
A Tight Lower Bound for Entropy Flattening

Yi-Hsiu Chen1

School of Engineering and Applied Sciences, Harvard University, USA
yihsiuchen@g.harvard.edu

Mika Göös2

School of Engineering and Applied Sciences, Harvard University, USA
mika@seas.harvard.edu

Salil P. Vadhan3

Computer Science and Applied Mathematics, Harvard University, USA
salil_vadhan@harvard.edu

Jiapeng Zhang4

University of California San Diego, USA
jpeng.zhang@gmail.com

Abstract
We study entropy flattening: Given a circuit CX implicitly describing an n-bit source X (namely,
X is the output of CX on a uniform random input), construct another circuit CY describing a
source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon
entropy of Y is monotonically related to that of X. The standard solution is to have CY evaluate
CX altogether Θ(n2) times on independent inputs and concatenate the results (correctness follows
from the asymptotic equipartition property). In this paper, we show that this is optimal among
black-box constructions: Any circuit CY for entropy flattening that repeatedly queries CX as an
oracle requires Ω(n2) queries.

Entropy flattening is a component used in the constructions of pseudorandom generators and
other cryptographic primitives from one-way functions [12, 22, 13, 6, 11, 10, 7, 24]. It is also
used in reductions between problems complete for statistical zero-knowledge [19, 23, 4, 25]. The
Θ(n2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed
as a step towards proving that the current best construction of pseudorandom generator from
arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Entropy, One-way function

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.23

Acknowledgements S.V. thanks Iftach Haitner, Omer Reingold, and Colin Zheng for many
illuminating discussions about this problem in the past.

1 Supported by NSF grant CCF-1749750
2 Supported by Michael O. Rabin Postdoctoral Fellowship
3 Supported by NSF grant CCF-1749750
4 Supported by NSF CCF-1614023

© Yi-Hsiu Chen, Mika Göös, Salil P. Vadhan,
and Jiapeng Zhang;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yihsiuchen@g.harvard.edu
mailto:mika@seas.harvard.edu
mailto:salil_vadhan@harvard.edu
mailto:jpeng.zhang@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 A Tight Lower Bound for Entropy Flattening

1 Introduction

A flat source X is a random variable that is uniform on its support; equivalently, its Shannon
entropy, min-entropy, and max-entropy are all equal:

Hsh (X) = Ex∼X [log(1/Pr [X = x])] ,
Hmin (X) = minx log(1/Pr [X = x]),
Hmax (X) = log | SuppX|.

These can be far apart for non-flat sources, but we always have Hmin (X) ≤ Hsh (X) ≤
Hmax (X).

Entropy flattening. Entropy flattening is the following task: Given a circuit CX implicitly
describing an n-bit source X (namely, X is the output of CX on a uniform random input),
efficiently construct another circuit CY describing a “flattened” version Y of X. The goal is
to have the output source Y (or a small statistical modification of it) be such that its min-
and max-entropies are monotonically related to the Shannon entropy of X. Concretely, one
interesting range of parameters is:

if two input sources X andX ′ exhibit a 1-bit Shannon entropy gap, Hsh (X ′) ≥ Hsh (X)+1,
then the two respective output sources Y and Y ′ must witness Hmin (Y ′) ≥ Hmax (Y) + 1
(modulo a small modification to Y and Y ′).

X X ′ Y Y ′

min

sh

max

min

sh

max

max

min

Shannon
gap

min/max
gap

flattening

Entropy flattening is used as an ingredient in constructions of pseudorandom generators
and other cryptographic primitives from one-way functions [12, 22, 13, 6, 11, 10, 7, 24] and
in reductions between problems complete for (non-interactive) statistical zero-knowledge [19,
23, 4, 25]. See Section 1.2 for a detailed discussion.

A solution: repeat X. The standard strategy for entropy flattening is to construct Y
as the concatenation Xq of some q i.i.d. copies of the input source X. That is, in circuit
language, CY (x1, . . . , xq) = (CX(x1), . . . , CX(xq)). The well-known asymptotic equipartition
property in information theory states that Xq is ε-close5 to having min- and max-entropies
closely approximated by q · Hsh (X). (It is common to say that Xq has a certain ε-smooth
min- and max-entropy [21].)

5 Random variables Z1 and Z2 are ε-close if dTV (Z1, Z2) ≤ ε where dTV (Z1, Z2) is the usual statistical
(or total variation) distance, given by dTV (Z1, Z2) = maxT⊆Z |Pr [Z1 ∈ T]− Pr [Z2 ∈ T]|.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:3

I Lemma 1 ([12, 14]). Let X be an n-bit random variable. For any q ∈ N and ε > 0 there
is an nq-bit random variable Y ′ that is ε-close to Xq such that

Hmin (Y ′) , Hmax (Y ′) ∈ q · Hsh (X)±O
(
n
√
q log(1/ε)

)
.

In particular, it suffices to set q = Θ̃(n2) in order to flatten entropy in the aforementioned
interesting range of parameters (1-bit Shannon gap implies at least 1-bit min/max gap).
The analysis here is also tight by a reduction to standard anti-concentration results: it is
necessary to have q = Ω(n2) in order for the construction Y = Xq to flatten entropy.

1.1 Our Result
We show that any black-box construction for entropy flattening – that is, a circuit CY which
treats CX as a black-box oracle – requires Ω(n2) oracle queries to CX . This is formalized in
Theorem 2 below.

In particular, the simple “repeat-X” strategy is optimal among all black-box constructions.
Besides querying CX on independent inputs, a black-box algorithm has the freedom to perform
adaptive queries, and it can produce outputs that are arbitrary functions of its query/answer
execution log (rather than merely concatenating the answers). For example, this allows the
use of hash functions and randomness extractors, which is indeed useful for variations of the
flattening task (e.g., Lemma 4 below).

Query model. In our black-box model, the input source is now encoded as the output
distribution of an arbitrary function f : {0, 1}n → {0, 1}m where m = Θ(n) (not necessarily
computed by a small circuit); namely, the input source is f(Un) where Un denotes the
uniform distribution over n-bit strings. We consider oracle algorithms Af that have query
access to f . Given an n′-bit input w (thought of as a random seed) to Af , the algorithm
computes by repeatedly querying f (on query x ∈ {0, 1}n it gets to learn f(x)), until it
finally produces some m′-bit output string Af (w). We denote by Af : {0, 1}n′ → {0, 1}m′

the function computed by Af . Thus Af (Un′) is the output source.

Inputs/outputs. Our input sources come from the promise problem Entropy Approximation
(EA); the circuit version of this problem is complete for the complexity class NISZK (non-
interactive statistical zero-knowledge), as shown by Goldreich, Sahai, and Vadhan [4]. The
EA promise problem is (here τ ∈ N is a threshold parameter):

YES input: (f, τ) such that Hsh (f(Un)) ≥ τ + 1.
NO input: (f, τ) such that Hsh (f(Un)) ≤ τ − 1.

The goal of a flattening algorithm Af (which also gets τ as input, but we supress this in
our notation) is to produce an output distribution that is statistically close to having high
min-entropy or low max-entropy depending on whether the input source f is a YES or a NO
instance. We say that Af is an (ε,∆)-flattening algorithm if (here κ = κ(τ) is a parameter
that Af gets to choose):

If (f, τ) is a YES input, then Af (Un′) is ε-close to a distribution ZH with Hmin (ZH) ≥
κ+ ∆.
If (f, τ) is a NO input, then Af (Un′) is ε-close to a distribution ZL with Hmax (ZL) ≤ κ−∆.

The result. Our main result is the following.

I Theorem 2. There exist constants ε,∆ > 0 such that every (ε,∆)-flattening algorithm for
n-bit oracles f requires Ω(n2) oracle queries.

CCC 2018

23:4 A Tight Lower Bound for Entropy Flattening

In fact, our proof yields an even more fine-grained lower bound. Suppose we allow ε and
∆ to vary subject to n/25 ≥ ∆ ≥ log(1/ε). Then our lower bound becomes Ω(n2 log(1/ε)),
which is tight in both n and ε.

1.2 Relevance to Cryptographic Constructions
Pseudorandom generators from one-way functions. The use of flattening in complexity-
based cryptography originates with the celebrated work of Håstad, Impagliazzo, Levin, and
Luby (HILL) [12], which showed how to construct a pseudorandom generator from any
one-way function. The first step of their construction is to show how to obtain, from any
one-way function, a pseudoentropy generator. That is, a polynomial-time computable function
f : {0, 1}n → {0, 1}m such that f(Un) is computationally indistinguishable from a random
variable Y such that Hsh (Y) is noticeably higher than Hsh (f(Un)). In other words, for some
threshold τn and a nonnegligible gap parameter ∆n ≥ 1/ poly(n) it holds that:
1. f(Un) is computationally indistinguishable from a random variable Y with Shannon

entropy at least τn + ∆n, and
2. f(Un) has Shannon entropy at most τn −∆n.
Notice that if ∆n = 1, then Condition 2 says that the pair (fn, τn) is a NO instance of EA
(where fn is the restriction of f to instances of length n). On the other hand, Condition 1 says
that (fn, τn) appears to be a YES instance of EA to computationally bounded algorithms
(that get to observe an output of fn on a uniformly random input). In the HILL construction,
it turns out that ∆n = Θ̃(1/n) (rather than ∆n = 1), corresponding to an appropriate
variant of EA.

