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Vibrational control is an open loop stabilization technique via the application of high-
amplitude, high-frequency oscillatory inputs. The averaging theory has been the standard
technique for designing vibrational control systems. However, it stipulates too high os-
cillation frequency that may not be practically feasible. Therefore, although vibrational
control is very robust and elegant (stabilization without feedback), it is rarely used in
practical applications. The only well-known example is the Kapitza pendulum; an inverted
pendulum shose pivot is subject to vertical oscillation. the unstable equilibrium of the
inverted pendulum gains asymptotic stability due to the high-frequency oscillation of the
pivot. In this paper, we provide a new vibrational control system from Nature; flapping
flight dynamics. Flapping flight is a rich dynamical system as a representative model will
typically be nonlinear, time-varying, multi-body, multi-time-scale dynamical system. Over
the last two decades, using direct averaging, there has been consensus in the flapping flight
dynamics community that insects are unstable at the hovering equilibrium due to the lack
of pitch stiffness. In this work, we perform higher-order averaging of the time-periodic dy-
namics of flapping flight to show a vibrational control mechanism due to the oscillation of
the driving aerodynamic forces. We also experimentally demonstrate such a phenomenon
on a flapping apparatus that has two degrees of freedom: forward translation and pitching
motion. It is found that the time-periodic dynamics of the flapping micro-air-vehicle is
naturally (without feedback) stabilized beyond a certain threshold. Moreover, if the av-
eraged aerodynamic thrust force is produced by a propeller revolving at a constant speed
while maintaining the wings stationary at their mean positions, no stabilization is observed.
Hence, it is concluded that the observed stabilization in the flapping system at high fre-
quencies is due to the oscillation of the driving aerodynamic force and, as such, flapping
flight indeed enjoys vibrational stabilization.

I. Introduction

Vibrational control is an open loop stabilization technique of an unstable equilibrium via the application
of a sufficiently high-amplitude, high-frequency periodic forcing. It was first introduced under this name
by Meerkov1 for linear time-varying systems. A typical example that demonstrates such a phenomenon is
the Stephenson-Kapitza pendulum: an inverted pendulum whose pivot is subject to a vertical oscillation.
The unstable equilibrium of the inverted pendulum gains asymptotic stability when the pivot is oscillating
vertically at a sufficiently high frequency. This phenomenon is referred to as vibrational stabilization/control
and has been first introduced by Stephenson2 who analyzed it using a periodic series solution and later by
Kapitza3,4 using an averaged potential approach.

By definition, vibrationally-controlled systems are typically time-periodic systems. The standard and
most convenient technique of analyzing nonlinear time-periodic (NLTP) systems is averaging.5 In this
approach, one averages the NLTP system over the fast time scale to obtain a nonlinear, time-invariant
(NLTI) system. As such, if an equilibrium state of the NLTP system is represented by a periodic orbit,
it reduces to a fixed point of the NLTI system. Clearly, analyzing the stability of a fixed point of a time-
invariant system is much easier than analyzing the stability of a periodic orbit of a time-varying system.
Then, for high enough oscillation frequency, the averaging theorem guarantees that exponential stability of a
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fixed point for the NLTI model implies exponential stability of the corresponding periodic orbit of the NLTP
system.6 To determine exponential stability of the fixed point, one may simply linearize the NLTI system
to obtain a linear, time-invariant (LTI) model and examine the eigenvalues of the state matrix for the LTI
system.

Although vibrational stabilization is well-known for its robustness7 and elegancy (stabilization with-
out feedback), it has been rarely exploited in practical applications because of the very high-frequency
requirement that is typically dictated by the averaging theory as pointed out by Berg and Wickramasinghe.8

Probably, the Kapitza pendulum (inverted pendulum subject to vertical oscillation) is the only widely known
example. In this paper, we provide a new vibrational control system that is designed by Nature. We show
that flapping flight enjoys a natural stabilization due to the periodic nature of the driving aerodynamic
forces.

