cell infection (at rate kT") yields

e an infected cell I, containing an infectious proviral viral genome, with probability
Qc, or
e an infected cell 14, containing a non-infectious viral genome, with probability 1—Q)..

2. Mutations that affect individual virions produced by an infected cell. These are pri-
marily routine packaging errors. In our model, the probability of a packaging error is
1 — @Qp, where @), is the probability of that a virion is correctly packaged. Therefore,
for infected cells I, viral production (at rate p) yields

e with probability ), correctly packaged - and therefore infectious - virion V'
e with probability 1—(@),, incorrectly packaged - and therefore non-infectious - virion
Va
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Figure 1. Model schematics: (a) Basic model, (b) reduced model. I represent infected cells, V virions, with
1i and Vy representing defective infected cells and virions respectively. Fach infected cell, I or 14, dies at rate
0 or produces a virion at rate p. Non-infectious infected cells 14 produce only non-infectious virus, Vg, while
infectious infected cells I may also produce infectious virions, V', with probability Qp. The dashed line indicates
viral production without loss of the virus-producing infected cell. Fach infectious virion, V, infects a target cell
T with mass-action infectivity k; the newly infected cell is infectious, I, with probability Q. and is otherwise
non-infectious, Iq. Note that the number of target cells T is held constant. In the reduced model (b) we neglect
the dynamics of non-infectious cells and virus, Iz and Vy.

All virus produced by infected cells I; are defective. Note that the mean number of infectious
virus produced by infected cells I is Q,p/0 where p/é is the average number of virus particles
produced during the infected cell’s lifetime (1/6), commonly called the “burst size” irrespective
of whether the virus is produced continuously, as assumed here, or in a burst.

3. Mathematical approach. Traditionally mathematical modeling of viral dynamics takes
a deterministic, ordinary differential equations approach. However since we seek to investigate
events in early HIV infection, it is necessary to use a stochastic approach (see section SM2
for discussion).

The modeling framework we will use is continuous-time branching processes [28,37,41],
extending previously-developed theory [17,18,68]. For our model shown in Figure 1(a) define

P w,m,wino,v0,mowo (t) = P(I(t) =n, V(t) =, Id(t) =m, Vd(t) =w
|I(0) = no, V(O) = vo,Id(O) = my, Vd(O) = wo)

as the probability that at time t there are n infected cells, v infectious virions, m defective
infected cells, and w defective virions, given that at time 0 there were ng infected cells, vy
infectious virions, mg defective infected cells, and wq defective virions.

For the purposes of computing extinction probabilities we need not explicitly include de-
fective compartments (14, V) - we need only consider the reduced model shown in Figure 1(b).
Infected cells produce (infectious-only) virus at rate pQ,, and die at rate 6. Virions infect
susceptible cells T at rate k, producing infected cells at rate QQ.kT.Virions are cleared at rate
c. Define for this reduced model

P vingwo (t) = P(I(t) = n,V(t) = v[1(0) = ng, V(0) = ),

as the probability that at time ¢ there are n infected cells and v infectious virions, given that
at time O there are ng infected cells and vg virions. In the calculations that follow we will
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6 J.M. CONWAY AND A.S. PERELSON

mainly use this reduced probability. The defective compartments will only be included in the
of probability of detection calculation, since detection is of total viral load (V 4 Vj), assuming
the defective virus still contains HIV RNA.

We proceed by deriving the probability generating function differential equations for the
probability Py, y:ng.v,(t). We will use these to derive expressions for risk of infection and
time to infection clearance. To derive the time-dependent probability of infection detec-
tion, we use the extended equations and the associated probability generating function for

Pn,m,v,w;no,mo,vo,wo (t) ‘

3.1. Chapman-Kolmogorov differential equation and the probability generating func-
tion. We begin with the backwards Chapman-Kolmogorov differential equation (bCKde) for
the probability P, v (1),

d
%Pn,v;no,vo :5n0Pn,v;nofl,vo + pr”OPn,v;no,vo+1 + QckT’UOPn,v;ng+1,'uofl
+ (1 - Qc)kTUOPn,v;ng,vo—l + CUOPn,v;no,vg—l
(1) - ((5 +pr)n0 + (kT + C)UO) P vino,v0

with initial condition Py, y:ng.00(0) = nngdvwe- The derivation of the bCKde is given subsec-
tion SM3.1.
Define the probability generating function (PGF) G v, (x, y; )

(o clNe o]

(2) G o (T, Y5 t) = Z Z P vinowo @y

n=0v=0

We use the generating function because its derivatives give us individual probabilities and

moments. For example, the marginal probability distribution on the viral load is given by

derivatives of Gy, 4,(1,y;t), and the mean viral load at time ¢ is given by BG%W

y=1
Multiplying eq. (1) by z"y" and summing over the exponents, we obtain an equation for

Gno,vo :

0
aGno,vo :5n0Gno—1,vo +prn0Gno,vo+1 + QckTUOGno+1,v0—1
+ (1 - QC)]{:TUOGTLo,Uofl + CUOGno,vofl
(3) —((6+ pr)”O + (KT + ¢)vo) Gro,vo

with initial condition G, ., (0) = 2™0y". We can reduce this infinite-dimensional system to a
two-dimensional system by exploiting the branching property [37]: Gpnyv, = (G1,0)™ (Go1)™.
The branching property derives from our important assumption that cells and virions of each
type behave identically and independently of all other cells and virions. We derive two ODEs
from which we can recover the PGF,

e
GtLO =0 + pQpG1,0Go,1 — (6 +pQyp)G1,0
e
(W 001 4 AT (1 Q)+ QuGrp) — (¢ + KT)Go
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EARLY HIV INFECTION PREDICTIONS: ROLE OF VIRAL REPLICATION ERRORS 7

with initial conditions G1,0(0) = z, Go,1(0) = y. We will use the PGF and the associated non-
linear ODEs to compute quantities of interest such as risk of infection and infection clearance
times.

We note that the complete derivation of these equations for the probability generating
function is similar to derivations for other models that rely on continuous time branching
processes [28,37,41]. Different biological processes can be modeled in a similar manner. For
example, in fluctuation theory [41] and stochastic models of carcinogenesis [53,62], which fo-
cus on initially-homogeneous cell populations that accumulate mutants over time, the primary
“branching” mechanism is mutation. Continuous viral production in our model, (1), is de-
scribed in the same way as cell division with one identical, and one mutant, daughter cell [41].
Cell infection in our model is described in the same way as backwards mutation [41]. However
to our knowledge, no biological processes have been modeled with the same combination of
mechanisms (Figure 1) and resulting equations ((1) and (4)) as in this present study.

4. Parameters. Baseline parameters for simulation results are summarized in Table 1.

Table 1
Model parameters.

’ Parameter | Description ‘ Estimate ‘ Reference(s) ‘
) Infected cell death rate | 1day ! [59,90]
P Viral production rate 2000 day ! see text
c Viral clearance rate 23 day ! [75]
Q. Probability of reverse varied, 1072 — 1 | see text

transcription leading to
infectious provirus

Qp Probability of correct varied, 1072 — 1 | see text
viral packaging
Q Infectious virion fraction | 1073 — 107! [54]

in inoculum

Rate parameters during the early and chronic stages of HIV infection may differ. However,
because there are few reported parameter estimates from the earliest stages of HIV infection
we mainly use estimates for their chronic infection counterparts. We use the mean lifetime of
infected cells (1/0) estimate of 1 day [59]. Estimates on lifetime virion production (burst size)
from a single infected cell vary significantly, from a few hundred virions to tens of thousands
[13,25]; we’ll use an mid-range value, B = 2000 virions, which gives us a virus production
rate p = B§ = 2000day~!. The viral clearance rate estimate we use is ¢ = 23day ! [75];
while this is an estimate from the chronic stage of infection, there is evidence that suggests
viral clearance is equally rapid during early HIV infection [90]. The infection rate kT we will
compute from the expression for the basic reproduction number

_ QcQppkT  ~
o= 5w ~ @B

where B = p/¢ is the infected cell burst size, v = kT'/(c + kT') is the probability that a virion
will infect a cell [68], and we define Q = Q.Q,. Models that do not distinguish infectious from
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defective virus have Ry = B~y (c.f. [68]) as they implicitly assume all virions are equivalent
and infectious,i.e., Q. = @, = 1. We will compute k7" using within-host estimates of Ry for
early HIV infection as discussed below [78]. Finally, estimates on the replication-competent
fraction Q = Q.Qp range from 10~* — 103 for chronic infection [42,60,79]. There is some
evidence this fraction is higher during the early stages of HIV and SIV infection [42,54, 86].
We therefore use the range 1072 — 1 for each of Q. and Q,.

