

Early HIV infection predictions: role of viral replication errors*

Jessica M. Conway[†] and Alan S. Perelson[‡]

Abstract. In order to prevent and/or control infections it is necessary to understand their early-time dynamics. However this is precisely the phase of HIV about which the least is known. To investigate the initial stages of HIV infection within a host we have developed a multi-type, continuous-time branching process model. This model is a stochastic extension of the standard viral dynamics model, under the assumption that the number of cell targets for viral infection is constant. We use our model to investigate three important clinical characteristics of early HIV infection following intravenous challenge: risk of infection, time to infection clearance (assuming failed infection), and time to infection detection. Our focus is on the impact of errors in viral replication that result in non-infectious virus production on these characteristics. Only a small fraction of circulating virus in any chronically infected individual is capable of infecting susceptible cells: estimates range from $1/10^4$ – $1/10^3$. Characterization and quantification of the processes by which virus becomes defective remains incomplete. We consider two mechanisms that result in defective virus: (1) Copying errors, i.e., lethal errors in reverse transcription, which introduce mutations into the HIV-1 proviral genome, some of which may cripple the viral genome produced, and (2) Packaging errors, i.e., errors during viral packaging, at the end of the viral replication cycle, which cause defective virus by packaging new virions without, for example, viral RNA or key proteins required for infectivity. We show that assumptions on mechanisms of defective virus production can significantly impact early HIV infection model predictions. For example, the risk of infection is orders of magnitude higher if all defective virus is associated with packaging errors, but infection is predicted to be detectable sooner following HIV exposure if all defective virus is associated with copying errors. Thus, in order to make reliable predictions of risk, clearance time, and detection time, better characterization of viral replication is required.

1. Introduction. HIV populations in chronically infected individuals are heterogeneous. HIV is constantly evolving, with different viral populations competing to become the dominant strain. But surprisingly, only small fraction of circulating virus in any infected individual is capable of infecting susceptible cells: estimates range from $1/10^4 - 1/10^3$ [9, 46, 60, 79]. Our aim is to investigate the effect of non-infectious viral production in the earliest stages of HIV infection.

Within-host events following exposure to HIV are critical in predicting whether infection will occur. We know from epidemiological studies that the probability or risk of infection is low, on the order of 0.1%–1% per sex act, percutaneous needlestick, or needle-sharing drug use [47, 74]. Further, from phylogenetic studies, we know that many infections arise due to expansion of a single viral strain [39], called the transmitted/founder virus. However, direct investigations of the early events in human or animal model infections are very difficult because viral and infected cell populations are very small. Mathematical modeling can be invaluable in investigating the earliest phase of infection, but it is important to understand how underlying

*Resubmitted to the editors X December 2017.

Funding: ASP acknowledges support by National Institutes of Health Grants R01-AI028433 and R01-OD011095.

[†]Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America (jmconway@psu.edu).

[‡]Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America (asp@lanl.gov).

40 model assumptions such as viral infectiousness affect modeling predictions.

41 Infectious fractions ranging in $1/10^4 - 1/10^3$ [3, 46, 60, 79] are *in vivo* estimates based
42 on viral samples taken from chronically infected individuals (a recent study suggests that
43 that fraction may be larger than previously thought [73]). Though quantified through a
44 simple fraction, non-infectious virus can arise through a number of mechanisms, such as host
45 antibodies binding of viral surface proteins necessary for viral entry into a target cell. Here we
46 focus specifically on viral replication errors that give rise to non-infectious virus. The reverse
47 transcription step of viral replication, when the RNA of a virion that has penetrated its target
48 cell, gets copied into DNA, is error prone - mutations, including insertions, deletions, and
49 base substitutions [31], are introduced *in vivo* at a rate of $\sim O(10^{-5})$ per base per replication
50 cycle [1, 57, 58] (the HIV genome is roughly 10^4 bases long). Frameshift mutations can also be
51 introduced into the HIV-1 proviral genome [1]. Mutations are the primary driver of escape
52 from cytotoxic T lymphocyte (CTL) responses and to the generation of drug-resistant viral
53 strains. They can also fatally cripple the proviral genome so that any viral genomes produced
54 by the provirus will not be infectious [22, 31]. Virus may also be rendered non-infectious
55 by errors in virion assembly and packaging. For instance, to be infectious, virions must be
56 packaged to include two RNA molecules encoding functional virus as well as the HIV enzymes
57 reverse transcriptase and integrase and have sufficient surface proteins (gp120/gp41) necessary
58 for viral binding and entry into target cells [51].

59 Our aim in this paper is to investigate how assumptions on viral replication errors leading
60 to non-infectious virus affect predictions with regards to important variables in the earliest
61 stages of HIV infection: (1) Risk of infection, i.e., the probability of becoming infected after
62 exposure to a viral inoculum. Interventions such as prophylactic use of antiretroviral drugs
63 (pre- or post-exposure, PrEP or PEP) [23, 48], male circumcision [5], immunization [36], all aim
64 to reduce risk. Therefore modeling predictions of risk can be of great value and clinical use.
65 (2) Time to infection clearance, and (3) time to infection detection, in the case of unsuccessful
66 or successful infection respectively. Obtaining these time distributions can help us characterize
67 the course of early infection. They can also be of direct clinical use. For example, distributions
68 on time to detection can offer some guidance for HIV testing windows [7, 67]. We investigate
69 these measures in the context of intravenous exposure to HIV, i.e., via occupational needlestick
70 exposure or intravenous drug use, where a well-mixed model with no spatial structure most
71 likely applies.

72 Deterministic (differential equation) models have been very effective in characterizing HIV
73 infection, for example in determining viral and infected cell clearance times [71]. Variants of
74 the now-standard viral dynamics model, first developed to investigate HIV [65, 69, 71] have
75 since been used to gain insight into a multitude of viral infections, including dengue [15],
76 West Nile virus [6], cytomegalovirus [21], hepatitis B [64], hepatitis C [63], influenza [4, 27, 32],
77 and Zika [2, 8, 66]. From a mathematical perspective, differential equation models represent
78 average behavior of a system and are appropriate when numbers are large, as viral loads and
79 infected cell concentrations certainly are in HIV chronically-infected individuals. Here we are
80 interested in the earliest stages of HIV infection, when numbers of virions and in particu-
81 lar infected cells can be quite small. A stochastic approach is therefore more appropriate:
82 stochastic models can give varying predictions in regimes where deterministic models, focus-
83 ing on mean behavior only, cannot. For example, predictions on risk of infection - inaccessible

84 via differential equation modeling - is different if viral production is assumed to be continuous
85 through an infected cell's life, or to occur in a burst at the end of the infected cell's life, for
86 the same mean number of virus particles produced [68].

87 Our stochastic model will be built upon the standard viral dynamics model [70, 71], involving
88 cells susceptible to HIV infection, infected cells, and virus only. This simple model ignores
89 spatial effects, the effects of long-lived and latently infected cells, which may affect long-term
90 dynamics of HIV infection, as well as the possibility of cell-to-cell infection [24]. The model
91 also ignores the delay from the time a virus enters a cell until it begins producing virus, i.e.
92 the eclipse phase, although this can be included in the model [18, 20, 30, 61]. Further, since we
93 focus on the earliest stages of HIV infection during which time very few cells become infected,
94 we will consider no immune response and ignore dynamics in the number of susceptible cells.
95 By keeping the number of susceptible cells, i.e., target cells, constant the dynamical equations
96 become linear and more amenable to analysis, although we recognize that in certain spatial
97 locations target cells may be limiting and need to be accounted for in spatial models. We are
98 interested in quantities such as risk of infection, time to viral clearance, and time to detection.
99 Our model is best suited to gain qualitative insight into these quantities, for example, the relative
100 impact of assumptions on mechanisms producing defective virus on these quantities. To
101 get at the early infection quantities of interest, we will extend stochastic approaches used
102 in our recent theoretical studies [17, 18, 68], which themselves build on previous stochastic
103 modeling literature [29, 50, 82, 85].

104 We formulate our stochastic model as a multi-type branching process [28, 37, 41]. Branching
105 process models have long been used to investigate and model biological processes as they
106 are simply expressed, and yet include noise inherent in any biological system. Multi-type
107 continuous time branching processes, have been used to gain insight into, for example, fluctuation
108 theory [41], carcinogenesis [53, 62], cellular processes [55, 56], immunology and T-cell
109 population dynamics [77], population dynamics and ecology [26, 44], and epidemiology [35].
110 Our own recent modeling of within-host HIV dynamics [17, 18, 68], which we extend in this
111 present study, relied on much of this previously developed theory.

112 The structure of this paper is as follows. First we give a model overview. We then offer
113 details on the calculations of risk of infection, time to clearance, and detection time, and give
114 related results. Finally we discuss the results and their broader implications.

115 **2. Viral dynamics model.** Our basic mathematical model of early HIV infection is pre-
116 sented schematically in Figure 1(a). There are four compartments: infectious and non-
117 infectious virus, V and V_d , respectively, infected cells, I , and infected cells that produce
118 only non-infectious virus, I_d . Since non-infectious virus is sometimes called defective virus,
119 we use the subscript 'd.' There may be a continuum of infectivities across virus within a host,
120 if we consider variation in envelope protein, but for simplicity we consider only the infectious
121 and non-infectious extremes.

122 Infected cells I and I_d produce virus at rate p . Virions V and V_d are cleared at rate c .
123 We assume mass-action kinetics for cell infection: Infectious virus V , infects target cells, T ,
124 at a rate proportional to their product, with proportionality constant k . We assume T to be
125 constant, a necessary assumption since we wish to focus on specific mechanisms pertaining to
126 viral replication rather than target cell limitation. We note that this assumption is probably

127 biologically reasonable for intravenous infection since very few cells are infected relative to the
 128 total number at risk during the earliest stages of HIV infection. Thus in our model, infectious
 129 virions make new infected cells at rate kT . Infected cells I and I_d die at rate δ . In principle,
 130 rates associated with infected cells I_d may differ from those associated with infected cells I .
 131 However, there are no estimates or qualitative studies to give us insights into how they may
 132 differ. We therefore make the simplifying assumption that rates associated with I and I_d are
 133 the same.

134 Mathematically speaking, the events we model - viral production and clearance, cell infec-
 135 tion and death - are independent. In the standard model (cf. eq. (SM1)), cell infection is not
 136 an independent process, as it depends on the density of both virus and target cells. However
 137 since we make the assumption that the target cell population remains approximately constant
 138 at the earliest stage of infection, the target cell count is no longer a dependent variable, and
 139 each virion can infect a cell or clear independently of the remaining viral or infected cell pop-
 140 ulations. The constant target cell assumption is therefore required for independence to hold,
 141 and permits the use of branching processes.

142 Our focus is on errors in viral replication that result in non-infectious virus. There are
 143 two such mechanisms: lethal reverse transcription (copying) errors and packaging errors. Re-
 144 verse transcription, or copying, errors introduce mutations into the HIV-1 proviral genome,
 145 some of which may cripple the viral genome produced in any of multiple ways, e.g., by the
 146 introduction of stop codons, large deletions or frameshifts. This can be exacerbated by the
 147 cellular antiviral enzyme APOBEG3G, that induces hypermutations in HIV DNA during re-
 148 verse transcription [87,88]. These are our lethal copying errors. Because the host polymerase,
 149 which transcribes the HIV proviral genome into viral RNA, does so with high fidelity (error
 150 rate 10^{-9} per base pair per year [45]) we assume that cells with a crippled proviral genome
 151 only produce non-infectious virions. Packaging errors occur at the end of the viral replica-
 152 tion cycle, during the packaging step: for example, virions may be packaged without RNA,
 153 without HIV enzymes such as reverse transcriptase, protease or integrase or with insufficient
 154 surface proteins (gp120/gp41) necessary for viral binding to target cells [51]. We'll assume
 155 these packaging errors occur at random in any produced virion.

156 We consider two classes of mutation.

- 157 1. Mutations that affect all virions produced by an infected cell equally. These are
 158 the reverse transcription or copying errors. In our model, the probability of a lethal
 159 copying error is $1 - Q_c$, where Q_c is the probability of no, or non-lethal, copying errors.
 160 Therefore, new cell infection (at rate kT) yields
 - 161 • an infected cell I , containing an infectious proviral viral genome, with probability
 Q_c , or
 - 162 • an infected cell I_d , containing a *non*-infectious viral genome, with probability $1 - Q_c$.
- 163 2. Mutations that affect individual virions produced by an infected cell. These are pri-
 164 marily routine packaging errors. In our model, the probability of a packaging error is
 165 $1 - Q_p$, where Q_p is the probability of that a virion is correctly packaged. Therefore,
 166 for infected cells I , viral production (at rate p) yields
 - 167 • with probability Q_p , correctly packaged - and therefore infectious - virion V
 - 168 • with probability $1 - Q_p$, incorrectly packaged - and therefore *non*-infectious - virion
 V_d

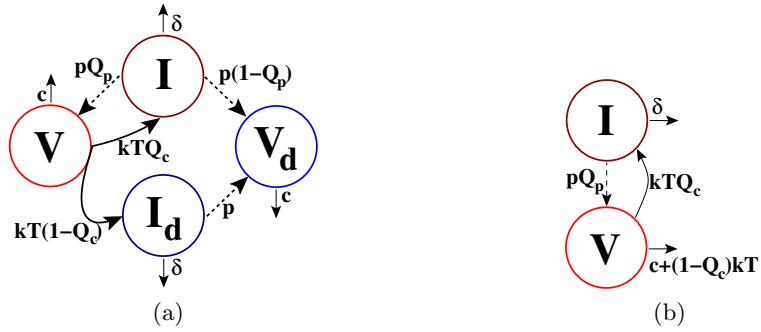


Figure 1. Model schematics: (a) Basic model, (b) reduced model. I represent infected cells, V virions, with I_d and V_d representing defective infected cells and virions respectively. Each infected cell, I or I_d , dies at rate δ or produces a virion at rate p . Non-infectious infected cells I_d produce only non-infectious virus, V_d , while infectious infected cells I may also produce infectious virions, V , with probability Q_p . The dashed line indicates viral production without loss of the virus-producing infected cell. Each infectious virion, V , infects a target cell T with mass-action infectivity k ; the newly infected cell is infectious, I , with probability Q_c and is otherwise non-infectious, I_d . Note that the number of target cells T is held constant. In the reduced model (b) we neglect the dynamics of non-infectious cells and virus, I_d and V_d .

171 All virus produced by infected cells I_d are defective. Note that the mean number of infectious
 172 virus produced by infected cells I is $Q_p p / \delta$ where p / δ is the average number of virus particles
 173 produced during the infected cell's lifetime ($1 / \delta$), commonly called the "burst size" irrespective
 174 of whether the virus is produced continuously, as assumed here, or in a burst.

175 **3. Mathematical approach.** Traditionally mathematical modeling of viral dynamics takes
 176 a deterministic, ordinary differential equations approach. However since we seek to investigate
 177 events in early HIV infection, it is necessary to use a stochastic approach (see [section SM2](#)
 178 for discussion).

179 The modeling framework we will use is continuous-time branching processes [28, 37, 41],
 180 extending previously-developed theory [17, 18, 68]. For our model shown in [Figure 1\(a\)](#) define

$$P_{n,v,m,w;n_0,v_0,m_0,w_0}(t) = P(I(t) = n, V(t) = v, I_d(t) = m, V_d(t) = w \\ | I(0) = n_0, V(0) = v_0, I_d(0) = m_0, V_d(0) = w_0)$$

184 as the probability that at time t there are n infected cells, v infectious virions, m defective
 185 infected cells, and w defective virions, given that at time 0 there were n_0 infected cells, v_0
 186 infectious virions, m_0 defective infected cells, and w_0 defective virions.

For the purposes of computing extinction probabilities we need not explicitly include defective compartments (I_d , V_d) - we need only consider the reduced model shown in [Figure 1\(b\)](#). Infected cells produce (infectious-only) virus at rate pQ_p , and die at rate δ . Virions infect susceptible cells T at rate k , producing infected cells at rate $Q_c k T$. Virions are cleared at rate c . Define for this reduced model

$$P_{n,v;n_0,v_0}(t) = P(I(t) = n, V(t) = v | I(0) = n_0, V(0) = v_0),$$

187 as the probability that at time t there are n infected cells and v infectious virions, given that
 188 at time 0 there are n_0 infected cells and v_0 virions. In the calculations that follow we will

mainly use this reduced probability. The defective compartments will only be included in the of probability of detection calculation, since detection is of total viral load ($V + V_d$), assuming the defective virus still contains HIV RNA.

We proceed by deriving the probability generating function differential equations for the probability $P_{n,v;n_0,v_0}(t)$. We will use these to derive expressions for risk of infection and time to infection clearance. To derive the time-dependent probability of infection detection, we use the extended equations and the associated probability generating function for $P_{n,m,v,w;n_0,m_0,v_0,w_0}(t)$.

3.1. Chapman-Kolmogorov differential equation and the probability generating function.

We begin with the backwards Chapman-Kolmogorov differential equation (bCKde) for the probability $P_{n,v;n_0,v_0}(t)$,

$$\begin{aligned} \frac{d}{dt} P_{n,v;n_0,v_0} = & \delta n_0 P_{n,v;n_0-1,v_0} + p Q_p n_0 P_{n,v;n_0,v_0+1} + Q_c k T v_0 P_{n,v;n_0+1,v_0-1} \\ & + (1 - Q_c) k T v_0 P_{n,v;n_0,v_0-1} + c v_0 P_{n,v;n_0,v_0-1} \\ (1) \quad & - ((\delta + p Q_p) n_0 + (k T + c) v_0) P_{n,v;n_0,v_0} \end{aligned}$$

with initial condition $P_{n,v;n_0,v_0}(0) = \delta_{n,n_0} \delta_{v,v_0}$. The derivation of the bCKde is given [subsection SM3.1](#).