Given the similarity with EA, it is natural that the next step of the HILL construction
is flattening. Specifically evaluating f on many independent inputs yields a distribution
that is close to having low max-entropy yet is computationally indistinguishable from having
high min-entropy. Since ∆n is not 1, but rather Θ̃(1/n), the number of copies needed for
flattening becomes q = Õ(n/∆n)2 = Θ̃(n4).

After flattening, universal hashing (or randomness extraction) is applied to obtain
a pseudorandom generator Gf : {0, 1}n′ → {0, 1}m′ , where Gf (Un′) is computationally
indistinguishable from Um′ (i.e. indistinguishable from min-entropy at least m′) yet has
max-entropy at most n′ ≤ m′ − 1 (due to having a seed length of n′). (This step is a
computational analogue of Lemma 4 below.)

As described, the pseudorandom generator Gf makes q = Θ̃(n4) queries to the pseudoen-
tropy generator f and hence to the one-way function. The actual HILL construction is more
complex and inefficient, due in part to the fact that the entropy threshold τn is not known.
To deal with the latter issue, they enumerate all t = Θ(n/∆n) = Θ̃(n2) possibilities for the
threshold τn to within precision ∆n, construct a pseudorandom generator for each choice,
and then combine the generators (which has a further cost in efficiency).

A series of subsequent works [13, 6, 9, 24] improved the efficiency of the HILL construction.
The state-of-the-art constructions [9, 24] replace “pseudoentropy” with a more relaxed
computational analogue of Shannon entropy (“next-bit pseudoentropy”) and thereby obtain
∆n = 1 (or even ∆n = log n), reducing the cost of flattening to q = Θ̃(n/∆n)2 = Θ̃(n2). In
these constructions, the entropy threshold τn is also known (in fact τn = n), but there still is
an analogous cost of Θ̃(n) due to the fact that we don’t know how the entropy is spread out
among the bits of the output of the next-bit pseudoentropy generator f .

Overall, with the most efficient constructions to date, the pseudorandom generator makes
Θ̃(n3) queries to the one-way function, of which a Θ̃(n2) factor is due to flattening. This
complexity renders the constructions too inefficient for practice, and thus it is important to
know whether a more efficient construction is possible.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:5

Lower Bounds. The work of Gennaro, Gertner, Katz, and Trevisan [2] gave the first lower
bound on constructing pseudorandom generators from one-way functions. Specifically they
proved that any “black-box” construction of a pseudorandom generator Gf : {0, 1}n′ →
{0, 1}m′ from a one-way function f : {0, 1}n → {0, 1}m requires Ω((m′−n′)/ log n) queries to
f . Thus, many queries are needed to construct a pseudorandom generator with large stretch.
However, their lower bound says nothing about the number of queries needed to obtain a
pseudorandom generator with small stretch (i.e., where m′ = n′ +O(log n)), and indeed it
applies even to one-way permutations f , where no flattening is needed and a pseudorandom
generator with small stretch can be obtained with a single query to the one-way function [3].

For constructing pseudorandom generators with small stretch from one-way functions,
Holenstein and Sinha [15] proved that any black-box construction requires Ω̃(n) queries.
Their lower bound also does not tell us about flattening, as it applies even to regular one-way
functions, which directly (with one query) give a separation between pseudo-min-entropy
and max-entropy. Rather, their lower bound corresponds to the efficiency costs coming from
not knowing the entropy thresholds τn mentioned above (or how the entropy is spread across
the bits in the case of next-bit pseudoentropy).

Our lower bound for flattening (Theorem 2) can be viewed as a first-step towards proving
that any black-box construction of pseudorandom generators from one-way functions requires
Ω̃(n2) queries. One might hope to also combine this with [15] and obtain a lower bound of
Ω̃(n3) queries, which would match the best-known construction of [24].

Seed length. Another important and well-studied efficiency criterion for pseudorandom
generator constructions is how the seed length n′ of the pseudorandom generator Gf :
{0, 1}n′ → {0, 1}m′ depends on the input length n of the one-way function f : {0, 1}n →
{0, 1}m. The standard method for flattening (Lemma 1) requires independent samples from
the distribution being flattened, and thus the query complexity of flattening contributes a
multiplicative factor to the seed length of the pseudorandom generator. For example, the
construction of [24] gives a pseudorandom generator with seed length Θ̃(n2) · n = Θ̃(n3), as
Θ̃(n2) independent evaluations of the one-way function (or corresponding pseudoentropy
generator) are used for flattening. An interesting open problem is to show that independent
evaluations are indeed necessary, and extend our lower bound on query complexity to a
lower bound on the input length n′ of the flattening algorithm Af : {0, 1}n′ → {0, 1}m′ .
This could be a first step towards proving a superlinear lower bound on the seed length
of pseudorandom generators constructed (in a black-box way) from one-way functions, a
long-standing open problem. We note that the existing lower bounds on query complexity
of [2, 15] cannot be turned into seed length lower bounds, as there are constructions of
large-stretch pseudorandom generators from regular one-way functions with seed length
Õ(n) [6]. That is, although those constructions make polynomially many queries to the
one-way functions, the queries are highly correlated (and even adaptive).

Other Cryptographic Primitives. Flattening is also an efficiency bottleneck in the construc-
tions of other cryptographic primitives from arbitrary one-way functions, such as universal
one-way hash functions [22, 16, 7] and statistically hiding commitment schemes [8, 11]. In
both cases, the state-of-the-art constructions begin by constructing a function f where there
is a gap between its output entropy H(f(Un)) and a computational analogue of Shannon
entropy (namely, a form of “inaccessible entropy”). Then flattening is applied, after which
some (possibly interactive) hashing techniques are used to obtain the final cryptographic
primitive. Again, our lower bound on flattening can be viewed as a first step towards proving
an efficiency lower bound on black-box constructions.

CCC 2018

23:6 A Tight Lower Bound for Entropy Flattening

We note that there was a very fruitful interplay between this sequence of works on
constructions of cryptographic primitives from one-way functions and general results about
SZK and NISZK, with inspirations going in both directions (e.g., [18, 8, 20, 11]). This
reinforces the feeling that our lower bound for Flattening the NISZK-complete problem EA
can help in understanding the aforementioned constructions.

2 Proof Overview

Our proof builds on the recent result of Lovett and Zhang [17], who showed that there
is no efficient black-box reduction (making polynomially many queries) from EA to its
complement, thereby giving evidence that NISZK is not closed under complement and hence
that NISZK 6= SZK. The result of [17] a qualitative one, whereas here we are concerned
with a quantitative question: What is the exact query complexity of flattening? Nevertheless,
we use a similar construction of hard instances as [17] and make use of a variation of their
key lemma.

2.1 Simplification: The SDU Problem
We find it convenient to work with a slightly simplified version of the flattening task, having
one fewer parameter to worry about.

I Definition 3 (Statistical distance from uniform (SDU)). We say an algorithm Af : {0, 1}n′ →
{0, 1}m′ is a k-SDU algorithm if for all f : {0, 1}n → {0, 1}m, we have

If (f, τ) is a YES input to EA, then Af (Un′) is 2−k-close to Um′ .
If (f, τ) is a NO input to EA, then

∣∣Supp(Af (Un′))
∣∣ ≤ 2m′−k.

Note that a k-SDU algorithm is a (2−k, k/2)-flattening algorithm (with threshold κ =
m′ − k/2). Conversely, we can transform any flattening algorithm to a SDU algorithm using
hashing similar to [4]:

I Lemma 4. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for
function f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU algorithm
Af : {0, 1}n′′ → {0, 1}n′′−3k where n′′ = O(n′ +m′) for function f : {0, 1}n → {0, 1}m with
query complexity q and k = Ω(min{∆, log(1/ε)}). In particular, there exists such a k-SDU
algorithm with query complexity O(k ·min{n,m}2).

I Remark. Note that Lemma 2.2 guarantees not only that A is a k-SDU algorithm but also
that its output length is only 3k bits shorter than its input length. This additional property
will be useful in our proof.

Here for our main result (Theorem 2), it suffices to prove an Ω(kn2) query lower bound
for any k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ with m′ = n′ − 3k and k ≤ n/25.

I Theorem 5. Let k ≤ n. Every k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m has query complexity Ω(kn2).

2.2 Hard Instances
We consider two input distributions DH and DL over functions f : {0, 1}n → {0, 1}3n such
that the entropies of most functions in DH and DL are at least τ + 1 and at most τ − 1
(where τ = Θ(n)), respectively. To sample a function from DH , we randomly partition the
domain of f into many blocks B1, B2, . . . , Bs, each of size 2n/s where s = 23n/4. For each
block Bi,

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:7

with probability 1/2 + Θ(1/n) we insert a high-entropy block: f |Bi will be a uniformly
random mapping from Bi to {0, 1}3n; and
with the remaining probability 1/2−Θ(1/n), we insert a low-entropy block: all elements
of Bi are mapped to the same random element of {0, 1}3n.

