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ABSTRACT 

 

Tensegrity structures have been applied in various fields in science and engineering. In civil 

engineering, tensegrity structures have been used to construct lightweight yet strong structures, 

while in aerospace applications, it has been shown that tensegrity systems have great potential for 

active applications such as planetary exploration. Therefore, active tensegrity systems have been 

under investigation for small, light-weight and low-cost missions. However, the robustness or 

damage tolerance of a tensegrity structure is a function of its inherent self-equilibrated pre-stress 

states. Although research into tensegrity systems has resulted in reliable techniques for their form-

finding and analysis, no technique has been found previously that integrates damage tolerance as 

an input or output parameter. This paper reflects an effort to integrate damage tolerance in the 

form-finding process of tensegrity structures through a bio-inspired approach that combines 

topology definition and form finding.  

 

INTRODUCTION 

 

The term “tensegrity” was invented by Buckminster Fuller in 1962 to describe Kenneth Snelson’s 

art work (Motro 2003). Despite its connection with art, the concept has been employed by scientists 

and engineers for applications spanning from civil (Rhode-Barbarigos et al. 2012) and aerospace 

engineering (Sabelhaus et al. 2015) to biology (Ingber et al. 2014) and mathematics (de Guzmán 
and Orden 2006). Tensegrity has also been proposed as a model for urban design (Châtelet 2007). 

Moreover, many definitions have been proposed. In this paper, the mathematical definition is 

followed where tensegrity is a self-stressed framework. A framework is a realization of an abstract 

graph G(V,E) described by a set of vertices V and pairs of vertices E in a d-dimensional space 

through a set of points in space defined by d coordinates P=[p1;p2;…;pn].  

 

The first step in the design of tensegrity structures is identification of a stable equilibrium 

configuration under prestress starting from an arbitrary given geometry and with only rigid body 

motions constrained. This step is well-known as form finding (Adriaenssens et al. 2014). However, 

most design methods (Zhang and Ohsaki 2006; Bel Hadj Ali et al. 2011) dissociate topology 

definition and form finding from the desired performance or behavior and thus design. Moreover, 

few studies have focused on the damage tolerance of tensegrity structures (Ben Kahla and Moussa 

2002; Abedi and Shekastehband 2009) with no study providing a general framework for 

understanding the influence of damage in the self-stress space of a tensegrity structure. 
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In this paper, a bio-inspired approach for the generation of planar tensegrity structures that 

combines topology definition and form finding is presented. By defining the self-stress as a control 

parameter of the form finding, designers can generate tensegrity structures with multiple load 

paths, adding damage tolerance to the system. This study aims thus to explain damage tolerance 

in tensegrity structures. The remainder of the paper is organized as follows. Section 2 includes a 

brief description of the cellular multiplication method. In Section 3, the example of a four-module 

tensegrity structure is presented. Further discussion and conclusions are presented in Section 4. 

 

THE CELLULAR MULTIPLICATION PROCESS 

 

The cellular multiplication process (Aloui et al. 2018) is a generation method for the combined 

topology identification and form finding of tensegrity structures inspired by the multiplication 

process of unicellular organisms. The method is founded on a theorem developed by de Guzmán 

and Orden (2006) which states that all tensegrity structures are decomposable into elementary 

tensegrity units called cells. For the two-dimensional case, tensegrity cells are the complete graphs 

K4 on four nodes. Figure 1 illustrates the planar tensegrity cells. Planar tensegrity cells have one 
stable self-stress state and no infinitesimal mechanisms. The analytical solution of the self-stress 

state for planar tensegrity cells is given in (Aloui et al. 2018).  

 

   
 

Figure 1. Elementary tensegrity units (cells) that compose all planar tensegrity structures. 