We have not given estimates for the inoculum size N and the fraction of replication-
competent virus in that inoculum Q. This inoculum related Q is distinct from @, the fraction
of replication competent virus produced by the newly-infected host. Our aim is to show that
different mechanisms for production of defective virus can effect early-infection predictions
only, so we will not explore sensitivity of our results to these parameters. An average inoculum
size, or even a distribution on the inoculum size N, is difficult to determine, as it depends
on exposure type, severity, and viral load in the HIV+ individual involved in the exposure
or in a syringe if by needle stick injury. However epidemiological studies do estimate risks
of infection averaged over all these exposures; the risk of infection from percutaneous needle
stick, for example, has been estimated to be 0.3% [47]. As in a previous study [18], we will
assume that exposures are uniformly distributed, and fit the maximum inoculum size to a
desired risk of infection. Here we use an inoculum size of N = 1000 virions, within the range
of inoculum sizes that give a risk of infection of 0.3%, corresponding to that of occupational
exposure [47], if we assume that inoculum sizes are uniformly distributed across infecting
donors (see subsection 5.3, below). And as briefly discussed above with regards to Q. and
@Qp, estimates on the replication-competent fraction ) during chronic infection range from
10~* — 1073 [42,60,79]. For this present study we will set the replication-competent fraction
of virus in the inoculum @ = 1073, although as indicated in Table 1, Q could be as high as
1071

The basic reproduction number Ry is a key parameter in our model: it is the average
number of new cell infections induced by an infected cell I during its lifetime 1/6. Ry impacts
the probability of extinction (risk of infection), time to extinction, and times at which the
viral load will be detectable. We use the individual Ry estimates from [78], derived from viral
load data obtained from 47 plasma donors, who were originally HIV™ and became HIV*t. We
adjust these measurements to suit our model: the Ry values in [78] account for the delay 7
between infection of a cell and the beginning of viral production. They measure the viral
growth r and from their viral dynamics model show Ry =~ (14 1/d)e’”, where ¢ is the infected
cell death rate [78]. Since our model does not include the delay 7, the corresponding Ry for
our model is Ry ~ (1 + r/J). We use the reported median Ry value, not accounting for the
delay 7, Ry = 2.77, and the interquartile range (R3%, R7®) = (2.28, 3.06).

We are interested in how assumptions on different mechanisms for production of defective
virus, either reverse transcription errors (probability 1 — @) or packaging errors (probability
1 — @p) affect modeling predictions on the clinical outcomes of risk of infection, time to
infection clearance, and probability of detection at time ¢. For the results we show, we focus
on parameter regimes within which the product Q.Q, = Q is held constant. We also hold
Ro = QB constant, where B is the infected cell viral burst size, and v = kT/(c + kT) is the
probability that a virion will infect a cell. We choose Ry constant to focus on regimes where
the deterministic model predictions would be constant (see section SM2 for details). As one
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EARLY HIV INFECTION PREDICTIONS: ROLE OF VIRAL REPLICATION ERRORS 9

cannot simultaneously fix Ry = Q’yB, B, Q, and -, we allow gamma to vary. - is a function
of the infection rate kT (y = kT'/(c + kT)), for which we do not have a reliable estimate,
even to within an order of magnitude. We choose the product Q= Q.Qp constant to focus
on regimes with constant total fractions of replication competent and defective virus.

We present results as a function of the fraction of errors attributable to reverse transcrip-
tion, which we call copying errors, relative to the total fraction of defective virus. This fraction

is

1-— Qc
1-QcQp
The quantity K can be derived from the steady-state predictions of the standard viral dy-
namics ODE model (see eq. (SM1) in section SM2). The steady-state fraction of defective
infected cells is I;/(Ig + I) = 1 — Q., the copying error probability, while the steady-state
fraction of defective virus is Vy/(Va+V) = p(1-QcQp)/(p—0) = 1 —Q.Q)p, since p > 4. Thus
K =(1-Q:)/(1—Q:Qp) can be interpreted as a potentially directly measurable quantity
once the viral load set-point is reached.

Copying error fraction = K =

5. On risk of infection. The probability that infected cells/virus go extinct can be inter-
preted in a clinically useful manner. Risk of infection, can be calculated as (1 - the overall
probability of extinction (as time — 00)). Reducing risk is the main goal of HIV prevention
strategies.

5.1. Calculation: Risk of infection from extinction as t — oco. The probability that
the infection is extinct at or before time t is given by Pegi(t) = FPo,0:mg,(t), since 0 is an
absorbing boundary. Recall that Py, y:m0,0,(t) = P(I(t) = n,V(t) = v|I(0) = ng, V(0) = vy),
the probability that there remain n infected cells and v virions at time t given ng infected
cells and v virions at time 0. Expressing the probability of extinction P, (t) in terms of the
generating function Gp, ., in eq. (2),

(5) Peyt(t) = Gng,vo (0,051).
We compute the risk of infection from the limiting probability of extinction PS5. As t — oo,

ext —

= (tlgglo Gl,o(O,O;t)>nO (tlgglo G071(0,0;t)>

o tll)rl;lo G"O:'UO (O? 0’ t)

vo

with limy_so G1,0(0,0;¢), limy—,o0 Go,1(0,0;¢) the stable fixed point of eq. (4),

17 RO <1
lim GL()(O, O;t) = GT 0= { 5(c+kT) 1 -
t—o00 pk;TQp ~ Ry Ry >1
lim Go1(0,0;t) = G {1’ o=t
m Go,1(U,051) =Gp1 =9 5 +(1-Qc)kT

where Ry is the basic reproduction number, Ry = Q.Qp,By = pQ.QukT/é(c + kT'). Recall
that v = kT'/(c + kT) is the probability that a single replication-competent virion infects a
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10 J.M. CONWAY AND A.S. PERELSON

cell [68], and that B = p/d is the burst size. If Q. = Q, = 1, Gg; for Ry > 1 simplifies to
1 — (Ro —1)/B, in agreement with Pearson et al. (2011) and Conway et al. (2013) [18,68].

Starting from a state with ng infected cells capable of producing infectious virus, and vy
infectious virions, the probability of extinction as t — oo in terms of v and B is

PZ =

ext

L, Cgccgpl3ﬁ/f§ 1
1 no 1 v
<QCQPB’Y> (BQp +1- Qc’)/) ) QchB’7 > 1.

Now consider a virus-only inoculum as is typically used in non-human primate infection
experiments. The key piece of information is the probability of extinction starting with a
single infectious virion, i.e., vg = 1 and ng = 0. For Ry > 1,

1
6 et = A5 1= Qe
() t QpB

It is unlikely that any real viral inoculum will contain infectious virions only. We assume
that given an inoculum of size NN, each virion is infectious with probability ), and use a
binomial distribution. From the branching property - that is, the assumption that cells and
virions of each type behave identically and independently of all other cells and virions - the
probability that the infection will be extinct at time ¢, for an inoculum of size IV, with each
virion replication-competent with probability @, is

N
PN = Z {(Probability that an inoculum of size N contains ¢ infectious virions)
=0

x (Probability that the infection goes extinct given an

inoculum of ¢ infectious virions)}
N

_ N Nt L _ ¢
—;%(g)(l A (G g T 1- Q)

o =(1-e(ea-op))

for Ry > 1. In the last step we noted that the sum corresponds to the binomial expansion of
(1-Q(Qey — 1/QpB))N. Then risk of infection for an inoculum of size N, when Ry > 1, is

(8) Risk = 1 — <1—Q<Q07—QiB)>N.

It is immediately clear that Q. and @), have different effects on this risk, which we will explore
in the following.

5.2. Predicted risk of infection is lowered by copying errors . We begin by examining
the risk of infection for a constant assumed total fraction of infectious virus @ = Q.Qp.
Figure 2(a,b) shows the % risk of infection given a single virus inoculum as a function of K,
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the fraction of errors attributable to copying errors,

Risk|y_, =1 — (1 —q (Q” - QiB>>
©) - (1ra-m (1))

for different total replication competent fractions Q = QcQp =1073,1072, and 107!, Recall
that @ is the probability that a virus in the inoculum N is infectious. We use inoculum size
N =1 virion for this calculation to isolate the relative impact of K on risk. In Figure 2(a,b),
solid lines indicate median Ry and the shaded areas, risk within the 25th and 75th percentile
in Ry [78]. From eq. (9), single-virus risk linearly decreases with the copying error fraction
K. In the limiting cases,
1. all errors attributable to packaging errors, K = 0. The risk |x—o = Q(Ro — 1)/BQ
decreases as the total replication competent fraction Q increases. This decrease is
clear upon inspection of the left y—axis in Figure 2(a,b): curves for smallest Q (1073;
green) give higher risk than curves for larger Q (10~'; red). Further, as Q increases,
the range (R2°/Q, RI?/Q) decreases, so the range in risk between the 25th and 75th
percentile in Ry is larger for Q = 103 (Figure 2(a), shaded area in green) than for
Q = 10" (Figure 2(a), shaded area in red).
2. all errors attributable to copying errors, K = 1: Risk = Q(Rq—1)/B = 5x10""(Rg—
1). Risk increases with Ry. However the coeflicient preceding (Rp — 1) is very small,
Q/B =5 x 1077 with our parameter choices of @ = 1073 and B = 2 x 103, and since
Ry —1 ~ O(1) the differences are slight on the scale of % risk shown in Figure 2(a,b).
In the intermediate cases where errors are a combination of copying errors and packaging
errors, 0 < K < 1, the risk decreases as the copying error fraction K increases. Further, as
that fraction K increases to 1, the impact of replication errors decreases and, with it, the
interquartile range in risk associated with the interquartile range in Ry also decreases.

That single-virus risk of infection decreases as the total fraction of replication-competent
fraction Q increases seems counter-intuitive. This result is an artifact of keeping Ry fixed.
Ry = Q.QpyyB = QvB; in order to keep Ry fixed while varying Q we adjust the probability
of infection v = kT/(c + kT). As Q increases, that probability of infection v decreases
accordingly, and thus the single-virus risk of infection decreases as well.

We note similar trends in the sensitivity of risk and inoculum size to the assumed viral
production rate p (see Figure SM1). This is unsurprising since the viral production rate p is in
the numerator of Ry. Higher p leads to higher per-virion risk of infection (Fig S2a,b) and lower
required inoculum for a fixed risk of infection (Fig S2c). Note however that the sensitivity to p
is more significant, given the uncertainty in p: as we move p through a biologically reasonable
range of 200 to 20000 virions per day [13,25], we recover commensurate order-of-magnitude
changes in risk of infection.