The distribution DL is the same, except we swap the two 1/2±Θ(1/n) probabilities.
Note that since the range {0, 1}3n is so much larger than the domain {0, 1}n, with high

probability f will be injective on the high-entropy blocks and will also have no collisions
between different blocks. Under this condition, if we let B(x) denote the block containing x
(which is determined by f(x)) and p be the fraction of high entropy blocks, we have

Hsh (f(Un)) = Hsh (B(Un)) + Hsh (f(Un) | B(Un)) (1)

= log2 s+ p · log2

(
2n

s

)
+ (1− p) · 0 = 3n

4 + p · n4 . (2)

Under DH we have p = 1
2 + Θ(1

n) whp, and under DL we have p = 1
2 −Θ(1

n) whp, which
yields a constant gap in Shannon entropies, as desired.

2.3 Basic Intuition – and a Warning!

The first natural instinct – but too naive, we argue – is that since the bias between observing
a high-entropy block versus a low-entropy block is only Θ(1/n), an anti-concentration bound
should imply that distinguishing the two distributions takes Ω(n2) queries.

This intuition indeed applies to simple bounded-error randomized decision trees (which
output just a 1-bit answer). Concretely, suppose for simplicity that our input is just an
n2-bit string x (instead of an exponentially large oracle f): each bit xi represents either a
high-entropy block (xi = 1) or a low-entropy block (xi = 0). We are given the following
gap-majority promise: the relative Hamming weight |x|/n2 is either 1/2 + 1/n or 1/2− 1/n.
It is a well-known fact that any bounded-error query algorithm needs Ω(n2) queries to
distinguish these two cases.

But surprisingly enough, there does exist6 a flattening/SDU algorithm Ax that solves the
gap-majority promise problem with only O(n) queries! This suggests that any superlinear
lower bound must somehow hide from the algorithm the type (high vs. low) of a queried
block. Our choice of distributions DH and DL does indeed achieve this: since there are so
many blocks, a single run of the algorithm is unlikely to query more than one point in a
single block, and the marginal distribution of such a single query is the same in both DH
and DL. The more precise way in which we exploit the hidden type of a block is in invoking
the main result of [17]: when switching a high-entropy block in an f to a low-entropy block,
the support of an SDU algorithm’s output distribution, Supp

(
Af (Un′)

)
, cannot increase by

much.

6 Consider the following algorithm Ax on input a random seed w: query a sequence of random positions i
(according to w) until a position with xi = 1 is found. Output Ax(w) = i. It is easy to verify that this
is an (0, Θ(1/n))-flattening algorithm with expected query complexity O(1). Repeating the algorithm
some Θ(n) many times yields an (0, Ω(1))-flattening algorithm with expected query complexity O(n).
Finally, we can make the algorithm abort if any run exceeds the expected query complexity by a large
constant factor; this results in an (ε, Ω(1))-flattening algorithm of worst-case query complexity O(n).

CCC 2018

23:8 A Tight Lower Bound for Entropy Flattening

2.4 Technical Outline
Recall that Af (Un′) is almost-uniform when f ∼ DH has high entropy. For almost all
z ∈ {0, 1}m′ , most of the high-entropy functions f make the algorithm Af output z (on some
random seed):

Pr
f∼DH

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≥ 1− 2−Ω(k). (3)

On the other hand, since the support of Af (Un′) is small when f has low entropy, there
should be many z such that when we sample f from DL, with high probability Af (w) does
not output z:

Pr
f∼DL

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≤ 2−Ω(k). (4)

To connect the high-entropy and low-entropy cases, we essentially prove that for many
z ∈ {0, 1}m′ and every algorithm A making o(kn2) queries, we have

Pr
f∼DH

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≤ 2o(k) · Pr

f∼DL

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
+O(2−k).

(5)

As long as there exists z such that Equation (3), (4) and (5), the combination of those
equations contradict inequality (5).

Our inequality (5) is similar to the key lemma of Lovett and Zhang [17] except the inequal-
ity is reversed, we have an extra multiplicative factor of 2o(k) and our lemma (necessarily)
only applies to algorithms making o(kn2) queries (where the [17] lemma applies even to
exponentially many queries).

One key step toward the inequality (5) is to reverse the direction of the inequality by the
following trick. We name elements of {0, 1}n′ as w1, . . . , w2n′ in some arbitrary fixed order.
Then

Pr
f

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
=

2n
′∑

`=1
Pr
f

[
Af (w`) = z and @w ∈ {w1, . . . , w`−1}, Af (w) = z

]
=

2n
′∑

`=1

(
1− Pr

f

[
∃w ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

])
· Pr
f

[
Af (w`) = z

]
.

Having a negative sign, now we wish to relate the probability of

Pr
f

[
∃v ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

]
over DH and DL in the same direction as [17]. It is not a direct application of their lemma
due to the fact that the block size is constant in their construction and our probability is
conditioned on the event Af (w`) = z, but we prove a generalization (Lemma A.1) of their
lemma that suffices. In fact, the proof we provide in Appendix B is simpler than the one
in [17] and yields better parameters.

Like in [17], instead of considering the event ∃w,Af (w) = z in all the probabilities
above, we further impose the restriction that Af (w) queries each block Bi of the domain
at most once, since this event happens with high probability. Furthermore (unlike [17]),
we also restrict to the case that the number of high-entropy block queries is in the range
q ·
(
1/2± (O(1/n) +O(1/√q)

)
out of a total of q queries, which also occurs with high

probability.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:9

3 The Hard Distribution

Let Af : {0, 1}n′ → {0, 1}m′ be a potential k-SDU algorithm for functions f : {0, 1}n →
{0, 1}m. Throughout, we will consider a fixed oracle algorithm Af with query complexity
q, and will omit the dependency of A in most notations. For a vector ~X, we use ~X(j) to
denote the j-th element of ~X, and X means the unordered set { ~X(j) : j ∈ [| ~X|]}.

It is equivalent to interpret an element {0, 1}n as an integer in [N], since we do not make
use of any structure in {0, 1}n. Under this notation, we are considering the fixed oracle
algorithm Af : [N ′]→ [M ′] for functions f : [N]→ [M] where N ′ = 2n′ ,M ′ = 2m′ , N = 2n
and M = 2m.

Partition. Given parameters s, t ∈ N where st = N , and a function f : [N] → [M], we
partition the domain [N] into s blocks X1, . . . , Xs each of size t. We also fix an order for
the blocks: ~X = (~X1, . . . , ~Xs). Given a vector ~Yi ∈ [M]t, we use the shorthand f(~Xi) = ~Yi
to mean f(~Xi(j)) = ~Yi(j), for all j ∈ [t]. Therefore, once vectors ~Y1, . . . , ~Ys ∈ [M]t and a
partition ~X are determined, the function f is fully defined as f(~Xi) = ~Yi for all i ∈ [s].

Distributions.
Let Xs be a uniform distribution over an ordered partitions ~X = (~X1, . . . , ~Xs) of [N]
where | ~Xi| = N/s = t for all i ∈ [s].
Let Y0 and Y1 be distributions on [M]t defined as follows,

For Y0, uniformly sample a string z, and output ~Y (1) = · · · = ~Y (t) = z.
For Y1, uniformly and independently sample ~Y (1), . . . , ~Y (t) from [M].

Given a vector ~b ∈ {0, 1}s and a partition ~X = (~X1, . . . , ~Xs) of [N], we define the
distribution F(~X,~b) of function f : [N] → [M] such that f(~Xi) = ~Yi where ~Yi ← Y~b(i).
Essentially, ~b indicates whether each block is “high entropy” or “low entropy”.
For 0 ≤ α ≤ 1, let Bα be a distribution over a vector ~b ∈ {0, 1}s, so that each entry of ~b
is sampled from Bern(α) independently.
For 0 ≤ α ≤ 1, Dα is a distribution a function f : [N] → [M], a partition ~X, and an
indicator vector ~b: (f,~b, ~X) ∼ Dα means ~b ∼ Bα, ~X ∼ Xs and f ∼ F(~X,~b).

Block-Compatibility. When an algorithm A runs with input w and oracle f , let Queryf (w)
be the set of the queries made by the algorithm Af (w) to f . We say w is block-compatible
with (f,X) if |Queryf (w) ∩X| ≤ 1 for all X ∈ X. The set of block-compatible inputs with
(f,X) is denoted

BC(f,X) = {w : w is block-compatible with (f,X)}

Construction. Set m = 3n, so M = N3. Also, set s = 23n/4 = N3/4 and t = 2n/4 = N1/4.
Let the high entropy distribution be DH

def= D1/2+5/n and the low entropy distribution be
DL

def= D1/2+5/n. We claim that with high probability, a function f from DH and DL has
entropy at least τ + 1 and at most τ − 1 for τ = 7n/8.

I Lemma 6. Let the parameters be as above. Then we have

Pr
(f,~b,~X)∼DH

[Hsh (f) ≥ τ + 1] ≥ 1− 2−0.9n and

Pr
(f,~b,~X)∼DL

[Hsh (f) ≤ τ − 1] ≥ 1− 2−0.9n

CCC 2018

23:10 A Tight Lower Bound for Entropy Flattening

Proof. For any pair of independent and random mappings to M , the collision probability is
1/M . There are no more than N2 pairs of inputs, so with probability at least 1−N2/M =
1 − 2−n, there is no collision when two images are sampled independently. Under that
condition, as shown by Equation (1), let p be the fraction of high entropy blocks, namely p
is the hamming weight of ~b divided by s, the entropy of the function f is

Hsh (f(Un)) = 3n
4 + p · n4 .