Define the probability generating function (PGF) $G_{n_0,v_0}(x, y; t)$:

$$(2) \quad G_{n_0,v_0}(x, y; t) = \sum_{n=0}^{\infty} \sum_{v=0}^{\infty} P_{n,v;n_0,v_0} x^n y^v.$$

We use the generating function because its derivatives give us individual probabilities and moments. For example, the marginal probability distribution on the viral load is given by derivatives of $G_{n_0,v_0}(1, y; t)$, and the mean viral load at time t is given by $\frac{\partial G_{n_0,v_0}(1, y; t)}{\partial y} \Big|_{y=1}$. Multiplying eq. (1) by $x^n y^v$ and summing over the exponents, we obtain an equation for G_{n_0,v_0} :

$$\begin{aligned} \frac{\partial}{\partial t} G_{n_0,v_0} = & \delta n_0 G_{n_0-1,v_0} + p Q_p n_0 G_{n_0,v_0+1} + Q_c k T v_0 G_{n_0+1,v_0-1} \\ & + (1 - Q_c) k T v_0 G_{n_0,v_0-1} + c v_0 G_{n_0,v_0-1} \\ (3) \quad & - ((\delta + p Q_p) n_0 + (k T + c) v_0) G_{n_0,v_0} \end{aligned}$$

with initial condition $G_{n_0,v_0}(0) = x^{n_0} y^{v_0}$. We can reduce this infinite-dimensional system to a two-dimensional system by exploiting the branching property [37]: $G_{n_0,v_0} = (G_{1,0})^{n_0} (G_{0,1})^{v_0}$. The branching property derives from our important assumption that cells and virions of each type behave identically and independently of all other cells and virions. We derive two ODEs from which we can recover the PGF,

$$\begin{aligned} \frac{\partial G_{1,0}}{\partial t} = & \delta + p Q_p G_{1,0} G_{0,1} - (\delta + p Q_p) G_{1,0} \\ (4) \quad \frac{\partial G_{0,1}}{\partial t} = & c + k T ((1 - Q_c) + Q_c G_{1,0}) - (c + k T) G_{0,1} \end{aligned}$$

225 with initial conditions $G_{1,0}(0) = x$, $G_{0,1}(0) = y$. We will use the PGF and the associated non-
 226 linear ODEs to compute quantities of interest such as risk of infection and infection clearance
 227 times.

228 We note that the complete derivation of these equations for the probability generating
 229 function is similar to derivations for other models that rely on continuous time branching
 230 processes [28, 37, 41]. Different biological processes can be modeled in a similar manner. For
 231 example, in fluctuation theory [41] and stochastic models of carcinogenesis [53, 62], which fo-
 232 cus on initially-homogeneous cell populations that accumulate mutants over time, the primary
 233 “branching” mechanism is mutation. Continuous viral production in our model, (1), is de-
 234 scribed in the same way as cell division with one identical, and one mutant, daughter cell [41].
 235 Cell infection in our model is described in the same way as backwards mutation [41]. However
 236 to our knowledge, no biological processes have been modeled with the same combination of
 237 mechanisms (Figure 1) and resulting equations ((1) and (4)) as in this present study.

238 **4. Parameters.** Baseline parameters for simulation results are summarized in Table 1.

Table 1
Model parameters.

Parameter	Description	Estimate	Reference(s)
δ	Infected cell death rate	1 day ⁻¹	[59, 90]
p	Viral production rate	2000 day ⁻¹	see text
c	Viral clearance rate	23 day ⁻¹	[75]
Q_c	Probability of reverse transcription leading to infectious provirus	varied, $10^{-2} - 1$	see text
Q_p	Probability of correct viral packaging	varied, $10^{-2} - 1$	see text
Q	Infectious virion fraction in inoculum	$10^{-3} - 10^{-1}$	[54]

Rate parameters during the early and chronic stages of HIV infection may differ. However, because there are few reported parameter estimates from the earliest stages of HIV infection we mainly use estimates for their chronic infection counterparts. We use the mean lifetime of infected cells ($1/\delta$) estimate of 1 day [59]. Estimates on lifetime virion production (burst size) from a single infected cell vary significantly, from a few hundred virions to tens of thousands [13, 25]; we’ll use an mid-range value, $B = 2000$ virions, which gives us a virus production rate $p = B\delta = 2000$ day⁻¹. The viral clearance rate estimate we use is $c = 23$ day⁻¹ [75]; while this is an estimate from the chronic stage of infection, there is evidence that suggests viral clearance is equally rapid during early HIV infection [90]. The infection rate kT we will compute from the expression for the basic reproduction number

$$R_0 = \frac{Q_c Q_p p k T}{\delta(c + k T)} = \tilde{Q} B \gamma,$$

239 where $B = p/\delta$ is the infected cell burst size, $\gamma = kT/(c + kT)$ is the probability that a virion
 240 will infect a cell [68], and we define $\tilde{Q} = Q_c Q_p$. Models that do not distinguish infectious from

241 defective virus have $R_0 = B\gamma$ (c.f. [68]) as they implicitly assume all virions are equivalent
 242 and infectious, i.e., $Q_c = Q_p = 1$. We will compute kT using within-host estimates of R_0 for
 243 early HIV infection as discussed below [78]. Finally, estimates on the replication-competent
 244 fraction $\tilde{Q} = Q_c Q_p$ range from $10^{-4} - 10^{-3}$ for chronic infection [42, 60, 79]. There is some
 245 evidence this fraction is higher during the early stages of HIV and SIV infection [42, 54, 86].
 246 We therefore use the range $10^{-3} - 1$ for each of Q_c and Q_p .

247 We have not given estimates for the inoculum size N and the fraction of replication-
 248 competent virus in that inoculum Q . This inoculum related Q is distinct from \tilde{Q} , the fraction
 249 of replication competent virus produced by the newly-infected host. Our aim is to show that
 250 different mechanisms for production of defective virus can effect early-infection predictions
 251 only, so we will not explore sensitivity of our results to these parameters. An average inoculum
 252 size, or even a distribution on the inoculum size N , is difficult to determine, as it depends
 253 on exposure type, severity, and viral load in the HIV+ individual involved in the exposure
 254 or in a syringe if by needle stick injury. However epidemiological studies do estimate risks
 255 of infection averaged over all these exposures; the risk of infection from percutaneous needle
 256 stick, for example, has been estimated to be 0.3% [47]. As in a previous study [18], we will
 257 assume that exposures are uniformly distributed, and fit the maximum inoculum size to a
 258 desired risk of infection. Here we use an inoculum size of $N = 1000$ virions, within the range
 259 of inoculum sizes that give a risk of infection of 0.3%, corresponding to that of occupational
 260 exposure [47], if we assume that inoculum sizes are uniformly distributed across infecting
 261 donors (see subsection 5.3, below). And as briefly discussed above with regards to Q_c and
 262 Q_p , estimates on the replication-competent fraction Q during chronic infection range from
 263 $10^{-4} - 10^{-3}$ [42, 60, 79]. For this present study we will set the replication-competent fraction
 264 of virus in the inoculum $Q = 10^{-3}$, although as indicated in Table 1, Q could be as high as
 265 10^{-1} .

266 The basic reproduction number R_0 is a key parameter in our model: it is the average
 267 number of new cell infections induced by an infected cell I during its lifetime $1/\delta$. R_0 impacts
 268 the probability of extinction (risk of infection), time to extinction, and times at which the
 269 viral load will be detectable. We use the individual R_0 estimates from [78], derived from viral
 270 load data obtained from 47 plasma donors, who were originally HIV⁻ and became HIV⁺. We
 271 adjust these measurements to suit our model: the R_0 values in [78] account for the delay τ
 272 between infection of a cell and the beginning of viral production. They measure the viral
 273 growth r and from their viral dynamics model show $R_0 \approx (1 + r/\delta)e^{r\tau}$, where δ is the infected
 274 cell death rate [78]. Since our model does not include the delay τ , the corresponding R_0 for
 275 our model is $R_0 \approx (1 + r/\delta)$. We use the reported median R_0 value, not accounting for the
 276 delay τ , $R_0 = 2.77$, and the interquartile range $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$.

277 We are interested in how assumptions on different mechanisms for production of defective
 278 virus, either reverse transcription errors (probability $1 - Q_c$) or packaging errors (probability
 279 $1 - Q_p$) affect modeling predictions on the clinical outcomes of risk of infection, time to
 280 infection clearance, and probability of detection at time t . For the results we show, we focus
 281 on parameter regimes within which the product $Q_c Q_p = \tilde{Q}$ is held constant. We also hold
 282 $R_0 = \tilde{Q}\gamma B$ constant, where B is the infected cell viral burst size, and $\gamma = kT/(c + kT)$ is the
 283 probability that a virion will infect a cell. We choose R_0 constant to focus on regimes where
 284 the deterministic model predictions would be constant (see section SM2 for details). As one

285 cannot simultaneously fix $R_0 = \tilde{Q}\gamma B$, B , \tilde{Q} , and γ , we allow gamma to vary. γ is a function
 286 of the infection rate kT ($\gamma = kT/(c + kT)$), for which we do not have a reliable estimate,
 287 even to within an order of magnitude. We choose the product $\tilde{Q} = Q_c Q_p$ constant to focus
 288 on regimes with constant total fractions of replication competent and defective virus.

289 We present results as a function of the fraction of errors attributable to reverse transcrip-
 290 tion, which we call copying errors, relative to the total fraction of defective virus. This fraction
 291 is

292
$$\text{Copying error fraction} = K = \frac{1 - Q_c}{1 - Q_c Q_p}.$$

293 The quantity K can be derived from the steady-state predictions of the standard viral dy-
 294 namics ODE model (see eq. (SM1) in [section SM2](#)). The steady-state fraction of defective
 295 infected cells is $I_d/(I_d + I) = 1 - Q_c$, the copying error probability, while the steady-state
 296 fraction of defective virus is $V_d/(V_d + V) = p(1 - Q_c Q_p)/(p - \delta) \approx 1 - Q_c Q_p$, since $p \gg \delta$. Thus
 297 $K = (1 - Q_c)/(1 - Q_c Q_p)$ can be interpreted as a potentially directly measurable quantity
 298 once the viral load set-point is reached.

299 **5. On risk of infection.** The probability that infected cells/virus go extinct can be inter-
 300 preted in a clinically useful manner. Risk of infection, can be calculated as (1 - the overall
 301 probability of extinction (as time $\rightarrow \infty$)). Reducing risk is the main goal of HIV prevention
 302 strategies.

303 **5.1. Calculation: Risk of infection from extinction as $t \rightarrow \infty$.** The probability that
 304 the infection is extinct at or before time t is given by $P_{ext}(t) = P_{0,0;n_0,v_0}(t)$, since 0 is an
 305 absorbing boundary. Recall that $P_{n,v;n_0,v_0}(t) = P(I(t) = n, V(t) = v | I(0) = n_0, V(0) = v_0)$,
 306 the probability that there remain n infected cells and v virions at time t given n_0 infected
 307 cells and v_0 virions at time 0. Expressing the probability of extinction $P_{ext}(t)$ in terms of the
 308 generating function G_{n_0,v_0} in eq. (2),

309 (5)
$$P_{ext}(t) = G_{n_0,v_0}(0,0;t).$$

310 We compute the risk of infection from the limiting probability of extinction P_{ext}^∞ . As $t \rightarrow \infty$,

311
$$P_{ext}^\infty = \lim_{t \rightarrow \infty} G_{n_0,v_0}(0,0;t)$$

 312
$$= \left(\lim_{t \rightarrow \infty} G_{1,0}(0,0;t) \right)^{n_0} \left(\lim_{t \rightarrow \infty} G_{0,1}(0,0;t) \right)^{v_0}$$

314 with $\lim_{t \rightarrow \infty} G_{1,0}(0,0;t)$, $\lim_{t \rightarrow \infty} G_{0,1}(0,0;t)$ the stable fixed point of eq. (4),

315
$$\lim_{t \rightarrow \infty} G_{1,0}(0,0;t) = G_{1,0}^* = \begin{cases} 1, & R_0 \leq 1 \\ \frac{\delta(c+kT)}{pkTQ_cQ_p} = \frac{1}{R_0}, & R_0 > 1 \end{cases}$$

316
$$\lim_{t \rightarrow \infty} G_{0,1}(0,0;t) = G_{0,1}^* = \begin{cases} 1, & R_0 \leq 1 \\ \frac{\delta}{pQ_p} + \frac{c+(1-Q_c)kT}{c+kT} & R_0 > 1 \end{cases}$$

318 where R_0 is the basic reproduction number, $R_0 = Q_c Q_p B \gamma = p Q_c Q_p kT / \delta(c + kT)$. Recall
 319 that $\gamma = kT/(c + kT)$ is the probability that a single replication-competent virion infects a

320 cell [68], and that $B = p/\delta$ is the burst size. If $Q_c = Q_p = 1$, $G_{0,1}^*$ for $R_0 > 1$ simplifies to
321 $1 - (R_0 - 1)/B$, in agreement with Pearson et al. (2011) and Conway et al. (2013) [18, 68].

322 Starting from a state with n_0 infected cells capable of producing infectious virus, and v_0
323 infectious virions, the probability of extinction as $t \rightarrow \infty$ in terms of γ and B is

$$324 \quad P_{ext}^{\infty} = \begin{cases} 1, & Q_c Q_p B \gamma \leq 1 \\ \left(\frac{1}{Q_c Q_p B \gamma} \right)^{n_0} \left(\frac{1}{B Q_p} + 1 - Q_c \gamma \right)^{v_0}, & Q_c Q_p B \gamma > 1. \end{cases}$$

325 Now consider a virus-only inoculum as is typically used in non-human primate infection
326 experiments. The key piece of information is the probability of extinction starting with a
327 single infectious virion, i.e., $v_0 = 1$ and $n_0 = 0$. For $R_0 > 1$,

$$328 \quad (6) \quad P_{ext}^{\infty} = \frac{1}{Q_p B} + 1 - Q_c \gamma,$$

329 It is unlikely that any real viral inoculum will contain infectious virions only. We assume
330 that given an inoculum of size N , each virion is infectious with probability Q , and use a
331 binomial distribution. From the branching property - that is, the assumption that cells and
332 virions of each type behave identically and independently of all other cells and virions - the
333 probability that the infection will be extinct at time t , for an inoculum of size N , with each
334 virion replication-competent with probability Q , is

$$335 \quad P_{ext}^{\infty}|_N = \sum_{\ell=0}^N \{ (\text{Probability that an inoculum of size } N \text{ contains } \ell \text{ infectious virions}) \\ 336 \quad \times (\text{Probability that the infection goes extinct given an } \\ 337 \quad \text{inoculum of } \ell \text{ infectious virions}) \} \\ 338 \quad = \sum_{\ell=0}^N \binom{N}{\ell} (1-Q)^{N-\ell} Q^{\ell} \left(\frac{1}{Q_p B} + 1 - Q_c \gamma \right)^{\ell} \\ 339 \quad (7) \quad = \left(1 - Q \left(Q_c \gamma - \frac{1}{Q_p B} \right) \right)^N, \\ 340$$

341 for $R_0 > 1$. In the last step we noted that the sum corresponds to the binomial expansion of
342 $(1 - Q(Q_c \gamma - 1/Q_p B))^N$. Then risk of infection for an inoculum of size N , when $R_0 > 1$, is

$$343 \quad (8) \quad \text{Risk} = 1 - \left(1 - Q \left(Q_c \gamma - \frac{1}{Q_p B} \right) \right)^N.$$

344 It is immediately clear that Q_c and Q_p have different effects on this risk, which we will explore
345 in the following.

346 **5.2. Predicted risk of infection is lowered by copying errors .** We begin by examining
347 the risk of infection for a constant assumed total fraction of infectious virus $\tilde{Q} = Q_c Q_p$.
348 Figure 2(a,b) shows the % risk of infection given a single virus inoculum as a function of K ,

349 the fraction of errors attributable to copying errors,

$$350 \quad \text{Risk}|_{N=1} = 1 - \left(1 - Q \left(Q_c \gamma - \frac{1}{Q_p B} \right) \right) \\ 351 \quad (9) \quad = \frac{Q(R_0 - 1)}{B} \left(1 + (1 - K) \left(\frac{1}{\tilde{Q}} - 1 \right) \right) \\ 352$$

353 for different total replication competent fractions $\tilde{Q} = Q_c Q_p = 10^{-3}, 10^{-2}$, and 10^{-1} . Recall
 354 that Q is the probability that a virus in the inoculum N is infectious. We use inoculum size
 355 $N = 1$ virion for this calculation to isolate the relative impact of K on risk. In [Figure 2\(a,b\)](#),
 356 solid lines indicate median R_0 and the shaded areas, risk within the 25th and 75th percentile
 357 in R_0 [\[78\]](#). From eq. (9), single-virus risk linearly decreases with the copying error fraction
 358 K . In the limiting cases,

- 359 1. all errors attributable to packaging errors, $K = 0$. The risk $|_{K=0} = Q(R_0 - 1)/B\tilde{Q}$
 360 decreases as the total replication competent fraction \tilde{Q} increases. This decrease is
 361 clear upon inspection of the left y -axis in [Figure 2\(a,b\)](#): curves for smallest \tilde{Q} (10^{-3} ;
 362 green) give higher risk than curves for larger \tilde{Q} (10^{-1} ; red). Further, as \tilde{Q} increases,
 363 the range $(R_0^{25}/\tilde{Q}, R_0^{75}/\tilde{Q})$ decreases, so the range in risk between the 25th and 75th
 364 percentile in R_0 is larger for $\tilde{Q} = 10^{-3}$ ([Figure 2\(a\)](#), shaded area in green) than for
 365 $\tilde{Q} = 10^{-1}$ ([Figure 2\(a\)](#), shaded area in red).
- 366 2. all errors attributable to copying errors, $K = 1$: Risk $= Q(R_0 - 1)/B = 5 \times 10^{-7}(R_0 - 1)$. Risk increases with R_0 . However the coefficient preceding $(R_0 - 1)$ is very small,
 367 $Q/B = 5 \times 10^{-7}$ with our parameter choices of $Q = 10^{-3}$ and $B = 2 \times 10^3$, and since
 368 $R_0 - 1 \sim O(1)$ the differences are slight on the scale of % risk shown in [Figure 2\(a,b\)](#).
 369 In the intermediate cases where errors are a combination of copying errors and packaging
 370 errors, $0 < K < 1$, the risk decreases as the copying error fraction K increases. Further, as
 371 that fraction K increases to 1, the impact of replication errors decreases and, with it, the
 372 interquartile range in risk associated with the interquartile range in R_0 also decreases.