Taken together, predictions on single-virus risk of infection increase - by orders of magni-
tude, see Figure 2(b) - with the assumed fraction of replication-incompetent virus attributable
to packaging errors, and also with the basic reproduction number Ry. Practically speaking,
the reason single-virus risk is lower assuming copying errors dominate relates to the two-step
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Figure 2. Risk of infection and inoculum size for different total replication competent fractions Q =
Q.Qp, = 1073, 1072, and 107L. (a-b) % risk of infection given a single virus inoculum as a function of the
fraction of errors attributable to copying errors, (9), on a (a) linear and (b) log scale. (c) Mazimum inoculum
size assuming a risk of infection of 0.8%, assuming inoculums to be uniformly distributed, computed from (10)
using a nonlinear solver. Solid lines indicate median Ry = 2.77 and the shaded areas, Tisk within the 25th and
75th percentile in Ro, (R3>, R)) = (2.28,3.06) [78]. Remaining parameters can be found in Table 1.

process of viral replication: in order to avoid extinction, inoculum virus must first infect cells
(probability Q.kT'/(c + kT')), and only then those cells make viable virus. Hampering cell
infection, as copying errors do, prevents the first step, successful cell infection, halting the
potential of a propagating infection. Assuming packaging errors only, i.e., Q. = 1, permits
cell infection with much higher probability (k¥T'/(c + kT)).

5.3. Inoculum size predictions increase with copying error fraction. Viral inoculum
sizes associated with different high-HIV risk activities (e.g. needlestick exposure in hospital
setting, unprotected vaginal intercourse) are unknown. However, epidemiological estimates of
risk associated with these activities do exist; for example, occupational exposure in a hospital
setting (e.g. needlestick) carries with it a risk of 0.3% [47]. These measures can be used to
back-calculate the required inoculum size [18], in turn giving model-based insight into early
infection dynamics. In the previous section we discussed risk of infection given an inoculum
containing a single virus. To achieve a fixed risk of infection, the lower the single-virus risk,
the higher the total viral inoculum required. The risk of infection initiated with a single virion
decreases as the fraction of errors attributable to copying errors increases (as K increases from
0 to 1, cf. Figure 2(a,b)). We therefore anticipate that, to achieve a fixed risk of infection, as
in occupational exposure, the required total inoculum increases with K.

To investigate total inoculum, assume that the risk of infection is 0.3%, corresponding to
that of occupational exposure [47]. Occupational exposures vary in severity from needlestick
exposures to blood splashes, and vary also according to the viral load of the donor, which
can span orders of magnitude. In absence of information on a probability distribution on
occupational-exposure inoculum size we assume a uniform distribution, N ~ U(0, Nyez), as
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in [18]. Njae is the maximum inoculum size. The total risk of infection is then

N,

. 1 max .

Risk |N~U(0,me) =1- N E (Pl n=1)
max ]:0

1 — (P> Nmaz+1

1- Pc?:?t|N:1

where P2|y_; is the probability of extinction Pgg|y_; = (1 -Q (Qc’y— Qr%)), from

eq. (7). We use a nonlinear solver to compute Ny,q, such that the risk is fixed,

and the total replication competent fraction Q = Q.Qp is fixed, while varying the relative
contributions of copying and packaging errors (increasing K from 0 to 1).

The result is shown in Figure 2(c) for different values of Q and Ry (as before, solid lines
give Ry median, with the shaded area giving the interquartile range (R3%, R7®) from [78].
The maximum inoculum size N,,., required to achieve a risk of infection of 0.3% increases
with copying error fraction K, as anticipated. Nyqp also increases with Q: since single-virus
risk increases monotonically with Q, the required maximum inoculum size correspondingly
decreases. If instead we assumed a Dirac-delta distribution on the inoculum size around a
mean value N,,, i.e.,

1 — Risk

Risk = 1 — (P3|n=1)V™ = Ny = oo
18 ( ext’N—l) m Pé);t|N:17

we recover qualitatively similar results. Quantitatively, N, < Npqz, Which is not surprising
since Ny,q, must compensate for the equal-probability, very low inoculum sizes.

Inoculum size predictions are far more sensitive to assumptions on the viral production rate
p within biologically reasonable ranges for p, p = 200 — 20000 virions per day, showing order
of magnitude differences in prediction, Figure SM1lc. But this should be anticipated, since
our inoculum size calculation relies on the risk of infection, which also exhibits this sensitivity
(see Figure SM1a,b), itself relying on Ry which is linear in p, Ry = Q1Q2pkT'/((c + kT)).

6. On time to infection clearance. We define infection clearance as viral and infected
cell clearance, V. = I = 0. We therefore interpret the time to extinction as the time to
infection clearance. Distributions of times to infection clearance may be useful in guiding
experiments. For example, when dosing a rhesus macaque with an SIV inoculum (e.g. [38]),
systemic infection may not develop. It would be useful to know when one can reasonably
assume that a monkey who shows no detectable infection will not develop systemic infection
and has cleared all infected cells and virus.

6.1. Calculating the time to infection clearance (extinction). In deriving from our
model an expression for the risk of infection eq. (8), in subsection 5.1, we discussed the cumula-
tive probability of infection extinction at time ¢, given by Peyt(t) = Po,0:n0,00 (t) = Gng,vo(0,0; 1)
in eq. (5), where G, v, (z,y;t) is the probability generating function, eq. (2). We assume a
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14 J.M. CONWAY AND A.S. PERELSON

virus-only inoculum; since we assume that the virions behave identically and independently of
all other cells and virus in the system, given v infectious virions, the probability of extinction
at time t is Pegt(t) = Go,1(0,0;¢)Y with Go,1(z,y;t) given by the solution of eq. (4).

As in our calculation of risk of infection in subsection 5.1, we assume an inoculum of size
N, with each virion replication-competent with probability (). Then

N
Pet(t)| v = Z {(Probability that the size-N inoculum contains ¢ infectious virions)
=0
x (Probability that the infection is extinct at time ¢ given

an inoculum of ¢ infectious virions)}

:é << 5 ) Q1 - Q)NQ (Goa(0.0:0))

(11) =(QGo,1(0,0;t) + (1 — Q)N

noting again that the sum corresponds to the binomial expansion of (QGg1(0,0;t)+(1-Q))".
Thus we can calculate the cumulative probability of extinction at time ¢ from the solution of
eq. (4) forz =y =0.

Differentiating Pey(t)| 5 with respect to ¢t and normalizing gives us the probability density
(under the condition that the infection goes extinct),

1 d Peat(t)|

12 ext(t) = =
(12) Peat(t) = i — Poot(t)y  dt

We can integrate this probability density to compute moments of the time to extinction.

6.2. Copying errors induce longer viral clearance times. We have seen that the single-
virus risk of infection is orders of magnitude smaller if we assume that the only mechanism for
defective virus production is copying errors. We now assume that infection will clear (so the
normalized risk of infection is 0) and investigate the time to infection clearance. The inoculum
size assumption does not affect qualitative results since inoculum affects risk and we condition
on viral clearance. For convenience we take inoculum size N = 1000 virions, each replication
competent with probability @ = 1073, in the range of inoculum sizes required to produce a
risk of infection of 0.3%, see Figure 2(c).

If we assume that the source of defective virus is solely copying errors, predictions on
time to infection clearance are longer in duration than if we assume that the only errors
are packaging errors, given that the infection will clear. Figure 3(a) shows the normalized
cumulative distribution of clearance times, computed from eq. (11), for median Ry = R{)ned =
2.77. Note that for higher copying error fraction K the tail of the distribution increases.
Recall that the probability of extinction for N virions is

o _ Q "
ext — <1 - BQp (RO - 1)) ’

from eq. (7) re-written in terms of Ry = ByQ.Qp. This probability of extinction increases as
@p 1 1; since we keep the total error Q = Q.Q) fixed, @, 1 1 corresponds to Q. | @ (copying
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Figure 3. Viral clearance times conditioned on wviral extinction for basic reproduction number Ro at its
median value RY* = 2.77 [78]. Remaining parameters can be found in Table 1. (a) Cumulative distribution

on time to viral clearance for different copying error fractions, computed from eq. (11) with generating function
Go,1(0,0;t) calculated numerically from eq. (4) with zero initial conditions and normalized. (b) Mean clearance
times computed from associated cumulative distributions. Note that the timescale is in hours.

error fraction K 1 1). The probability of extinction decreases more slowly with the number
of virions N if we assume defective virus is mainly attributable to copying errors. Therefore
infection extinction, given a few rounds of viral replication yielding circulating virus, is more
likely if we assume defective virus arises from copying errors rather than packaging errors.
This trend is not altered by the number of circulating infected cells since the probability of
extinction arising from an infected cell is 1/ Ry, Ry is kept fixed. As a result, the tail of the
clearance probability distribution - for longer times, after a few rounds of viral replication -
is wider. We confirm this result with the probability distribution function for the cumulative
number of infected cells, conditioned on infection clearance, see Figure SM3. The probability
of accumulating any infected cells is higher if we assume that defective virus are solely at-
tributable to copying errors. We then anticipate that the mean clearance time would increase
with the copying error fraction K, as shown in Figure 3(b). There also appears to be a max-
imum in the clearance time near, but not at, K = 1 (Figure 3(b)). This maximum will be
addressed in the next section.

