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Abstract
Many types of investigative work involve verify-
ing the legitimacy of visual evidence by identify-
ing the precise geographic location where a photo
or video was taken. Professional geolocation is of-
ten a manual, time-consuming process that can in-
volve searching large areas of satellite imagery for
potential matches. In this paper, we explore how
crowdsourcing can be used to support expert image
geolocation. We adapt an expert diagramming tech-
nique to overcome spatial reasoning limitations of
novice crowds so that they can support an expert’s
search. In an experiment (n=540), we found that di-
agrams work significantly better than ground-level
photos and allow crowds to reduce a search area by
half before any expert intervention. We also dis-
cuss hybrid approaches to complex image analysis
combining crowds, experts, and computer vision.

1 Introduction
Photos, videos, and other visual evidence documents the
world we live in and provides a foundation for modern inves-
tigations in journalism, law enforcement, and human rights
advocacy. This imagery is increasingly distributed online
through social media. Governments post photos of political
events, terrorist organizations share propaganda, and every-
day people use smartphones to document crimes, natural dis-
asters, and other important events.

Because visual evidence can be so compelling, it must be
treated with skepticism. Photos and videos can be edited or
shared with misleading contextual information, intentionally
or by accident. Image verification is the challenging pro-
cess of determining if imagery is what its surrounding con-
text claims it to be; or if not, what it actually depicts [Barot,
2014]. One of the key subtasks of image verification is ge-
olocation, which involves mapping the precise location in the
world where a photo or video was made. Geolocation al-
lows the investigator to determine where the image was actu-
ally made, and compare that with contextual claims about its
meaning and purpose.

∗This paper is an abridged version of a paper titled “Support-
ing Image Geolocation with Diagramming and Crowdsourcing” that
won the Notable Paper Award at AAAI HCOMP 2017.

Expert geolocators draw on many skills and resources
to make these determinations [Higgins, 2014; Kohler and
Luther, 2017]. The process is often manual, and sometimes
tedious. Experts inspect the image for clues, such as famil-
iar landmarks, weather, architecture, and landscapes. Text
and graphics, such as logos and road signs, can often be re-
searched online to narrow down possibilities. When these
clues are not definitive, expert geolocators often turn to di-
agramming and satellite image analysis. They first draw an
aerial diagram of the ground-level image under investigation,
a spatial reasoning skill requiring substantial practice. Then,
they use commercial GIS services like Google Maps to sys-
tematically search the area for distinctive buildings, roads, or
other structures matching their diagram. Depending on the
size and density of the search area, this process can require
hours or days even for experts, and may still prove fruitless.
If the image cannot be geolocated, it may not be verifiable.

In this paper, we explore how crowdsourcing can sup-
port this geolocation process, with the goal of helping an
expert locate an image faster and more accurately. Crowds
have proven to be effective at analyzing satellite imagery, but
novice crowds lack an expert’s spatial reasoning skill in rec-
ognizing ground-level features from aerial imagery. We close
the gap by leveraging the diagramming technique from ex-
pert practice and adapting it for novice crowds to improve
their satellite image analysis.

We demonstrate the value of our approach in a large-scale
experiment (n=540). We find that giving crowds a ground-
level photo results in unacceptably poor performance, but an
aerial diagram significantly improves their performance to
near-perfect levels. Our crowdsourcing technique can reduce
a geolocation search area by half in about 10 minutes while
finding the target area 98.3% of the time. We also discuss the
real-world applications and next steps for this work, including
new opportunities to leverage the complementary strengths
of crowds, experts, and computer vision, for complex image
analysis tasks like geolocation.

2 Related Work
2.1 Computer Vision Approaches to Geolocation
Image geolocation is a longstanding problem of interest for
computer vision researchers. IM2GPS [Hays and Efros,
2008] compares features in a ground photo to a reference
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dataset of 6.4 million geolocated Flickr images and outputs
a distribution of the most probable regions of the earth. More
recently, PlaNet [Weyand et al., 2016] takes a photo as input
and, using a convolutional neural network trained on 126 mil-
lion geotagged photos from the web, generates a probability
for 26,000 cells in a grid covering the earth. Computer vision
approaches like IM2GPS and PlaNet cannot yet consistently
achieve the point-level specificity typically required for ver-
ification work, but may provide excellent starting points for
expert geolocators.