373 That single-virus risk of infection decreases as the total fraction of replication-competent
 374 fraction \tilde{Q} *increases* seems counter-intuitive. This result is an artifact of keeping R_0 fixed.
 375 $R_0 = Q_c Q_p \gamma B = \tilde{Q} \gamma B$; in order to keep R_0 fixed while varying \tilde{Q} we adjust the probability
 376 of infection $\gamma = kT/(c + kT)$. As \tilde{Q} increases, that probability of infection γ decreases
 377 accordingly, and thus the single-virus risk of infection decreases as well.

378 We note similar trends in the sensitivity of risk and inoculum size to the assumed viral
 379 production rate p (see [Figure SM1](#)). This is unsurprising since the viral production rate p is in
 380 the numerator of R_0 . Higher p leads to higher per-virion risk of infection (Fig S2a,b) and lower
 381 required inoculum for a fixed risk of infection (Fig S2c). Note however that the sensitivity to p
 382 is more significant, given the uncertainty in p : as we move p through a biologically reasonable
 383 range of 200 to 20000 virions per day [\[13, 25\]](#), we recover commensurate order-of-magnitude
 384 changes in risk of infection.

385 Taken together, predictions on single-virus risk of infection increase - by orders of magnitude,
 386 see [Figure 2\(b\)](#) - with the assumed fraction of replication-incompetent virus attributable
 387 to packaging errors, and also with the basic reproduction number R_0 . Practically speaking,
 388 the reason single-virus risk is lower assuming copying errors dominate relates to the two-step

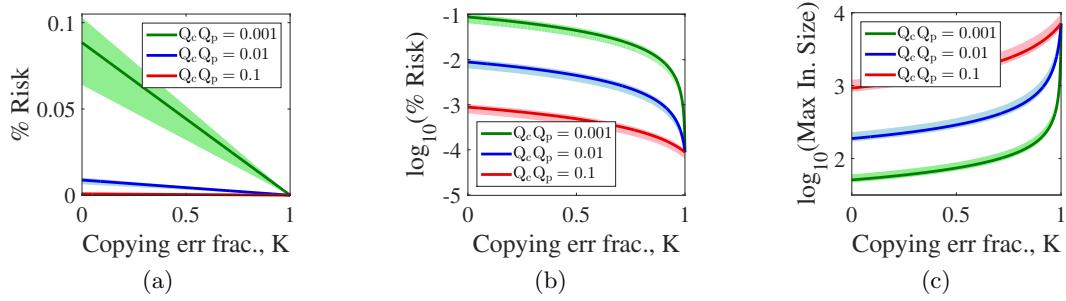


Figure 2. Risk of infection and inoculum size for different total replication competent fractions $\tilde{Q} = Q_c Q_p = 10^{-3}, 10^{-2},$ and 10^{-1} . (a-b) % risk of infection given a single virus inoculum as a function of the fraction of errors attributable to copying errors, (9), on a (a) linear and (b) log scale. (c) Maximum inoculum size assuming a risk of infection of 0.3%, assuming inoculums to be uniformly distributed, computed from (10) using a nonlinear solver. Solid lines indicate median $R_0 = 2.77$ and the shaded areas, risk within the 25th and 75th percentile in R_0 , $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$ [78]. Remaining parameters can be found in Table 1.

390 process of viral replication: in order to avoid extinction, inoculum virus must first infect cells
 391 (probability $Q_c kT/(c + kT)$), and only then those cells make viable virus. Hampering cell
 392 infection, as copying errors do, prevents the first step, successful cell infection, halting the
 393 potential of a propagating infection. Assuming packaging errors only, i.e., $Q_c = 1$, permits
 394 cell infection with much higher probability $(kT/(c + kT))$.

395 **5.3. Inoculum size predictions increase with copying error fraction.** Viral inoculum
 396 sizes associated with different high-HIV risk activities (e.g. needlestick exposure in hospital
 397 setting, unprotected vaginal intercourse) are unknown. However, epidemiological estimates of
 398 risk associated with these activities do exist; for example, occupational exposure in a hospital
 399 setting (e.g. needlestick) carries with it a risk of 0.3% [47]. These measures can be used to
 400 back-calculate the required inoculum size [18], in turn giving model-based insight into early
 401 infection dynamics. In the previous section we discussed risk of infection given an inoculum
 402 containing a single virus. To achieve a fixed risk of infection, the lower the single-virus risk,
 403 the higher the total viral inoculum required. The risk of infection initiated with a single virion
 404 decreases as the fraction of errors attributable to copying errors increases (as K increases from
 405 0 to 1, cf. Figure 2(a,b)). We therefore anticipate that, to achieve a fixed risk of infection, as
 406 in occupational exposure, the required total inoculum increases with K .

407 To investigate total inoculum, assume that the risk of infection is 0.3%, corresponding to
 408 that of occupational exposure [47]. Occupational exposures vary in severity from needlestick
 409 exposures to blood splashes, and vary also according to the viral load of the donor, which
 410 can span orders of magnitude. In absence of information on a probability distribution on
 411 occupational-exposure inoculum size we assume a uniform distribution, $N \sim U(0, N_{max})$, as

412 in [18]. N_{max} is the maximum inoculum size. The total risk of infection is then

$$413 \quad \text{Risk } |_{N \sim U(0, N_{max})} = 1 - \frac{1}{N_{max}} \sum_{j=0}^{N_{max}} (P_{ext}^\infty|_{N=1})^j \\ 414 \quad (10) \quad = 1 - \frac{1}{N_{max}} \left(\frac{1 - (P_{ext}^\infty|_{N=1})^{N_{max}+1}}{1 - P_{ext}^\infty|_{N=1}} \right) \\ 415$$

where $P_{ext}^\infty|_{N=1}$ is the probability of extinction $P_{ext}^\infty|_{N=1} = \left(1 - Q\left(Q_c\gamma - \frac{1}{Q_p B}\right)\right)$, from eq. (7). We use a nonlinear solver to compute N_{max} such that the risk is fixed,

$$\text{Risk } |_{N \sim U(0, N_{max})} = 0.3\%,$$

416 and the total replication competent fraction $\tilde{Q} = Q_c Q_p$ is fixed, while varying the relative
417 contributions of copying and packaging errors (increasing K from 0 to 1).

The result is shown in Figure 2(c) for different values of \tilde{Q} and R_0 (as before, solid lines give R_0 median, with the shaded area giving the interquartile range (R_0^{25}, R_0^{75}) from [78]. The maximum inoculum size N_{max} required to achieve a risk of infection of 0.3% increases with copying error fraction K , as anticipated. N_{max} also increases with \tilde{Q} : since single-virus risk increases monotonically with \tilde{Q} , the required maximum inoculum size correspondingly decreases. If instead we assumed a Dirac-delta distribution on the inoculum size around a mean value N_m , i.e.,

$$\text{Risk} = 1 - (P_{ext}^\infty|_{N=1})^{N_m} \Rightarrow N_m = \frac{1 - \text{Risk}}{P_{ext}^\infty|_{N=1}},$$

418 we recover qualitatively similar results. Quantitatively, $N_m < N_{max}$, which is not surprising
419 since N_{max} must compensate for the equal-probability, very low inoculum sizes.

420 Inoculum size predictions are far more sensitive to assumptions on the viral production rate
421 p within biologically reasonable ranges for p , $p = 200 - 20000$ virions per day, showing order
422 of magnitude differences in prediction, Figure SM1c. But this should be anticipated, since
423 our inoculum size calculation relies on the risk of infection, which also exhibits this sensitivity
424 (see Figure SM1a,b), itself relying on R_0 which is linear in p , $R_0 = Q_1 Q_2 p k T / (\delta(c + kT))$.

425 **6. On time to infection clearance.** We define infection clearance as viral and infected
426 cell clearance, $V = I = 0$. We therefore interpret the time to extinction as the time to
427 infection clearance. Distributions of times to infection clearance may be useful in guiding
428 experiments. For example, when dosing a rhesus macaque with an SIV inoculum (e.g. [38]),
429 systemic infection may not develop. It would be useful to know when one can reasonably
430 assume that a monkey who shows no detectable infection will not develop systemic infection
431 and has cleared all infected cells and virus.

432 **6.1. Calculating the time to infection clearance (extinction).** In deriving from our
433 model an expression for the risk of infection eq. (8), in subsection 5.1, we discussed the cumulative
434 probability of infection extinction at time t , given by $P_{ext}(t) = P_{0,0;n_0,v_0}(t) = G_{n_0,v_0}(0, 0; t)$
435 in eq. (5), where $G_{n_0,v_0}(x, y; t)$ is the probability generating function, eq. (2). We assume a

436 virus-only inoculum; since we assume that the virions behave identically and independently of
 437 all other cells and virus in the system, given v infectious virions, the probability of extinction
 438 at time t is $P_{ext}(t) = G_{0,1}(0, 0; t)^v$ with $G_{0,1}(x, y; t)$ given by the solution of eq. (4).

439 As in our calculation of risk of infection in subsection 5.1, we assume an inoculum of size
 440 N , with each virion replication-competent with probability Q . Then

$$441 \quad P_{ext}(t)|_N = \sum_{\ell=0}^N \{ (\text{Probability that the size-}N \text{ inoculum contains } \ell \text{ infectious virions}) \\ 442 \quad \times (\text{Probability that the infection is extinct at time } t \text{ given} \\ 443 \quad \text{an inoculum of } \ell \text{ infectious virions}) \} \\ 444 \quad = \sum_{\ell=0}^N \left(\binom{N}{\ell} Q^\ell (1-Q)^{N-\ell} \right) (G_{0,1}(0, 0; t)^\ell) \\ 445 \quad (11) \quad = (QG_{0,1}(0, 0; t) + (1-Q))^N,$$

446 noting again that the sum corresponds to the binomial expansion of $(QG_{0,1}(0, 0; t) + (1-Q))^N$.
 447 Thus we can calculate the cumulative probability of extinction at time t from the solution of
 448 eq. (4) for $x = y = 0$.

449 Differentiating $P_{ext}(t)|_N$ with respect to t and normalizing gives us the probability density
 450 (under the condition that the infection goes extinct),

$$452 \quad (12) \quad p_{ext}(t) = \frac{1}{\lim_{t \rightarrow \infty} P_{ext}(t)|_N} \frac{d P_{ext}(t)|_N}{dt}.$$

453 We can integrate this probability density to compute moments of the time to extinction.

454 **6.2. Copying errors induce longer viral clearance times.** We have seen that the single-
 455 virus risk of infection is orders of magnitude smaller if we assume that the only mechanism for
 456 defective virus production is copying errors. We now assume that infection will clear (so the
 457 normalized risk of infection is 0) and investigate the time to infection clearance. The inoculum
 458 size assumption does not affect qualitative results since inoculum affects risk and we condition
 459 on viral clearance. For convenience we take inoculum size $N = 1000$ virions, each replication
 460 competent with probability $Q = 10^{-3}$, in the range of inoculum sizes required to produce a
 461 risk of infection of 0.3%, see Figure 2(c).

462 If we assume that the source of defective virus is solely copying errors, predictions on
 463 time to infection clearance are longer in duration than if we assume that the only errors
 464 are packaging errors, given that the infection will clear. Figure 3(a) shows the normalized
 465 cumulative distribution of clearance times, computed from eq. (11), for median $R_0 = R_0^{\text{med}} =$
 466 2.77. Note that for higher copying error fraction K the tail of the distribution increases.
 467 Recall that the probability of extinction for N virions is

$$468 \quad P_{ext}^\infty = \left(1 - \frac{Q}{BQ_p} (R_0 - 1) \right)^N,$$

469 from eq. (7) re-written in terms of $R_0 = B\gamma Q_c Q_p$. This probability of extinction increases as
 470 $Q_p \uparrow 1$; since we keep the total error $\tilde{Q} = Q_c Q_p$ fixed, $Q_p \uparrow 1$ corresponds to $Q_c \downarrow \tilde{Q}$ (copying

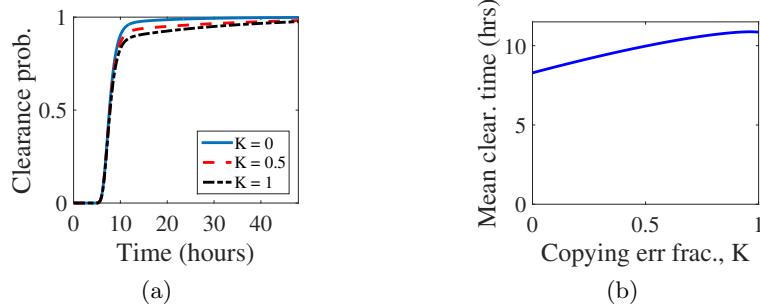


Figure 3. Viral clearance times conditioned on viral extinction for basic reproduction number R_0 at its median value $R_0^{\text{med}} = 2.77$ [78]. Remaining parameters can be found in Table 1. (a) Cumulative distribution on time to viral clearance for different copying error fractions, computed from eq. (11) with generating function $G_{0,1}(0,0;t)$ calculated numerically from eq. (4) with zero initial conditions and normalized. (b) Mean clearance times computed from associated cumulative distributions. Note that the timescale is in hours.

471 error fraction $K \uparrow 1$). The probability of extinction decreases more slowly with the number
 472 of virions N if we assume defective virus is mainly attributable to copying errors. Therefore
 473 infection extinction, given a few rounds of viral replication yielding circulating virus, is more
 474 likely if we assume defective virus arises from copying errors rather than packaging errors.
 475 This trend is not altered by the number of circulating infected cells since the probability of
 476 extinction arising from an infected cell is $1/R_0$, R_0 is kept fixed. As a result, the tail of the
 477 clearance probability distribution - for longer times, after a few rounds of viral replication -
 478 is wider. We confirm this result with the probability distribution function for the cumulative
 479 number of infected cells, conditioned on infection clearance, see Figure SM3. The probability
 480 of accumulating any infected cells is higher if we assume that defective virus are solely at-
 481 tributable to copying errors. We then anticipate that the mean clearance time would increase
 482 with the copying error fraction K , as shown in Figure 3(b). There also appears to be a max-
 483 imum in the clearance time near, but not at, $K = 1$ (Figure 3(b)). This maximum will be
 484 addressed in the next section.

485 **6.3. Error assumption changes clearance time dependence on R_0** . In the previous
 486 section we discussed clearance time for the basic reproduction number fixed to its median
 487 value R_0^{med} from [78]. Extending to R_0 values at the limits of the interquartile range we
 488 again see increasing mean clearance times with the copying error fraction K (Figure 4(a)),
 489 computed by integrating the associated cumulative distributions computed from eqs. (4) and
 490 (11). Intriguingly, however, we find that this increase is not monotonic in R_0 : the mean
 491 clearance time curves for different values of R_0 in Figure 4(a) intersect.

492 Figure 4(b) shows contours in mean clearance time (in hours) to better illustrate the
 493 non-monotonicity, with dashed and solid lines indicating $R_0^{\text{med}} = 2.77$, and the limits of the
 494 interquartile range $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$, respectively. In the extreme case of copying
 495 error fraction $K = 0$, all defective virus associated with packaging errors, the mean clearance
 496 time decreases with basic reproduction number R_0 (Figure 4(c)). As R_0 increases, more
 497 new cell infections are engendered, on average, by each infected cell, and the probability of

498 extinction (eq. (7)) is reduced; after a few rounds of viral replication the viral load grows
 499 too large to expect the infection to go extinct. This concept is clear from the clearance time
 500 probability density functions, computed from eq. (12), shown in Figure 5(a). Observe that
 501 the mode height decreases only very slightly with increasing R_0 : the most likely path to
 502 extinction is that the initial viral inoculum clears without infecting any target cells, each with
 503 rate c , thus the position of the peak doesn't change. But the probability that the initial viral
 504 inoculum clears without infecting any target cells, $c/(c + kT) = 1 - R_0/(B\tilde{Q})$ for each virion
 505 in the inoculum, decreases with increasing $R_0 < B\tilde{Q}$, and therefore the peak height drops
 506 very slightly. However, as R_0 increases, the size of the tail of the clearance time distribution
 507 shrinks, because as the viral load grows, the probability of infection extinction decreases. The
 508 mean of the distribution must also correspondingly decrease.

509 In the extreme case of copying error fraction $K = 1$, when all defective virus are at-
 510 tributable to copying errors, the mean clearance time increases with basic reproduction num-
 511 ber R_0 . This result counters the intuition discussed above. Figure 5(b) shows the clearance
 512 time PDFs in the case $K = 1$ and different values of R_0 . As with the $K = 0$ case, the mode
 513 height decreases slightly: for early times, the clearance time cumulative density function for
 514 $K = 0$ and $K = 1$ (Figures 5(a) and (b)) are the same. The most likely scenario is inocu-
 515 lum clearance, which occurs at the same rate and with the same probability. In the $K = 1$
 516 case however the tail of the distribution increases with R_0 , see Figure 5(b), and so the mean
 517 clearance time increases with R_0 . The clearance time probability density tail size increases
 518 because the density is computed with the condition that the infection goes extinct. A larger
 519 R_0 means that, on average, a larger number of secondary cell infections are induced by a
 520 single infected cell and - since $K = 1$ - all these infected cells will produce infectious virus. If
 521 the viral inoculum does not immediately clear, there will be more infected cells and virus to
 522 clear. Therefore, assuming that the infection does go extinct, clearance takes longer time.