6.3. Error assumption changes clearance time dependence on R . In the previous
section we discussed clearance time for the basic reproduction number fixed to its median
value Rg‘ed from [78]. Extending to Ry values at the limits of the interquartile range we
again see increasing mean clearance times with the copying error fraction K (Figure 4(a)),
computed by integrating the associated cumulative distributions computed from eqs. (4) and
(11). Intriguingly, however, we find that this increase is not monotonic in Ry: the mean
clearance time curves for different values of Ry in Figure 4(a) intersect.

Figure 4(b) shows contours in mean clearance time (in hours) to better illustrate the
non-monoticity, with dashed and solid lines indicating Rgled = 2.77, and the limits of the
interquartile range (R2°, R{?) = (2.28,3.06), respectively. In the extreme case of copying
error fraction K = 0, all defective virus associated with packaging errors, the mean clearance
time decreases with basic reproduction number Ry (Figure 4(c)). As Ry increases, more
new cell infections are engendered, on average, by each infected cell, and the probability of
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16 J.M. CONWAY AND A.S. PERELSON

extinction (eq. (7)) is reduced; after a few rounds of viral replication the viral load grows
too large to expect the infection to go extinct. This concept is clear from the clearance time
probability density functions, computed from eq. (12), shown in Figure 5(a). Observe that
the mode height decreases only very slightly with increasing Ry: the most likely path to
extinction is that the initial viral inoculum clears without infecting any target cells, each with
rate ¢, thus the position of the peak doesn’t change. But the probability that the initial viral
inoculum clears without infecting any target cells, ¢/(c + kT) = 1 — Ry/(BQ) for each virion
in the inoculum, decreases with increasing Ry < BQ, and therefore the peak height drops
very slightly. However, as Ry increases, the size of the tail of the clearance time distribution
shrinks, because as the viral load grows, the probability of infection extinction decreases. The
mean of the distribution must also correspondingly decrease.

In the extreme case of copying error fraction K = 1, when all defective virus are at-
tributable to copying errors, the mean clearance time increases with basic reproduction num-
ber Ry. This result counters the intuition discussed above. Figure 5(b) shows the clearance
time PDF's in the case K = 1 and different values of Ry. As with the K = 0 case, the mode
height decreases slightly: for early times, the clearance time cumulative density function for
K =0 and K = 1 (Figures 5(a) and (b)) are the same. The most likely scenario is inocu-
lum clearance, which occurs at the same rate and with the same probability. In the K =1
case however the tail of the distribution increases with Ry, see Figure 5(b), and so the mean
clearance time increases with Ry. The clearance time probability density tail size increases
because the density is computed with the condition that the infection goes extinct. A larger
Ry means that, on average, a larger number of secondary cell infections are induced by a
single infected cell and - since K =1 - all these infected cells will produce infectious virus. If
the viral inoculum does not immediately clear, there will be more infected cells and virus to
clear. Therefore, assuming that the infection does go extinct, clearance takes longer time.

The maximum mean clearance times in Figure 3(a) and Figure 4(a), near but away from
K =1, is the result of a transition between regimes where the mean clearance time decreases
with Ry (all packaging errors, K = 0) or increases with Ry (all copying errors, K = 1).

7. On time to infection detection. We have seen that in general, copying errors reduce
predicted risk of infection and accelerate viral clearance. We now investigate how error as-
sumptions affect predictions on viral detection, assuming that the infection is not cleared, i.e.,
does not go extinct. With improvements in technology, HIV tests are becoming more sensi-
tive, and can detect increasingly small amounts of virus [14] and/or virus-associated proteins
(for example, p24, an HIV viral capsid protein [89]). Further, there is an increased premium
on early detection of HIV infection: early treatment has been shown to improve long-term
patient outcomes in terms of quality and length of life [83], and very early treatment is also
associated with post-treatment control of HIV [80]. Mathematical modeling predictions on
infection detection times can offer insight and guidance into testing windows, that is, the time
frame after exposure to HIV within which to get tested and be confident of the positive or
negative result.

7.1. Calculating time to infection detection. In a clinical setting, HIV is measured in a
blood sample and is only detectable above a certain threshold, determined by the sensitivity of
the assay. We define the probability of detection as the probability that, given some exposure
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Figure 4. Viral clearance times as a function of the copying error fraction K and basic reproduction number
Ro. (a-c) Mean clearance time, in hours, (a) as a function of K for Ro at its median value R§" = 2.77 and at

the limits of the interquartile range (RE®, R(®) = (2.28,3.06) [78]; (b) as contours in (Ro, K ), with solid line
indicating median RJ™® , dashed the interquartile limiting values (R3°, R3®); (c) as a function of Ry for K =0
(all packaging errors) and K =1 (all copying errors). Remaining parameters can be found in Table 1.
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Figure 5. Probability densities of viral clearance times conditioned on viral extinction for basic reproduction
numbers Ro at interquartile limit values (R3®, R3®) = (2.28,3.06) and smaller/larger values Ro = 1.5 and 5, for
copying error fraction (a) K = 0 and (b) K = 1. Curves computed using eq. (4), (11), and (12). Remaining
parameters can be found in Table 1.

at time 0, the viral load is above that detection threshold at time ¢.

For our model, the probability of detection is Pget(t) = P(V(t) + Va(t) > Viet) = 1 —
P(V(t)+ Vi(t) < Vger) where Vg is the viral load detection threshold. Here we are assuming
that the defective virus V; does not have deletions that make the virus undetectable by
standard viral nucleic acid blood assays [72]. Now,

Vaet—1
P(V(t)+ Va(t) < Vaer) = > P(V(t)+ Vy(t) = k),
k=0

where P(V (t) + V4(t) = k) is the probability that the total viral load at time ¢ is k. Note
that we have dropped the initial condition for brevity; Pyet(t) = P(V () + Va(t) > Viet|1(0) =
no, V(0) = wo,14(0) = mo, V4(0) = wp). The probability of detection involves defective
infected cells and virions, which we have not so far included in our calculations.

To calculate the probability of detection we return to the full model in Figure 1(a) and
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use

Pn,v,m,w;no,vo,mo,wo (t) = P(I(t) =n, V(t) =0, Id(t) =m, Vd(t) =w
|1(0) = ng, V(0) = vo, 14(0) = mq, V4(0) = wy).

Define the corresponding probability generating function as

(o o ENNe ol S HENe o

. — n, v, ,m ’UJ
Gno,vo,m07wo($ayvr75at) = § E E , E Pn,v,m,w;nowoymmwo(t)x yr-s

n=0 v=0 m=0 w=0
But for the additional terms and indices, the derivation of the related bCKde and differen-
tial equations for Gy vp,me,wo (%, Y, 7, S5 t) is identical to the derivations in subsection 3.1 and
subsection SM3.1.
We can write the probability of detection in terms of the PGF,
PV#t)+Vyt)y=k)=)» PV=34Vy=k—j)
11 ok o
? (k _ j)' Oridsk—i ~ Mo:Yo,mo,wo

.
o o

z=r=1,y=s=0

noyvo,mmwo(la 21,1, 22)
:Z G+l _k—j+1 dzadz; .
C., JCs, 2 2y

*(k+1) Z*(k+1)
n07U07m07w0(1 21,1, 22) 1 dzodzy.
Z1 — %2

We used the Cauchy Gauss integral formula [10] to express derivatives as contour integrals for
the third step, and summed the finite series in the fourth. Then the probability of not being
detected at time ¢ is

Viet—1 1 Zf(kJrl) o Zf(k+1)
P(V(t) + Vd(t) < Vdet) = Z (271_)2 ﬁ i Gno,vo,mo,wo (17 21, 17 Z2; t) =z dZdel

Z1 — &
k=0 Z1 Z2 1 2

1 ™ . ) 1 — ¢~ Vdet?
:7R{/ Gno,vo,mo,wo(l,elgy 1,619,t) (#) d@}
o _

using the Residue Theorem [10] to reduce the double integral to a single integral, and using
the unit circle e as our contour C,, (for details see the subsection SM3.2). Finally, if we
want to take into account a virus-only inoculum of size N, each virion being infectious with
probability @, again assuming a binomial distribution,

Pdet(t)zl—i( ij )Qﬂu—@) ( {/ Goson—(Le® 1, 1) (11_6_;09> d@})

=0
(13)
1 " i0 1 i i0 1 io. N [(1—e Ve
=1 — ;R (QG0717070(17 e’ 1,e ;t) =+ (1 — Q)G0,07071(1, e’ 1,e ;t)) — ] df ,
0
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where we have made use of the branching property
G vo.mown = (G1,000)"(Go,1,00)"(G0,0,1,0)™ (Go,0,01)™"

and the binomial theorem to re-write the series

N
> < ];7 ) (QGo1.00) (1= Q)Go001)" 7 = (QGo100+ (1 - Q)Goo01)"

=0

Note that for our purposes Pyet(t) will converge to 1: since we condition on no infection
clearance, the viral load will eventually grow exponentially large, and the probability that the
infection will go extinct — 0. The detection threshold Ve, given by clinical constraints and
explicitly quantified below, is very large and well into the exponential phase of infection. We
can therefore consider the cumulative probability that the viral load will exceed the detection
threshold at time ¢, Pyet(t), to be the probability of infection detection on or before time ¢.

Clinical investigations on early-time HIV and SIV infections seldom focus on cases where
exposure does not result in infection. Data on viral load and CD4+ T-cell counts can only be
collected when infection initiates. The probability of detection, above, includes the probability
that the infection clears, and therefore may not be useful for some studies. If we only want to
consider cases where infection does not clear we must condition the probability Py v.mg,wo (t)
on the infection not going extinct.