Biological flyers represent a gold mine of scientifically-rich problems and a well-spring of knowledge
and inspiration for engineers and scientists. For example, some insects can thrust up to five times their
weights,9 while others have been observed to perform turning maneuvers of greater than 3000 deg/s, with
less than a 30 ms delay,10 in situations that demand agility, such as chasing a potential mate. In normal
everyday flight, birds may experience up to 14 g accelerations in super-maneuverable tasks,11 while the
maneuverability of the most advanced fighter airplanes cannot exceed 8− 9 g. Moreover, birds and insects
outperform jet airplanes more than five times from a normalized power consumption perspective.11 This
huge potential inspired engineers to design flapping micro-air-vehicles (MAVs),12 mainly for reconnaissance
and surveillance applications.

Indeed, flapping flight invokes and pushes the frontiers of mechanical and aerospace engineering disci-
plines. From an aerodynamic point of view, flapping flight creates an unsteady, nonlinear flow field exploiting
unconventional mechanisms to generate lift. In fact, using classical aerodynamics, insect flight was deemed
impossible for decades (e.g.,13–16), as the required lift coefficients for balance are 2− 3 times the maximum
lift coefficients achieved by conventional aerodynamics. Then, biologists and engineers unraveled some of
the unconventional lift mechanisms exploited by insect and bird flight. A stabilized leading edge vortex, first
introduced by Ellington and his coworkers,17 forms the main unconventional lift mechanism that makes in-
sect flight possible. Computational fluid dynamic simulations show that the leading edge vortex contributes
40% of the total lift for insects.18

As the aerodynamics of flapping flight became mature, the flight dynamic analysis followed promptly; to
our knowledge, the first article on flapping flight dynamics is that of Thomas and Taylor.19 Flapping flight
dynamics represents a multi-body, nonlinear time-periodic (NLTP) dynamical system. Moreover, it is a
multi-scale dynamical system because of the concomitant two time scales: the fast time scale of the flapping
motion and the associated aerodynamic loads, and the relatively slow time scale of the body motion. All
these challenges make flapping flight dynamics an intricate problem that necessitates a rigorous mathematical
analysis.

Direct averaging has been the standard technique of analyzing the NLTP dynamics of flapping flight,10,20–30

relying on the large separation between the system’s two time scales; the ratio of the forcing flapping fre-
quency to the natural frequency of the body motion is about 30 for one of the slowest flapping insects (the
hawkmoth). Using direct averaging, there has been a consensus among the flapping flight dynamics com-
munity that insects are unstable at the hovering equilibrium. This instability is mainly attributed to lack of
pitch stiffness, which is instrumental to static and dynamic stability of conventional airplanes where pitch
stiffness is mainly ensured by the horizontal tail.31 Insects do not possess horizontal tails. Moreover, even
the existence of horizontal tails would not avail in the hovering position at zero forward speed.

Note that crude averaging of the simple equations governing the dynamics of the Kapitza pendulum3,4

showed no stabilization due to the pivot vibration. However, appropriate averaging techniques, whether it
is higher-order averaging32,33 based on chronological calculus,34 higher-order averaging35,36 based on Lie
transform,37 direct averaging exploiting the nonlinear variation of constants formula,38,39 clearly show a
vibrationally-induced stabilizing stiffness.

In this work, we performed second-order averaging5,32,33 based on chronological calculus34 to analyze
the NLTP dynamics of flapping flight and show a vibrationally-induced pitch stiffness mechanism. The
analytical nature of the developed flight dynamic model and the adopted analysis tool allowed scrutiny of
the system dynamics that revealed the physics of this unconventional stabilization. It is found that the
interaction between the forward (or normal) body motion with the wing back-and-forth oscillatory motion is
the main source of such an unconventional stiffness mechanism. Therefore, we experimentally demonstrated
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such a phenomenon on a flapping apparatus that allows two degrees-of-freedom (DOF) for the body of a
flapping MAV: forward motion and pitching motion.