Recall that when we sample ~b from DH , ~b(i) ∼ Bern(1/2 + 5/n) for all i ∈ [s]. By the
Chernoff bound,

Pr
(f,~b,~X)∼DH

[
p ≥ 1

2 + 4
n

]
≥ 1− 2 1

4 ·s·(1/n)2
,

which implies

Pr
(f,~b,~X)∼DH

[
Hsh (f) ≥ 3n

4 +
(

1
2 + 4

n

)
· n4 = 7n

8 + 1
]
≥ 1− 2− 1

4 ·s·(1/n)2
− 2−n

≥ 1− 2−0.9n.

Similarly, when sampling from DL,

Pr
(f,~b,~X)∼DL

[
Hsh (f) ≤ 3n

4 +
(

1
2 −

4
n

)
· n4 = 7n

8 − 1
]
≥ 1− 2− 1

4 ·s·(1/n)2
− 2−n

≥ 1− 2−0.9n.

Taking τ = 7n
8 concludes the lemma. J

4 Query Lower Bound for SDU Algorithms

4.1 Proof Strategy
Let Af be a k-SDU algorithm making q = o(kn2) queries. We may assume wlog that the
algorithm makes exactly q oracle queries to f , and all the query positions are distinct. (It is
useless to query the same positions, and if the number of queries is less than q, we simply
make some dummy queries.) We derive a contradiction from the following two lemmas to
conclude the lower bound (Theorem 5). For every z ∈ [M ′] that satisfies

E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k, (6)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2o(k) · Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k) (7)

There exists a universal constant c > 0 such that for every sufficiently large n and 25k ≤ n,
there is an output z ∈ [M ′] that satisfies
1. Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:11

3. E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

The contradiction directly came from plugging z that satisfies the inequalities in Lemma 4.1
into Inequality (7).

In the following section, we prove that most inputs are block-compatible and hence we
can only consider the block-compatible inputs rather than the whole domain [N ′]. Then we
prove Lemma 4.1 and 4.1 in Section 4.3 and 4.4, respectively.

4.2 Block-Compatible Inputs

As in [17], we only consider block-compatible inputs, where each block is queried at most
once. In that case, it is easier to compare the behavior of the SDU algorithms. Since there are
exponentially many blocks but only polynomially many queries, intuitively, the probability
of having block-compatible property is overwhelming if we randomly partition the domain of
f . Formally,

I Lemma 7. For every w ∈ [N ′] and α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[w /∈ BC(f,X)] ≤ q2

s
≤ 2−0.6n.

Proof. In order to handle adaptive algorithms, we consider the following procedure to sample
(f,~b, ~X), which is equivalent to sampling from Dα. Specifically, we sample the parts that are
related to w first.

Procedure 4.1

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t].
2. Simulate Af (w) handling the r-th oracle query xr as follows. For r = 1, . . . , q,

a. Based on previous queries and results as well as w, let the r-th query be
xr. Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and
assign ~Xi(j) = xr.

b. If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).
c. Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. Assign the rest of the vectors ~X and ~b by executing Step 2(a)–2(c) for all
x ∈ [N] \ {x1, . . . , xq}.

By the principle of deferred decisions, it can be verified that the joint distribution of
(f, ~X,~b) is identical to Dα.

Notice that w ∈ BC(f, ~X,~b) if and only if the sequence of q values of i selected in Step 2(a)
are all distinct. The probability that the (r+ 1)st value of i is the same one comparing to the
previous r values is at most rt/(st− r) ≤ q/s, since r ≤ q− 1 and qr ≤ st. So the probability
that there are any repetitions is at most q2/s. J

By Markov’s inequality, almost all inputs are block-compatible.

I Corollary 8. For every α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[
|BC(f,X)| > N ′ · (1− 2−0.3n)

]
≥ 1− 2−0.3n

CCC 2018

23:12 A Tight Lower Bound for Entropy Flattening

4.3 Proof of Lemma 4.1

For every z ∈ [M ′] that satisfies

E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k, (6)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2o(k) · Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k) (7)

Proof. Define the set

Wz(f,X) = {w : w ∈ BC(f,X), Af (w) = z}.

Let w1, · · · , wN ′ be all possible inputs in arbitrary but fixed order. The first step is to break
the event ∃w ∈Wz(f,X) to the events that w` is the “first” one in Wz(f,X) for all ` ∈ [N ′],

Pr
(f,~b,~X)∼Dα

[∃w ∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X) ∧ w1, . . . , w`−1 /∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

× Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)]

Our goal is to switch the distribution from DH to DL and see how the probability changes. We
do the switch using the following two claims. For every w` ∈ [N ′], Pr(f,~b,~X)∼Dα [w` ∈Wz(f,X)]
does not depend on α ∈ [0, 1]. In particular,

Pr
(f,~b,~X)∼DH

[w` ∈Wz(f,X)] = Pr
(f,~b,~X)∼DL

[w` ∈Wz(f,X)] .

For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q3t2

s

)
+ 2−5k

The intuition behind the first claim is that as long as w` is block-compatible, the query
results are independently uniform over [M] in both DH or DL case. For the second claim, we
will apply a variation of the main lemma in [17]. Notice that the direction of the inequality
in the second claim is reversed by our first step, and thus is consistent to the one in [17].
The formal proofs of those Claims are shown in Section 4.3.1 and 4.3.2.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:13

Once we have the above claims, we can prove the lemma:

Pr
(f,~b,~X)∼DH

[∃w ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)]

+
(
O

(
q3t2

s

)
+ 2−5k

)
·

2n
′∑

`=1
Pr

(f,~b,~X)∼DH
[w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)]

+
(
O
(

2−n/5
)

+ 2−5k
)
· E

(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)] +O(2−k).

The second inequality is by the assumption of n > 25k, and the last inequality is by
Inequality (6). J

4.3.1 Proof of Claim 4.3

For every w` ∈ [N ′], Pr(f,~b,~X)∼Dα [w` ∈Wz(f,X)] does not depend on α ∈ [0, 1]. In particu-
lar,

Pr
(f,~b,~X)∼DH

[w` ∈Wz(f,X)] = Pr
(f,~b,~X)∼DL

[w` ∈Wz(f,X)] .

Proof. We factorize the probability into two parts and prove both of them are independent
of α.

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)]

= Pr
(f,~b,~X)∼Dα

[
Af (w`) = z | w` ∈ BC(f,X)

]
· Pr

(f,~b,~X)∼Dα
[w` ∈ BC(f,X)]

We use Procedure 4.1 to sample (f,~b, ~X). We will prove the second factor is independent
of α by induction over r. Conditioning on the first (r − 1) values of i selected in Step 2(a)
being all distinct, that is, the block-compatible property has not been violated in the first r
rounds, we have ~b(i) = ∗ at the beginning of Step 2(b) in the r-th round. Thus no matter
what α is and what ~b(i) is assigned, Yi(j) is uniform over [M] in the r-th round. Therefore,
under the assumed condition, the distribution of xr and f(xr) are independent of α and the
probability of maintaining the block-compatible property in the r-th round is independent of
α. By induction, we know that the probability of maintaining the block-compatible property
in all q rounds is independent of α.

For the first factor, as discussed above, conditioning on the block-compatible property,
the distributions of xr and f(xr) are independent of α, so the probability of getting z as the
output of Af (w`) is also independent of α. J

CCC 2018

23:14 A Tight Lower Bound for Entropy Flattening

4.3.2 Proof of Claim 4.3
For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q3t2

s

)
+ 2−5k

Proof. We consider the following sampling procedure which is equivalent to sampling (f,~b, ~X)
from Dα conditioned on w` ∈Wz(f,X) (Namely, Af (w`) = z and w` ∈ BC(f,X)). We denote
such a distribution as (f,~b, ~X) ∼ Dα(w`, z). It follows the same idea as in Procedure 4.1
– sampling the blocks that are queried by Af (w`) first, and uses the rejection sampling to
handle the condition w` ∈Wz(f,X).

Procedure 4.2

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t] and f(x) = ∗ for all
x ∈ [N].

2. Simulate Af (w`) handling the r-th oracle query xr as follows. For r = 1 . . . , q,
a. Based on previous queries and results as well as w, let the r-th query be

xr. Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and
assign ~Xi(j) = xr.

b. If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).
c. Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. If q values of i in Step 2(a) are not all distinct, or Af (w`) 6= z, restart.
4. For all (i, j) such that ~b(i) 6= ∗ and ~Xi(j) = ∗, randomly sample x ∈ [N] that

has not been assigned to any partition. Set ~Xi(j) = x and f(x) = Yi(j).
5. Denote the partially assigned (some of them are mapped to ∗) function and

vectors sampled so far as f∗,~b∗, (~X∗) ∼ D∗α(w`, z).
6. Assign the rest of the vectors ~X, ~b and the mapping f by executing Step 2(a)–(c)

for all x ∈ [N] \ {x1, . . . , xq} (instead of xr).