The probability of detection at time ¢ conditioned on infection Pdet|mf(t) is

Pdet‘inf(t) =P (detection at time t|infection)
P(detection at time t)
- P(infection)
:Pdet (t)
Risk ’

(14)

from the law of total probability, where Pyet(t) is given by eq. (13) and Risk is given by
eq. (8). Note that as t — 00, Pyet(t) — Risk, and therefore pdethnf(t) — 1, as expected. The
probability of not detecting infection at time ¢, given that infection occurs, is P, detfinf(t) =
1 = Pyetfint(t) = 1 — Faet (t) /Risk.

Of greater clinical interest perhaps is the conditional risk of infection given an undetectable
infection at time ¢. As tests for HIV viral load are becoming more sophisticated with a lower
threshold of detection, this calculation can give insight into testing windows. That is, a blood
bank, for example, might want to know times ¢ beyond which this risk is sufficiently small, so
that, in essence, an undetectable viral load means no infection. Using Bayes’ rule we can write
an expression for this conditional risk in terms of the risk of infection and the probability of
detection:
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P detecti t ti t|infection) P(infecti
P(infection|no detection at time t) = (no detection at time tlinfection) P(infection)

P(no detection at time t)
(1 — P(detection at time t|infection))P(infection)
1 — P(detection at time t)

1 — Paegjint(t
(15) P(infection|no detection at time t) = ditlf() Risk
1 — Pyet(t)

for Pyet(t) given by eq. (13) and pdethnf(t) given by eq. (14). Observe that as t — oo, since
ﬁdethnf(t) — 1, the probability of infection given no detection at time ¢ goes to 0, again as
expected.

7.2. Packaging errors delay infection detection. We assume that the detection threshold
is 50 HIV RNA copies per mL, corresponding to the detection threshold for current commercial
HIV testing assays. Unlike deterministic dynamics, in which the dynamics measured in 1 mL
of intracellular fluid corresponds to the scaled version of full-body viral dynamics, stochastic
dynamics do not scale, so we must compute the total viral load in an individual. Assuming
an average person’s total body extracellular fluid is 15 L, the total viral detection level is
Vaet = 750000 HIV RNA copies. We numerically integrate eq. (13) with, and calculate
the conditional probability of detection as in eq. (14), with Viex = 750000, to obtain the
probability of infection detection at time t.

Figure 6(a) shows the cumulative probability of the viral load exceeding the detection
threshold at time ¢, conditioned on no extinction eq. (14). Assuming packaging errors only
(K = 0) yields delayed model-based predictions on detection of infection relative to model
predictions relying on copying error assumptions only (K = 1), see Figure 6(a). As shown in
subsection 5.2, risk of infection decreases with copying error fraction, since for high copying
error fractions, newly infected cells are more likely to produce only defective virus. However
if we condition on no extinction, we eliminate the cases where the first few infected cells make
defective virus (those cases lead to extinction). As a result the infectious viral load increases
rapidly and we anticipate a more rapidly spreading infection, and therefore more rapid de-
tection. In mathematical terms, from eq. (14) the probability of detection is normalized by
the risk of infection. Smaller risk in the denominator translates to more rapid detection, i.e.,
higher probability of detection at time ¢.

Mean detection times decrease monotonically with the copying error fraction, as shown
in Figure 6(b): a higher fraction of packaging errors delays the detection time. Figure 6(b)
shows mean detection times assuming median Rf)ned and its interquartile range (Rg5, R(7]5). The
trend of delayed detection-time predictions due to higher packaging error fraction (decreasing
K) remains regardless of Rg. We also observe that as Ry increases (R3® < R¥¢d < RI%)
mean detection times shorten. A larger value of Ry indicates that each cell engenders, on
average, more new cell infections, leading to increased viral load, which will therefore cross
the detection threshold sooner, regardless of assumed error types.

As copying errors come to dominate, mean detection time increases, but the variability
in detection time decreases. Predictions on variability in detection time are essential when
using modeling predictions to gain insight into testing windows; if variability is small, the
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Figure 6. Probability of detection at time t. (a) Cumulative probability of detection at time t for median
R = 2.77 assuming that the copying error fraction is 0 (all packaging errors), 0.5, or 1 (all copying errors).
(b) Mean detection time as a a function of the copying error fraction, for median basic reproduction number
R4 and interquartile values (R2°, R5®) = (2.28,3.06). (c) Coefficient of variation in detection time as a a
function of the copying error fraction, for median basic reproduction number RY*? and interquartile values
(R%, RI®). Remaining parameters can be found in Table 1.

mean may be a good guide, but if variability is large, it will not be. We use the coefficient of
variation o/u (standard deviation over the mean), and plot against the copying error fraction,
for median basic reproduction number R4 and interquartile range values (R2°, RI%), as
shown in Figure 6(c). The coefficient of variation decreases with copying error, indicating less
variability in detection times as copying errors come to dominate, across different Ry values.
Intuitively, decreased variability goes with shorter detection times. That is, there is a smaller
time frame in which virus/infected cell “paths” can widen. We find that not only do packaging
errors create delayed detection time predictions, they also increase the variability. However
we should note that, for our parameters at least, the differences in the coefficient of variation
are small - only very near the limiting case of copying error fraction K = 1 do the differences
approach 10%.

Finally, using our simple model we can comment on the delay time between exposure
and HIV testing. We use the basic reproduction number R(Q)E’ since it produces the slowest
detection times. Figure 7 shows the probability of infection given a negative HIV test, that
is, no detection, at time ¢. The y—intercepts in Figure 7(a) gives the total risk of infection;
to compare timing we condition on the process not going extinct, as seen in Figure 7(b).
Assuming copying error fraction K = 0, since again it produces the slowest detection times,
our model predicts that, assuming infection is successful, an HIV test should return a positive
result at approximately 9.5 days, with 95% probability (Prob(infection — detectable at ¢ < 10
days)~ 0.05), given our baseline inoculum size of 1000 virions which gives the high risk of
infection of 6.2%. However, if we assume Ry = R(7)5 and copying error fraction K = 1 the
estimate gets as small as 3.6 days (not shown).

Rough empirical estimates for the window period between infection and first detection
of HIV RNA lie in the 7-21 day range [16], within the same order of magnitude as our own
predictions, albeit higher, understandable since our model neglects some of the complexity of
early infection. We can only improve such estimates with better understanding of the different

mechanisms underlying viral replication.

This manuscript is for review purposes only.



675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

22 J.M. CONWAY AND A.S. PERELSON

0.1 1
—K=0
- -K=05
—-K=1

Prob. of no det.
(=]
o
(9]

Prob. of no det.
(=]
[}

0 0
0 5 10 0 5 10
Time (days) Time (days)
(a) (b)

Figure 7. Probability of infection given no detection at time t for basic reproduction number R3® = 2.28,
computed numerically from eq. (15). (a) Cumulative probability. (b) Normalized version of (a). Remaining
parameters can be found in Table 1.

8. Discussion. Elucidating events that occur between exposure to HIV and detectable
infection is crucial in developing prevention strategies. Directly investigating these events in
humans is very difficult, as are indirect investigations using animal models, since infected cell
and viral populations are very small during this period. In this study we developed a simple
mathematical model that permits us to make predictions on important clinical characteristics
of early HIV infection: risk of infection, time to infection clearance (assuming failed infection),
and probability of detection (assuming successful infection).

Since cell and viral populations are small during the earliest phases of HIV infection,
we used a stochastic modeling approach. We employed continuous-time branching processes,
using and extending methods previously presented [17,18,68]. In particular we used tools
from complex analysis to derive an integral expression for the probability of detection, which
is, to our knowledge, a novel calculation.

We used our model to investigate the effect of viral replication errors, resulting in non-
infectious virus, on early-infection predictions. Estimates on the non-infectious viral fraction
are as high as 99.99% [46, 60, 79]. We focused on two mechanisms: (1) that a mutation
during reverse transcription fatally cripples the proviral genome so that any viral genomes
produced by the provirus will not be infectious [22] (here called copying errors), and (2) that
virus may also be rendered non-infectious by errors in the assembly and release phase of
viral replication (here called packaging errors), e.g. virions may be packaged with insufficient
surface proteins (gp120/gp41) necessary for viral infection or lack essential HIV enzymes such
as reverse transcriptase or integrase [51]. In summary, assuming a constant basic reproduction
number Ry and non-infectious viral fraction, we found that:

Risk: The predicted risk of infection is much higher if we assume the source of non-infectious
virus is mainly packaging errors.

Time to clearance: For failed infections, exposures are predicted to clear more rapidly if
we assume the source of non-infectious virus is again mainly packaging errors.
Probability of detection: For successful infections, the infection is predicted to be de-

tectable earlier if we assume the source of non-infectious virus is mainly copying errors.
We also uncovered intriguing behavior in our investigation of clearance times. Mean clearance
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times, conditioned on failed infection, are predicted to differ only by hours across a wide
range of Ry and copying error fraction K; no modern experiment could distinguish between 8-
and 12-hour clearance time in tissues. Nonetheless, these mean clearance times are predicted
to decrease with increasing Ry if one assumes that all non-infectious virus is attributable
to packaging errors. Intuitively, this is because we increased Ry by increasing the infection
rate kT. With increased kT, the infection spreads more rapidly, and therefore the associated
probability of extinction (clearance) goes to 0 more rapidly. However, the mean clearance
time increases with increasing Ry assuming all non-infectious virus is attributable to copying
errors. We traced this counter-intuitive result to the tail of the extinction-time distribution
(Figure 5) and our conditioning the probability of clearance on infection extinction.