II. Flight Dynamics of Flapping MAVs

A. Flight Dynamic Modeling

Figure 1 shows a schematic diagram for a flapping animal (or a MAV) in the longitudinal plane x − z
with three DOFs: translations along the x and z axes with velocity components u and w, respectively,
and a rotation about the y axis (into the page) represented by an angle θ and an angular velocity q. The
generalized forces X and Z are the aerodynamic forces in the x- and z-directions, respectively, and M is the
aerodynamic pitching moment about the y-axis.

Figure 1. Schematic diagram of a flapping animal in
the longitudinal plane x− z.

Ignoring the wing structural and inertial effects,
the longitudinal equations of motion are exactly the
same as conventional aircraft31

u̇

ẇ

q̇

θ̇

 =


−qw − g sin θ

qu+ g cos θ

0

q

+


X/m

Z/m

M/Iy

0

 , (1)

where g is the gravitational acceleration, m is the
body mass, and Iy is the body pitching inertia.
However, unlike conventional aircraft, the aerody-
namic loads X, Z, and M are essentially time-
varying. That is, the system (1) can be written in
the abstract form

ẋ(t) = F (x(t), τ) = f(x(t)) + ga(x(t), τ), (2)

where the aerodynamic vector field ga is time vary-
ing.

It is quite important to note that two symbols t
and τ are used in Eq. (2) to denote the independent time variable: to distinguish between the slow time
scale t associated with the body motion and the fast time scale of the flapping motion and the concomitant
aerodynamic loads. The ratio between these two time scales is deceptively large; for one of the slowest
flapping insect (the hawkmoth), the ratio between the flapping frequency and the flight dynamics natural
frequency is around 30,23,40,41 which naturally invokes averaging. That is, the aerodynamic loads oscillate
with a too high frequency to affect the body. In other words, the body only responds to the mean values of the
time-periodic aerodynamic loads. This assumption is found in most of flapping flight dynamics and control
efforts.?, 10, 19–24,26–28,42–48 Adopting this averaging assumption, the averaged dynamics of the system (2) is
written as

˙̄x = F̄ (x(t)) = f(x̄) + ḡa(x̄), (3)

where over bar indicates an averaged quantity; e.g., ḡa(x) = 1
T

∫ T

0
ga(x, τ)dτ , with T being the flapping

period.
Following our previously derived aerodynamic model,40,49 which is based on Refs.,50–52 the aerodynamic

loads can be expressed linearly in the state variables x, near the hovering position as

ga(x(t), τ) = g0(τ) + [G(τ)]x(t), (4)

where g0 represents the aerodynamic loads due to flapping, ignoring the effect of body motion (i.e., ignoring
aerodynamic-dynamic interactions), and the matrix G represents the aerodynamic derivatives (i.e., stability
derivatives) with respect to the state variables. Expressions of the various terms in g0 and G are given in
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terms of the flapping kinematics in our previous efforts5,40,49 as

g0(t) =


X0(t)/m

Z0(t)/m

M0(t)/Iy
0

 and G(t) =


Xu(t) Xw(t) Xq(t) 0

Zu(t) Zw(t) Zq(t) 0

Mu(t) Mw(t) Mq(t) 0

0 0 0 0

 ,

where the different entries are defined below.
Assuming a horizontal stroke plane, parameterized by the “back-and-forth” flapping angle φ, and a

piecewise constant variation in the wing pitch angle η, one obtains40

X0(t) = −2K21φ̇(t)|φ̇(t)| cosφ(t) sin2 η , Z0(t) = −K21φ̇(t)|φ̇(t)| sin 2η

M0(t) = 2φ̇(t)|φ̇(t)| sin η[K22∆x̂ cosφ(t) +K21xh cos η(t) +K31 sinφ(t) cos η]

where xh is the distance from the vehicle center of mass to the root of the wing hinge line (i.e., the intersection
of the hinge line with the x-axis) and ∆x̂ is the chordwise distance from the center of pressure to this same
hinge location, normalized by the chord length. Also, ρ is the air density, CLα is the three-dimensional lift

curve slope of the wing, c(r) is the spanwise chord distribution, R is the wing radius, Imn = 2
∫ R