523 The maximum mean clearance times in Figure 3(a) and Figure 4(a), near but away from
 524 $K = 1$, is the result of a transition between regimes where the mean clearance time decreases
 525 with R_0 (all packaging errors, $K = 0$) or increases with R_0 (all copying errors, $K = 1$).

526 **7. On time to infection detection.** We have seen that in general, copying errors reduce
 527 predicted risk of infection and accelerate viral clearance. We now investigate how error as-
 528 sumptions affect predictions on viral detection, assuming that the infection is not cleared, i.e.,
 529 does not go extinct. With improvements in technology, HIV tests are becoming more sensi-
 530 tive, and can detect increasingly small amounts of virus [14] and/or virus-associated proteins
 531 (for example, p24, an HIV viral capsid protein [89]). Further, there is an increased premium
 532 on early detection of HIV infection: early treatment has been shown to improve long-term
 533 patient outcomes in terms of quality and length of life [83], and very early treatment is also
 534 associated with post-treatment control of HIV [80]. Mathematical modeling predictions on
 535 infection detection times can offer insight and guidance into testing windows, that is, the time
 536 frame after exposure to HIV within which to get tested and be confident of the positive or
 537 negative result.

538 **7.1. Calculating time to infection detection.** In a clinical setting, HIV is measured in a
 539 blood sample and is only detectable above a certain threshold, determined by the sensitivity of
 540 the assay. We define the probability of detection as the probability that, given some exposure

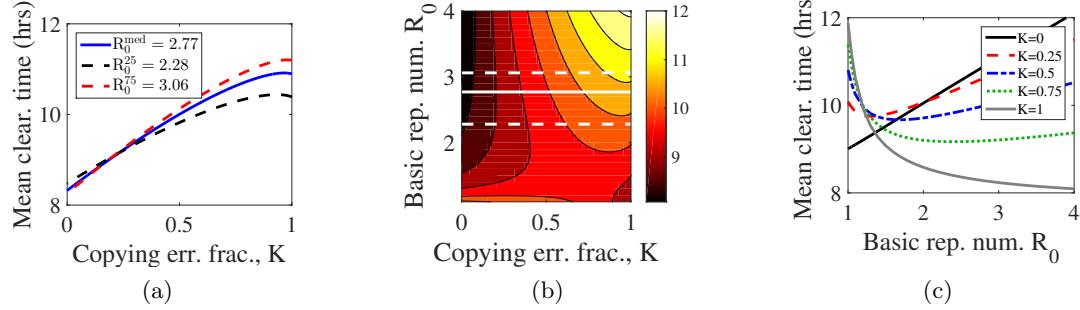


Figure 4. Viral clearance times as a function of the copying error fraction K and basic reproduction number R_0 . (a-c) Mean clearance time, in hours, (a) as a function of K for R_0 at its median value $R_0^{\text{med}} = 2.77$ and at the limits of the interquartile range $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$ [78]; (b) as contours in (R_0, K) , with solid line indicating median R_0^{med} , dashed the interquartile limiting values (R_0^{25}, R_0^{75}) ; (c) as a function of R_0 for $K = 0$ (all packaging errors) and $K = 1$ (all copying errors). Remaining parameters can be found in Table 1.

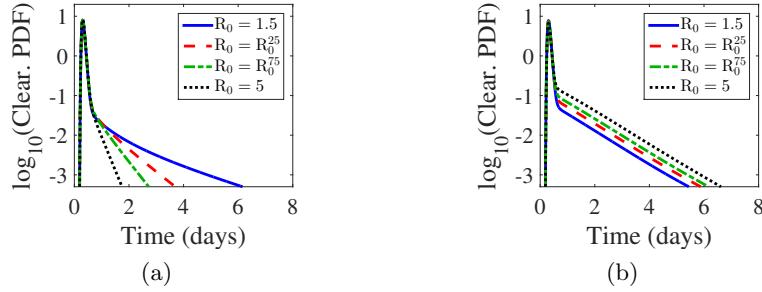


Figure 5. Probability densities of viral clearance times conditioned on viral extinction for basic reproduction numbers R_0 at interquartile limit values $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$ and smaller/larger values $R_0 = 1.5$ and 5 , for copying error fraction (a) $K = 0$ and (b) $K = 1$. Curves computed using eq. (4), (11), and (12). Remaining parameters can be found in Table 1.

541 at time 0, the viral load is above that detection threshold at time t .

542 For our model, the probability of detection is $P_{\text{det}}(t) = P(V(t) + V_d(t) \geq V_{\text{det}}) = 1 -$
 543 $P(V(t) + V_d(t) < V_{\text{det}})$ where V_{det} is the viral load detection threshold. Here we are assuming
 544 that the defective virus V_d does not have deletions that make the virus undetectable by
 545 standard viral nucleic acid blood assays [72]. Now,

$$546 \quad P(V(t) + V_d(t) < V_{\text{det}}) = \sum_{k=0}^{V_{\text{det}}-1} P(V(t) + V_d(t) = k),$$

548 where $P(V(t) + V_d(t) = k)$ is the probability that the total viral load at time t is k . Note
 549 that we have dropped the initial condition for brevity; $P_{\text{det}}(t) = P(V(t) + V_d(t) \geq V_{\text{det}} | I(0) =$
 550 $n_0, V(0) = v_0, I_d(0) = m_0, V_d(0) = w_0)$. The probability of detection involves defective
 551 infected cells and virions, which we have not so far included in our calculations.

552 To calculate the probability of detection we return to the full model in Figure 1(a) and

553 use

554
$$P_{n,v,m,w;n_0,v_0,m_0,w_0}(t) = P(I(t) = n, V(t) = v, I_d(t) = m, V_d(t) = w$$

 555
$$|I(0) = n_0, V(0) = v_0, I_d(0) = m_0, V_d(0) = w_0).$$

557 Define the corresponding probability generating function as

558
$$G_{n_0,v_0,m_0,w_0}(x, y, r, s; t) = \sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \sum_{m=0}^{\infty} \sum_{w=0}^{\infty} P_{n,v,m,w;n_0,v_0,m_0,w_0}(t) x^n y^v r^m s^w.$$

559 But for the additional terms and indices, the derivation of the related bCKde and differen-
 560 tial equations for $G_{n_0,v_0,m_0,w_0}(x, y, r, s; t)$ is identical to the derivations in [subsection 3.1](#) and
 561 [subsection SM3.1](#).

562 We can write the probability of detection in terms of the PGF,

563
$$P(V(t) + V_d(t) = k) = \sum_{j=0}^k P(V = j, V_d = k - j)$$

 564
$$= \sum_{j=0}^k \frac{1}{j!} \frac{1}{(k-j)!} \frac{\partial^k}{\partial r^j \partial s^{k-j}} G_{n_0,v_0,m_0,w_0} \Big|_{x=r=1, y=s=0}$$

 565
$$= \sum_{j=0}^k \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0,v_0,m_0,w_0}(1, z_1, 1, z_2)}{z_1^{j+1} z_2^{k-j+1}} dz_2 dz_1.$$

 566
$$= \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} G_{n_0,v_0,m_0,w_0}(1, z_1, 1, z_2) \left(\frac{z_2^{-(k+1)} - z_1^{-(k+1)}}{z_1 - z_2} \right) dz_2 dz_1.$$

 567

568 We used the Cauchy Gauss integral formula [\[10\]](#) to express derivatives as contour integrals for
 569 the third step, and summed the finite series in the fourth. Then the probability of not being
 570 detected at time t is

571
$$P(V(t) + V_d(t) < V_{\text{det}}) = \sum_{k=0}^{V_{\text{det}}-1} \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} G_{n_0,v_0,m_0,w_0}(1, z_1, 1, z_2; t) \left(\frac{z_2^{-(k+1)} - z_1^{-(k+1)}}{z_1 - z_2} \right) dz_2 dz_1$$

 572
$$= \frac{1}{\pi} \mathbb{R} \left\{ \int_0^\pi G_{n_0,v_0,m_0,w_0}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\}$$

 573

574 using the Residue Theorem [\[10\]](#) to reduce the double integral to a single integral, and using
 575 the unit circle $e^{i\theta}$ as our contour C_{z_1} (for details see the [subsection SM3.2](#)). Finally, if we
 576 want to take into account a virus-only inoculum of size N , each virion being infectious with
 577 probability Q , again assuming a binomial distribution,

578
$$P_{\text{det}}(t) = 1 - \sum_{j=0}^N \binom{N}{j} Q^j (1-Q)^{N-j} \left(\frac{1}{\pi} \mathbb{R} \left\{ \int_0^\pi G_{0,j,0,N-j}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\} \right)$$

 (13)
 579
$$= 1 - \frac{1}{\pi} \mathbb{R} \left\{ \int_0^\pi (Q G_{0,1,0,0}(1, e^{i\theta}, 1, e^{i\theta}; t) + (1-Q) G_{0,0,0,1}(1, e^{i\theta}, 1, e^{i\theta}; t))^N \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\},$$

 580

where we have made use of the branching property

$$G_{n_0, v_0, m_0, w_0} = (G_{1,0,0,0})^{n_0} (G_{0,1,0,0})^{v_0} (G_{0,0,1,0})^{m_0} (G_{0,0,0,1})^{w_0}$$

and the binomial theorem to re-write the series

$$\sum_{j=0}^N \binom{N}{j} (QG_{0,1,0,0})^j ((1-Q)G_{0,0,0,1})^{N-j} = (QG_{0,1,0,0} + (1-Q)G_{0,0,0,1})^N.$$

581 Note that for our purposes $P_{\text{det}}(t)$ will converge to 1: since we condition on no infection
 582 clearance, the viral load will eventually grow exponentially large, and the probability that the
 583 infection will go extinct $\rightarrow 0$. The detection threshold V_{det} , given by clinical constraints and
 584 explicitly quantified below, is very large and well into the exponential phase of infection. We
 585 can therefore consider the cumulative probability that the viral load will exceed the detection
 586 threshold at time t , $P_{\text{det}}(t)$, to be the probability of infection detection on or before time t .

587 Clinical investigations on early-time HIV and SIV infections seldom focus on cases where
 588 exposure does not result in infection. Data on viral load and CD4+ T-cell counts can only be
 589 collected when infection initiates. The probability of detection, above, includes the probability
 590 that the infection clears, and therefore may not be useful for some studies. If we only want to
 591 consider cases where infection does not clear we must condition the probability $P_{n_0, v_0, m_0, w_0}(t)$
 592 on the infection not going extinct.

593 The probability of detection at time t conditioned on infection $\tilde{P}_{\text{det}|\text{inf}}(t)$ is

$$\begin{aligned} 594 \quad \tilde{P}_{\text{det}|\text{inf}}(t) &= P(\text{detection at time } t|\text{infection}) \\ 595 &= \frac{P(\text{detection at time } t)}{P(\text{infection})} \\ 596 \quad (14) \quad &= \frac{P_{\text{det}}(t)}{\text{Risk}}, \\ 597 \end{aligned}$$

598 from the law of total probability, where $P_{\text{det}}(t)$ is given by eq. (13) and Risk is given by
 599 eq. (8). Note that as $t \rightarrow \infty$, $P_{\text{det}}(t) \rightarrow \text{Risk}$, and therefore $\tilde{P}_{\text{det}|\text{inf}}(t) \rightarrow 1$, as expected. The
 600 probability of not detecting infection at time t , given that infection occurs, is $\tilde{P}_{\text{no det}|\text{inf}}(t) =$
 601 $1 - \tilde{P}_{\text{det}|\text{inf}}(t) = 1 - P_{\text{det}}(t)/\text{Risk}$.

602 Of greater clinical interest perhaps is the conditional risk of infection given an undetectable
 603 infection at time t . As tests for HIV viral load are becoming more sophisticated with a lower
 604 threshold of detection, this calculation can give insight into testing windows. That is, a blood
 605 bank, for example, might want to know times t beyond which this risk is sufficiently small, so
 606 that, in essence, an undetectable viral load means no infection. Using Bayes' rule we can write
 607 an expression for this conditional risk in terms of the risk of infection and the probability of
 608 detection:

$$\begin{aligned}
 609 \quad P(\text{infection}|\text{no detection at time } t) &= \frac{P(\text{no detection at time } t|\text{infection})P(\text{infection})}{P(\text{no detection at time } t)} \\
 610 \quad &= \frac{(1 - P(\text{detection at time } t|\text{infection}))P(\text{infection})}{1 - P(\text{detection at time } t)} \\
 611 \quad (15) \quad P(\text{infection}|\text{no detection at time } t) &= \left(\frac{1 - \tilde{P}_{\text{det}|\text{inf}}(t)}{1 - P_{\text{det}}(t)} \right) \text{Risk} \\
 612
 \end{aligned}$$

613 for $P_{\text{det}}(t)$ given by eq. (13) and $\tilde{P}_{\text{det}|\text{inf}}(t)$ given by eq. (14). Observe that as $t \rightarrow \infty$, since
 614 $\tilde{P}_{\text{det}|\text{inf}}(t) \rightarrow 1$, the probability of infection given no detection at time t goes to 0, again as
 615 expected.

616 **7.2. Packaging errors delay infection detection.** We assume that the detection threshold
 617 is 50 HIV RNA copies per mL, corresponding to the detection threshold for current commercial
 618 HIV testing assays. Unlike deterministic dynamics, in which the dynamics measured in 1 mL
 619 of intracellular fluid corresponds to the scaled version of full-body viral dynamics, stochastic
 620 dynamics do not scale, so we must compute the total viral load in an individual. Assuming
 621 an average person's total body extracellular fluid is 15 L, the total viral detection level is
 622 $V_{\text{det}} = 750\,000$ HIV RNA copies. We numerically integrate eq. (13) with, and calculate
 623 the conditional probability of detection as in eq. (14), with $V_{\text{det}} = 750\,000$, to obtain the
 624 probability of infection detection at time t .

625 Figure 6(a) shows the cumulative probability of the viral load exceeding the detection
 626 threshold at time t , conditioned on no extinction eq. (14). Assuming packaging errors only
 627 ($K = 0$) yields delayed model-based predictions on detection of infection relative to model
 628 predictions relying on copying error assumptions only ($K = 1$), see Figure 6(a). As shown in
 629 subsection 5.2, risk of infection decreases with copying error fraction, since for high copying
 630 error fractions, newly infected cells are more likely to produce only defective virus. However
 631 if we condition on no extinction, we eliminate the cases where the first few infected cells make
 632 defective virus (those cases lead to extinction). As a result the infectious viral load increases
 633 rapidly and we anticipate a more rapidly spreading infection, and therefore more rapid de-
 634 tection. In mathematical terms, from eq. (14) the probability of detection is normalized by
 635 the risk of infection. Smaller risk in the denominator translates to more rapid detection, i.e.,
 636 higher probability of detection at time t .

637 Mean detection times decrease monotonically with the copying error fraction, as shown
 638 in Figure 6(b): a higher fraction of packaging errors delays the detection time. Figure 6(b)
 639 shows mean detection times assuming median R_0^{med} and its interquartile range (R_0^{25}, R_0^{75}). The
 640 trend of delayed detection-time predictions due to higher packaging error fraction (decreasing
 641 K) remains regardless of R_0 . We also observe that as R_0 increases ($R_0^{25} < R_0^{\text{med}} < R_0^{75}$)
 642 mean detection times shorten. A larger value of R_0 indicates that each cell engenders, on
 643 average, more new cell infections, leading to increased viral load, which will therefore cross
 644 the detection threshold sooner, regardless of assumed error types.

645 As copying errors come to dominate, mean detection time increases, but the variability
 646 in detection time decreases. Predictions on variability in detection time are essential when
 647 using modeling predictions to gain insight into testing windows; if variability is small, the

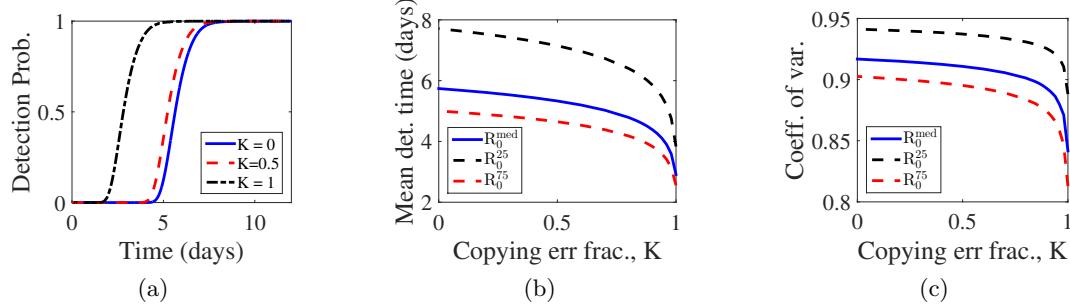


Figure 6. Probability of detection at time t . (a) Cumulative probability of detection at time t for median $R_0^{\text{med}} = 2.77$ assuming that the copying error fraction is 0 (all packaging errors), 0.5, or 1 (all copying errors). (b) Mean detection time as a function of the copying error fraction, for median basic reproduction number R_0^{med} and interquartile values $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$. (c) Coefficient of variation in detection time as a function of the copying error fraction, for median basic reproduction number R_0^{med} and interquartile values (R_0^{25}, R_0^{75}) . Remaining parameters can be found in Table 1.