 

Considering an analogy with the multiplication of unicellular organisms, if no shared elements 

among cells composing a tensegrity structure are removed, the process is considered as a adhesion 

with cells being stable and functioning separately. If any elements among cells composing a 

tensegrity structure are removed after a adhesion step, the process corresponds to fusion with cells 

functioning as one entity. Fernández and Orden (2011) characterized the dimension of the self-

stress space allowing the calculation of the number of self-stress states in a tensegrity structure 

using the decomposition of the structure into cells. Based on that, it was found (Aloui et al. 2018) 

that the change in the number of self-stress states during the cellular multiplication process for the 

planar case is given by (dim( )) 2i iW e v = − , where vi is the change in the number of nodes, ei is the 

change in the number of members. Knowing that each cell has only one self-stress and the change 

in the number of self-stress states during each step of the cellular multiplication process, a basis 

for the self-stress space of the structure can be constructed by completing the basis of the structure 

with any missing vectors calculated using the nodal coordinates of the cells. Consequently, the 

cellular multiplication process combines topology definition and form finding, enabling designers 

to decide on the number of self-stress states in a tensegrity structure. Self-stress is the key 



parameter in the design of tensegrity structures as it defines the shape and properties of a structure 

such as damage tolerance. 

 

CELLULAR MULTIPLICATION OF A FOUR-CELL TENSEGRITY STRUCTURE 

 

In this section, the cellular multiplication process of a four-cell planar tensegrity structure using 

cellular adhesion is presented with a detailed description of the changes in the self-stress space. 

The configuration matrix P stores the nodal coordinates of the structure. Topology (the couples 

(i,j) that define the connectivity of the elements) is found in the matrix Link. The matrix W defines 

the self-stress states of the structure along the entire process. 

 

The multiplication process starts with defining the geometry of the first cell, as this also determines 

its self-stress state (Aloui et al. 2018). The first step is given by: 
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A second cell is then added by choosing the shared nodes {2,3} and specifying the positions of the 

added nodes {5,6}. Equation (1) gives that the addition of the second cell adds one self-stress state 

to the system. The state of the second cell is calculated using the nodal coordinates and then the 

self-stress matrix W is augmented to incorporate the additional self-stress state: 
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Similarly, the addition of a third cell adds one self-stress state to the system: 
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In the last step, the addition of a fourth cell introduces two states: one that corresponds to the self-

stress state of the fourth cell and one that corresponds to the interactions among the four cells. The 

fourth step thus gives: 
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Interactions among cells are reflected by the presence of virtual cells: collateral stable sub-

structures with a single self-stress state composed of elements from different cells, but which do 

not use all of the elements from an existing cell. In this example, the virtual cell is identified as the 



wheel structure that develops around node 3 (Figure 2). The analytical solution for the self-stress 

of a wheel structure can be found in (Aloui et al. 2018). 

 

 
Figure 2. Virtual cell identified in the four-cell tensegrity structure. 

 

ELEMENT DAMAGE ON A FOUR-MODULE TENSEGRITY STRUCTURE 

 

In this section, element damage on a four-cell planar tensegrity structure is analyzed with a detailed 

description of the changes in the self-stress space, with member damage modeled as a member 

removal. Under this assumption, the effect of the element damage in a structure depends on the 
number of self-stress states (number of unicellular sub-structures composing the system) and 
whether the damage engenders a mechanism. Thus, two cases can be distinguished: the resulting 
structure is infinitesimally rigid or the resulting structure comprises infinitesimal mechanisms. The 
first case is the focus of this study. Since the resulting structure is infinitesimally rigid, the 
configuration of the damaged structure will remain the same as the configuration of the undamaged 
structure, resulting in a redistribution of the self-stress of the damaged element to the rest of the 
structure. The difference between the damaged and undamaged structure lies in their topology. 
However, maintaining the same configuration allows one to use the self-stress space of the 
undamaged structure as a starting point to obtain the self-stress space of the damaged system. A 
damaged element can thus be thought of as the result of fusion if the element belongs to multiple 
unicellular sub-structures or the result of necrosis (death of a cell) if the element belongs to one 
cell.  
 
The example of the four-cell planar tensegrity structure is used to illustrate how cellular 
multiplication can be used to assess damage on a tensegrity structure. The effect of the damage 
depends on the element being removed, with two cases to consider: i. damage of an element that 
belongs to one cell (boundary elements) and ii. damage of an element that belongs to two or more 
cells (Table 1). In this study, one element from each group of elements sharing the same number 
of cells is considered, as the results can be extended to other elements of the same group based on 
the topological symmetry of the system. 
 