0
rmcn(r) dr,

and Kmn = 1
4ρCLαImn. The time-varying stability derivatives are written directly in terms of the system

parameters as40

Xu = −4K11

m |φ̇| cos2 φ sin2 η, Xw = −K11

m |φ̇| cosφ sin 2η, Xq = K21

m |φ̇| sinφ cosφ sin 2η − xhXw

Zu = 2Xw, Zw = −2K11

m |φ̇| cos2 η, Zq = 2K21

m |φ̇| sinφ cos2 η − Krot12

m φ̇ cosφ− xhZw

Mu = 4
K12∆x̂

Iy
|φ̇| cos2 φ sin η +

m

Iy
(2Xq − xhZu)

Mw = 2
K12∆x̂

Iy
|φ̇| cosφ cos η + 2

K21

Iy
|φ̇| sinφ cos2 η − mxh

Iy
Zw

Mq = −2∆x̂
Iy

|φ̇| cosφ cos η (K12xh +K22 sinφ) +
1
Iy
φ̇ cosφ (Krot13∆x̂ cosφ cos η +Krot22 sinφ)+

− 2
Iy
|φ̇| cos2 η sinφ (K21xh +K31 sinφ)− Kvµ1f

Iy
cos2 φ− mxh

Iy
Zq

where Krotmn = πρ( 12 −∆x̂)Imn and Kv = π
16ρI04. The hinge line is set at 30%c (∆x̂ = 0.05), xh is assumed

zero for simplicity, and the value of CLα
is calculated based on the wing aspect ratio using the extended

lifting theory according to Taha et al.51 The above flight dynamic model has been developed in Ref.40

and the resulting eigenvalues of the averaged, linearized dynamics have been validated against numerical
simulations of Navier-Stokes equations by Sun et al.23 and the experimental data of Cheng and Deng.30

B. Stability Analysis Using Direct Averaging

Direct averaging greatly simplifies the problem as it converts the time-periodic system (2) into a time-
invariant system (3). Consequently, a periodic orbit representing an equilibrium solution of (2) reduces to a
fixed point of the averaged dynamics (3). Clearly, the stability analysis of a fixed point of a time-invariant
system is quite simpler than that of a periodic solution for a time-periodic system. Luckily, the averaging
theorem6,38 guarantees exponential stability of a periodic solution of (2) if the corresponding fixed point of
(3) is exponentially stable.

To focus on the open-loop stability, we will exclude the non-trivial balance problem in this paper; that
is, we assume that the flapping MAV is balanced at hover; i.e., equivalently, the averaged dynamics has a
fixed point at the origin

f(0) + ḡ0 = 0 ⇐⇒ Z̄0 = −mg.

Then, linearizing the averaged dynamics (3) about this fixed point at the origin yields

˙̄x(t) =
[
Df(0) + Ḡ

]
x̄(t), (5)
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where Df(0) is the jacobian of the vector field f at the origin and Ḡ represents the cycle-averaged stability
derivatives. Evaluating the matrix of the linearized system (5) for the hawkmoth insect, whose morphological
parameters are adopted from Refs.,5,23,53 one obtains

[
Df(0) + Ḡ

]
=


−3.59 0 0 −9.81

0 −3.30 0 0

39.95 0 −7.92 0

0 0 1 0


whose eigenvalues are written as

0.19± 5.74i, −11.89, −3.30.

These eigenvalues indicate an unstable system due to the pair in the right half plane, which are mainly
associated with pitching motion as can be easily shown by checking the corresponding eigenvectors. This
result is well known and has been concluded in several efforts.20,22–24,29,30,40,42,54–56

III. Higher-Order Averaging and Vibrational Control

As in the case with the Kapitza pendulum, the crude averaging analysis, explained above, does not capture
vibrational stabilization. One remedy is to use the variation of constants formula (coordinate transformation)
to write the system (2) in the standard form of first-order averaging. However, this process is not analytically
tractable here. Alternatively, one can use higher-order averaging to reveal higher-order interactions between
the system’s two time scales that are typically neglected by direct averaging.