648 mean may be a good guide, but if variability is large, it will not be. We use the coefficient of
 649 variation σ/μ (standard deviation over the mean), and plot against the copying error fraction,
 650 for median basic reproduction number R_0^{med} and interquartile range values (R_0^{25}, R_0^{75}) , as
 651 shown in Figure 6(c). The coefficient of variation decreases with copying error, indicating less
 652 variability in detection times as copying errors come to dominate, across different R_0 values.
 653 Intuitively, decreased variability goes with shorter detection times. That is, there is a smaller
 654 time frame in which virus/infected cell “paths” can widen. We find that not only do packaging
 655 errors create delayed detection time predictions, they also increase the variability. However
 656 we should note that, for our parameters at least, the differences in the coefficient of variation
 657 are small - only very near the limiting case of copying error fraction $K = 1$ do the differences
 658 approach 10%.

659 Finally, using our simple model we can comment on the delay time between exposure
 660 and HIV testing. We use the basic reproduction number R_0^{25} since it produces the slowest
 661 detection times. Figure 7 shows the probability of infection given a negative HIV test, that
 662 is, no detection, at time t . The y -intercepts in Figure 7(a) gives the total risk of infection;
 663 to compare timing we condition on the process not going extinct, as seen in Figure 7(b).
 664 Assuming copying error fraction $K = 0$, since again it produces the slowest detection times,
 665 our model predicts that, assuming infection is successful, an HIV test should return a positive
 666 result at approximately 9.5 days, with 95% probability ($\text{Prob}(\text{infection} \mid \text{detectable at } t \leq 10 \text{ days}) \approx 0.05$), given our baseline inoculum size of 1000 virions which gives the high risk of
 667 infection of 6.2%. However, if we assume $R_0 = R_0^{75}$ and copying error fraction $K = 1$ the
 668 estimate gets as small as 3.6 days (not shown).

670 Rough empirical estimates for the window period between infection and first detection
 671 of HIV RNA lie in the 7-21 day range [16], within the same order of magnitude as our own
 672 predictions, albeit higher, understandable since our model neglects some of the complexity of
 673 early infection. We can only improve such estimates with better understanding of the different
 674 mechanisms underlying viral replication.

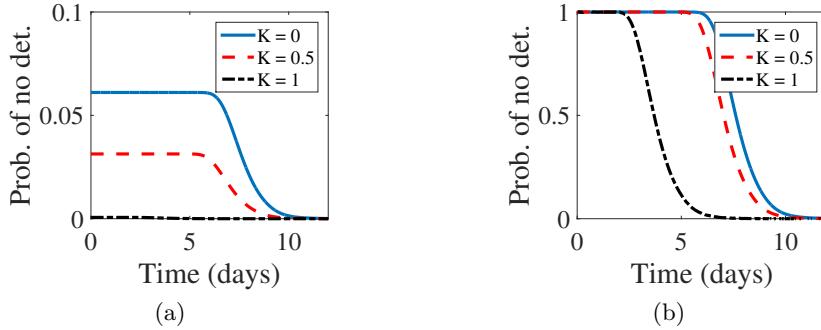


Figure 7. Probability of infection given no detection at time t for basic reproduction number $R_0^{25} = 2.28$, computed numerically from eq. (15). (a) Cumulative probability. (b) Normalized version of (a). Remaining parameters can be found in Table 1.

675 **8. Discussion.** Elucidating events that occur between exposure to HIV and detectable
 676 infection is crucial in developing prevention strategies. Directly investigating these events in
 677 humans is very difficult, as are indirect investigations using animal models, since infected cell
 678 and viral populations are very small during this period. In this study we developed a simple
 679 mathematical model that permits us to make predictions on important clinical characteristics
 680 of early HIV infection: risk of infection, time to infection clearance (assuming failed infection),
 681 and probability of detection (assuming successful infection).

682 Since cell and viral populations are small during the earliest phases of HIV infection,
 683 we used a stochastic modeling approach. We employed continuous-time branching processes,
 684 using and extending methods previously presented [17, 18, 68]. In particular we used tools
 685 from complex analysis to derive an integral expression for the probability of detection, which
 686 is, to our knowledge, a novel calculation.

687 We used our model to investigate the effect of viral replication errors, resulting in non-
 688 infectious virus, on early-infection predictions. Estimates on the non-infectious viral fraction
 689 are as high as 99.99% [46, 60, 79]. We focused on two mechanisms: (1) that a mutation
 690 during reverse transcription fatally cripples the proviral genome so that any viral genomes
 691 produced by the provirus will not be infectious [22] (here called copying errors), and (2) that
 692 virus may also be rendered non-infectious by errors in the assembly and release phase of
 693 viral replication (here called packaging errors), e.g. virions may be packaged with insufficient
 694 surface proteins (gp120/gp41) necessary for viral infection or lack essential HIV enzymes such
 695 as reverse transcriptase or integrase [51]. In summary, assuming a constant basic reproduction
 696 number R_0 and non-infectious viral fraction, we found that:

697 **Risk:** The predicted risk of infection is much higher if we assume the source of non-infectious
 698 virus is mainly packaging errors.

699 **Time to clearance:** For failed infections, exposures are predicted to clear more rapidly if
 700 we assume the source of non-infectious virus is again mainly packaging errors.

701 **Probability of detection:** For successful infections, the infection is predicted to be de-
 702 tectable earlier if we assume the source of non-infectious virus is mainly copying errors.

703 We also uncovered intriguing behavior in our investigation of clearance times. Mean clearance

704 times, conditioned on failed infection, are predicted to differ only by hours across a wide
705 range of R_0 and copying error fraction K ; no modern experiment could distinguish between 8-
706 and 12-hour clearance time in tissues. Nonetheless, these mean clearance times are predicted
707 to decrease with increasing R_0 if one assumes that all non-infectious virus is attributable
708 to packaging errors. Intuitively, this is because we increased R_0 by increasing the infection
709 rate kT . With increased kT , the infection spreads more rapidly, and therefore the associated
710 probability of extinction (clearance) goes to 0 more rapidly. However, the mean clearance
711 time increases with increasing R_0 assuming all non-infectious virus is attributable to copying
712 errors. We traced this counter-intuitive result to the tail of the extinction-time distribution
713 (Figure 5) and our conditioning the probability of clearance on infection extinction.

714 These results arise because we employed a stochastic model. In the deterministic version
715 of the model (see eq. (SM1) in section SM2) the parameters dictating error type are not
716 identifiable and results are not affected by error type, only total error. The deterministic
717 model is appropriate for chronic infection, when viral and cell populations are very large.
718 Early after exposure to HIV, these populations are small, and it is therefore inappropriate
719 to use a deterministic model. When accounting for stochastic effects it is clear that the
720 mechanism of defective virus production makes a significant and important difference.

721 Here we focused on errors in the viral replication cycle which lead to non-infectious virus.
722 However there are other mechanisms. For example, neutralizing antibodies may bind free
723 virus, rendering the virus non-infectious. But these events likely only occur in the deterministic
724 limit, after viral populations are large, and our focus in this present study is events in early
725 infection while viral populations are still small. APOBEC3G, an enzyme in cellular anti-viral
726 immunity, is another important factor [33, 40, 43, 88]. APOBEC3G's primary mode of action
727 is to interfere with reverse transcription, inducing hypermutation (copying errors) [43, 88].
728 Interestingly, infected cells generate APOBEC3G and the enzyme is packaged in the virions
729 budding off the infected cell. Thus, APOBEC3G-induced hypermutation only occurs in cells
730 infected by those budding virions. The HIV protein Vif acts against APOBEC3G, by both
731 triggering its degradation and preventing its incorporation into HIV virions [88]. Thus the
732 anti-viral action of APOBEC3G involves both viral packaging and reverse transcription, and
733 its dynamics cannot be investigated with our simple model. To investigate the dynamics of
734 APOBEC3G we must extend the model, which we leave for future work.

735 The existence of other mechanisms is one of the limitations of this present study. It is
736 possible non-infectious or defective virus may help drive infection [22], potentially by stimu-
737 lating an immune response [49] and creating more target cells. It is also possible that copying
738 errors cause defects in the packaging signaling site of the genome, inducing packaging errors:
739 an investigation of infected cells in treated, chronically-infected HIV⁺ individuals showed that
740 approximately 5% had deletions in the packaging signal portion of the genome [11]. These
741 effects are also not included in our model. Further, our model is very simple, which facil-
742 itates the extensive analysis above. However, it does not account for some of the complexity
743 involved in the earliest stages of infection. For example, our estimates for clearance focus on
744 viral populations in the blood, the best indicator for humans. But even in needlestick injury,
745 the virus will move into tissue, and clearance in the blood could therefore precede clearance
746 in tissue. For vaginal sexual exposure, the viral inoculum has to cross vaginal tissues to reach
747 target cells and the bloodstream. Dendritic cells are thought to take up virus and transport

748 them to lymph nodes. This is hypothesized to be one of the triggering events in HIV infec-
 749 tion [34], which we previously modeled in [18]. In the very earliest stages, before there is much
 750 viral dissemination, target cells may be limiting at particular spatial locations. Therefore, our
 751 model is too simple to gain direct insight into animal model observations following vaginal
 752 or rectal infection with SIV [52, 76], or to aid in design of such experiments. To address this
 753 more complicated scenario, we would apply the mathematics developed in this current work to
 754 compute, in particular, time to infection detection and clearance, to an extended model that
 755 captures viral transport dynamics, such as [18]. Note that such an extended model would
 756 retain considerable uncertainty, since viral dissemination dynamics following HIV exposure
 757 remain poorly understood.

758 Even so, our simple model would be an appropriate starting point to investigate and design
 759 experiments focusing on intravenous infection of HIV, when the viral inoculum is delivered
 760 directly to the blood [19, 81]. Bruner et al. (2016) also showed that 40% of proviruses
 761 generated after a single round of in vitro infection were defective [11]. In such studies and
 762 experiments, focusing on intravenous infection of HIV, this 40% may inform the fraction of
 763 errors associated with copying Q_c , suggesting $Q_c = 0.6$ as an upper bound. The intravenous
 764 route of HIV infection is relevant to HIV epidemiology: in 2015, 6-9% of new infections in the
 765 United States were associated with injection drug use [12].

766 In spite of limitations, stochastic modeling can be invaluable in investigations of early HIV
 767 infection. In a previous study, it was shown that better understanding of viral production
 768 would improve risk-of-infection predictions [68]. We have shown that in order to make reliable
 769 predictions on risk, clearance time, and detection time, better characterization of viral repli-
 770 cation is required. We can then use models such as ours to make practical predictions on HIV
 771 testing windows, or to generate theoretical hypotheses on the potential impact of target cell
 772 limitation, which we have neglected here but likely plays a role in sexual infection, as there are
 773 normally very few CD4⁺ T cells in the genital mucosa. However, improved stochastic models
 774 of early infection also have other uses such as predicting the effect of vaccines on preventing
 775 the establishment of infection. It remains to be determined if the mode of defective virus
 776 production can impact vaccine efficacy, but this is a topic worthy of investigation.

777 Lastly, the viral dynamics model that we used (Figure 1) as a starting point or slight
 778 variants have been used to model many viral infections, such as those due to hepatitis C [63],
 779 hepatitis B [84], West Nile virus [6], Zika virus [8] and influenza [4]. As both infectious and
 780 noninfectious viruses are produced in all of these infections, the techniques used here and the
 781 results we derived should have applicability to these as well as other viral infections.

782 **Acknowledgments.** The authors would like to thank Frederik W. Wiegel, Grant Lythe,
 783 and John Pearson for invaluable discussions in the development of this study.

REFERENCES

- [1] M. ABRAM, A. FERRIS, W. SHAO, W. ALVORD, AND S. HUGHES, *Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication*, J Virol, 84 (2010), pp. 9864–9878.
- [2] M. AID, P. ABBINK, R. LAROCCA, M. BOYD, R. NITYANANDAM, O. NANAYAKKARA, A. MARTINOT, E. MOSELEY, E. BLASS, E. BORDUCCHI, A. CHANDRASHEKAR, A. BRINKMAN, K. MOLLOY, D. JETTON, L. TARTAGLIA, J. LIU, K. BEST, A. PERELSON, R. DE LA BARRERA, M. LEWIS, AND

D. BAROUCH, *Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys*, Cell, 169 (2017), pp. 610–620.e14.

[3] A. ALDOVINI AND R. YOUNG, *Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus*, J Virol, 64 (1990), pp. 1920–1926.

[4] P. BACCAM, C. BEAUCHEMIN, C. MACKEN, F. HAYDEN, AND A. PERELSON, *Kinetics of influenza A virus infection in humans*, J Virol, 80 (2006), pp. 7590–7599.

[5] R. BAILEY, S. MOSES, C. PARKER, K. AGOT, I. MACLEAN, J. KRIEGER, C. WILLIAMS, R. CAMPBELL, AND J. NINYA-ACHOLA, *Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial*, Lancet, 369 (2007), pp. 643–656.

[6] S. BANERJEE, J. GUEDJ, R. RIBEIRO, M. MOSES, AND A. PERELSON, *Estimating biologically relevant parameters under uncertainty for experimental within-host murine west nile virus infection*, J R Soc Interface, 13 (2016), p. 20160130.

[7] BC CENTRE FOR DISEASE CONTROL, *HIV laboratory testing: a resource for health professionals*, June 2010.

[8] K. BEST, J. GUEDJ, V. MADELAIN, X. DE LAMBALLERIE, S.-Y. LIM, C. OSUNA, J. WHITNEY, AND A. PERELSON, *Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies*, Proc Natl Acad Sci USA, 114 (2017), pp. 8847–8852.

[9] A. BOURINBAIAR, *The ratio of defective HIV-1 particles to replication-competent infectious virions*, Acta Virol, 38 (1994), pp. 59–61.

[10] J. BROWN AND R. CHURCHILL, *Complex Variables and Applications*, McGraw-Hill, 8 ed., 2008.

[11] K. M. BRUNER, A. J. MURRAY, R. A. POLLACK, M. G. SOLIMAN, S. B. LASKEY, A. A. CAPOFERRI, J. LAI, M. C. STRAIN, S. M. LADA, R. HOH, Y.-C. HO, D. D. RICHMAN, S. G. DEEKS, J. D. SILICIANO, AND R. F. SILICIANO, *Defective proviruses rapidly accumulate during acute HIV-1 infection*, Nat Med, 22 (2016), pp. 1043–1049.

[12] CENTERS FOR DISEASE CONTROL AND PREVENTION, *HIV Surveillance Report*, vol. 27, <http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html>. Published November 2016. Accessed 03/31/2017., 2016.

[13] H. CHEN, M. DI MASCIO, A. PERELSON, D. HO, AND L. ZHANG, *Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques*, P Natl Acad Sci USA, 104 (2007), pp. 19079–19084.

[14] A. CILLO, D. VAGRATIAN, M. BEDISON, E. ANDERSON, M. KEARNEY, E. FYNE, D. KOONTZ, J. COFFIN, M. PIATAK, JR., AND J. MELLORS, *Improved single-copy assays for quantification of persistent HIV-1 viremia in patients on suppressive antiretroviral therapy*, J Clin Microbiol, 52 (2014), pp. 3944–3951.

[15] H. CLAPHAM, V. TRICOU, N. VAN VINH CHAU, C. SIMMONS, AND N. FERGUSON, *Within-host viral dynamics of dengue serotype 1 infection*, J R Soc Interface, 11 (2014), p. 20140094.

[16] M. S. COHEN, C. L. GAY, M. P. BUSCH, AND F. M. HECHT, *The detection of acute HIV infection*, J Infect Dis, 202 (2018), pp. S270–S277.

[17] J. CONWAY AND D. COOMBS, *A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients*, PLoS Comput Biol, 7 (2011), p. e1002033.

[18] J. M. CONWAY, B. KONRAD, AND D. COOMBS, *Stochastic analysis of pre- and post-exposure prophylaxis against HIV infection*, SIAM J Appl Math, 73 (2013), pp. 904–928.

[19] U. DITTMER, C. STAHL-HENNIG, C. COULIBALY, T. NISSLEIN, W. LIIKE, D. FUCHS, W. BODEMER, H. PETRY, AND G. HUNSMAN, *Repeated exposure of rhesus macaques to low doses of simian immunodeficiency virus (SIV) did not protect them against the consequences of a high-dose SIV challenge*, J Gen Virol, 76 (1995), pp. 1307–1315.

[20] N. M. DIXIT, M. MARKOWITZ, D. D. HO, AND A. S. PERELSON, *Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy*, Antivir Ther, 9 (2004), pp. 237–246.

[21] V. EMERY, A. HASSAN-WALKER, A. BURROUGHS, AND P. GRIFFITHS, *Human cytomegalovirus (HCMV) replication dynamics in HCMV-naive and -experienced immunocompromised hosts*, J Infect Dis, 185 (2002), pp. 1723–1728.

[22] D. FINZI, S. PLAEGER, AND C. DIEFFENBACH, *Defective virus drives human immunodeficiency virus infection, persistence, and pathogenesis*, Clin Vaccine Immunol, 13 (2006), pp. 715–721.

[23] R. GRANT, J. LAMA, P. ANDERSON, V. MCMAHAN, A. LIU, L. VARGAS, P. GOICOCHEA, M. CASAPÍA,

J. GUANIRA-CARRANZA, M. RAMIREZ-CARDICH, O. MONTOYA-HERRERA, T. FERNÁNDEZ, V. VELOSO, S. BUCHBINDER, S. CHARIYALERTSAK, M. SCHECHTER, L.-G. BEKKER, K. MAYER, E. KALLÁS, K. AMICO, K. MULLIGAN, L. BUSHMAN, R. HANCE, C. GANOZA, P. DEFECHEREUX, B. POSTLE, F. WANG, J. McCONNELL, J.-H. ZHENG, J. LEE, J. ROONEY, H. JAFFE, A. MARTINEZ, D. BURNS, D. GLIDDEN, AND FOR THE iPREX STUDY TEAM, *Preexposure chemoprophylaxis for HIV prevention in men who have sex with men*, *New Engl J Med*, 363 (2010), pp. 2587–2599.