These results arise because we employed a stochastic model. In the deterministic version
of the model (see eq. (SM1) in section SM2) the parameters dictating error type are not
identifiable and results are not affected by error type, only total error. The deterministic
model is appropriate for chronic infection, when viral and cell populations are very large.
Early after exposure to HIV, these populations are small, and it is therefore inappropriate
to use a deterministic model. When accounting for stochastic effects it is clear that the
mechanism of defective virus production makes a significant and important difference.

Here we focused on errors in the viral replication cycle which lead to non-infectious virus.
However there are other mechanisms. For example, neutralizing antibodies may bind free
virus, rendering the virus non-infectious. But these events likely only occur in the deterministic
limit, after viral populations are large, and our focus in this present study is events in early
infection while viral populations are still small. APOBEC3G@G, an enzyme in cellular anti-viral
immunity, is another important factor [33,40,43,88]. APOBEC3G’s primary mode of action
is to interfere with reverse transcription, inducing hypermutation (copying errors) [43, 88].
Interestingly, infected cells generate APOBEC3G and the enzyme is packaged in the virions
budding off the infected cell. Thus, APOBEC3G-induced hypermutation only occurs in cells
infected by those budding virions. The HIV protein Vif acts against APOBEC3G, by both
triggering its degradation and preventing its incorporation into HIV virions [88]. Thus the
anti-viral action of APOBEC3G involves both viral packaging and reverse transcription, and
its dynamics cannot be investigated with our simple model. To investigate the dynamics of
APOBEC3G we must extend the model, which we leave for future work.

The existence of other mechanisms is one of the limitations of this present study. It is
possible non-infectious or defective virus may help drive infection [22], potentially by stimu-
lating an immune response [49] and creating more target cells. It is also possible that copying
errors cause defects in the packaging signaling site of the genome, inducing packaging errors:
an investigation of infected cells in treated, chronically-infected HIVT individuals showed that
approximately 5% had deletions in the packaging signal portion of the genome [11]. These
effects are also not included in our model. Further, our model is very simple, which facili-
tates the extensive analysis above. However, it does not account for some of the complexity
involved in the earliest stages of infection. For example, our estimates for clearance focus on
viral populations in the blood, the best indicator for humans. But even in needlestick injury,
the virus will move into tissue, and clearance in the blood could therefore precede clearance
in tissue. For vaginal sexual exposure, the viral inoculum has to cross vaginal tissues to reach
target cells and the bloodstream. Dendritic cells are thought to take up virus and transport
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them to lymph nodes. This is hypothesized to be one of the triggering events in HIV infec-
tion [34], which we previously modeled in [18]. In the very earliest stages, before there is much
viral dissemination, target cells may be limiting at particular spatial locations. Therefore, our
model is too simple to gain direct insight into animal model observations following vaginal
or rectal infection with SIV [52,76], or to aid in design of such experiments. To address this
more complicated scenario, we would apply the mathematics developed in this current work to
compute, in particular, time to infection detection and clearance, to an extended model that
captures viral transport dynamics, such as [18]. Note that such an extended model would
retain considerable uncertainty, since viral dissemination dynamics following HIV exposure
remain poorly understood.

Even so, our simple model would be an appropriate starting point to investigate and design
experiments focusing on intravenous infection of HIV, when the viral inoculum is delivered
directly to the blood [19,81]. Bruner et al. (2016) also showed that 40% of proviruses
generated after a single round of in vitro infection were defective [11]. In such studies and
experiments, focusing on intravenous infection of HIV, this 40% may inform the fraction of
errors associated with copying @)., suggesting Q). = 0.6 as an upper bound. The intravenous
route of HIV infection is relevant to HIV epidemiology: in 2015, 6-9% of new infections in the
United States were associated with injection drug use [12].

In spite of limitations, stochastic modeling can be invaluable in investigations of early HIV
infection. In a previous study, it was shown that better understanding of viral production
would improve risk-of-infection predictions [68]. We have shown that in order to make reliable
predictions on risk, clearance time, and detection time, better characterization of viral repli-
cation is required. We can then use models such as ours to make practical predictions on HIV
testing windows, or to generate theoretical hypotheses on the potential impact of target cell
limitation, which we have neglected here but likely plays a role in sexual infection, as there are
normally very few CD4% T cells in the genital mucosa. However, improved stochastic models
of early infection also have other uses such as predicting the effect of vaccines on preventing
the establishment of infection. It remains to be determined if the mode of defective virus
production can impact vaccine efficacy, but this is a topic worthy of investigation.

Lastly, the viral dynamics model that we used (Figure 1) as a starting point or slight
variants have been used to model many viral infections, such as those due to hepatitis C [63],
hepatitis B [84], West Nile virus [6], Zika virus [8] and influenza [4]. As both infectious and
noninfectious viruses are produced in all of these infections, the techniques used here and the
results we derived should have applicability to these as well as other viral infections.
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Figure SM1. Sensitivity of risk of infection and inoculum size to viral production rate p for different total
replication competent fractions, Q = Q.Qp = 1072 and 107", (a-b) % risk of infection given a single virus
inoculum as a function of the fraction of errors attributable to copying errors, on a (a) linear and (b) log
scale. (¢) Mazimum inoculum size assuming a risk of infection of 0.8%, assuming inoculums to be uniformly
distributed. Solid lines indicate baseline viral production rate p = 2000 virions per cell per day, and the shaded
areas, within viral production rates p = 200 and p = 20000 virions per day. Remaining parameters can be found
in Table 1.
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Figure SM2. Inoculum size prediction assuming a Delta-Dirac distribution. Mean inoculum size assuming
a risk of infection of 0.3%, assuming a peaked, Delta-Dirac distribution on inoculum sizes. Solid lines indicate
median Ro = 2.77 and the shaded areas, risk within the 25th and 75th percentile in Ro, (R2®, R{®) = (2.28,3.06)
[SM12]. Remaining parameters can be found in Table 1.
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Figure SM3. Probabilities on number of cells infected in a cleared infection assuming Ro = 2.77 for copying
error fractions K = 0 (all packaging errors), 0.5, 1 (all copying errors). (a) Cumulative probability distribution
on the number of cells infected in a cleared infection. (b) Probability of any cell infection in a cleared infection.
Calculation described in subsection SM3.3. Remaining parameters can be found in Table 1.
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SUPPLEMENTARY MATERIALS: EARLY HIV INFECTION PREDICTIONS: ROLE OF VIRAL REPLICA-
TION ERRORS SM3

SM2. Motivation for stochastic approach.

SM2.1. Early infection models: stochastic approach required. The standard approach
in viral dynamics modeling is to use ordinary differential equations; the equations one would
use to for our model, shown in the main text, Figure 1(a), are

dI
S QT V — 61
o =QATV —§
I
dy =(1 - Q KTV — 61,
dt
O =Qupl — (e +KT)V
dv,
(SM1) de =(1 = Qp)pI + ply — ¢Vy.

These ODEs are recognizable as the standard viral dynamics model [SM7,SM9, SM11], ex-
tended to include defective infected cells and virus, assuming the number of target cells T
remain constant. Such deterministic models are suitable when populations of virus and cells
are large, since ODEs give average system behavior.

We seek to investigate the following questions, which can only be addressed using a stochas-
tic approach:

1. Risk of infection: The basic reproduction number Ry gives the average number of
secondary cell infections caused by the introduction of a single virus into the system;
it is used as a measure of severity of infection (or epidemic). Using the next generation
method [SM5, SM6] we compute Ry = pQ.QpkT/(6(c + kT)). For Ry > 1 the deter-
ministic model eq. (SM1) gives exponential growth only, suggesting a risk of infection
of 1. Tt is well-established (see for example [SM1, SM4, SM8]), and clear from our
calculations below, that for stochastic models the probability of extinction for Ry > 1
is non-zero, giving a risk of infection (1-probability of extinction) less than 1.

2. Time to infection clearance (extinction): For Rp > 1, the model eq. (SM1) gives
no extinction. For Ry < 1, the quantities (I(t),14(t), V(t),Vy4(t)) — 0 as t — oc.
Traditionally to compute the eradication time using ODEs, one would set some small
threshold and claim the extinction occurs when (I(t), I;(t), V(t), V4(t)) crosses that
threshold. The linear system has eigenvalues

1 1
—c, —9, —5(0 +6) + 5\/(0 = 0)? + 4QcQppkT

with decay ~ exp (—f c+9)+ 2\/ (c—0 +4Q0Qpka) for Ry < 1. Therefore

crossing the threshold in the ODE model depends only on the exponential decay rate.
Hence changing dynamic parameters but keeping the decay rate constant will yield
identical threshold-crossing times in the ODE model. In stochastic models, the times
to clearance differ [SM3]. Stochastic modeling will also yield a distribution of clearance
times. Deterministic models are not the ideal approach to investigate clearance.

3. Probability of detection: As with the time to extinction, the approach to calculating
the time to detection of infection with the ODE model (SM1) would be to set some
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threshold, say in the viral load V + V, and call the time 7 that the mean viral load
crosses the detection threshold, the mean time to detection. Again, we rely on the
system eigenvalues, and find that the viral load expansion will be dominated by the
exponential growth rate ~ exp (—f c+0)+ 2\/ 2+ 4Q6Qpka) for Ry > 1.
For small amounts of virus, the individual dynamic parameters will play a role and
influence the distribution of detection probabilities [SM3,SM8], an effect not captured
using exponential growth only. Deterministic models are not the ideal approach to
investigate detection.