Notice that until Step 5, information (including the partition ~X∗, function mapping f∗
and the indicator ~b∗) on exactly q blocks is decided.

The probability we consider then can be written as

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

= Pr
(f,~b,~X)∼Dα(w`,z)

[w1, . . . , w`−1 /∈Wz(f,X)]

=
∑

(f∗,~b∗,~X∗)

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]
× Pr
D∗α(w`,z)

[
(f∗,~b∗, ~X∗)

]
Now we introduce a property of a partial indicator. We say a partial indicator is balanced if
the number of zeros (low entropy block) and ones (high entropy block) are about the same.

I Definition 9 (Balance). Let ~b∗ ∈ {0, 1, ∗}s be a “partial” indicator vector where there are
q non-star entries. We say it is balanced if the number of 1s is in [q · (1/2− 5/n−

√
25k/q), q ·

(1/2 + 5/n+
√

25k/q)].

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:15

According to Procedure 4.2, each non-star entry of ~b∗ is sampled uniformly and in-
dependently from Bern(α). When α ∈ [1/2 − 5/n, 1/2 + 5/n], by Chernoff bound, we
have

Pr
f∗,~b∗,(~X∗)∼D∗α(w`,z)

[
~b∗ is balanced

]
≥ 1− 2−5k.

And thus we can sum over only balanced ~b∗ by paying an additive term.

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2−5k +
∑

(f∗,~b∗,~X∗)
where ~b∗ is balanced

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]

× Pr
Dα(w`,z)∗

[
(f∗,~b∗, ~X∗)

]
(8)

Now we use the following two claims (proved in the later paragraphs) to connect the high
entropy case (DH) and the low entropy case (DL) on those two factors.

For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
(9)

For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is balanced,

Pr
D∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2o(k) · Pr

D∗
L

(w`,z)

[
(f∗,~b∗, ~X∗)

]
(10)

Inserting Inequalities (9) and (10) to Equation (8) with α = 1/2 + 5/n, we conclude the
claim. J

Proof of Claim 4.3.2 For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from
D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
(9)

Proof. We will use a variation of the main lemma (Lemma 3) in [17]. Let Âf̂ : [N̂ ′]→ [M̂ ′]
be an algorithm making at most q oracle queries to f̂ : [N̂]→ [M̂]. Let D̂H = D̂1/2+5/n and
D̂L = D̂1/2−5/n be the distribution over a function f̂ : [N̂]→ [M̂], a partition ~̂X ∈ ([N̂]t̂)ŝ,
and the indication vector ~̂b ∈ {0, 1}ŝ as defined in Section 3. If t̂ > q, then for all z ∈ [N̂ ′],

Pr
(f̂ ,~̂b, ~̂X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
− Pr

(f̂ ,~̂b, ~̂X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ O(q3 · t̂2)

ŝ

CCC 2018

23:16 A Tight Lower Bound for Entropy Flattening

Proof. See Appendix A.1. J

For a fixed (f∗,~b∗, ~X∗), apply the above lemma in the following way:
Let ŝ = s− q, t̂ = t, and so N̂ = ŝ · t̂ = N − qt.
Let S = {x | f∗(x) = ∗} ⊆ [N], I = {i | ~b∗(i) = ∗} ⊆ [s] and πX : S → [N̂], πI : I → [ŝ]
be arbitrary bijection mappings. Then we define f̂ , ~̂X and ~̂b as follows.

∀ x̂ ∈ [N̂] , f̂(x̂) def= f(π−1
X (x̂))

∀ (̂i, ĵ) ∈ [ŝ]× [t̂] ,
~̂
Xî(ĵ)

def= πX(~Xπ−1
I

(̂i)(ĵ))

∀ î ∈ [ŝ] ,
~̂
b(̂i) def= ~b(π−1

I (̂i))

.

For ŵ ∈ [N̂], define Âf̂ (ŵ) to simulate Af (w) and w ∈ {w1, . . . , w`−1} in the following
way. It first check that if w /∈ {w1, . . . , w`−1}, output something not equal to z. Otherwise
simulate Af (w) and when A makes a query x ∈ X∗, Â hardwire the result f(x) as the
answer. When x ∈ S, return f̂(πX(x)) as the answer.

By the above mapping, we have

Pr
(f,~b,~X)∼Dα(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= Pr
(f̂ ,~̂b, ~̂X)∼D̂α

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
.

By Lemma 4.3.2,

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
DH(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
(f̂ ,~̂b, ~̂X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ 1− Pr

(f̂ ,~̂b, ~̂X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
+O

(
q3 · t̂2

ŝ

)
= 1− Pr

DL(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
= Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
. J

Proof of Claim 4.3.2 For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is
balanced,

Pr
D∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2o(k) · Pr

D∗
L

(w`,z)

[
(f∗,~b∗, ~X∗)

]
(10)

Proof. The only difference between DL(w`, z) and DH(w`, z) is when sampling ~b∗. Re-
call that a balanced partial indicator means the hamming weight is within the range
q ·
(

1/2±
(

1/n+
√

25k/q
))

. Since we only consider the cases where ~b∗ is balanced, the

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:17

ratio can be bounded as follows.

PrD∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
PrD∗

L
(w`,z)

[
(f∗,~b∗, ~X∗)

] ≤ (1
2 + 5

n
1
2 −

5
n

)q(1
2 +
(

1
n+
√

25k
q

)) (1
2 −

5
n

1
2 + 5

n

)q(1
2−
(

1
n+
√

25k
q

))

≤
(

1 + 10
n

)2q
(

1
n+
√

25k
q

) (
1− 10

n

)−2q
(

1
n+
√

25k
q

)

≤ 2
O

(
q

n2 +
√

kq

n2

)
≤ 2o(k) (11)

J

4.4 Proof of Lemma 4.1
There exists a universal constant c > 0 such that for every sufficiently large n and 25k ≤ n,
there is an output z ∈ [M ′] that satisfies
1. Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.

3. E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

Proof. In this proof, we abuse notation by denoting BC(f,X) also to be the uniform
distribution over the set BC(f,X). We will show that that for a random z sampled from
[M ′], it satisfies each property with probability at least 1− 2−Ω(k), and hence by the union
bound, it satisfies all three properties with probability at least 1 − 2−Ω(k). In particular,
there exists z ∈ [M ′] satisfying all three conditions simultaneously.
1.

Pr
z∼{0,1}m′

[
z /∈ Af (BC(f,X)

]
= 1−

∣∣Supp(Af (BC(f,X)))
∣∣

[M ′]
≤ dTV

(
Af (BC(f,X)), Um′

)
≤ dTV

(
Af (Un′), Um′

)
+ dTV (BC(f,X), Um′)

= dTV
(
Af (Un′), Um′

)
+ 1− |BC(f,X)|

[N ′] (12)

Take the expectation over (f,~b, ~X) from DH for Equation (12). By Lemma 6, Definition 3
and Corollary 8 we have

Pr
(f,~b,~X)∼DH ,z∼[M ′]

[
z /∈ Af (BC(f,X))

]
≤ Pr

(f,~b,~X)∼DH
[Hsh (f) < τ + 1] + 2−k + 2−0.3n

≤ 2−0.9n + 2−k + 2−0.3n ≤ 2−0.2k

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−0.1k

]
≥ 1− 2−0.1k.

CCC 2018

23:18 A Tight Lower Bound for Entropy Flattening

2. By Lemma 6 and Definition 3, we have

Pr
(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ Pr

(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z

]
≤ Pr

z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z | Hsh (f) ≤ τ − 1

]
+ Pr

(f,~b,~X)∼DL
[Hsh (f) > τ − 1]

≤ 2−k + 2−0.9n ≤ 2−0.8k.

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−0.1k

]
≥ 1− 2−0.7k.

3. Since m′ = n′ + 3k,

E
z∈[M ′]

[∣∣{w : Af (w) = z}
∣∣] = Pr

z∈[M ′]

 ∑
w∈[N ′]

I(Af (w) = z)

 = 2n
′
· 2−m

′
= 23k.

In particular,

E
(f,~b,~X)∼DH ,z∈[M ′]

[∣∣{w : Af (w) = z}
∣∣] = 23k.

By the Markov inequality,

Pr
z∼[M ′]

[
E

(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

]
≥ 1− 2−k. J

References
1 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors:

How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008. doi:10.1137/060651380.

2 Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the ef-
ficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, 2005.
doi:10.1137/S0097539704443276.

3 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 25–32. ACM, 1989. doi:
10.1145/73007.73010.

4 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 467–484. Springer, 1999. doi:10.1007/3-540-48405-1_
30.

5 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. Electronic Colloquium
on Computational Complexity (ECCC), 6(13), 1999. URL: http://eccc.hpi-web.de/
eccc-reports/1999/TR99-013/index.html.

http://dx.doi.org/10.1137/060651380
http://dx.doi.org/10.1137/S0097539704443276
http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1007/3-540-48405-1_30
http://dx.doi.org/10.1007/3-540-48405-1_30
http://eccc.hpi-web.de/eccc-reports/1999/TR99-013/index.html
http://eccc.hpi-web.de/eccc-reports/1999/TR99-013/index.html

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:19

6 Iftach Haitner, Danny Harnik, and Omer Reingold. Efficient pseudorandom generators from
exponentially hard one-way functions. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume
4052 of Lecture Notes in Computer Science, pages 228–239. Springer, 2006. doi:10.1007/
11787006_20.