Other work in computer vision seeks to bridge the gap
between satellite and ground level imagery. [Ghouaiel and
Lefèvre, 2016] developed a technique to automatically trans-
late ground photos into aerial perspectives, but the approach
requires panoramic photos and overall translation accuracy
was 54%. [Zhai et al., 2016] trained a neural network to gen-
erate ground-level panoramas from satellite imagery. Their
approach shows promise, but had limited effectiveness in han-
dling high variability features like buildings. Unlike these ap-
proaches, we bootstrap an expert diagramming technique to
translate between ground and satellite images.

Combining elements from the above categories, Where-
CNN [Lin et al., 2015] used cross-view pairs of ground-level
and 45◦ aerial imagery to train a neural network to localize
ground-level photos. Their approach narrowed the location
estimate to 1% of the search area for 7–22% of query images
(depending on the city). While 45◦ imagery is not yet avail-
able in many areas, these automated results provide a point of
comparison to our crowdsourced results.

2.2 Crowdsourced Image Analysis
Due to the impressive capabilities of the human vision sys-
tem, crowds have been used to perform a variety of visual
recognition tasks [Bigham et al., 2010; Noronha et al., 2011].
Many of these applications rely on crowds to identify ev-
eryday objects, scenes, or locations that do not require spe-
cialized knowledge. However, tools like scaffolding and
computer vision have been used to help novice crowds an-
alyze less familiar content, like graphic designs [Greenberg
et al., 2015] or accessibility issues [Hara et al., 2015]. A
rich source of examples comes from citizen science, where
novice crowds recognize and categorize diverse natural phe-
nomena [Wiggins and Crowston, 2014].

Satellite image analysis often leverages crowdsourcing, es-
pecially for humanitarian efforts like locating missing per-
sons or assessing damage from natural disasters [Meier,
2015]. Studies of these projects emphasize the challenges
novices face in translating their own observations into ab-
stract representations [Zacks et al., 2000]. To overcome these
challenges, researchers recommend partnerships between ex-
perts and novices [Kerle and Hoffman, 2013; Bianchetti and
MacEachren, 2015], an idea we explore in this paper.

2.3 Expert Image Geolocation and Diagramming
Many types of professionals perform image geolocation, in-
cluding journalists, intelligence analysts, human rights advo-
cates, and private investigators [Barot, 2014; Brandtzaeg et
al., 2016]. [Kohler and Luther, 2017] conducted an interview
study with geolocation experts in diverse fields, focusing on

Figure 1: The crowd interface.

their motivations, process, and use of crowdsourcing. Inter-
viewees emphasized the importance of drawing diagrams as
a tool for converting a ground-level photo into a more effec-
tive abstraction. One expert said he would “draw a bird’s eye
perspective, or a satellite image perspective, of how I think
it may look like from the air. So I can then compare it with
satellite imagery just to get a better impression.” Another
expert emphasized the difficulty of this mental translation:
“Perspective distortion can throw off a novice or a beginner
really easily because things that you see from the air tend not
to look how you would think they would from the ground.”
These observations align with psychological research show-
ing that people with high spatial ability use different cognitive
strategies for mental rotation tasks [Just and Carpenter, 1985].

Building on these findings, we consider how diagramming
can be adapted for crowds who lack an expert geolocator’s
spatial thinking skills. In the following experiment, we inves-
tigate whether giving a crowd an aerial diagram or a ground-
level photo leads to better geolocation results. We hypothe-
size that the diagram will yield higher true positive rates be-
cause it distills the most important features, but it will also
yield higher false positives because an abstraction can poten-
tially match more areas due to lack of discriminating details.

3 Study
3.1 System Design
We built a web-based system using a Python/Django frame-
work, a PostgreSQL database, and the Google Maps API for
satellite imagery and GIS functions.

The main component of the system is the crowd interface
(Fig. 1). The top left of the interface shows a type of reference
material, depending on the study condition. In the photo-only
condition, it shows a ground-level photo. In the diagram-only
condition, it shows an aerial diagram. In the both condition,
there is a toggle that allowed the user to switch between the
diagram and the ground photo.

The bottom left shows a small Google Map (in Map mode)
of a region with a 4×4 grid of 16 equal-sized subregions over-
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laid in black lines. After experimenting with different-sized
regions, we found that a 4×4 grid struck an effective balance
between context and effort.

