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ABSTRACT

Tensegrity structures have been applied in various fields in science and engineering. In civil
engineering, tensegrity structures have been used to construct lightweight yet strong structures,
while in aerospace applications, it has been shown that tensegrity systems have great potential for
active applications such as planetary exploration. Therefore, active tensegrity systems have been
under investigation for small, light-weight and low-cost missions. However, the robustness or
damage tolerance of a tensegrity structure is a function of its inherent self-equilibrated pre-stress
states. Although research into tensegrity systems has resulted in reliable techniques for their form-
finding and analysis, no technique has been found previously that integrates damage tolerance as
an input or output parameter. This paper reflects an effort to integrate damage tolerance in the
form-finding process of tensegrity structures through a bio-inspired approach that combines
topology definition and form finding.

INTRODUCTION

The term “tensegrity” was invented by Buckminster Fuller in 1962 to describe Kenneth Snelson’s
art work (Motro 2003). Despite its connection with art, the concept has been employed by scientists
and engineers for applications spanning from civil (Rhode-Barbarigos et al. 2012) and aerospace
engineering (Sabelhaus et al. 2015) to biology (Ingber et al. 2014) and mathematics (de Guzman
and Orden 2006). Tensegrity has also been proposed as a model for urban design (Chatelet 2007).
Moreover, many definitions have been proposed. In this paper, the mathematical definition is
followed where tensegrity is a self-stressed framework. A framework is a realization of an abstract
graph G(VE) described by a set of vertices } and pairs of vertices E in a d-dimensional space
through a set of points in space defined by d coordinates P=/pi,p2; ..., px].

The first step in the design of tensegrity structures is identification of a stable equilibrium
configuration under prestress starting from an arbitrary given geometry and with only rigid body
motions constrained. This step is well-known as form finding (Adriaenssens et al. 2014). However,
most design methods (Zhang and Ohsaki 2006; Bel Hadj Ali et al. 2011) dissociate topology
definition and form finding from the desired performance or behavior and thus design. Moreover,
few studies have focused on the damage tolerance of tensegrity structures (Ben Kahla and Moussa
2002; Abedi and Shekastehband 2009) with no study providing a general framework for
understanding the influence of damage in the self-stress space of a tensegrity structure.
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In this paper, a bio-inspired approach for the generation of planar tensegrity structures that
combines topology definition and form finding is presented. By defining the self-stress as a control
parameter of the form finding, designers can generate tensegrity structures with multiple load
paths, adding damage tolerance to the system. This study aims thus to explain damage tolerance
in tensegrity structures. The remainder of the paper is organized as follows. Section 2 includes a
brief description of the cellular multiplication method. In Section 3, the example of a four-module
tensegrity structure is presented. Further discussion and conclusions are presented in Section 4.

THE CELLULAR MULTIPLICATION PROCESS

The cellular multiplication process (Aloui et al. 2018) is a generation method for the combined
topology identification and form finding of tensegrity structures inspired by the multiplication
process of unicellular organisms. The method is founded on a theorem developed by de Guzman
and Orden (2006) which states that all tensegrity structures are decomposable into elementary
tensegrity units called cells. For the two-dimensional case, tensegrity cells are the complete graphs
K4 on four nodes. Figure 1 illustrates the planar tensegrity cells. Planar tensegrity cells have one
stable self-stress state and no infinitesimal mechanisms. The analytical solution of the self-stress
state for planar tensegrity cells is given in (Aloui et al. 2018).
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Figure 1. Elementary tensegrity units (cells) that compose all planar tensegrity structures.