Agrachev and Gamkrelidze wrote a seminal paper34 in the honor of the 70th birth day of the pioneer
Russian mathematician Lev Semyonovich Pontryagin which laid down the foundation of a new calculus for
time-varying vector fields: the chronological calculus. Based on these tools, Sarychev32 and Vela33 developed
what they called the complete averaging of the time-periodic system (2) as an infinite series

ẋ = ϵΛ1(x) + ϵ2Λ2(x) + ..., (6)

where ϵ is a small parameter, typically scaled with the reciprocal of the forcing frequency, and

Λ1(x) = 1
T

∫ T

0
F (x, τ) dτ,

Λ2(x) = 1
2T

∫ T

0

[∫ τ

0
F (x, s) ds,F (x, τ)

]
dτ.

So, if the flapping frequency is high enough (i.e., ϵ is small enough), one may be able to truncate the series
(6) after the first term Λ1 (i.e., crude averaging). However, if the flapping frequency is not high, one should
take into account more terms in the series. For more details about this approach, the reader is referred to
the Refs.5,32,33

Taking two terms in the series (6) and linearizing about the origin, one obtains the following system
matrix for the hawkmoth linearized hovering dynamics

D(Λ1 +Λ2)(0) =


−3.58 0 0 −9.81

0 −3.09 0 0

29.98 0 −8.13 −28.45

−2.90 0 0.96 0


whose eigenvalues are written as

−0.66± 3.72i, −10.40, −3.09

which indicate a stable system.
This stabilization is not captured by crude averaging. To determine the nature of this vibrarional sta-

bilizing mechanism, which is induced by higher-order interactions between the system’s two times scales,
we compare the two matrices D(Λ1)(0), D(Λ1 + Λ2)(0) of the first- and second-order averaged dynamics,
respectively. Of particular interest is the element (3,4), which represents pitch stiffness. It is found that the
original hovering flight dynamics of insects and flapping MAVs lacks any direct pitch-stiffness.40 However,
higher-order averaging revealed a vibrationally-induced pitch-stiffness, which is written as

˙̄q = ¨̄θ = −28.45θ̄.

5 of 12

American Institute of Aeronautics and Astronautics



This vibrational control stiffness is quite similar to the Kapitza pendulum case.
Thanks to the analytical nature of the presented model and analysis tool, we managed to drive an

analytical expression of this vibrationally induced stiffness as

kθ =
g

2T

∫ T

0

[(
Mu(t)t−

∫ t

0

Mu(τ)dτ

)
cos θe +

(
Mw(t)t−

∫ t

0

Mw(τ)dτ

)
sin θe

]
dt, (7)

where Mu and Mw are the resulting pitching moments due to disturbances in the body forward and normal
speeds, respectively, and θe is the inclination angle of the body longitudinal x axis on the horizontal plane
at hovering. For zero θe and xh (as in the analysis above), the first-order contribution of kθ can be written
in terms of the insect morphological parameters as

kθ =
mg2f(Φ)

2Iyφ̇
2 , (8)

where Φ is the flapping amplitude, φ̇ is the average flapping speed, and f(Φ) = sin 2Φ
2Φ − cos 2Φ. Equation

(7) implies that the vibrationally-induced stiffness kθ is due to the variation of the stability derivatives Mu

and/or Mw over the cycle: if Mu and Mw are constants (or replaced with their averaged values), kθ will be
zero. Note that the oscillation of Mu and Mw over the flapping cycle is mainly due to the wing oscillatory
motion. That is, physically, kθ is due to interaction between the body forward or normal translatory motion
and the wing oscillatory motion.

IV. Experimental Setup

A. One Degree of Freedom Flapping MAV

From the above discussion, demonstration of vibrational stabilization in flapping flight requires at least two
degrees of of freedom (DOFs) for the body: transaltory motion and pitching motion. Therefore, in order to
avoid the many problems associated with free flight and to have a better focus on verifying the vibrational
stabilization phenomenon, we construct an experimental setup that allows for these two degrees of freedom
only. Imagine a simple pendulum with its mass replaced by a MAV, as shown in the schematic in Fig. 2(a).
The hovering equilibrium is then achieved when the pendulum’s rod becomes horizontal, as shown in the
real picture of our realization presented in Fig. 2(b). This system represents the simplest configuration with
a single DOF (the pendulum angle γ) that mimics the transaltory motion of the body.