  



Table 1: Element classification according to the number of cells they belong to. 

 

 

Elements belonging to  

one cell 

Elements belonging to  

two or more cells 

{(1,2), (1,4), (1,3), (2,6), 

(5,6), (3,6), (4,7), (7,8), 

(3,7), (5,9), (8,9), (3,9)} 

{(2,4), (2,5), (4,8), (5,8), 

(2,3), (3,4), (3,5), (3,8)} 

Case i: damage of an element that belongs to one cell 

Assume damage occurs on element (1,2) that belongs to one cell only. The removal of the element 

results in node 1 having only two incident members. Since the position of the node cannot change, 

the node is no longer in equilibrium. To guarantee the equilibrium of the entire structure, damage 

has to propagate to elements (1,3) and (1,4) resulting in the necrosis of cell {1,2,3,4}. Although 

cell {1,2,3,4} is no longer available, elements (2,3), (3,4) and (2,4) remain active as members of 

other unicellular sub-structures. If the self-stress states are obtained through cellular multiplication, 

identifying the effect of damage on the self-stress space can be obtained by simply removing the 

state corresponding to cell {1,2,3,4} and setting the values on the rows corresponding to elements 

(1,2), (1,3) and (1,4) equal to zero. 
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Case ii: damage of an element that belongs to two or more cells 

Element (2,4) belongs to two unicellular sub-structures: cell {1,2,3,4} and the virtual cell 

{2,3,4,5,8}. The self-stress state of cell {1,2,3,4} corresponds to the first column of matrix W while 

the self-stress state of virtual cell {2,3,4,5,8} corresponds to the 5th column. The damage of this 

element can thus be described by the fusion of the two cells, which algebraically corresponds to 

finding a linear combination that sets the self-stress component of element (2,4) equal to zero. 

Similarly, the damage of element (2,3) which belongs to three unicellular sub-structures (cells 

{1,2,3,4} and {2,3,5,6}, as well as virtual cell {2,3,4,5,8}) can be described by the fusion of the 

three cells. It should be noted that multiple combinations can be considered and are possible. 

However, the resulting bases will describe the same space although they comprise different states. 
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At this point, the existence of a valid self-stress state should be investigated. A valid self-stress 

must respect the typology of the remaining elements as well as the principle of conservation of 

total energy. Two extreme cases are considered in this study with: a) the potential energy in the 

system after damage remaining the same (energy conservation), and b) the potential energy in the 

system after damage decreasing by the same amount of potential energy released from the damaged 

element (energy dissipation). In the first case, the damaged structure is assumed to have the same 

potential energy as the undamaged structure. The strain energy of the damaged element is thus 

distributed to the other members of the structure. In the second case, the remaining potential energy 

is distributed throughout the system through a valid self-stress. Let m be the number of elements 

in the structure, Ni the axial force in the element, and ki the stiffness of the element. The potential 

energy Ep in the structure is given by: 
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In matrix form it becomes: 

 
(2) 

where N is [N1, N2, …, Nm]T
  and C is a diagonal m×m matrix where Cii=1/ki. Let L be an m×m 

diagonal matrix where the ith diagonal entry is the length of member i. Using the force density 

vector w, N =Lw and the equation for the potential energy Ep becomes: 
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Now let α be a vector of s linear combination coefficients, where s is the number of the self-stress 
states so that w=Wα. The potential energy Ep is expressed by: 

 

(4) 

After damage, let W’ be the new self-stress basis and α’ the new combination vector of a valid self-
stress. In addition to the energy equation, α’ should also respect the typology of the remaining 
elements. Consequently, the space of valid combinations is given by the system: 

 (5) 

where W’cable are the rows of the self-stress basis that correspond to cable elements.  
 