The right side of the interface shows a Google Map (in
Satellite mode) of the region, divided by translucent white
lines into the same 4×4 grid. The user is confined to one
subregion at a time, but can zoom in and out and toggle Map
/ Satellite mode. The user clicks a green Yes/Maybe button
if it looks like a potential match, or a red No button if it does
not, and then clicks Next. This advances the user to the next
subregion, and marks in either red or green the corresponding
subregion in the small map. The system advanced through
the subregions in a Creeping Line search pattern, following
best practices used in search and rescue [Wollan, 2004].

3.2 Locations
We used three locations for the study. BSB showed a crowded
area near the Monumental Axis in Brası́lia, Brazil. CLT was
a highway near an overpass in Charlotte, NC, USA. LAX
showed an intersection with crosswalks in downtown Los An-
geles, CA, USA. We selected these locations and correspond-
ing ground photos from a set of geolocation training materials
prepared by an expert. Our selection criteria included simi-
larly moderate difficulty and geographic and visual diversity.

3.3 Diagrams
We also needed a set of aerial diagrams corresponding to
the above locations to compare to the ground-level photos.
We considered using existing expert-drawn diagrams, but dif-
ferences across experts and locations would be difficult to
control in our experimental setting. Instead, we designed a
set of diagram-drawing guidelines, informed by expert prac-
tice [Kohler and Luther, 2017; Higgins, 2014] and relevant
standards [Painho et al., 2010; Kolbe et al., 2005], and used
these guidelines to draw a low-, medium-, and high-detail di-
agram for all three locations using Adobe Photoshop. Low-
detail diagrams showed streets, roadways, and pathways.
Medium-detail diagrams showed road markings and build-
ing outlines plus low-detail features. High-detail diagrams
showed vegetation and street-level details (e.g., parking) plus
medium- and low-detail features. In the expanded version
of this paper, we report on a second experiment comparing
these levels of detail, finding that medium-detail diagrams
produced slightly better results than the others [Kohler et al.,
2017]. Therefore, we used medium-detail diagrams in this
experiment comparing diagrams to ground-level photos.

3.4 Experiment Design
The study was a between-subjects experiment. The indepen-
dent variable was reference material with three levels: dia-
gram only, photo only, or both. Location depicted in the dia-
gram was a covariate with three levels: BSB, LAX, or CLT.
Therefore, there were nine possible conditions. The depen-
dent variables were the participants’ binary judgements on
each of the 16 subregions.

We recruited participants from Amazon Mechanical Turk
(MTurk). We randomly assigned each worker to one of the
nine conditions, and we assigned 60 workers to each condi-
tion, for a total of 540 workers. Pilots showed that workers

Figure 2: Ground-level photos and aerial diagrams.

took an average of five minutes to complete the task, so we
paid $1.21 per task, reflecting minimum wage in our location
for 10 minutes of work. We restricted the task to US-based
workers but used no other qualifications.

Task and Procedure
After accepting the task, each participant completed an on-
line IRB consent form and a short, self-paced tutorial. The
participant then proceeded to examine each of 16 subregions
in the grid and mark it as Yes/Maybe or No. Based on aver-
age completion times in pilot studies, we set the time limit at
10 minutes to encourage fast responses. All tasks had exactly
one correct subregion and 15 distractors.

We took care to design the crowd task and interface to be as
realistic as possible from the worker’s perspective. Workers
did not know whether their region contained a correct subre-
gion, and received no feedback on their judgements. There-
fore, the worker experience would be the same for real-world
scenarios where it was unknown whether the region contained
a correct subregion.

Data Cleaning and Analysis
In our pilot studies, individual workers showed high vari-
ance in task performance. We experimented with different
aggregation strategies and found that forming triads (groups
of three workers) with a one-yes rule yielded the best results.
The one-yes rule means that if at least one of the three work-
ers judged a subregion to be a Yes/Maybe, then it would
be categorized as a yes, while only a unanimous judgement
of No across all three workers would be categorized as a no.
We randomly grouped the 60 workers for each condition into
20 triads per condition in the results that follow.

Next, we compared each triad’s judgement to our gold
standard to calculate true positives and false positives. We
used these measures rather than precision and recall because
geolocation is a needle-in-the-haystack problem, where false
negatives are much worse than false positives.