(a) A Pendulum-MAV Schematic. (b) Realization of the Schematic.

Figure 2. The experimental setup of a pendulum-like flapping MAV.

This pendulum-like setup is preferred in comparison to the Wood’s Harvard Robofly12 (moving along
vertical rails), which was used to prove the concept of flapping MAVs. Note that for the latter configuration,
if the flapping amplitude/frequency is slightly deviated from the hovering balance requirement, the MAV
will experience a vertical climb/descent with some mean velocity. In contrast, because of the gravitational
spring action provided by the pendulum configuration, any deviation from the hovering balance requirement
results in a slightly different equilibrium position γe. In addition, measurement of this equilibrium pendulum
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angle γe is easily achieved using a Gravity 360 Degree Hall Angle Sensor57 and provides a measure for the
generated thrust from the flapping MAV as the flapping frequency changes, according to the balance equation

FT =

(
mMAV +

1

2
mrod

)
g sin γe,

where FT is the cycle-averaged generated thrust force, mMAV is the mass of the flapping MAV (13 gm), mrod

is the mass of the pendulum’s rod (1.8 gm), and g is the gravitational acceleration. The power supply in
the lab already provides information about the cycle-averaged total power consumption P . As the applied
voltage is increased, the flapping frequency increases. Sp, at each given voltage, a video is recorded at a rate
of 240 frame per second; the time stamp of each video is analyzed to obtain an estimate for the flapping
frequency (the average flaps per second). As such, the performance characteristics of the flapping MAV is
determined and presented in Fig. 3.
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Figure 3. Performance characteristics of the used flap-
ping MAV.

The adopted flapping MAV is an off-the-shelf flap-
ping bird58 whose wings are highly flexible wings
that flap in a vertical stroke plane resulting in a
good thrust producing capability at zero forward
speed (i.e., at the hovering position). This flapping
MAV (shown in Fig. 4(a)) is adapted for the cur-
rent experimental setup as shown in Fig. 4(b); only
the wings and the flapping mechanism are retained
while the body and motor are replaced. Of par-
ticular importance is the replacement of the driving
motor with a stronger motor59 that allows operating
at higher flapping frequencies, which is necessary for
the demonstration of vibrational stabilization.

B. Two Degrees of Freedom Flapping MAV

A pin (hinge) connection is introduced between the
body of the MAV and the pendulum’s rod to allow
for body pitching θ, as shown in Fig. 5(a). The
response of the pitching angle is measured using a
digital camera and an image processing algorithm
(e.g.,60). As shown in Figs. 4(b), 5(a), the nose and
tail of the MAV are marked with different colors.

Then, a simple algorithm is implemented in Visual Studio C++, exploiting the image processing library
OpenCV, to detect these circular stickers from video recordings and determine the angle between the line
connecting these two marks and the horizontal (i.e. θ) at each time stamp with a sampling frequency of 50
ms.

(a) Actual Bird.58 (b) Adapted Version of the MAV.

Figure 4. The actual and adapted flapping MAVs.

Because the line of action of the thrust force is above the body longitudinal axis and consequently hinge

7 of 12

American Institute of Aeronautics and Astronautics



point, there is an unbalanced pitching moment which will preclude equilibria. Therefore, we added four split
shot size lead of 3g total weight near the tail of the flapping MAV, as shown in Figs. 4(b),5(a) (the black
dots near tail) to shift the center of gravity of the MAV backward along the longitudinal axis. As such, the
pitching moment at the hinge point due to the weight will balance that of the thrust force according to the
balance equation

FT eT = mMAVgeg cos θe,

where eT and eg are the offsets of the thrust and gravity forces, respectively, from the hinge point, and
θe is the equilibrium value of the pitching angle. At zero applied voltage (zero thrust force), the flapping
MAV is standing vertically (θe = 90◦) at the bottom position (γe = 0◦) of the pendulum. As the voltage
and consequently the flapping frequency increase, the body moves upward along the circular path of the
pendulum (i.e., γ increases) and tilts forward towards the horizontal attitude (i.e., θ decreases), as shown
in Fig. 5(a). It is noteworthy that most insects have their center of gravity behind the hinge location along
their longitudinal axis and achieve hovering equilibria at body inclination with respect to the horizontal (i.e.,
θe) around 50◦,23,53 similar to the current setup.