7 Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil P. Vadhan, and Hoeteck Wee. Uni-
versal one-way hash functions via inaccessible entropy. In Henri Gilbert, editor, Advances
in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 616–637. Springer,
2010. doi:10.1007/978-3-642-13190-5_31.

8 Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vadhan.
Statistically hiding commitments and statistical zero-knowledge arguments from any one-
way function. SIAM J. Comput., 39(3):1153–1218, 2009. doi:10.1137/080725404.

9 Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in construct-
ing pseudorandom generators from one-way functions. In Leonard J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010, pages 437–446. ACM, 2010. doi:10.1145/
1806689.1806750.

10 Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in construct-
ing pseudorandom generators from one-way functions. SIAM J. Comput., 42(3):1405–1430,
2013. doi:10.1137/100814421.

11 Iftach Haitner, Omer Reingold, Salil P. Vadhan, and Hoeteck Wee. Inaccessible entropy. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 611–620.
ACM, 2009. doi:10.1145/1536414.1536497.

12 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. doi:
10.1137/S0097539793244708.

13 Thomas Holenstein. Pseudorandom generators from one-way functions: A simple construc-
tion for any hardness. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 443–461. Springer,
2006. doi:10.1007/11681878_23.

14 Thomas Holenstein and Renato Renner. On the randomness of independent experi-
ments. IEEE Trans. Information Theory, 57(4):1865–1871, 2011. doi:10.1109/TIT.2011.
2110230.

15 Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator requires
an almost linear number of calls. In Foundations of Computer Science (FOCS), 2012 IEEE
53rd Annual Symposium on, pages 698–707. IEEE, 2012.

16 Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash functions
from arbitrary one-way functions. IACR Cryptology ePrint Archive, 2005:328, 2005. URL:
http://eprint.iacr.org/2005/328.

17 Shachar Lovett and Jiapeng Zhang. On the impossibility of entropy reversal, and its
application to zero-knowledge proofs. In Theory of Cryptography Conference, pages 31–55.
Springer, 2017.

18 Minh-Huyen Nguyen and Salil P. Vadhan. Zero knowledge with efficient provers. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on The-

CCC 2018

http://dx.doi.org/10.1007/11787006_20
http://dx.doi.org/10.1007/11787006_20
http://dx.doi.org/10.1007/978-3-642-13190-5_31
http://dx.doi.org/10.1137/080725404
http://dx.doi.org/10.1145/1806689.1806750
http://dx.doi.org/10.1145/1806689.1806750
http://dx.doi.org/10.1137/100814421
http://dx.doi.org/10.1145/1536414.1536497
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1007/11681878_23
http://dx.doi.org/10.1109/TIT.2011.2110230
http://dx.doi.org/10.1109/TIT.2011.2110230
http://eprint.iacr.org/2005/328

23:20 A Tight Lower Bound for Entropy Flattening

ory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 287–295. ACM, 2006.
doi:10.1145/1132516.1132559.

19 Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. J. Comput.
Syst. Sci., 60(1):47–108, 2000. doi:10.1006/jcss.1999.1664.

20 Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and commit-
ments. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture Notes in
Computer Science, pages 482–500. Springer, 2008. doi:10.1007/978-3-540-78524-8_27.

21 Renato Renner and Stefan Wolf. Smooth rényi entropy and applications. In Information
Theory, 2004. ISIT 2004. Proceedings. International Symposium on, page 233. IEEE, 2004.

22 John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 387–394. ACM, 1990.
doi:10.1145/100216.100269.

23 Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-knowledge.
In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 448–457. IEEE Computer Society, 1997. doi:
10.1109/SFCS.1997.646133.

24 Salil P. Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying pseudo-
random generator constructions. In Howard J. Karloff and Toniann Pitassi, editors, Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 817–836. ACM, 2012. doi:10.1145/2213977.2214051.

25 Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Citeseer,
1999.

A Missing Proofs

A.1 Proof of Lemma 4.3.2

We restate the lemma as follows. Note that it is not necessarily the case that N is a power
of two (similarly for M,N ′ and M ′).

Let Af : [N ′]→ [M ′] be an algorithm making at most q oracle queries to f : [N]→ [M].
Let DH = D1/2+5/n and DL = D1/2−5/n be the distribution over a function f : [N]→ [M], a
partition ~X ∈ ([N]t)s, and the indication vector ~b ∈ {0, 1}s as defined in Section 3. If t > q,
then for all z ∈ [N],

Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

s
.

Besides the parameters difference, a key difference between Lemma A.1 and the key
lemma in [17] is that in our construction, the indicator vectors b consist of s independent
Bernoulli random variables, while in their case, the number of ones, namely the Hamming
weight is fixed. Formally, they consider the following distribution.

I Definition 10. For i ∈ [s], D̃i is a distribution over the function f : [N] → [M] and a
partition ~X. Define ~bi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
s−i

). Then (f, ~X) ∼ D̃i denotes that ~X ∼ Xs and

f ∼ F(~X, ~bi).

http://dx.doi.org/10.1145/1132516.1132559
http://dx.doi.org/10.1006/jcss.1999.1664
http://dx.doi.org/10.1007/978-3-540-78524-8_27
http://dx.doi.org/10.1145/100216.100269
http://dx.doi.org/10.1109/SFCS.1997.646133
http://dx.doi.org/10.1109/SFCS.1997.646133
http://dx.doi.org/10.1145/2213977.2214051

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:21

A direct generalization of the key lemma in [17] can be stated using our notation: Let
Af : [N ′]→ [M ′] be an algorithm, which makes at most q queries to its oracle f : [N]→ [M].
If t > q, then for all z ∈ {0, 1}m′ and i ∈ [s],

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

i2
.

We provide a simpler proof of Lemma A.1 in Appendix B. Now we prove Lemma A.1
using Lemma A.1.

Proof of Lemma A.1. By telescoping over i in Lemma A.1, we get that for 1
4 ≤ α < β ≤ 1

where αs and βs are integers, we have

Pr
(f,~X)∼D̃αs

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃βs

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2(β − α))

s
.

Conditioning on the Hamming weight of ~b being αs when we sample D1/2−4/n or D1/2+4/n,
the probability of the event ∃w ∈ BC(f,X), Af (w) = z is same to sampling from D̃αs,
because this event is invariant to permuting the indices of the s blocks, so the vector
~b = (1, . . . , 1︸ ︷︷ ︸

αs

, 0, . . . , 0︸ ︷︷ ︸
s−αs

) is equivalent to any other vector of the same Hamming weight. Hence,

we have

Pr
(f,~b,~X)∼D1/2±4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
=

s∑
h=0

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2± 4/n) = h] ,

where Bin is the binomial distribution. By the Chernoff bound,

Pr
(f,~b,~X)∼D1/2−4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼D1/2+4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−Ω(s) +

∑
s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2 + 4/n) = h]

−
∑

s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2− 4/n) = h]

Then by symmetry (Pr [Bin(s, p) = h] = Pr [Bin(s, 1− p) = s− h]) and the bound we got at
the beginning by telescoping, the difference is bounded by∑

s/4<h<3s/4

(
Pr

(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃s−h

[
∃w ∈ BC(f,X), Af (w) = z

])
× Pr [Bin(s, 1/2− 4/n) = h] + 2−Ω(s)

≤ O(q3t2)
s

. J

CCC 2018

23:22 A Tight Lower Bound for Entropy Flattening

A.2 Proof of Lemma 4
I Claim 1. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m with query complexity q, then there exists an k-SDU algorithm
Bf : {0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′ + m′) and m′′ = O(n′ + m′) for function
f : {0, 1}n → {0, 1}m with query complexity q and k = Ω(min{∆, log(1/ε)}).

I Claim 2. If there exists a k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function f :
{0, 1}n → {0, 1}m with query complexity q, then there exists an (k − 1)-SDU algorithm Bf :
{0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′) and m′′ = n′′ − 3k for function f : {0, 1}n → {0, 1}m
with query complexity q.

Proof of Claim 1. This proof mostly follows the idea in [5]. It suffices to prove the existence
of Ω(k)-SDU algorithm for k = min{∆, log(1/ε)}. Let Ha,b be a family of 2-universal
hash function from a bits to b bits. We sample hash functions h1 and h2 from Hm′,κ and
∼ Hn′,n′−κ−k/3, respectively, where κ is the parameter chosen by the flattening algorithm
Af . We will show that

Bf (w, h1, h2) =
(
h1, h1(Af (w)), h2, h2(w)

)
is a Ω(k)-SDU algorithm. We denote the output of Bf (w, h1, h2) as a jointly distributed
random variables (H1, Z1, H2, Z2) when w ∼ Un′ , h1 ∼ Hm′,κ and h2 ∼ Hn′,n′−κ−k/3.
1. When (f, τ) ∈ EAY , there exists a distribution ZH with Hmin (ZH) ≥ κ+ ∆ such that

dTV
(
Af (Un′), ZH

)
≤ ε. First, we show that (H1, Z1) is close to uniform. By the Leftover

Hash Lemma, dTV ((H1, H1(ZH), (H1, Uκ)) ≤ 2−∆/3, and so

dTV
(
(H1, Z1), (H1, Uκ)

)
≤dTV

(
Af (Un′), ZH

)
+ dTV

(
(H1, H1(ZH), (H1, Uκ)

)
≤2−∆/3 + ε ≤ 2−Ω(k).