Considering an analogy with the multiplication of unicellular organisms, if no shared elements
among cells composing a tensegrity structure are removed, the process is considered as a adhesion
with cells being stable and functioning separately. If any elements among cells composing a
tensegrity structure are removed after a adhesion step, the process corresponds to fusion with cells
functioning as one entity. Ferndndez and Orden (2011) characterized the dimension of the self-
stress space allowing the calculation of the number of self-stress states in a tensegrity structure
using the decomposition of the structure into cells. Based on that, it was found (Aloui et al. 2018)
that the change in the number of self-stress states during the cellular multiplication process for the
planar case is given by A(dim(/)) =e, —2v,, where v; is the change in the number of nodes, e; is the

change in the number of members. Knowing that each cell has only one self-stress and the change
in the number of self-stress states during each step of the cellular multiplication process, a basis
for the self-stress space of the structure can be constructed by completing the basis of the structure
with any missing vectors calculated using the nodal coordinates of the cells. Consequently, the
cellular multiplication process combines topology definition and form finding, enabling designers
to decide on the number of self-stress states in a tensegrity structure. Self-stress is the key



parameter in the design of tensegrity structures as it defines the shape and properties of a structure
such as damage tolerance.

CELLULAR MULTIPLICATION OF A FOUR-CELL TENSEGRITY STRUCTURE

In this section, the cellular multiplication process of a four-cell planar tensegrity structure using
cellular adhesion is presented with a detailed description of the changes in the self-stress space.
The configuration matrix P stores the nodal coordinates of the structure. Topology (the couples
(i) that define the connectivity of the elements) is found in the matrix Link. The matrix W defines
the self-stress states of the structure along the entire process.

The multiplication process starts with defining the geometry of the first cell, as this also determines
its self-stress state (Aloui et al. 2018). The first step is given by:
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A second cell is then added by choosing the shared nodes {2,3} and specifying the positions of the
added nodes {5,6}. Equation (1) gives that the addition of the second cell adds one self-stress state
to the system. The state of the second cell is calculated using the nodal coordinates and then the
self-stress matrix W is augmented to incorporate the additional self-stress state:

1 2 1 0
23 1 1
- - 3 4 1 0
0 0
5 1 4 1 0
1 =02
1 3 -1 0
08 08 )
P= Link=|2 4 w=|-1 0
02 1
35 0 0.7647
1 6 22 1
56 0 1.1471
2 0
- - 26 0 1.5
25 0 -1.0833
|3 6] 0 -1.0588]

Similarly, the addition of a third cell adds one self-stress state to the system:
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In the last step, the addition of a fourth cell introduces two states: one that corresponds to the self-
stress state of the fourth cell and one that corresponds to the interactions among the four cells. The
fourth step thus gives:
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Interactions among cells are reflected by the presence of virtual cells: collateral stable sub-
structures with a single self-stress state composed of elements from different cells, but which do
not use all of the elements from an existing cell. In this example, the virtual cell is identified as the



wheel structure that develops around node 3 (Figure 2). The analytical solution for the self-stress
of a wheel structure can be found in (Aloui et al. 2018).

Figure 2. Virtual cell identified in the four-cell tensegrity structure.
ELEMENT DAMAGE ON A FOUR-MODULE TENSEGRITY STRUCTURE

In this section, element damage on a four-cell planar tensegrity structure is analyzed with a detailed
description of the changes in the self-stress space, with member damage modeled as a member
removal. Under this assumption, the effect of the element damage in a structure depends on the
number of self-stress states (number of unicellular sub-structures composing the system) and
whether the damage engenders a mechanism. Thus, two cases can be distinguished: the resulting
structure is infinitesimally rigid or the resulting structure comprises infinitesimal mechanisms. The
first case is the focus of this study. Since the resulting structure is infinitesimally rigid, the
configuration of the damaged structure will remain the same as the configuration of the undamaged
structure, resulting in a redistribution of the self-stress of the damaged element to the rest of the
structure. The difference between the damaged and undamaged structure lies in their topology.
However, maintaining the same configuration allows one to use the self-stress space of the
undamaged structure as a starting point to obtain the self-stress space of the damaged system. A
damaged element can thus be thought of as the result of fusion if the element belongs to multiple
unicellular sub-structures or the result of necrosis (death of a cell) if the element belongs to one
cell.