Therefore if we seek to investigate events in early HIV infection it is necessary to use a

stochastic approach.

SM2.2. Identifiability of defective virus fractions. Past models that account for non-
infectious virus have focused on chronic HIV infection and employed a deterministic (ODE)
approach [SM10]. The focus has mainly been to evaluate efficacy of protease inhibitors, the
class of anti-retroviral drugs which interferes with maturation of viral particles. Therefore
the theoretical emphases have been on errors in individual virions (which occur in our model
with probability 1-Q),). But practically speaking, the emphasis doesn’t matter: the different
mechanisms generating defective virus are non-identifiable in deterministic models. In the
previous section we discussed Ry and eigenvalues giving decay or growth - in each of these
Q. and @, appear as a product Q.Q), only. This non-identifiability is arguably a strength.
That is, while the different mechanisms are poorly characterized, we only need know the total
non-infectious fraction. With improved understanding individual estimates may change but
modeling predictions will remain.

For small viral populations, as is the case in the earliest stages of HIV infection, a stochastic
approach is the appropriate choice. When employing a stochastic approach we must be more
careful about the underlying mechanisms we model. For example, a previous investigation
showed that the assumption on viral production - continuous production by an infected cell or
burst production at infected cell death only - will change predictions on risk [SM8]. We will see
below that when using a stochastic approach, the individual viral replication error probabilities
(lethal copying errors with probability 1 — @), and packaging errors with probability 1 — Q)
will alter predictions on risk, clearance, and probability of detection.
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TION ERRORS SM5

SM3. Details of mathematical derivation.

SM3.1. Backwards Chapman Kolmogorov Differential Equation. In the main text we
use a multi-type branching process model of viral dynamics, main text Figure 1. Underpinning
the calculations that followed was the backwards Chapman Kolmogorov differential equation
(bCKde) for the probability P, y:ngu,(t) = P(I(t) = n,V(t) = v|I(0) = ng, V(0) = vp). We
provide here the derivation of the bCKde for the interested reader.

The probability P(I(t +7) = n,V(t + 7) = v|I(7) = no, V(1) = vp) is a transition
probability between the state at time 7, (I(7),V (7)) = (ng, v9), and the state at time ¢ + T,
(I(t+7),V(t+ 7)) = (n,v). We assume the probabilities are homogeneous in time, i.e.,
that they they depend on the duration of the transition time ¢ but not the individual times
t + 7 or 7. Therefore, when computing the transition probability, we can directly consider
P vingo (t) = P(I(t) = n, V(t) = v|1(0) = ng, V(0) = vp), setting 7 = 0, only.

To model the system in main text Figure 1, we assume the transition probabilities obey
the following postulates as h | 0 :

1. Py—ivnw(h) = 0nh+o(h)
2. Pyytimp(h) = pQpnh + o(h)
3. Pn+1yvfl;n’v(h) = Qck‘TUh + O(h)
4. Ppy—1mp(h) = (c+ (1 — Qc)kT)vh + o(h)
5. Puunw(h) =1—((6 +pQp)n + (c+ kT)v) h + o(h)
6. Pn,v;no,vo (h) = 5nn05fuvo
for n,v > 0, where dj;, is the Kronecker-Delta function. That is, we assume a Poisson process.

Because we assume P, y:n., (t) is homogeneous in time, the Chapman-Kolmogorov equa-

tion holds:

o0
(SM2) P vinowo (t + 1) = Z P (6) P ko w0 (1)
3,k=0

The (0,t 4+ h) time interval is split into (0,h) and (h,t + h); this equation says that the
probability of transitioning from (ng,vg) to (n,v) in time ¢ + h is equal to the probability of
starting at (ng, vg) at 0 and stopping at some midpoint (j, k) at time h, then going from (j, k)
to (n,v) in time ¢ 4+ h, summed over all possible midpoints (7, k). We can re-write eq. (SM2)
as

Pn,v;no,vo (t + h) :PnW?nO*LUO (t)PHO*LqJO%nO:UO (h) + Pn,v;no,vo+1(t)Pno,vo+1;no,vo (h)
+ Pn,v;noJrl,vofl(t)PnoJrl,vofl;no,vo (h) + Pn,v;no,vofl(t)Pno,vofl;no,vo(h)

/

oo
(SM3) + Prvino,vo (1) Pro,vosno, (B) + Z P 3,k () Pj ko w0 (1)
J,k=0

!/
<Z;’f}€:0 Pnyv;m(t)Pj,kmO’UO(h)) denotes the remaining terms, where j and k£ do not take on
values used in the previous terms. Using the postulates we can show that these remaining
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terms are o(h),
oo o0 !
Z Pn,v;ﬁk(t)Pj,k;no,vo(h) < Z P kino w0 (h)
J,k=0 4,k=0
=1- (PWO—LUOWOJJO (h) + Pnoﬂ)o-&-l;no,vo (h) + Pno-&-l,vo—l;no,vo (h)
+Pn0,vo—1;n07v0 (h) + Pnoy’vo;no,vo (h))
=1 — (o(h) + dnoh + pQpnoh + QckTvoh + (¢ + (1 — Q)T )uoh
+1 — ((6 + pQp)no + (c + kT)vg) h)
=o(h).

/
Thus, (ka:o P i3k () Pj kg oo (h)) < o(h). With this and the postulates we can re-write
eq. (SM3) as

Py ving o (t+ 1) =0n0R Py, ping—1,00 (1) + PQpnoh P ving vo+1(t) + QckTv0h Py ving+1,00—1(t)
+ (1 = ((6 + pQp)no + (¢ + ET)vo) h) Pp ving,vo ()
+ (c+ (1 — Qe)kT)voh Py ving vo—1(t) + o(h)
=Prvino.wo (1) + B (610 P vimo—1,00 (t) + PQp1o Prvimo,ve+1(t)
+ QckTvo Py ving+1,00—1(t) + (¢ + (1 — Q) kT )vo Pr ving,vo—1(%)
— (6 + pQp)no + (¢ + kT)v0) Pr o, (t)) + o(h).

Moving Py, ving v (t) to the left side, dividing by h, and taking the limit h — 0, we obtain the
differential equation

d
apn,v;nomo =010 L, vino—1,00 + PRp10 Lo ving,vo+1 + QckTv0 P ving+1,00—1
+ (1 - QC)kTUOPn,v;no,vofl + CUOPn,v;no,vofl
(SM4) = ((0 +pQp)no + (KT + )vo) Prvino,vo

From postulate 3 we have the initial condition is P4, (0) = 0y ng0u,v,- This is the backward
Chapman Kolmogorov differential equation (bCKde) for the probability Py, 4, (t). We cannot
solve eq. (SM4) directly analytically, and numerically we can only solve it by simulating exact
solution paths, using the SSA (Gillespie) algorithm and plotting the resulting histogram.
From eq. (SM4), however, we can derive differential equations for the probability generating
function, discussed in the main text and given by eqgs. (3,refeq:PGFodes). These will allow us
to compute probabilities.

Had we instead incremented time as (0,%¢) and (¢,¢ + h), using instead the Chapman-
Kolmogorov equation

o0
(SM5) Prvinguo (1) = Y Prujr(t+ B)Pj g o (1)-
jik=0

and followed a similar derivation, we would obtain the corresponding forward Chapman Kol-
mogorov differential equation for our probability P, 4, (t), also commonly referred to as the
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Master Equation. We use the bCKde instead of the more often-used Master equation because
the resulting equations for the generating function, are more tractable.

SM3.2. Probability of detection. The probability of detection is Pyet(t) = P(V(t) +
Va(t) > Vaer) =1 — P(V(t) + Vi(t) < Vget), where Ve is the viral load detection threshold.
Now,

Vdetfl

P(V () + Va(t) < Vaw) = > P(V(t) + Va(t) = k),
k=0

where P(V (t)+Vy(t) = k) is the probability that the viral load at time ¢ is k. Note that we have
dropped the initial condition for brevity; Puet(t) = P(V () + Va(t) > Viet|1(0) = no, V(0) =
vo, 14(0) = mo, V4(0) = wp). The probability of detection involves defective infected cells and
virions, which we have not so far included in our calculations. For the probability of detection
we return to the full model in main text Figure 1(a) and use

Pn,v,m,w;ng,vo,mo,wg (t) = P(I(t) ( ) d(t) =m, Vd(t) =w
‘I(O) V( ) o,Id(O) = my, Vd(O) = w(]).