For the (H2, Z2) of part, we will show that with high probability over sampling (h1, z1)
from (H1, Z1), the distribution (H2, Z2) conditioned on (h1, z1) is close to uniform. Since
(H1, Z1) is 2−Ω(k)-close to uniform, by the Markov inequality, with probability at least
1− 2−Ω(k) over choosing (h1, z1) from (H1, Z1), we have

Pr
[
h1(Af (Un′)) = z1

]
= Pr [Z1 = z1 | H1 = h1] ≥ 1

2 · 2
−κ.

Thus, except for 2−Ω(k) probability over (h1, z1), the number of w such that h1(Af (w)) =
z1 is at least 2n′−κ−1. Again, by the Leftover Hash Lemma, (H2, Z2) is 2−Ω(k)-close to
uniform conditioned on any such (h1, z1). We then can conclude that (H1, Z1, H2, Z2) is
2−Ω(k)-close to uniform.

2. When (f, τ) ∈ EAN , there exists a distribution ZL with Hmax (ZL) ≤ κ−∆ such that
dTV

(
Af (Un′), ZL

)
≤ ε. For every fixed h1 and h2, we will bound the support size of

(Z1, H2, Z2) conditioned on H1 = h1 and H2 = h2. We divide Supp(Z1, Z2) into three
subset according to z1 ∈ Supp(Z1).

S1 = {(z1, z2) : z1 ∈ Supp(ZL)}
S2 = {(z1, z2) : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
S3 = {(z1, z2) : Pr [Z1 = z1] < 2−κ−2k/3 and z1 /∈ Supp(ZL)}

Since, Supp(Z1, Z2) = S1 ∪ S2 ∪ S3, it suffices to show that

|Si| ≤ 2−Ω(k) ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣

for all i = 1, 2, 3.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:23

a. For S1, by definition, Hmax (ZL) ≤ κ −∆ implies that |Supp(ZL)| / |{0, 1}κ| ≤ 2−∆,
and so

|S1| ≤ 2−∆ ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ ≤ 2−Ω(k) ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ .
b. For S2, since dTV

(
Af (Un′), ZL

)
≤ ε,

∑
z1 /∈Supp(ZL) Pr [Z1 = z1] ≤ ε. Each z1 such

that Pr [Z1 = z1] ≥ 2−κ−2k/3 contributes at least 2−κ−2k/3 towards ε, so∣∣∣{z1 : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
∣∣∣ ≤ ε · 2κ+2k/3.

Then we have |S2| ≤ 2−Ω(k)
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣, since k ≤ log(1/ε).

c. For S3, if Pr [Z1 = z1] < 2−κ−2k/3, then the number of w ∈ {0, 1}n′ such that
h1(Af (w)) = z1 is at most 2n′−κ−2k/3, which is at most a 2−k/3 fraction of
{0, 1}n′−κ−k/3. Therefore, |S3| ≤ 2−Ω(k) ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣.
Thus, we conclude that Bf is a Ω(k)-SDU algorithm. J

Proof of Claim 2.

I Definition 11 (average min-entropy [1]). Let (X,Y) be jointed distributed random variables.
The average min-entropy of X conditioned on Z is

Hmin (X|Y) def= log
(

1
Ey←Y [maxx Pr [X = x|Y = y]]

)
I Lemma 12 (Generalized Leftover Hash Lemma [1]). Let (X,Y) be a jointed distributed
random variables such that Hmin (X|Y) ≥ k. Let Hn,m = {h : {0, 1}n → {0, 1}m} be a family
of universal hash function where h can be described in (n+m) bits and m = k−2 log(1/ε)+2.
Then

dTV ((h(X), Y, h), (Um, Y, h)) ≤ ε

where Um is a uniform m bits string.

Let Hn′,n′−m′−3k = {h : {0, 1}n → {0, 1}m} be a family of universal hash function
where h can be described in d = 2n′ −m′ − 3k bits. Based on the given k-SDU algorithm
Af : {0, 1}n′ → {0, 1}m′ , we define the algorithm Bf : {0, 1}n′+d → {0, 1}n′+d−3k as

Bf (w, h) def= (Af (w), h(w), h).

By the chain rule of average min-entropy ([1, Lemma 2.2b])

Hmin(w|A(w)) ≥ Hmin(w)− |A(w)| = n′ −m′,

and hence

dTV((A(w),Ext(w, v)), (A(w), Un′−m′+d−2k−O(1))) ≤ 2−k.

Therefore, when Hsh (f) ≥ τ + 1

dTV
(
Bf (Un′+d), Un′+d−3k

)
= dTV

(
(Af (w), h(w), h), (Um′ , Un′−m′+d−3k)

)
= dTV

(
Af (w), Um′

)
+ dTV

(
(Af (w), h(w), h), (Af (w), Un′−m′+d−3k)

)
≤ 2−k + 2−k = 2−(k−1).

CCC 2018

23:24 A Tight Lower Bound for Entropy Flattening

The last inequality is by the property of k-SDU algorithm and Lemma 12.
On the other hand, if Hsh (f) ≤ τ − 1,∣∣Supp(Bf (Un′+d))

∣∣ ≤ 2m
′−k · 2n

′−m′+d−3k ≤ 2(n′+d−3k)−k.

Therefore, Bf is an (k − 1)-SDU algorithm with desired parameter. J

B Proof of Lemma A.1

Let Af : [N ′]→ [M ′] be an algorithm, which makes at most q queries to its oracle f : [N]→
[M]. If t > q, then for all z ∈ {0, 1}m′ and i ∈ [s],

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

i2
.

Proof. Distributions D̃i−1 and D̃i differ only on the block ~Xi. So an equivalent way to
sample both distributions is that we can first sample the partition ~X, and the mapping except
on the set Xi. In particular, we sample ~Y1, . . . , ~Yi−1 ∼ Y0 and ~Yi+1, . . . , ~Ys ∼ Y1. After that,
for fixed ~X and ~Y1, . . . , ~Yi−1, ~Yi+1, . . . , Ys, we sample ~Yi from Y1 or Y0 for distribution D̃i or
D̃i−1, respectively.

For notational convenience, we define

~Y−i
def= (~Y1, . . . , ~Yi−1, ~Yi+1, . . . , ~Ys)

~X−i
def= (~X1, . . . , ~Xi−1, ~Xi+1, . . . , ~Xs)

Now the difference of the probabilities can be written as

∆i = E
~Y−i,~X,z

[
Pr
~Yi∼Y0

[
∃w ∈ BC(f,X), Af (w) = z

]]
− E

~Y−i,~X,z

[
Pr
~Yi∼Y1

[
∃w ∈ BC(f,X), Af (w) = z

]]
. (13)

If the block Xi is not queried, then the distributions are identical to the adversary. To
compare two probabilities better, we refine the event ∃w ∈ BC(f,X), Af (w) = z based on
the block Xi. For given f, ~X and z, we define the following events.

∀j ∈ [t] , Ef,~X,z(j)
def= ∃w ∈ BC(f,X) s.t. Af (w) = z ∧ ~Xi(j) ∈ Queryf (w)

Ef,~X,z(⊥) def= ∃w ∈ BC(f,X) s.t. Af (w) = z ∧ Queryf (w) ∩Xi = ∅,

where Queryf (w) is the set of the queries made by the algorithm Af (w) to the f with input
w.

The main events that we care about is the union of the above events we defined, so for
Y ∈ {Y0,Y1}

Pr
~Yi∼Y

[∃w ∈ BC(f,X)] = Pr
~Yi∼Y

Ef,~X,z(⊥) ∨

 t∨
j=1

Ef,~X,z(j)


= Pr

~Yi∼Y

[
Ef,~X,z(⊥)

]
+ Pr

~Yi∼Y

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)

 .

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:25

An important observation is that the event Ef,~X,z(⊥) does not depend on the f(Xi), so
sampling ~Yi from Y0 or Y1 does not affect the probability of the event. Hence, Equation (13)
can be written as

∆i = E
~Y−i,~X,z

 Pr
~Yi∼Y0

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


− E

~Y−i,~X,z

 Pr
~Yi∼Y1

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)

 .
Now, for the probability over Y0 part, we apply the union bound.

E
~Y−i,~X,z

 Pr
~Yi∼Y0

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


≤ E

~Y−i,~X,z

 t∑
j=1

Pr
~Yi∼Y0

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
For the Y1 part, we bound the probability via the inclusion-exclusion principle.