The example of the four-cell planar tensegrity structure is used to illustrate how cellular
multiplication can be used to assess damage on a tensegrity structure. The effect of the damage
depends on the element being removed, with two cases to consider: i. damage of an element that
belongs to one cell (boundary elements) and ii. damage of an element that belongs to two or more
cells (Table 1). In this study, one element from each group of elements sharing the same number
of cells is considered, as the results can be extended to other elements of the same group based on
the topological symmetry of the system.



Table 1: Element classification according to the number of cells they belong to.

Elements belonging to Elements belonging to
one cell two or more cells

S (1,2), (14, (1,3), (2,6),
(5.6), (3,6), (4,7), (7.8),
3,7, (5,9), (8,9), (3.9)}

{(2.4), (2,5), (4.8), (5.8),
(2,3), 3:4), (3,5), (3.8)}

Case i: damage of an element that belongs to one cell

Assume damage occurs on element (1,2) that belongs to one cell only. The removal of the element
results in node 1 having only two incident members. Since the position of the node cannot change,
the node is no longer in equilibrium. To guarantee the equilibrium of the entire structure, damage
has to propagate to elements (1,3) and (1,4) resulting in the necrosis of cell {1,2,3,4}. Although
cell {1,2,3,4} is no longer available, elements (2,3), (3,4) and (2,4) remain active as members of
other unicellular sub-structures. If the self-stress states are obtained through cellular multiplication,
identifying the effect of damage on the self-stress space can be obtained by simply removing the
state corresponding to cell {1,2,3,4} and setting the values on the rows corresponding to elements
(1,2), (1,3) and (1,4) equal to zero.
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Case ii: damage of an element that belongs to two or more cells

Element (2,4) belongs to two unicellular sub-structures: cell {1,2,3,4} and the virtual cell
{2,3,4,5,8}. The self-stress state of cell {1,2,3,4} corresponds to the first column of matrix W while
the self-stress state of virtual cell {2,3,4,5,8} corresponds to the 5" column. The damage of this
element can thus be described by the fusion of the two cells, which algebraically corresponds to
finding a linear combination that sets the self-stress component of element (2,4) equal to zero.
Similarly, the damage of element (2,3) which belongs to three unicellular sub-structures (cells
{1,2,3,4} and {2,3,5,6}, as well as virtual cell {2,3,4,5,8}) can be described by the fusion of the
three cells. It should be noted that multiple combinations can be considered and are possible.
However, the resulting bases will describe the same space although they comprise different states.
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At this point, the existence of a valid self-stress state should be investigated. A valid self-stress
must respect the typology of the remaining elements as well as the principle of conservation of
total energy. Two extreme cases are considered in this study with: a) the potential energy in the
system after damage remaining the same (energy conservation), and b) the potential energy in the
system after damage decreasing by the same amount of potential energy released from the damaged
element (energy dissipation). In the first case, the damaged structure is assumed to have the same
potential energy as the undamaged structure. The strain energy of the damaged element is thus
distributed to the other members of the structure. In the second case, the remaining potential energy
is distributed throughout the system through a valid self-stress. Let m be the number of elements
in the structure, Ni the axial force in the element, and ki the stiffness of the element. The potential
energy Ep in the structure is given by:

1 NZ
E ==Y —L
P 2 = ki (1)
In matrix form it becomes:
E =1nTen )
)

where N is [Ni, N2, ..., Nm]" and C is a diagonal mxm matrix where Ci=1/ki. Let L be an mxm
diagonal matrix where the i diagonal entry is the length of member i. Using the force density
vector w, N =Lw and the equation for the potential energy Ep becomes:



E =%WTLTCLW 3)

P

Now let a be a vector of s linear combination coefficients, where s is the number of the self-stress
states so that w=Wa.. The potential energy Ep is expressed by:

E, :%aTWTLTCLWa
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After damage, let W’ be the new self-stress basis and o’ the new combination vector of a valid self-
stress. In addition to the energy equation, o’ should also respect the typology of the remaining
elements. Consequently, the space of valid combinations is given by the system:

o= &)
Ep=laTCa

2
W o >0

cable

where W canle are the rows of the self-stress basis that correspond to cable elements.