V. Experimental Demonstration of Vibrational Stabilization in Flapping
Flight

Having established equilibrium, studying stability comes promptly. It is noteworthy that most research re-
ports concluded instability of insects and flapping MAVs at hover due to lack of pitch stiffness.22,23,25,29,30,40,56,61,62

Hence, it has been believed that insects and their man-made flapping MAVs have to employ feedback to
stabilize their flight during hover. While this may indeed be true, these studies mostly neglected the po-
tential of the natural high-frequency oscillatory flapping motion to induce vibrational stabilization.5,63 To
experimentally verify and demonstrate such a phenomenon in flapping MAVs, we apply different voltages to
the motor driving the flapping mechanism to attain different equilibrium positions (γe and θe) at different
flapping frequencies, thanks to the pendulum configuration and to the stronger motor. We then measure
the response of the pendulum angle γ and the body pitching angle θ, as explained above, at each operating
frequency.
Figure 5(b) shows the response of the flapping MAV system at a flapping frequency of ∼ 12Hz (corresponding
to 1.94 Volt). At this low flapping frequency, the MAV barely goes up (γe ∼ 24◦) and the equilibrium pitching
angle is quite large (θe ∼ 76◦). The response is found to be unstable as shown in the figure, even without
giving a disturbance: the oscillatory wing motion naturally provides a sufficient disturbance.

(a) Two-DOF Flapping MAV Experimen-
tal Setup.

θ
γ

(b) MAV unstable response at relatively low flapping frequency (∼
12Hz).

Figure 5. A two-DOF MAV setup and its unstable response at low flapping frequency.
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θ
γ

(a) MAV response as the flapping frequency is being man-
ually increased.

θ
γ

(b) MAV stable response at relatively high flapping fre-
quency (∼ 18Hz).

Figure 6. MAV response is stabilized as the flapping frequency is increased.

Figure 6(a) shows the response of the flapping MAV system as the applied voltage (flapping frequency) is
manually increased from 1V to 3V. The bird rises up towards the hovering position (γ goes from 20◦ to 60◦

and θ changes from 77◦ to 62◦). It is clear that the flapping MAV response experiences instability during the
transition period and becomes stable beyond a certain pendulum angle (i.e., flapping frequency). We apply
fixed different voltages (corresponding to different flapping frequencies) and observe the system response at
each case. The threshold flapping frequency below which the MAV response is unstable and beyond which
it is naturally stabilized is found to be 15Hz. It is envisaged that this threshold should be related to the
system’s natural frequency (1.4Hz). That is, the stabilization-threshold ratio between the periodic forcing
frequency and the system’s natural frequency is found to be 10.7 for the current setup. Seeking a universal
value for such a ratio is quite important and is suggested for future work.

Figure 6(b) shows the response of the flapping MAV system at a relatively high flapping frequency of
∼ 18Hz (corresponding to 3 Volt). At this relatively high flapping frequency, the MAV system is almost at
the hovering position (γe ∼ 85◦) and the equilibrium pitching angle θe ∼ 50◦ is close to the natural values
observed in nature for hovering insects.23,53 Clearly, the response is stable. Even when a relatively large
disturbance (Δθ ∼ 50◦) is applied at t = 8.6 sec, the system goes back to its equilibrium periodic orbit (i.e.,
the hovering periodic orbit).