E
~Y−i,~X,z

 Pr
~Yi∼Y1

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


≥ E
~Y−i,~X,z

[
t∑

j=1
Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]

−
∑

j 6=j′∈[t]

Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j) ∧ Ef,~X,z(j

′)
]]

Observe that Af (w) only queries Xi at most once for all w ∈ W (f,X), and the marginal
distributions of the mapping on ~Xi(j) for every j ∈ [t] are the same in both Y1 and Y0 cases,
so for every j ∈ [t]

Pr
~Yi∼Y0

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
= Pr

~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
Therefore, the difference between two cases is bounded as

∆i ≤ E
~Y−i,~X,z

 ∑
j 6=j′∈[t]

Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j) ∧ Ef,~X,z(j

′)
]

≤ t2 · E
~Y−i,~X,z

[
Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]]
= t2 · Pr

(f,~X)∼D̃i,z

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
. (14)

To bound the term, we consider another way to sample (f, ~X) from D̃i.

CCC 2018

23:26 A Tight Lower Bound for Entropy Flattening

Procedure B.1

1. Sample (f, ~X) from Di as usual.
2. Undo the partition for the first i blocks. That is, set Xi′(j) = ∗ and Yi′(j) = ∗

for all (i′, j) ∈ [i]× [t].
3. For every x ∈ [N] \X>i, randomly sample y from [M] and let f(x) = y.
4. Randomly partition the unassigned part [N] \ X>i into i blocks ~X1, . . . , ~Xi.

Specifically, we will use Procedure B.2 for this step.

Since f(x) for x in ~X≤i is randomly and independently chosen from [M], the partition
among the first i blocks and f(x) for x in the first i blocks are independent. It is equivalent
to sample the partition of the first i blocks after fixing the function f .

After the first sampling step, since the mapping is fixed, the set {w : Af (w) = z}
and Queryf (w) are determined. Let {w : Af (w) = z} = {w1, . . . , wu} and define Q`

def=
Queryf (w`) \X>i for all ` ∈ [u]. That is, we only look at queries that belong to the blocks
that have not been decided.

Recall the definitions of the events Ef,~X,z(⊥). Its negation means that for all w, Af (w) 6= z

or w /∈ BC(f,X) or Queryf (w) intersect with Xi. By the definition of {w1, . . . , wu}, an
equivalent way to describe the event ¬Ef,~X,z(⊥) is for all ` ∈ [u], either w` /∈ BC(f,X) or
Queryf (w)∩Xi = 1. Note that if the first condition fails, then w is block-compatible, and so
the size of the intersection is at most one. Therefore, the probability factor in Equation 14
can be written as

Pr
~X[i]

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
= Pr
~X[i]

[(
∀` ∈ [u], |Q` ∩Xi| = 1 ∨ w` /∈ BC(f,X)

)
∧(
∃`1 6= `2 ∈ [u], w`1 , w`2 ∈ BC(f,X), ~Xi(1) ∈ Q`1 ,

~Xi(2) ∈ Q`2

)]
(15)

In sum up, the event holds when

Every w ∈ {w : Af (w) = z} is either not block-compatible or it interests with Xi.

Exists two distinct inputs in {w : Af (w) = z} such that the queries made by Af using
them as input intersect with Xi at the first and the second positions.

We consider the following procedure to sample ~X[i]. Basically, the procedure will decide
the partition without assigning the indices first, which is sufficient for deciding the block-
compatilibilities. Then we assign the indices to the blocks after putting all elements in [N]
in blocks.

The intuition of the probability bounded by Θ(poly(q)/i2) (omitting the dependency
on q) is as follows. In the last step, since we assign the indices to the block randomly.
The probability of the i-th block being the one queried by some block-compatible w in
{w1, . . . , wu} is at most q/i. If all blocks are block-compatible, then the probability of two
different w and w′ in {w1, . . . , wu} hitting same block with different queries is Θ(q2/i). On
the other hand, the probability of some w in {w1, . . . , wu} being non-block-compatible is
bounded by Θ(1/i). Therefore, no matter what, we have two Θ(1/i) factors.

Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:27

Procedure B.2

1. Let ti′ represents the remaining slots in the i′-th block. Initially, ti′ = t for all
i′ ∈ [i].

2. Let block(x) represents which block x is assigned to. Initially, block(x) = ∗ for
all x ∈ X≤i.

3. Let `1 = `2 = −1 and π : [i]→ [i] be a permutation will be decided later.
4. For ` = 1, . . . , u:

a. For all x ∈ Q`, if block(x) = ∗, set block(x) = i′ with probability ti′/(t1 +
· · ·+ ti), and decrease t′i by 1.

b. If all block(x) for x ∈ Q` are distinct, namely w` ∈ BC(f,X), then let `1 = `

and break
5. If `1 = 1.

a. First we randomly decide the mapping π(i). (The rest i− 1 mapping will be
decided later).

b. If π(i) /∈ {block(x) | x ∈ Q1}, jump to Step 7.
c. Suppose x∗ ∈ Q1 such that block(x∗) = π(i). We check if there is any
` ∈ [2, u] such that x∗ /∈ Q`. If there is no such `, then jump to Step 7.

d. Let ` ∈ [2, u] such that x∗ /∈ Q`. For all x ∈ Q`, if block(x) = ∗, set
block(x) = i′ with probability ti′/(t1 + · · ·+ ti), and decrease t′i by 1. If all
block(x) for x ∈ Q` are distinct, namely w` ∈ BC(f,X), then let `2 = `.

6. For all x ∈ X≤i, if block(x) = ∗, set block(x) = i′ with probability ti′/(t1 + · · ·+
ti), and decrease t′i by 1.

7. Let π : [i] → [i] be a random permutation (Except that if π(i) is decided in
Step 6(a).

8. For i′ ∈ [i], let πi′ : [t] → [t] be a random permutation, assign the πi′(j)-th
element of {x | block(x) = π(i′)} to ~Xi′(j).

To bound Equation (15), we consider a relaxed event. Event E happens when for all
` ∈ [u], either is not block-compatible or |Q` ∩Xi| = 1. And there exists `1 6= `2 ∈ [u],
w`1 , w`2 ∈ BC(f,X) and Q`1 ∩Xi 6= Q`2 ∩Xi. That is, we do not require the intersection
being the first two elements in Xi

Based on Procedure B.2, we also consider the following events. The subscripts are from
the step numbers in the procedure.

E5 : `1 = 1 that is, w1 ∈ BC(f,X)
E5c : |Q1 ∩Xi| = 1 and ∃` ∈ [2, u] such that x∗ /∈ Q`.
E5d : `2 6= −1 that is, w` ∈ BC(f,X)

First, we consider the probability of w1 or w` being non-compatible (in Step 2(b) or
Step 4(d)). The probability that the (r+ 1)-th choice of value i′ collides to previous r choices
is at most r(t − 1)/(ti − r − q) ≤ (rt + q)/ti ≤ (rt + t)/ti ≤ q/i. By union bound, the
probability of w1 or w` being non-compatible is at most q2/i. That is,

Pr [¬E5] ≤ q2

i
and Pr [¬E5d | E5c] ≤

q2

i
.

CCC 2018

23:28 A Tight Lower Bound for Entropy Flattening

By the above inequalities, we can bound the probability in Equation 15 as follows.

Pr
[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
≤Pr [E] = Pr [E ∧ E5] + Pr [E ∧ ¬E5]

≤Pr [E ∧ E5c | E5] + Pr [¬E5] Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E ∧ E5d | E5c] + Pr [E ∧ ¬E5d | E5c]
)

+ q2

i
· Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E | E5d ∧ E5c] + Pr [¬E5d | E5c]
)

+ q2

i
· Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E | E5d ∧ E5c] + q2

i

)
+ q2

i
· Pr [E | ¬E5]

Pr [E5c | E5] is at most the probability of π(i) ∈ {block(x) | x ∈ Q1} which is at most q/i.
Now we consider the event E happens when E5 and E5d happened. Event E happens only
when w` in Step 5d hit the i-th block in different locations. For each x ∈ Q`, the probability
of it hitting the i-th block is at most (t− 1)/(ti− 2q) ≤ (t+ 2q)/ti ≤ 3/i. Applying union
bound over at most q elements in Q`, we get

Pr [E | E5d ∧ E5c] ≤
3q
i
.

For Pr [E | ¬E5], if there is no block compatible w` for ` ∈ [u], there is no hope for E to be
satisfied. If there is a block compatible w`, then E requires that the i-th block being hit by
Af (w`). Since the the indices of the first i blocks are randomly assigned by the end, the
probability is at most q/i.

Combine the bounds above, we have

Pr
[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
≤ q

i
·
(

3q
i

+ q2

i

)
+ q2

i
· q
i

= O

(
q3

i2

)
.

Insert the above inequality back to Inequality (14), we have ∆i ≤ O
(
q3t2

i2

)
, which

concludes the lemma. J

	Introduction
	Our Result
	Relevance to Cryptographic Constructions

	Proof Overview
	Simplification: The SDU Problem
	Hard Instances
	Basic Intuition – and a Warning!
	Technical Outline

	The Hard Distribution
	Query Lower Bound for SDU Algorithms
	Proof Strategy
	Block-Compatible Inputs
	Proof of Lemma 4.1
	Proof of Claim 4.3
	Proof of Claim 4.3

	Proof of Lemma 4.1

	Missing Proofs
	Proof of Lemma 4.3.2
	Proof of Lemma 4

	Proof of Lemma A.1