Assuming that the four-cell planar tensegrity structure treated previously has an initial prestress of
10%W-[1 111 0.5]"N/m and considering that the same material is used for cables and bars with a
Young’s modulus of 100 GPa and an area of 1 cm? for the cables and 10 cm? for the bars, the total
initial potential energy in the structure is equal to 1710 KJ. Table 2 shows a valid self-stress
solution for the system for the damage of elements (1,2), (2,4) and (2,3).



Table 2: Examples of self-stress solutions for different damaged cases.

Element damaged (1,2) Element damaged (2,4) Element damaged (2,3)

Energy Energy Energy Energy Energy Energy
conservation dissipation conservation | dissipation conservation dissipation

E; (KJ) 1710 1607 1710 1696 1710 1606.8
Solution [0.55, 1.1, [0.35, 1.1, [1.647,1.1, [1.603, 1.1, [-0.3, 0.5, [-0.3, 0.5,

for a 1.1,-0.1]-10° | 1.1,-0.1]-10° | 1.1, 1]-10° 1.1,1]-10° | 1.58,0.8]-10° | 1.53,0.8]-10°
Members | wi (10°N/m) | wa(10°N/m) | w3 (10°N/m) | wa (10°N/m) | ws (10°N/m) | ws (10°N/m)

(1,2) 0 0 1.0000 1.0000 0.5000 0.5000

(2,3) 0.6530 0.4500 0.6470 0.6320 0 0
3.4) 1.2000 1.2000 0.1000 0.1000 0.2000 0.2000
(1,4) 0 0 1.0000 1.0000 0.5000 0.5000
(1,3) 0 0 -1.0000 -1.0000 -0.5000 -0.5000
2,4) -0.0500 -0.0500 0 0 -0.1000 -0.1000
(3.4) 1.5725 1.4174 1.3583 1.3468 1.4062 1.3562
(5,6) 0.6343 0.4014 1.8891 1.8719 0.3441 0.3441
(2,6) 0.8295 0.5250 2.4705 2.4480 0.4500 0.4500
(2,9) -0.6322 -0.4123 -1.1177 -1.1015 -0.0585 -0.0585
(3,6) -0.5851 -0.3703 -1.7425 -1.7267 -0.3174 -0.3174
4,7) 1.6500 1.6500 1.6500 1.6500 0.7500 0.7500
(7,8) 1.2617 1.2617 1.2617 1.2617 0.5735 0.5735
(3,%) 1.9904 1.9904 0.9404 0.9404 1.5590 1.5090
3,7 -1.1638 -1.1638 -1.1638 -1.1638 -0.5290 -0.5290
(4,8) -1.2246 -1.2246 -0.5253 -0.5253 -0.2751 -0.2751
(5,8) -1.6750 -1.6750 -1.1500 -1.1500 -2.1655 -2.0905
(5,9) 2.2000 2.2000 2.2000 2.2000 3.1540 3.0540
(3,9) -1.4663 -1.4663 -1.4663 -1.4663 -2.1021 -2.0355
(8,9) 2.2000 2.2000 2.2000 2.2000 3.1540 3.0540

Table 2 shows that for each damage case a valid solution that respects the energy assumptions and
element typology can be determined by solving system (5). These solutions were identified by
trial-and-error since the problem as presented in this paper is under defined and additional
constraints are required to confine the solution space into a unique self-stress.

CONCLUSIONS

The analogy between elementary tensegrity units and biological unicellular organisms, which is at
the core of the cellular multiplication process, induces a novel way of designing tensegrity
structures that provides control over their self-stress states and allows one to easily assess their
damage behavior. The proposed calculation method promotes this idea, with each vector of the
self-stress matrix containing only the self-stress components that stabilize the associated cell. This
facilitates the identification of a suitable linear combination of the vectors by the designer so that
the conglomeration of tensegrity cells can be designed to preserve the integrity of the whole system
while maintaining each cell’s own identity. Finally, by identifying damage-critical elements,




preventive measures that can turn a physical structure more damage tolerant and avoid total failure
by stopping the propagation of the problem can be sought.
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