[24] F. GRAW AND A. PERELSON, *Modeling viral spread*, *Annu Rev Virol*, 3 (2016), pp. 555–572.

[25] A. T. HAASE, K. HENRY, M. ZUPANCIC, G. SEDGEWICK, R. A. FAUST, H. MELROE, W. CAVERT, K. GEBHARD, K. STASKUS, Z.-Q. ZHANG, P. J. DAILEY, J. BALFOUR, H. H., A. ERICE, AND A. S. PERELSON, *Quantitative image analysis of HIV-1 infection in lymphoid tissue*, *Science*, 274 (1996), pp. 985–989.

[26] P. HACCOU, P. JAGERS, AND V. A. VATUTIN, *Branching Processes: Variation, Growth, and Extinction of Populations*, Cam, 2005.

[27] A. HANDEL, I. LONGINI JR., AND R. ANTIA, *Towards a quantitative understanding of the within-host dynamics of influenza A infections*, *J R Soc Interface*, 7 (2010), pp. 35–47.

[28] T. HARRIS, *The Theory of Branching Processes*, Dover Publications, New York, USA, 1989.

[29] J. HEFFERNAN AND L. WAHL, *Monte Carlo estimates of natural variation in HIV infection*, *J Theor Biol*, 236 (2005), pp. 137–153.

[30] A. HERZ, S. BONHOEFFER, R. ANDERSON, R. MAY, AND M. NOWAK, *Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay*, *Proc Natl Acad Sci USA*, 93 (1996), pp. 7247–7251.

[31] Y.-C. HO, L. SHAN, N. HOSMANE, J. WANG, S. LASKEY, D. ROSENBLUM, J. LAI, J. BLANKSON, J. SILICIANO, AND R. SILICIANO, *Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure*, *Cell*, 155 (2013), pp. 540–551.

[32] B. HOLDER AND C. BEAUCHEMIN, *Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture*, *BMC Public Health*, 11 (2011), p. S10.

[33] I. HOSSEINI AND F. MAC GABHANN, *Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy*, *PLoS Comput Biol*, 8 (2012), p. e1002371.

[34] N. IZQUIERDO-USEROS, M. NARANJO-GMEZ, I. ERKIZIA, M. PUERTAS, F. BORRÀS, J. BLANCO, AND J. MARTINEZ-PICADO, *HIV and mature dendritic cells: Trojan exosomes riding the Trojan Horse?*, *PLoS Pathog*, 6 (2010), p. e1000740.

[35] C. JACOB, *Branching processes: Their role in epidemiology*, *Int J Environ Res Public Health*, 7 (2010), pp. 1186–1204.

[36] M. JOHNSTON AND A. FAUCI, *An HIV vaccine — evolving concepts*, *New Engl J Med*, 356 (2007), pp. 2073–2081.

[37] S. KARLIN AND H. TAYLOR, *A First Course in Stochastic Processes*, Academic Press, New York, USA, 1975.

[38] B. KEELE, H. LI, G. LEARN, P. HRABER, E. GIORGI, T. GRAYSON, C. SUN, Y. CHEN, W. YEH, N. LETVIN, J. MASCOLA, G. NABEL, B. HAYNES, T. BHATTACHARYA, A. PERELSON, B. KORBER, B. HAHN, AND G. SHAW, *Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1*, *J Exp Med*, 206 (2009), pp. 1117 – 1134.

[39] B. F. KEELE, E. E. GIORGI, J. F. SALAZAR-GONZALEZ, J. M. DECKER, K. T. PHAM, M. G. SALAZAR, C. X. SUN, T. GRAYSON, S. Y. WANG, H. LI, X. P. WEI, C. L. JIANG, J. L. KIRCHHERR, F. GAO, J. A. ANDERSON, L. H. PING, R. SWANSTROM, G. D. TOMARAS, W. A. BLATTNER, P. A. GOEPFERT, J. M. KILBY, M. S. SAAG, E. L. DELWART, M. P. BUSCH, M. S. COHEN, D. C. MONTEFIORI, B. F. HAYNES, B. GASCHEN, G. S. ATHREYA, H. Y. LEE, N. WOOD, C. SEOIGHE, A. S. PERELSON, T. BHATTACHARYA, B. T. KORBER, B. H. HAHN, AND G. M. SHAW, *Identification and characterisation of transmitted and early founder virus envelopes in primary HIV-1 infection*, *Proc Natl Acad Sci USA*, 105 (2008), pp. 7552–7557.

[40] T. KIKUCHI, Y. IWABU, T. TADA, A. KAWANA-TACHIKAWA, M. KOGA, N. HOSOYA, S. NOMURA, Z. BRUMME, H. JESSEN, F. PEREYRA, A. TROCHA, B. WALKER, A. IWAMOTO, K. TOKUNAGA, AND T. MIURA, *Anti-APOBEC3G activity of HIV-1 Vif protein is attenuated in elite controllers*, *J Virol*, 89 (2015), pp. 4992–5001.

[41] M. KIMMEL AND D. E. AXELROD, *Branching Processes in Biology*, Springer-Verlag, New York, 2002.

[42] S. KLEINMAN, N. LELIE, AND M. BUSCH, *Infectivity of human immunodeficiency virus-1, hepatitis C*

virus, and hepatitis B virus and risk of transmission by transfusion, *Transfusion*, 49 (2009), pp. 2454–2489.

[43] T. KOBAYASHI, Y. KOIZUMI, J. TAKEUCHI, N. MISAWA, Y. KIMURA, S. MORITA, K. AIHARA, Y. KOYANAGI, S. IWAMI, AND K. SATO, *Quantification of deaminase activity-dependent and -independent restriction of HIV-1 replication mediated by APOBEC3F and APOBEC3G through experimental-mathematical investigation*, *J Virol*, 88 (2014), pp. 5881–5887.

[44] M. KOT, *Elements of Mathematical Ecology*, Cambridge University Press, 2001.

[45] S. KUMAR AND S. SUBRAMANIAN, *Mutation rates in mammalian genomes*, *Proc Natl Acad Sci USA*, 99 (2001), pp. 803–808.

[46] Y. KWON, G. HUNG, W. ANDERSON, C.-A. PENG, AND H. YU, *Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis*, *J Virol*, 77 (2003), pp. 5712–5720.

[47] R. LANDOVITZ, *Occupational and nonoccupational postexposure prophylaxis for HIV in 2009*, *Top HIV Med*, 17 (2009), pp. 104–108.

[48] R. LANDOVITZ AND J. CURRIER, *Postexposure prophylaxis for HIV infection*, *New Engl J Med*, 361 (2009), pp. 1768–1775.

[49] M. LARSSON, J.-F. FONTENEAU, M. LIRVALL, P. HASLETT, J. LIFSON, AND N. BHARDWAJ, *Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus*, *AIDS*, 16 (2002), pp. 1319–1329.

[50] E. LE CORFEC AND H. TUCKWELL, *Variability in early HIV-1 population dynamics*, *AIDS*, 12 (1998), pp. 960–962.

[51] J. LEVY, *HIV and the Pathogenesis of AIDS*, ASM Press, 3rd ed., 2007.

[52] J. LIU, B. KEELE, H. LI, S. KEATING, P. NORRIS, A. CAVILLE, K. MANSFIELD, G. TOMARAS, B. HYNES, D. KOLODKIN-GAL, N. LETVIN, B. HAHN, G. SHAW, AND D. BAROUCH, *Low-dose mucosal simian immunodeficiency virus infection restricts early replication kinetics and transmitted virus variants in rhesus monkeys*, *J Virol*, 84 (2010), pp. 10406–10412.

[53] E. G. LUEBECK AND S. H. MOOLGAVKAR, *Multistage carcinogenesis and the incidence of colorectal cancer*, *Proc Natl Acad Sci USA*, 99 (2002), pp. 15095–15100.

[54] Z.-M. MA, M. STONE, M. PIATAK, JR., B. SCHWEIGHARDT, N. HAIGWOOD, D. MONTEFIORI, J. LIFSON, M. BUSCH, AND C. MILLER, *High specific infectivity of plasma virus from the pre-ramp-up and ramp-up stages of acute simian immunodeficiency virus infection*, *J Virol*, 83 (2009), pp. 3288–3297.

[55] C. A. MACKEN AND A. S. PERELSON, *Branching Processes Applied to Cell Surface Aggregation Phenomena*, vol. 58 of Lecture Notes in Biomathematics, Springer-Verlag, New York, 1985.

[56] C. A. MACKEN AND A. S. PERELSON, *Stem Cell Proliferation and Differentiation: A Multitype Branching Process Model*, vol. 76 of Lecture Notes in Biomathematics, Springer-Verlag, New York, 1988.

[57] L. MANSKY, *Forward mutation rate of human immunodeficiency virus type 1 in a T lymphoid cell line*, *AIDS Res Hum Retrov*, 12 (1996), pp. 307–314.

[58] L. MANSKY AND H. TEMIN, *Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase*, *J Virol*, 69 (1995), pp. 5087–5094.

[59] M. MARKOWITZ, M. LOUIE, A. HURLEY, E. SUN, AND M. DI MASCIO, *A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo*, *J Virol*, 77 (2003), pp. 5037–5038.

[60] A. MAROZSAN, E. FRAUNDORF, A. ABRAHA, H. BAIRD, D. MOORE, R. TROYER, I. NANKJA, AND E. ARTS, *Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates*, *J Virol*, 78 (2004), pp. 11130–11141.

[61] J. MITTLER, B. SULZER, A. NEUMANN, AND A. PERELSON, *Influence of delayed viral production on viral dynamics in HIV-1 infected patients*, *Math Biosci*, 152 (1998), pp. 143–163.

[62] S. H. MOOLGAVKAR AND A. G. KNUDSON JR., *Mutation and cancer: A model for human carcinogenesis*, *J Natl Cancer Inst*, 66 (1981), pp. 1037–1052.

[63] A. NEUMANN, N. LAM, H. DAHARI, D. GRETCH, T. WILEY, T. LAYDEN, AND A. PERELSON, *Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy*, *Science*, 282 (1998), pp. 103–107.

[64] M. NOWAK, S. BONHOEFFER, A. HILL, R. BOEHME, H. THOMAS, AND H. McDADE, *Viral dynamics in hepatitis B virus infection*, *Proc Natl Acad Sci USA*, 93 (1996), pp. 4398–4402.

[65] M. NOWAK AND R. MAY, *AIDS pathogenesis: mathematical models of HIV and SIV infections*, *AIDS*, 7

(1993), pp. S3–S18.

[66] C. OSUNA, S.-Y. LIM, C. DELEAGE, B. GRIFFIN, D. STEIN, L. SCHROEDER, R. OMANGE, K. BEST, M. LUO, P. HRABER, H. ANDERSEN-ELYARD, E. OJEDA, S. HUANG, D. VANLANDINGHAM, S. HIGGS, A. PERELSON, J. ESTES, D. SAFRONETZ, M. LEWIS, AND J. WHITNEY, *Zika viral dynamics and shedding in rhesus and cynomolgus macaques*, *Nat Med*, 22 (2016), pp. 1448–1455.

[67] P. PATEL, B. BENNETT, T. SULLIVAN, M. PARKER, J. HEFFELFINGER, P. SULLIVAN, AND FOR THE CDC AHI STUDY GROUP, *Rapid HIV screening: Missed opportunities for HIV diagnosis and prevention*, *J Clin Virol*, 54 (2012), pp. 42–47.

[68] J. PEARSON, P. KRAPIVSKY, AND A. PERELSON, *Stochastic theory of early viral infection: Continuous versus burst production of virions*, *PLoS Comput Biol*, 7 (2011), p. e1001058.

[69] A. PERELSON, P. ESSUNGER, Y. CAO, M. VESANEN, A. HUERLEY, K. SAKSELA, M. MARKOWITZ, AND D. HO, *Decay characteristics of HIV-1-infected compartments during combination therapy*, *Nature*, 387 (1997), pp. 188–191.

[70] A. PERELSON AND P. NELSON, *Mathematical analysis of HIV-1 in vivo*, *SIAM J Appl Math*, 41 (1999), pp. 3–44.

[71] A. PERELSON, A. NEUMANN, M. MARKOWITZ, J. LEONARD, AND D. HO, *HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time*, *Science*, 271 (1996), pp. 1582 – 1586.

[72] C. PILCHER, S. FISCUS, T. NGUYEN, E. FOUST, L. WOLF, D. WILLIAMS, R. ASHBY, J. O'DOWD, J. MCPHERSON, B. STALZER, L. HIGHTOW, W. MILLER, J. ERON, JR., M. COHEN, AND P. LEONE, *Detection of acute infections during HIV testing in North Carolina*, *New Engl J Med*, 352 (2005), pp. 1873–1883.

[73] E. PLATT, S. L. KOZAK, J. DURNIN, T. HOPE, AND D. KABAT, *Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions*, *J Virol*, 84 (2010), pp. 3106–3110.

[74] K. POWERS, C. POOLE, A. PETTIFOR, AND M. COHEN, *Rethinking the heterosexual infectivity of HIV-1: a systematic review and meta-analysis*, *Lancet Infect Dis*, 8 (2008), pp. 553–563.

[75] B. RAMRATNAM, S. BONHOEFFER, J. BINLEY, A. HURLEY, AND L. ZHANG, *Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis*, *Lancet Infect Dis*, 354 (1999), pp. 1782–1785.

[76] R. REGOES, *The role of exposure history on HIV acquisition: Insights from repeated low-dose challenge studies*, *PLoS Comput Biol*, 8 (2012), p. e1002767.

[77] J. REYNOLDS, M. COLES, G. LYTHER, AND C. MOLINA-PARÍS, *Deterministic and stochastic naive T cell population dynamics: symmetric and asymmetric cell division*, *Dynamical Systems*, 27 (2012), pp. 75–103.

[78] R. RIBEIRO, L. QIN, L. CHAVEZ, D. LI, S. SELF, AND A. PERELSON, *Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection*, *J Virol*, 84 (2010), pp. 6096–6102.

[79] P. RUSERT, M. FISCHER, B. JOOS, C. LEEMANN, H. KUSTER, M. FLEPP, S. BONHOEFFER, H. F. GÜNTHARD, AND A. TRKOLA, *Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol*, *Virology*, 326 (2004), pp. 113–129.

[80] A. SÁEZ-CIRIÓN, C. BACCHUS, L. HOCQUELOUX, V. AVETTAND-FENOEL, I. GIRAUT, C. LECUROUX, V. POTARD, P. VERSMISSE, A. MELARD, T. PRAZUCK, B. DESCOURS, J. GUERGNON, J.-P. VIARD, F. BOUFASSA, O. LAMBOTTE, C. GOUJARD, L. MEYER, D. COSTAGLIOLA, A. VENET, G. PANCINO, B. AUTRAN, C. ROUZIOUX, AND THE ANRS VISCONTI STUDY GROUP, *Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study*, *PLoS Pathog*, 9 (2013), p. e1003211.

[81] M. SUTTON, C. BURNS, A. WEILER, A. BALGEMAN, A. BRAASCH, G. LEHRER-BREY, T. FRIEDRICH, AND S. O'CONNOR, *Vaccination with live attenuated simian immunodeficiency virus (SIV) protects from mucosal, but not necessarily intravenous, challenge with a minimally heterologous SIV*, *J Virol*, 90 (2016), p. 55415548.

[82] W.-Y. TAN AND H. WU, *Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV and some Monte Carlo studies*, *Math Biosci*, 147 (1998), pp. 173–205.

[83] THE INSIGHT START STUDY GROUP, *Initiation of antiretroviral therapy in early asymptomatic HIV infection*, *New Engl J Med*, 373 (2015), pp. 795–807.

[84] M. TSIANG, J. F. ROONEY, J. J. TOOLE, AND C. S. GIBBS, *Biphasic clearance kinetics of hepatitis b virus from patients during adefovir dipivoxil therapy*, Hepatology, 29 (1999), pp. 1863–1869.

[85] H. TUCKWELL AND E. LE CORFEC, *A stochastic model for early HIV-1 population dynamics*, J Theor Biol, 195 (1998), pp. 451–463.

[86] N. VAIDYA, R. RIBEIRO, C. MILLER, AND A. PERELSON, *Viral dynamics during primary simian immunodeficiency virus infection: Effect of time-dependent virus infectivity*, J Virol, 84 (2010), pp. 4302–4310.

[87] X. WANG, Z. AO, L. CHEN, G. KOBINGER, J. PENG, AND X. YAOA, *The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication*, J Virol, 86 (2012), pp. 3777–3786.

[88] Y. WANG, B. KINLOCK, Q. SHAO, T. TURNER, AND B. LIU, *HIV-1 Vif inhibits G to A hypermutations catalyzed by virus-encapsidated APOBEC3G to maintain HIV-1 infectivity*, Retrovirology, 11 (2014), p. 89.

[89] M. WU, G. AND SWANSON, A. TALLA, D. GRAHAM, J. STRIZKI, D. GORMAN, R. BARNARD, W. BLAIR, O. SØGAARD, M. TOLSTRUP, L. ØSTERGAARD, T. RASMUSSEN, R.-P. SEKALY, N. ARCHIN, D. MARGOLIS, D. HAZUDA, AND B. HOWELL, *HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal*, JCI Insight, 2 (2017), p. e92901.

[90] L. ZHANG, R. RIBEIRO, J. MASCOLA, M. LEWIS, G. STIEGLER, H. KATINGER, A. PERELSON, AND M. DAVENPORT, *Effects of antibody on viral kinetics in simian/human immunodeficiency virus infection: Implications for vaccination*, J Virol, 78 (2004), pp. 5520–5522.

1 **SUPPLEMENTARY MATERIALS: Early HIV infection predictions: role of viral
2 replication errors***

3 Jessica M. Conway[†] and Alan S. Perelson[‡]

4

SM1. Supporting figures.