Define the corresponding probability generating function as

(o o XENNe ol SHNe o

. J— n, v .m ’LU
Gno,vo,mo,WO($’y7rvsat) = E E E , E Pn,v,myw;noyvoymmwo(t)m yr-s

n=0v=0 m=0 w=0

But for the additional terms and indices, the derivation of the related bCKde and differential
equations for Gy vg.mo.wo (%, Y, 7, $; ) is identical to the derivations in Sec. SM3.1.
We can write the probability of detection in terms of the PGF,

PV(t)+Va(t)=k)=) PV =4jVa=k—j)

-

I
=)

J

1 o
L(k —j)! Oridsk— =5 Gnosvo.mo o

1
j z=r=1,y=s=0

—Z nomo,mo,wo(l Zlal,ZZ)d Jdz,
B ]-‘rl k i
c., Je.,

1 LoD = (k)
GnOy”O:mOﬂUO (]‘ z1, 1, 22) 2 L dzodzy.
Czl sz Z1 — 22

Il
e || M:r
o

We used the Cauchy Gauss integral formula [SM2] in the third step, and summed the finite
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series in the fourth. Then our probability of detection is

P(V(t) + Va(t) <

Vet —1

1 Z;(k+l) _ Zl—(k+1)
Vaer) = 79, \2 Gng,v0,mo,w 1,21,1, 2251 = = | dzod
det) Z (27)2 fcﬂ oss o-vo,mo,wo (1, 21, 1, 225 ) P zodz1

k=0
1 Vet —1 Zf(kjtl) o Zf(k+1)
= G” ,V0,MQ, W, (17217 1522;t) 2 . d22d21
(2m)? ‘740:41 %@2 050,110, 10 kZ:O 21 — 22
- 1 % % Gng,vo,mo.wo (1, 21,1, 2058) (11— Z;VdCt _ 1— Zl_VdCt dzadzy
(2m)? c., Jo., 21 — 22 22 —1 z1—1

1 Grgwo.mowo (1,21, 1, 203 8) [ 1 — 25 Vet
- _ 2% 0,%0,M0, O( ) A1, L, 225 ) (2] dzedz,
(2m) c., Je., 22— 21 20— 1

=V et
_ L Gro,vo,mo,wo (1,21, 1, 2058) (1 — 2y 9 dzadzy.
2
(2m) Czy JCy 21— 22 z1—1

In the last step we split the integrals so that we can evaluate them. We start with the
second integral, exchanging the order of integration.

1 Gnoﬁo,mo,wo (1’ 21, 1, 29; t) 1— Zl_Vdet oy
W C C zZ20AZ21.
z9 21

Z1 — 22 z1—1

Taking the inner integral only, holding 2z constant, we note that the contour integral

~Vio
Gno,’uo,mo,wo<17 21, 17 22, t) 1- Z1 det
dZQ

C

. Z1 — 29 z1—1

is over a function that is analytic everywhere except at z; = zo (singularity at z; = 1 is
removable). Using the residue theorem,

—Vide —Vae
7{ Ghng,vo,mo,wo (1,21, 1, 22, 1) (1_31 ‘ t) dzs =T G (1, 22,1, 223 1) (1_Z2 - t>
- n0o,v0,M0,Wo \ ) )
C:,

(note that w is o

Z1 — 22 2271

n the contour boundary so the residue is multiplied by 7 only) and the

second integral becomes

et

Similarly,

o oo,

. —Va
"07”07m0,w0(1ﬂ 21, 17 223 t) 1— 21 et dZQle _
21 — %2 21— 1
) Vet
1 1 —z e
J— . 2
4 % G”OWO,mo,wo(l?Z%1722;t) - dZQ.
m Cz2 Z2 - 1
. —Va
”07“07m07w0(1’ 21, 1’ 22) t) 1-— 29 - dZQle =
Z2 — 21 29— 1
) _Vdet
L 1—=z
J— . 1
GnO:UO7m0,w0(1’Z1)1)Zlat) —— dZ]_.
dm Cx z1—1
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Then

i 1 — z~ Vdet
P(V(t) + Vd(t) < Vdet) - — 271_%;’ Gno,vo,mo,WQ(]-aZ7]-aZ; t) (z—l) dZ

The contour C, is the unit circle, z = €, dz = ie*df, and

i on 0 0 1 — ¢~ "Vaetf "
P(V(t) + Vd(t) < Vdet) = — % Gno,vo,mmwo(lv el y 1, el ,t) <6191> 7;61 df
0

1 2 0 0 1 _ e—inetG
27‘1’ Gno,vom"boﬂﬂo(176Z ’1’61 ;t) ﬁ g

s ) ) 1— e—inetO
0 6
ZWR{/O G vomovuo (1,€"7,1,€75¢) <1—69> de}'

This result of this integration subtracted from 1 gives us the probability of detection at time
t. Finally, if we want to take into account a virus-only inoculum of size N, each virion being
infectious with probability (), again assuming a binomial distribution,

N —iVier 0
N ) /1 ™ . 1 — e~ Vdet
Paet(t) =1— > ( j ) QM- QNI <*]R{/ G'o,j,o,ij(lvewa 1,¢"%¢) ( 5 ) })

i=o ™ 0 1—e—
N ) — iVt 0

=1- NN gig—gN-i (L /” @0 g 10 ) gi0, )N =3 (Loe Trder?

- J§)< J )Q 1-9Q) <7T]R o (00,1,0,0(1,6 ,1,e ) (G4(1 e, 1,e ) o= do
1 ) ) ) ) 1 — e~ #Vdet?

(SM6)  =1-— 7R{/7r (QGo 1,001, 1,e0) + (1 — Q)Ga(1, €™, 1,e“’;t))N <876> de},

s Jo B 1—e—10

where we have made use of the branching property,

G vo,mo,wo = (G1,0,0,0)"(G0,1,0,0)" (Go,0,1,0)" (Go,0,0,1)"°-

SM3.3. Probability distribution on the number of cumulative number of cell infections.
In Supporting Figure S3 we show the probability distribution on the cumulative number of
cell infections conditioned on infection clearance. Here we provide details of that calculation.
In order to count the number of cell infections, we extend our model to include the state
variable C which increases with every cell infection and does not otherwise alter infection dy-
namics. Define P, 4 cing 0,00 (t) = P(I(t) = n, V(t) = v, C(t) = ¢[1(0) = ng, V(0) = vy, C(0) =
¢p). Note that ¢y = 0 for the purposes of calculation below.
We then assume that the transition probabilities obey the following postulates as h | 0 :
Pn—l,v,c;n,v,c(h) = onh + O(h)
Prwt1.enw,e(h) = pQpnh + o(h)
Pn-l—l,v—l,c—l—l;n,v,c(h) = Qckth + O(h)
Pn,vfl,c+l;n,v,c(h) = (1 - Qc)kth + O(h)
Pn,v—l,c;n,v,c(h) = cvh + O(h)
Pn,v,c;n,v,c(h) =1- (((5 + pr)n + (C + kT)U) h+ O(h)
Pn,v,c;no,vo,co (h) = 5nn05vvo 5000
for n,v,c > 0, where §;;, is the Kronecker-Delta function.
Following the derivation in subsection SM3.1, the bCKde for the probability P}, v c:no,v0,c05
associated with this process, is

o Otk W
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d
221 &PTL,’U,C;’FLO,UO,CO :6n0Pn7U7c;n0717U07CO + prnOP’n,’U,C;TLO7U0+1,CO
222 + QckTUGPH,v,C;no-i-l,vo—1,60+1 + (1 - QC)kTUOPn,v,C;no7v0—1,Co+1
333 (SM7) + CUOPTL,’L),C;no,U()*l,CO - ((5 + pr)nO + (kT + C)UO) Pn,v,c;no,vo,co-

We then define the generating function

o clENNe SlNe o]

Hnoﬂ)o,co L, Y, T t ZZZPHUCHO,UO,CO( )l'nyvrc

n=0 v=0 ¢=0

225 and following subsection 3.1 in the main text, we can derive from (SM7) equations for the
226 probability generating function,

OH

297 5£O’O =0 + pQpHi,00Ho,10 — (0 +pQp)Hi00
OH,

228 (SMS) # =c+ kT ((1 = Qc) + QcH1,0,0) Hoo,1 — (¢ + kT)Ho0
O0Hpp1

229 —= =0

230 ot

231 where Hy vo.co = H ? H0 1 0H0 0,1- Using the probability generating function we can compute
232 the probability for the cumulative number of cell infections.
We want the cumulative number of cell infections as ¢ — oo conditioned on infection
clearance. To get at this quantity, we will take the limit

tlgélo PO,D,c;O,UO,O (t>’

233 that is, the limit as t — oo of the probability that there are ¢ cumulative cell infections but
234 no infected cells or virus. From the pgf Hy vg,cos

1 0°
235 P0,07C§0,U0,0(t) = EﬁHnmvo,Co (0,0,7;)]r=0
H (0,0, 2t
236 = 7{ "O’”O’COCJFI #i1) dz
z
237 = Hno’vo,c0 (0,0, € t)e 0 dp
238 2

using the Cauchy Gauss integral formula [SM2] in the second step, and take the contour C,
as the unit circle z = ¢ in the third. Noting that Hygvg.c = H'% 0HoY oHopq with cg =0,
and that we take a virus-only inoculum, so ng = 0, and simphfymg, we recover

1 [ . ,
Po,0,c0.00,0(t) = = / (Ho,1,0(0,0,€™;t))0e™ q.
0

™
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Finally, as in subsection 3.1, we assume that our inoculum of size N is mixed, with each virus
infectious with probability (). Therefore the probability of accumulating ¢ cell infections at
time ¢, with no circulating virus or infected cells, is

N N o
Prob = Z < ; ) (1— Q)N*JQJPQO,c;o,j,O(t)
=0

N g
= ( N > (1- Q)N—iji/O (Ho.1,0(0,0,¢; 1)) e 4o

j=0 J

1 (7 . N
(SMQ) = — / (1 — Q + QH(),L()(O, 0, 610; 'L’)) e_we d9,

m™Jo

summing the series in the last step.

Thus to compute the probability of accumulating ¢ infected cells before clearing infection
as shown in Figure SM3, we compute eq. SM9 together with eq. SM8 numerically, evaluating
the limit by computing over long times and verifying convergence, and normalizing to condition
on infection clearance.
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