We performed statistical analyses in R. Shapiro–Wilk tests
showed that the dependent variables failed a normality as-
sumption, so we used Kruskal–Wallis tests as a nonparamet-
ric alternative to ANOVAs. We used Dunn’s tests to per-
form post-hoc analyses, with Bonferroni correction to adjust
p-values for multiple comparisons.
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Figure 3: True positives by reference material. Crowd workers using
only an aerial diagram performed significantly better than workers
who could see only the ground-level photo.

4 Results
For true positives (Fig. 3), the diagram-only condition per-
formed best, with 98.3% of triads marking the correct sub-
region. The both condition performed slightly less well with
a 90% success rate. Ground photo-only trailed behind with
78.3% of triads finding the correct subregion. Reference ma-
terial had a significant effect on true positives, χ2(1) = 4.111,
p < 0.05. Post-hoc analysis showed that true positives were
significantly higher for diagram-only compared to ground
photo-only, z = 3.476, p < 0.01. Also, the both condition
performed marginally significantly better than ground photo-
only, z = 2.028, p = 0.128. There was no significant difference
in true positives for the both condition vs. diagram-only, z =
-1.448, p = 0.443.

For false positives, the crowd generally reduced the search
area by about half, regardless of reference material. Diagram-
only workers produced slightly more false positives (M =
51.3%), followed by both (M = 48%), and then photo-only
(47%), but the differences were not significant, χ2(15) =
12.691, p = 0.626.

5 Discussion
This study investigated how the type of reference material af-
fected the crowd’s geolocation performance. We found that
the diagram by itself results in significantly higher true pos-
itives compared to the ground photo by itself. The diagram
allows crowds to achieve near-perfect performance (98.3%
of triads found the correct subregion), whereas only 78.3% of
triads found it in the ground photo-only condition. Our in-
tuition is that experts would be unlikely to trust a crowd that
misses the target one out of every five times, so the ground
photo by itself may not be a viable approach.

False positives were around 50% for all conditions and ref-
erence material did not have a significant effect. This means
that in all cases, the crowd reduced the search area by about
half. More importantly, for the diagram-only condition, the
search area was cut in half while still including the correct
subregion 98.3% of the time. Further, the significance test
showed that quality is not a zero-sum game: the diagram con-
dition’s excellent true positives do not come at a cost of more
false positives.

The above results indicate that the aerial diagram yields
a significant improvement in quality for crowdsourced im-
age geolocation. When a triad of workers is shown just the
ground-level photo, they miss the correct subregion one out
of every five times. When the photo is replaced with an aerial
diagram, crowds found the target 98.3% of the time, with no
increase in false positives. Crowds also reduce the search area
by half. Therefore, the evidence suggests that crowds pro-
vided with a diagram could substantially augment an expert’s
image geolocation process.

6 Conclusion and Future Work
This paper explored how crowdsourcing could support ex-
perts in a geolocation task. We contributed a new diagram-
ming technique, adapted from expert practice, that can be
used to help novice crowds more effectively analyze satellite
imagery. We also contributed a large-scale crowdsourcing ex-
periment demonstrating the value of our technique. We found
that aerial diagrams are significantly better than ground-level
photos in supporting crowdsourced satellite image analysis.

As our study locations were all city-based, our results pri-
marily speak to urban geolocation tasks. Our approach may
also extend to rural areas, which share many task character-
istics with geolocation of urban imagery, but also face some
distinct challenges, such as scarcity vs. overabundance of im-
age clues [Mehta et al., 2016].

The approach presented here seeks to minimize expert in-
tervention, but future work is needed to understand how best
to integrate the crowd’s judgements into an expert’s work-
flow. Other opportunities involve leveraging computer vision
tools to support crowds and experts, such as:

• Context identification: Many images on social me-
dia do not have surrounding context suggesting a gen-
eral location. Systems like PlaNet could suggest
high-probability sectors to narrow the search space for
crowds.

• Diagram generation: Ground-to-aerial systems like
Where-CNN could not only suggest potential location
matches, but also extract distinctive features to help ex-
perts build a diagram more quickly and accurately.

• Image comparison: Sketch recognition systems like
Google’s Quick, Draw! could compare an expert dia-
gram to satellite imagery and return potential matches.

We propose that hybrid pipelines or mixed-initiative sys-
tems composed of crowds, experts, and algorithms, each
complementing the others with its unique strengths, offer
the greatest potential to support complex image analysis and
sensemaking. This paper offers a glimpse of these possibil-
ities in demonstrating how novice crowds can augment the
work of experts in geolocation and verification tasks.
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