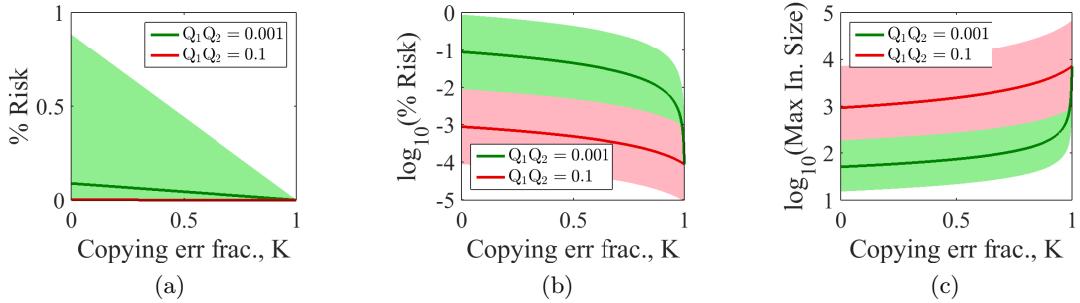


Figure SM1. Sensitivity of risk of infection and inoculum size to viral production rate p for different total replication competent fractions, $\bar{Q} = Q_c Q_p = 10^{-3}$ and 10^{-1} . (a-b) % risk of infection given a single virus inoculum as a function of the fraction of errors attributable to copying errors, on a (a) linear and (b) log scale. (c) Maximum inoculum size assuming a risk of infection of 0.3%, assuming inoculums to be uniformly distributed. Solid lines indicate baseline viral production rate $p = 2000$ virions per cell per day, and the shaded areas, within viral production rates $p = 200$ and $p = 20000$ virions per day. Remaining parameters can be found in Table 1.

5

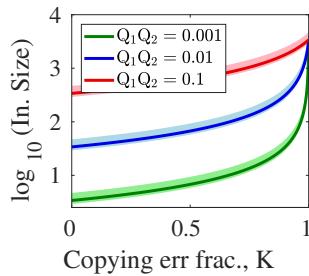


Figure SM2. Inoculum size prediction assuming a Delta-Dirac distribution. Mean inoculum size assuming a risk of infection of 0.3%, assuming a peaked, Delta-Dirac distribution on inoculum sizes. Solid lines indicate median $R_0 = 2.77$ and the shaded areas, risk within the 25th and 75th percentile in R_0 , $(R_0^{25}, R_0^{75}) = (2.28, 3.06)$ [SM12]. Remaining parameters can be found in Table 1.

*Resubmitted to the editors X December 2017.

Funding: ASP acknowledges support by National Institutes of Health Grants R01-AI028433 and R01-OD011095.

[†]Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America (jmconway@psu.edu).

[‡]Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America (asp@lanl.gov).

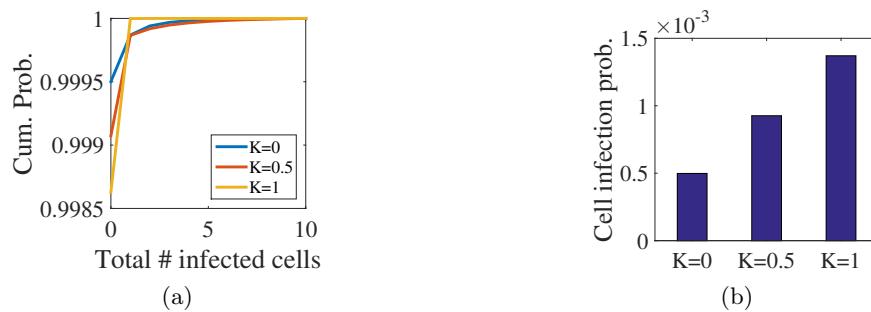


Figure SM3. Probabilities on number of cells infected in a cleared infection assuming $R_0 = 2.77$ for copying error fractions $K = 0$ (all packaging errors), 0.5, 1 (all copying errors). (a) Cumulative probability distribution on the number of cells infected in a cleared infection. (b) Probability of any cell infection in a cleared infection. Calculation described in subsection SM3.3. Remaining parameters can be found in Table 1.

6 **SM2. Motivation for stochastic approach.**7 **SM2.1. Early infection models: stochastic approach required.** The standard approach
8 in viral dynamics modeling is to use ordinary differential equations; the equations one would
9 use to for our model, shown in the main text, Figure 1(a), are

10
$$\frac{dI}{dt} = Q_c k T V - \delta I$$

11
$$\frac{dI_d}{dt} = (1 - Q_c) k T V - \delta I_d$$

12
$$\frac{dV}{dt} = Q_p p I - (c + k T) V$$

13 (SM1)
$$\frac{dV_d}{dt} = (1 - Q_p) p I + p I_d - c V_d.$$

14

15 These ODEs are recognizable as the standard viral dynamics model [SM7, SM9, SM11], ex-
16 tended to include defective infected cells and virus, assuming the number of target cells T
17 remain constant. Such deterministic models are suitable when populations of virus and cells
18 are large, since ODEs give average system behavior.19 We seek to investigate the following questions, which can only be addressed using a stochas-
20 tic approach:

- 21 *Risk of infection:* The basic reproduction number R_0 gives the average number of
22 secondary cell infections caused by the introduction of a single virus into the system;
23 it is used as a measure of severity of infection (or epidemic). Using the next generation
24 method [SM5, SM6] we compute $R_0 = p Q_c Q_p k T / (\delta(c + k T))$. For $R_0 > 1$ the deter-
25 ministic model eq. (SM1) gives exponential growth only, suggesting a risk of infection
26 of 1. It is well-established (see for example [SM1, SM4, SM8]), and clear from our
27 calculations below, that for stochastic models the probability of extinction for $R_0 > 1$
28 is non-zero, giving a risk of infection (1-probability of extinction) less than 1.
- 29 *Time to infection clearance (extinction):* For $R_0 > 1$, the model eq. (SM1) gives
30 no extinction. For $R_0 < 1$, the quantities $(I(t), I_d(t), V(t), V_d(t)) \rightarrow 0$ as $t \rightarrow \infty$.
31 Traditionally to compute the eradication time using ODEs, one would set some small
32 threshold and claim the extinction occurs when $(I(t), I_d(t), V(t), V_d(t))$ crosses that
33 threshold. The linear system has eigenvalues

34
$$-c, -\delta, -\frac{1}{2}(c + \delta) \pm \frac{1}{2}\sqrt{(c - \delta)^2 + 4Q_c Q_p p k T}$$

35 with decay $\sim \exp\left(-\frac{1}{2}(c + \delta) \pm \frac{1}{2}\sqrt{(c - \delta)^2 + 4Q_c Q_p p k T}\right)$ for $R_0 < 1$. Therefore
36 crossing the threshold in the ODE model depends only on the exponential decay rate.
37 Hence changing dynamic parameters but keeping the decay rate constant will yield
38 identical threshold-crossing times in the ODE model. In stochastic models, the times
39 to clearance differ [SM3]. Stochastic modeling will also yield a distribution of clearance
40 times. Deterministic models are not the ideal approach to investigate clearance.

- 41 *Probability of detection:* As with the time to extinction, the approach to calculating
42 the time to detection of infection with the ODE model (SM1) would be to set some

43 threshold, say in the viral load $V + V_d$, and call the time τ that the mean viral load
44 crosses the detection threshold, the mean time to detection. Again, we rely on the
45 system eigenvalues, and find that the viral load expansion will be dominated by the
46 exponential growth rate $\sim \exp\left(-\frac{1}{2}(c + \delta) \pm \frac{1}{2}\sqrt{(c - \delta)^2 + 4Q_c Q_p p k T}\right)$ for $R_0 > 1$.
47 For small amounts of virus, the individual dynamic parameters will play a role and
48 influence the distribution of detection probabilities [SM3, SM8], an effect not captured
49 using exponential growth only. Deterministic models are not the ideal approach to
50 investigate detection.

51 Therefore if we seek to investigate events in early HIV infection it is necessary to use a
52 stochastic approach.

53 **SM2.2. Identifiability of defective virus fractions.** Past models that account for non-
54 infectious virus have focused on chronic HIV infection and employed a deterministic (ODE)
55 approach [SM10]. The focus has mainly been to evaluate efficacy of protease inhibitors, the
56 class of anti-retroviral drugs which interferes with maturation of viral particles. Therefore
57 the theoretical emphases have been on errors in individual virions (which occur in our model
58 with probability $1 - Q_p$). But practically speaking, the emphasis doesn't matter: the different
59 mechanisms generating defective virus are non-identifiable in deterministic models. In the
60 previous section we discussed R_0 and eigenvalues giving decay or growth - in each of these
61 Q_c and Q_p appear as a product $Q_c Q_p$ only. This non-identifiability is arguably a strength.
62 That is, while the different mechanisms are poorly characterized, we only need know the total
63 non-infectious fraction. With improved understanding individual estimates may change but
64 modeling predictions will remain.

65 For small viral populations, as is the case in the earliest stages of HIV infection, a stochastic
66 approach is the appropriate choice. When employing a stochastic approach we must be more
67 careful about the underlying mechanisms we model. For example, a previous investigation
68 showed that the assumption on viral production - continuous production by an infected cell or
69 burst production at infected cell death only - will change predictions on risk [SM8]. We will see
70 below that when using a stochastic approach, the individual viral replication error probabilities
71 (lethal copying errors with probability $1 - Q_c$ and packaging errors with probability $1 - Q_p$)
72 will alter predictions on risk, clearance, and probability of detection.

73 **SM3. Details of mathematical derivation.**

74 **SM3.1. Backwards Chapman Kolmogorov Differential Equation.** In the main text we
 75 use a multi-type branching process model of viral dynamics, main text Figure 1. Underpinning
 76 the calculations that followed was the backwards Chapman Kolmogorov differential equation
 77 (bCKde) for the probability $P_{n,v;n_0,v_0}(t) = P(I(t) = n, V(t) = v | I(0) = n_0, V(0) = v_0)$. We
 78 provide here the derivation of the bCKde for the interested reader.

79 The probability $P(I(t + \tau) = n, V(t + \tau) = v | I(\tau) = n_0, V(\tau) = v_0)$ is a transition
 80 probability between the state at time τ , $(I(\tau), V(\tau)) = (n_0, v_0)$, and the state at time $t + \tau$,
 81 $(I(t + \tau), V(t + \tau)) = (n, v)$. We assume the probabilities are homogeneous in time, i.e.,
 82 that they depend on the duration of the transition time t but not the individual times
 83 $t + \tau$ or τ . Therefore, when computing the transition probability, we can directly consider
 84 $P_{n,v;n_0,v_0}(t) = P(I(t) = n, V(t) = v | I(0) = n_0, V(0) = v_0)$, setting $\tau = 0$, only.

85 To model the system in main text Figure 1, we assume the transition probabilities obey
 86 the following postulates as $h \downarrow 0$:

- 87 1. $P_{n-1,v;n,v}(h) = \delta nh + o(h)$
- 88 2. $P_{n,v+1;n,v}(h) = pQ_p nh + o(h)$
- 89 3. $P_{n+1,v-1;n,v}(h) = Q_c kTvh + o(h)$
- 90 4. $P_{n,v-1;n,v}(h) = (c + (1 - Q_c)kT)vh + o(h)$
- 91 5. $P_{n,v;n,v}(h) = 1 - ((\delta + pQ_p)n + (c + kT)v)h + o(h)$
- 92 6. $P_{n,v;n_0,v_0}(h) = \delta_{nn_0} \delta_{vv_0}$

93 for $n, v \geq 0$, where δ_{jk} is the Kronecker-Delta function. That is, we assume a Poisson process.

94 Because we assume $P_{n,v;n_0,v_0}(t)$ is homogeneous in time, the Chapman-Kolmogorov equa-
 95 tion holds:

96 (SM2)
$$P_{n,v;n_0,v_0}(t+h) = \sum_{j,k=0}^{\infty} P_{n,v;j,k}(t) P_{j,k;n_0,v_0}(h).$$

97 The $(0, t + h)$ time interval is split into $(0, h)$ and $(h, t + h)$; this equation says that the
 98 probability of transitioning from (n_0, v_0) to (n, v) in time $t + h$ is equal to the probability of
 99 starting at (n_0, v_0) at 0 and stopping at some midpoint (j, k) at time h , then going from (j, k)
 100 to (n, v) in time $t + h$, summed over all possible midpoints (j, k) . We can re-write eq. (SM2)
 101 as

102
$$P_{n,v;n_0,v_0}(t+h) = P_{n,v;n_0-1,v_0}(t) P_{n_0-1,v_0;n_0,v_0}(h) + P_{n,v;n_0,v_0+1}(t) P_{n_0,v_0+1;n_0,v_0}(h)$$

 103
$$+ P_{n,v;n_0+1,v_0-1}(t) P_{n_0+1,v_0-1;n_0,v_0}(h) + P_{n,v;n_0,v_0-1}(t) P_{n_0,v_0-1;n_0,v_0}(h)$$

 104 (SM3)
$$+ P_{n,v;n_0,v_0}(t) P_{n_0,v_0;n_0,v_0}(h) + \left(\sum_{j,k=0}^{\infty} P_{n,v;j,k}(t) P_{j,k;n_0,v_0}(h) \right)'.$$

 105

106 $\left(\sum_{j,k=0}^{\infty} P_{n,v;j,k}(t) P_{j,k;n_0,v_0}(h) \right)'$ denotes the remaining terms, where j and k do not take on
 107 values used in the previous terms. Using the postulates we can show that these remaining

108 terms are $o(h)$,

$$\begin{aligned}
 109 \quad & \left(\sum_{j,k=0}^{\infty} P_{n,v;j,k}(t) P_{j,k;n_0,v_0}(h) \right)' \leq \left(\sum_{j,k=0}^{\infty} P_{j,k;n_0,v_0}(h) \right)' \\
 110 \quad & = 1 - (P_{n_0-1,v_0;n_0,v_0}(h) + P_{n_0,v_0+1;n_0,v_0}(h) + P_{n_0+1,v_0-1;n_0,v_0}(h) \\
 111 \quad & \quad + P_{n_0,v_0-1;n_0,v_0}(h) + P_{n_0,v_0;n_0,v_0}(h)) \\
 112 \quad & = 1 - (o(h) + \delta n_0 h + p Q_p n_0 h + Q_c k T v_0 h + (c + (1 - Q_c) k T) v_0 h \\
 113 \quad & \quad + 1 - ((\delta + p Q_p) n_0 + (c + k T) v_0) h) \\
 114 \quad & = o(h).
 \end{aligned}$$

116 Thus, $\left(\sum_{j,k=0}^{\infty} P_{n,v;j,k}(t) P_{j,k;n_0,v_0}(h) \right)' \leq o(h)$. With this and the postulates we can re-write
117 eq. (SM3) as

$$\begin{aligned}
 118 \quad P_{n,v;n_0,v_0}(t+h) &= \delta n_0 h P_{n,v;n_0-1,v_0}(t) + p Q_p n_0 h P_{n,v;n_0,v_0+1}(t) + Q_c k T v_0 h P_{n,v;n_0+1,v_0-1}(t) \\
 119 \quad &+ (1 - ((\delta + p Q_p) n_0 + (c + k T) v_0) h) P_{n,v;n_0,v_0}(t) \\
 120 \quad &+ (c + (1 - Q_c) k T) v_0 h P_{n,v;n_0,v_0-1}(t) + o(h) \\
 121 \quad &= P_{n,v;n_0,v_0}(t) + h (\delta n_0 P_{n,v;n_0-1,v_0}(t) + p Q_p n_0 P_{n,v;n_0,v_0+1}(t) \\
 122 \quad &+ Q_c k T v_0 P_{n,v;n_0+1,v_0-1}(t) + (c + (1 - Q_c) k T) v_0 P_{n,v;n_0,v_0-1}(t) \\
 123 \quad &- ((\delta + p Q_p) n_0 + (c + k T) v_0) P_{n,v;n_0,v_0}(t)) + o(h).
 \end{aligned}$$

125 Moving $P_{n,v;n_0,v_0}(t)$ to the left side, dividing by h , and taking the limit $h \rightarrow 0$, we obtain the
126 differential equation

$$\begin{aligned}
 127 \quad \frac{d}{dt} P_{n,v;n_0,v_0} &= \delta n_0 P_{n,v;n_0-1,v_0} + p Q_p n_0 P_{n,v;n_0,v_0+1} + Q_c k T v_0 P_{n,v;n_0+1,v_0-1} \\
 128 \quad &+ (1 - Q_c) k T v_0 P_{n,v;n_0,v_0-1} + c v_0 P_{n,v;n_0,v_0-1} \\
 129 \quad (\text{SM4}) \quad &- ((\delta + p Q_p) n_0 + (k T + c) v_0) P_{n,v;n_0,v_0}
 \end{aligned}$$

131 From postulate 3 we have the initial condition is $P_{n_0,v_0}(0) = \delta_{n,n_0} \delta_{v,v_0}$. This is the backward
132 Chapman Kolmogorov differential equation (bCKde) for the probability $P_{n_0,v_0}(t)$. We cannot
133 solve eq. (SM4) directly analytically, and numerically we can only solve it by simulating exact
134 solution paths, using the SSA (Gillespie) algorithm and plotting the resulting histogram.
135 From eq. (SM4), however, we can derive differential equations for the probability generating
136 function, discussed in the main text and given by eqs. (3,refeq:PGFodes). These will allow us
137 to compute probabilities.

138 Had we instead incremented time as $(0, t)$ and $(t, t+h)$, using instead the Chapman-
139 Kolmogorov equation

$$140 \quad (\text{SM5}) \quad P_{n,v;n_0,v_0}(t+h) = \sum_{j,k=0}^{\infty} P_{n,v;j,k}(t+h) P_{j,k;n_0,v_0}(t).$$

141 and followed a similar derivation, we would obtain the corresponding forward Chapman Kol-
142 mogorov differential equation for our probability $P_{n_0,v_0}(t)$, also commonly referred to as the

143 Master Equation. We use the bCKde instead of the more often-used Master equation because
 144 the resulting equations for the generating function, are more tractable.