Assuming that the four-cell planar tensegrity structure treated previously has an initial prestress of 
106·W·[1 1 1 1 0.5]T N/m and considering that the same material is used for cables and bars with a 
Young’s modulus of 100 GPa and an area of 1 cm2 for the cables and 10 cm2 for the bars, the total 
initial potential energy in the structure is equal to 1710 KJ. Table 2 shows a valid self-stress 
solution for the system for the damage of elements (1,2), (2,4) and (2,3).  
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Table 2: Examples of self-stress solutions for different damaged cases. 

 Element damaged (1,2) Element damaged (2,4) Element damaged (2,3) 

 Energy 
conservation 

Energy 
dissipation 

Energy 
conservation 

Energy 
dissipation 

Energy 
conservation 

Energy 
dissipation 

Ep (KJ) 1710 1607 1710 1696 1710 1606.8 
Solution 

for α 
[0.55, 1.1, 

1.1, -0.1]·106 
[0.35, 1.1, 

1.1, -0.1]·106 
[1.647, 1.1, 
1.1, 1]·106 

[1.603, 1.1, 
1.1, 1]·106 

[-0.3, 0.5, 
1.58, 0.8]·106 

[-0.3, 0.5, 
1.53, 0.8]·106 

Members w1 (106N/m) w2 (106N/m) w3 (106N/m) w4 (106N/m) w5 (106N/m) w6 (106N/m) 
(1,2) 0 0  1.0000 1.0000 0.5000 0.5000 
(2,3)     0.6530     0.4500     0.6470     0.6320          0          0 
(3,4)     1.2000     1.2000     0.1000     0.1000     0.2000     0.2000 
(1,4)          0          0     1.0000     1.0000     0.5000     0.5000 
(1,3)          0          0    -1.0000    -1.0000    -0.5000    -0.5000 
(2,4)    -0.0500    -0.0500          0          0    -0.1000    -0.1000 
(3,4)     1.5725     1.4174     1.3583     1.3468     1.4062     1.3562 
(5,6)     0.6343     0.4014     1.8891     1.8719     0.3441     0.3441 
(2,6)     0.8295     0.5250     2.4705     2.4480     0.4500     0.4500 
(2,5)    -0.6322    -0.4123    -1.1177    -1.1015    -0.0585    -0.0585 
(3,6)    -0.5851    -0.3703    -1.7425    -1.7267    -0.3174    -0.3174 
(4,7)     1.6500     1.6500     1.6500     1.6500     0.7500     0.7500 
(7,8)     1.2617     1.2617     1.2617     1.2617     0.5735     0.5735 
(3,8)     1.9904     1.9904     0.9404     0.9404     1.5590     1.5090 
(3,7)    -1.1638    -1.1638    -1.1638    -1.1638    -0.5290    -0.5290 
(4,8)    -1.2246    -1.2246    -0.5253    -0.5253    -0.2751    -0.2751 
(5,8)    -1.6750    -1.6750    -1.1500    -1.1500    -2.1655    -2.0905 
(5,9)     2.2000     2.2000     2.2000     2.2000     3.1540     3.0540 
(3,9)    -1.4663    -1.4663    -1.4663    -1.4663    -2.1021    -2.0355 
(8,9)     2.2000     2.2000     2.2000     2.2000     3.1540     3.0540 

 
Table 2 shows that for each damage case a valid solution that respects the energy assumptions and 
element typology can be determined by solving system (5). These solutions were identified by 
trial-and-error since the problem as presented in this paper is under defined and additional 
constraints are required to confine the solution space into a unique self-stress.  
 
CONCLUSIONS 

 

The analogy between elementary tensegrity units and biological unicellular organisms, which is at 

the core of the cellular multiplication process, induces a novel way of designing tensegrity 

structures that provides control over their self-stress states and allows one to easily assess their 

damage behavior. The proposed calculation method promotes this idea, with each vector of the 

self-stress matrix containing only the self-stress components that stabilize the associated cell. This 

facilitates the identification of a suitable linear combination of the vectors by the designer so that 

the conglomeration of tensegrity cells can be designed to preserve the integrity of the whole system 

while maintaining each cell’s own identity. Finally, by identifying damage-critical elements, 



preventive measures that can turn a physical structure more damage tolerant and avoid total failure 
by stopping the propagation of the problem can be sought.     
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