So far, it can be concluded that the response of flapping MAVs (particularly the body pitch response) is
naturally (without feedback) stabilized beyond a certain threshold of flapping frequency. This fact conforms
well with the vibrational stabilization phenomenon2–4,8 and suggests that the observed natural stabilization
at high frequencies is a vibrational stabilization phenomenon. However, one might argue that because the
intricate dynamics of the system, the frequency not only affects stability, but also balance/equilibrium;
obviously increasing the frequency leads to a different equilibrium, which may or may not have similar
stability characteristics to equilibria corresponding to low frequencies. To show that the induced stabilizing
mechanism is indeed a vibrational stabilization one that is mainly due to the time-periodic nature of the
driving aerodynamic thrust force and not because of operating at a different equilibrium, we construct
a replica of the experimental setup with the MAV wings being fixed at their mean position and a small
propeller revolving with a constant speed is added, as shown in Fig. 7(a). The main difference is that the
flapping MAV setup produces a periodic thrust force, and consequently a time-periodic dynamics allowing
for vibrational stabilization, while the propeller setup produces a constant thrust force, and consequently a
time-invariant dynamics leaving no room for vibrational stabilization.

Using split shot size lead, we managed to match the weight and inertia of the propeller system with
the flapping MAV system. Moreover, since the propeller is providing a constant thrust force equal to the
averaged thrust from the flapping wings, the propeller system can be thought of as the averaged dynamics of
the flapping MAV system. Figure 7(b) shows the response of the two-DOF propeller-pendulum system at a
relatively small propeller speed (i.e., at a small pendulum equilibrium angle γe ∼ 9◦). Clearly, the response is
exponentially unstable. Increasing the applied voltage to attain higher pendulum equilibrium angles (closer
to the hovering position) worsens the stability characteristics so much that the system structure becomes
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(a) A Two-DOF MAV-Propeller
Setup.

θ
γ

(b) Unstable Response of the Two-DOF MAV-Propeller System.

Figure 7. A two-DOF MAV-propeller setup and its unstable response.

prone to breaking.

VI. Conclusion

The flight dynamics of flapping micro-air-vehicles (MAVs) are studied in the longitudinal plane near the
hovering equilibrium. The system is a nonlinear, time-periodic with a large separation between the systems’s
two time scales, which invokes averaging. Using direct averaging, it is found that flapping MAVs are unstable
at hover; mainly due to lack of pitch stiffness. However, using more rigorous mathematical tools (higher-order
averaging based on chronological calculus), it is shown that the high-frequency oscillatory aerodynamic forces
induce a vibrational stabilization mechanism resulting in a pitch stiffness. This unconventional stabilization
technique is mainly due to the interaction between the fast wing flapping dynamics and the slow body
dynamics, which cannot be captured by direct averaging. An experimental setup that allows for two degrees
of freedom for the body (forward motion and pitching motion) is constructed to verify/demonstrate such a
phenomenon. Recalling that vibrational control is an open loop stabilization technique due to the application
of a sufficiently high frequency periodic forcing, the stability of the system is studied at different flapping
frequencies. It is found that the system is naturally (without feedback) stabilized beyond a certain threshold
of the flapping frequency (15Hz in the current setup), which conforms with the vibrational control concept.
Moreover, a replica of the system is constructed in which the the wings of the flapping bird are kept stationary
and the thrust is produced by a propeller instead, which revolves at a constant speed. The only difference
between the two setups is that the flapping system produces a periodic thrust force resulting in a time-
periodic dynamics which may enjoy vibrational stabilization. In contrast, the propeller system produces a
constant thrust force and, hence, time-invariant dynamics leaving no room for vibrational stabilization. It is
found that the propeller system replica is unstable at all applied voltages and becomes even more unstable at
larger applied voltages (i.e., when it comes closer to the hovering position), which verifies that the observed
stabilization in the flapping system at high frequencies is mainly due to periodicity of the driving force (i.e.,
a vibrational control). This finding is important for the development of flapping micro-air-vehicles as the
designer may promote such a natural stabilization mechanism dispensing a feedback control system with its
sensory-control-actuator subsystem, hence, making initialization more feasible.
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