SM3.2. Probability of detection. The probability of detection is $P_{\text{det}}(t) = P(V(t) + V_d(t) \geq V_{\text{det}}) = 1 - P(V(t) + V_d(t) < V_{\text{det}})$, where V_{det} is the viral load detection threshold. Now,

$$P(V(t) + V_d(t) < V_{\text{det}}) = \sum_{k=0}^{V_{\text{det}}-1} P(V(t) + V_d(t) = k),$$

145 where $P(V(t) + V_d(t) = k)$ is the probability that the viral load at time t is k . Note that we have
 146 dropped the initial condition for brevity; $P_{\text{det}}(t) = P(V(t) + V_d(t) \geq V_{\text{det}} | I(0) = n_0, V(0) =$
 147 $v_0, I_d(0) = m_0, V_d(0) = w_0)$. The probability of detection involves defective infected cells and
 148 virions, which we have not so far included in our calculations. For the probability of detection
 149 we return to the full model in main text Figure 1(a) and use

$$150 \quad P_{n,v,m,w;n_0,v_0,m_0,w_0}(t) = P(I(t) = n, V(t) = v, I_d(t) = m, V_d(t) = w \\ 151 \quad | I(0) = n_0, V(0) = v_0, I_d(0) = m_0, V_d(0) = w_0).$$

153 Define the corresponding probability generating function as

$$154 \quad G_{n_0,v_0,m_0,w_0}(x, y, r, s; t) = \sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \sum_{m=0}^{\infty} \sum_{w=0}^{\infty} P_{n,v,m,w;n_0,v_0,m_0,w_0}(t) x^n y^v r^m s^w.$$

155 But for the additional terms and indices, the derivation of the related bCKde and differential
 156 equations for $G_{n_0,v_0,m_0,w_0}(x, y, r, s; t)$ is identical to the derivations in Sec. SM3.1.
 157 We can write the probability of detection in terms of the PGF,

$$158 \quad P(V(t) + V_d(t) = k) = \sum_{j=0}^k P(V = j, V_d = k - j) \\ 159 \quad = \sum_{j=0}^k \frac{1}{j!} \frac{1}{(k-j)!} \frac{\partial^k}{\partial r^j \partial s^{k-j}} G_{n_0,v_0,m_0,w_0} \Big|_{x=r=1, y=s=0} \\ 160 \quad = \sum_{j=0}^k \frac{1}{(2\pi i)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0,v_0,m_0,w_0}(1, z_1, 1, z_2)}{z_1^{j+1} z_2^{k-j+1}} dz_2 dz_1 \\ 161 \quad = \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} G_{n_0,v_0,m_0,w_0}(1, z_1, 1, z_2) \left(\frac{z_2^{-(k+1)} - z_1^{-(k+1)}}{z_1 - z_2} \right) dz_2 dz_1.$$

163 We used the Cauchy Gauss integral formula [SM2] in the third step, and summed the finite

164 series in the fourth. Then our probability of detection is

$$\begin{aligned}
 165 \quad P(V(t) + V_d(t) < V_{\text{det}}) &= \sum_{k=0}^{V_{\text{det}}-1} \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t) \left(\frac{z_2^{-(k+1)} - z_1^{-(k+1)}}{z_1 - z_2} \right) dz_2 dz_1 \\
 166 \quad &= \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t) \sum_{k=0}^{V_{\text{det}}-1} \left(\frac{z_2^{-(k+1)} - z_1^{-(k+1)}}{z_1 - z_2} \right) dz_2 dz_1 \\
 167 \quad &= \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_2^{-V_{\text{det}}}}{z_2 - 1} - \frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2 dz_1 \\
 168 \quad &= - \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_2 - z_1} \left(\frac{1 - z_2^{-V_{\text{det}}}}{z_2 - 1} \right) dz_2 dz_1 \\
 169 \quad &\quad - \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2 dz_1.
 \end{aligned}$$

171 In the last step we split the integrals so that we can evaluate them. We start with the
172 second integral, exchanging the order of integration.

$$173 \quad \frac{1}{(2\pi)^2} \oint_{C_{z_2}} \oint_{C_{z_1}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2 dz_1.$$

174 Taking the inner integral only, holding z constant, we note that the contour integral

$$175 \quad \oint_{C_{z_1}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2$$

176 is over a function that is analytic everywhere except at $z_1 = z_2$ (singularity at $z_1 = 1$ is
177 removable). Using the residue theorem,

$$178 \quad \oint_{C_{z_1}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2 = \pi i G_{n_0, v_0, m_0, w_0}(1, z_2, 1, z_2; t) \left(\frac{1 - z_2^{-V_{\text{det}}}}{z_2 - 1} \right)$$

179 (note that w is on the contour boundary so the residue is multiplied by πi only) and the
180 second integral becomes

$$\begin{aligned}
 181 \quad \frac{1}{(2\pi)^2} \oint_{C_{z_2}} \oint_{C_{z_1}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_1 - z_2} \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_2 dz_1 &= \\
 182 \quad &\quad \frac{i}{4\pi} \oint_{C_{z_2}} G_{n_0, v_0, m_0, w_0}(1, z_2, 1, z_2; t) \left(\frac{1 - z_2^{-V_{\text{det}}}}{z_2 - 1} \right) dz_2. \\
 183
 \end{aligned}$$

184 Similarly,

$$\begin{aligned}
 185 \quad \frac{1}{(2\pi)^2} \oint_{C_{z_1}} \oint_{C_{z_2}} \frac{G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_2; t)}{z_2 - z_1} \left(\frac{1 - z_2^{-V_{\text{det}}}}{z_2 - 1} \right) dz_2 dz_1 &= \\
 186 \quad &\quad \frac{i}{4\pi} \oint_{C_{z_1}} G_{n_0, v_0, m_0, w_0}(1, z_1, 1, z_1; t) \left(\frac{1 - z_1^{-V_{\text{det}}}}{z_1 - 1} \right) dz_1. \\
 187
 \end{aligned}$$

188 Then

$$189 \quad P(V(t) + V_d(t) < V_{\text{det}}) = -\frac{i}{2\pi} \oint_{C_z} G_{n_0, v_0, m_0, w_0}(1, z, 1, z; t) \left(\frac{1 - z^{-V_{\text{det}}}}{z - 1} \right) dz$$

$$190$$

191 The contour C_z is the unit circle, $z = e^{i\theta}$, $dz = ie^{i\theta}d\theta$, and

$$192 \quad P(V(t) + V_d(t) < V_{\text{det}}) = -\frac{i}{2\pi} \int_0^{2\pi} G_{n_0, v_0, m_0, w_0}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{e^{i\theta} - 1} \right) ie^{i\theta} d\theta$$

$$193 \quad = \frac{1}{2\pi} \int_0^{2\pi} G_{n_0, v_0, m_0, w_0}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta$$

$$194 \quad = \frac{1}{\pi} \mathbb{R} \left\{ \int_0^{\pi} G_{n_0, v_0, m_0, w_0}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\}.$$

$$195$$

196 This result of this integration subtracted from 1 gives us the probability of detection at time
197 t . Finally, if we want to take into account a virus-only inoculum of size N , each virion being
198 infectious with probability Q , again assuming a binomial distribution,

$$199 \quad P_{\text{det}}(t) = 1 - \sum_{j=0}^N \binom{N}{j} Q^j (1 - Q)^{N-j} \left(\frac{1}{\pi} \mathbb{R} \left\{ \int_0^{\pi} G_{0, j, 0, N-j}(1, e^{i\theta}, 1, e^{i\theta}; t) \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\} \right)$$

$$200 \quad = 1 - \sum_{j=0}^N \binom{N}{j} Q^j (1 - Q)^{N-j} \left(\frac{1}{\pi} \mathbb{R} \left\{ \int_0^{\pi} (G_{0, 1, 0, 0}(1, e^{i\theta}, 1, e^{i\theta}; t))^j (G_4(1, e^{i\theta}, 1, e^{i\theta}; t))^{N-j} \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\} \right)$$

$$201 \quad (\text{SM6}) \quad = 1 - \frac{1}{\pi} \mathbb{R} \left\{ \int_0^{\pi} (Q G_{0, 1, 0, 0}(1, e^{i\theta}, 1, e^{i\theta}; t) + (1 - Q) G_4(1, e^{i\theta}, 1, e^{i\theta}; t))^N \left(\frac{1 - e^{-iV_{\text{det}}\theta}}{1 - e^{-i\theta}} \right) d\theta \right\},$$

$$202$$

where we have made use of the branching property,

$$G_{n_0, v_0, m_0, w_0} = (G_{1, 0, 0, 0})^{n_0} (G_{0, 1, 0, 0})^{v_0} (G_{0, 0, 1, 0})^{m_0} (G_{0, 0, 0, 1})^{w_0}.$$

203 SM3.3. Probability distribution on the number of cumulative number of cell infections.

204 In Supporting Figure S3 we show the probability distribution on the cumulative number of
205 cell infections conditioned on infection clearance. Here we provide details of that calculation.

206 In order to count the number of cell infections, we extend our model to include the state
207 variable C which increases with every cell infection and does not otherwise alter infection dy-
208 namics. Define $P_{n, v, c; n_0, v_0, c_0}(t) = P(I(t) = n, V(t) = v, C(t) = c | I(0) = n_0, V(0) = v_0, C(0) =$
209 $c_0)$. Note that $c_0 = 0$ for the purposes of calculation below.

210 We then assume that the transition probabilities obey the following postulates as $h \downarrow 0$:

- 211 1. $P_{n-1, v, c; n, v, c}(h) = \delta nh + o(h)$
- 212 2. $P_{n, v+1, c; n, v, c}(h) = pQ_p nh + o(h)$
- 213 3. $P_{n+1, v-1, c+1; n, v, c}(h) = Q_c kTvh + o(h)$
- 214 4. $P_{n, v-1, c+1; n, v, c}(h) = (1 - Q_c)kTvh + o(h)$
- 215 5. $P_{n, v-1, c; n, v, c}(h) = cvh + o(h)$
- 216 6. $P_{n, v, c; n, v, c}(h) = 1 - ((\delta + pQ_p)n + (c + kT)v)h + o(h)$
- 217 7. $P_{n, v, c; n_0, v_0, c_0}(h) = \delta_{n n_0} \delta_{v v_0} \delta_{c c_0}$

218 for $n, v, c \geq 0$, where δ_{jk} is the Kronecker-Delta function.

219 Following the derivation in subsection SM3.1, the bCKde for the probability $P_{n, v, c; n_0, v_0, c_0}$,
220 associated with this process, is

$$\begin{aligned}
221 \quad \frac{d}{dt} P_{n,v,c;n_0,v_0,c_0} = & \delta n_0 P_{n,v,c;n_0-1,v_0,c_0} + p Q_p n_0 P_{n,v,c;n_0,v_0+1,c_0} \\
222 \quad & + Q_c k T v_0 P_{n,v,c;n_0+1,v_0-1,c_0+1} + (1 - Q_c) k T v_0 P_{n,v,c;n_0,v_0-1,c_0+1} \\
223 \quad (\text{SM7}) \quad & + c v_0 P_{n,v,c;n_0,v_0-1,c_0} - ((\delta + p Q_p) n_0 + (k T + c) v_0) P_{n,v,c;n_0,v_0,c_0}.
\end{aligned}$$

We then define the generating function

$$H_{n_0,v_0,c_0}(x, y, r; t) = \sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \sum_{c=0}^{\infty} P_{n,v,c;n_0,v_0,c_0}(t) x^n y^v r^c$$

225 and following subsection 3.1 in the main text, we can derive from (SM7) equations for the
226 probability generating function,

$$\begin{aligned}
227 \quad \frac{\partial H_{1,0,0}}{\partial t} = & \delta + p Q_p H_{1,0,0} H_{0,1,0} - (\delta + p Q_p) H_{1,0,0} \\
228 \quad (\text{SM8}) \quad \frac{\partial H_{0,1,0}}{\partial t} = & c + k T ((1 - Q_c) + Q_c H_{1,0,0}) H_{0,0,1} - (c + k T) H_{0,1,0} \\
229 \quad \frac{\partial H_{0,0,1}}{\partial t} = & 0
\end{aligned}$$

231 where $H_{n_0,v_0,c_0} = H_{1,0,0}^{n_0} H_{0,1,0}^{v_0} H_{0,0,1}^{c_0}$. Using the probability generating function we can compute
232 the probability for the cumulative number of cell infections.

We want the cumulative number of cell infections as $t \rightarrow \infty$ conditioned on infection clearance. To get at this quantity, we will take the limit

$$\lim_{t \rightarrow \infty} P_{0,0,c;0,v_0,0}(t),$$

233 that is, the limit as $t \rightarrow \infty$ of the probability that there are c cumulative cell infections but
234 no infected cells or virus. From the pgf H_{n_0,v_0,c_0} ,

$$\begin{aligned}
235 \quad P_{0,0,c;0,v_0,0}(t) &= \frac{1}{c!} \frac{\partial^c}{\partial r^c} H_{n_0,v_0,c_0}(0, 0, r; t) |_{r=0} \\
236 \quad &= \oint_{C_z} \frac{H_{n_0,v_0,c_0}(0, 0, z; t)}{z^{c+1}} dz \\
237 \quad &= \frac{1}{2\pi} \int_0^{2\pi} H_{n_0,v_0,c_0}(0, 0, e^{i\theta}; t) e^{-ic\theta} d\theta
\end{aligned}$$

using the Cauchy Gauss integral formula [SM2] in the second step, and take the contour C_z as the unit circle $z = e^{i\theta}$ in the third. Noting that $H_{n_0,v_0,c_0} = H_{1,0,0}^{n_0} H_{0,1,0}^{v_0} H_{0,0,1}^{c_0}$ with $c_0 = 0$, and that we take a virus-only inoculum, so $n_0 = 0$, and simplifying, we recover

$$P_{0,0,c;0,v_0,0}(t) = \frac{1}{\pi} \int_0^\pi (H_{0,1,0}(0, 0, e^{i\theta}; t))^{v_0} e^{-ic\theta} d\theta.$$

239 Finally, as in subsection 3.1, we assume that our inoculum of size N is mixed, with each virus
 240 infectious with probability Q . Therefore the probability of accumulating c cell infections at
 241 time t , with no circulating virus or infected cells, is

$$\begin{aligned}
 242 \quad \text{Prob} &= \sum_{j=0}^N \binom{N}{j} (1-Q)^{N-j} Q^j P_{0,0,c;0,j,0}(t) \\
 243 &= \sum_{j=0}^N \binom{N}{j} (1-Q)^{N-j} Q^j \frac{1}{\pi} \int_0^\pi (H_{0,1,0}(0,0,e^{i\theta};t))^j e^{-ic\theta} d\theta \\
 244 \quad (\text{SM9}) &= \frac{1}{\pi} \int_0^\pi \left(1 - Q + Q H_{0,1,0}(0,0,e^{i\theta};t)\right)^N e^{-ic\theta} d\theta, \\
 245
 \end{aligned}$$

246 summing the series in the last step.

247 Thus to compute the probability of accumulating c infected cells before clearing infection
 248 as shown in Figure SM3, we compute eq. SM9 together with eq. SM8 numerically, evaluating
 249 the limit by computing over long times and verifying convergence, and normalizing to condition
 250 on infection clearance.

251

REFERENCES

- 252 [1] F. BALL, *The threshold behaviour of epidemic models*, J Appl Probab, 20 (1983), pp. 227–241.
- 253 [2] J. BROWN AND R. CHURCHILL, *Complex Variables and Applications*, McGraw-Hill, 8 ed., 2008.
- 254 [3] J. CONWAY AND D. COOMBS, *A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients*, PLoS Comput Biol, 7 (2011), p. e1002033.
- 255 [4] J. M. CONWAY, B. KONRAD, AND D. COOMBS, *Stochastic analysis of pre- and post-exposure prophylaxis against HIV infection*, SIAM J Appl Math, 73 (2013), pp. 904–928.
- 256 [5] O. DIEKMANN AND J. HEESTERBEEK, *Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation*, Wiley Series in Mathematical & Computational Biology (Book 5), Wiley, 260 2000.
- 257 [6] J. HEFFERNAN, R. SMITH?, AND L. WAHL, *Perspectives on the basic reproductive ratio*, J R Soc Interface, 2 (2005), pp. 281–293.
- 258 [7] M. NOWAK AND R. MAY, *Virus Dynamics: Mathematical Principles of Immunology and Virology*, Oxford 264 University Press, USA, 2001.
- 259 [8] J. PEARSON, P. KRAPIVSKY, AND A. PERELSON, *Stochastic theory of early viral infection: Continuous 266 versus burst production of virions*, PLoS Comput Biol, 7 (2011), p. e1001058.
- 260 [9] A. PERELSON, P. ESSUNGER, Y. CAO, M. VESANEN, A. HUERLEY, K. SAKSELA, M. MARKOWITZ, AND 268 D. HO, *Decay characteristics of HIV-1-infected compartments during combination therapy*, Nature, 387 (1997), pp. 188–191.
- 261 [10] A. PERELSON AND P. NELSON, *Mathematical analysis of HIV-1 in vivo*, SIAM J Appl Math, 41 (1999), 271 pp. 3–44.
- 262 [11] A. PERELSON, A. NEUMANN, M. MARKOWITZ, J. LEONARD, AND D. HO, *HIV-1 dynamics in vivo: Virion 273 clearance rate, infected cell life-span, and viral generation time*, Science, 271 (1996), pp. 1582 – 1586.
- 263 [12] R. RIBEIRO, L. QIN, L. CHAVEZ, D. LI, S. SELF, AND A. PERELSON, *Estimation of the initial viral growth 276 rate and basic reproductive number during acute HIV-1 infection*, J Virol, 84 (2010), pp. 6096–6102.