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Abstract—Recent attacks have highlighted the insecurity of
the Internet of Things (IoT) paradigm by demonstrating the
impacts of leveraging Internet-scale compromised IoT devices.
In this paper, we address the lack of IoT-specific empirical
data by drawing upon more than 5TB of passive measurements.
We devise data-driven methodologies to infer compromised IoT
devices and those targeted by denial of service attacks. We
perform large-scale characterization analysis of their traffic, as
well as explore a public threat repository and an in-house mal-
ware database, to underlie their malicious activities. The results
expose a significant 26 thousand compromised IoT devices “in
the wild,” with 40% being active in critical infrastructure. More
importantly, we uncover new, previously unreported malware
variants that specifically target IoT devices. Our empirical results
render a first attempt to highlight the large-scale insecurity of the
IoT paradigm, while alarming about the rise of new generations
of IoT-centric malware-orchestrated botnets.

I. INTRODUCTION

In recent years, Internet connected devices, or what is
currently known as Internet of Things (IoT) devices, have been
widely adopted in various parts of our lives. IoT devices and
corresponding technologies facilitate efficient data collection,
monitoring, and information sharing for consumers (e.g., In-
ternet routers, smart TVs, health monitoring wearables), and
Cyber-Physical Systems (CPS) (e.g., power utilities, manufac-
turing plants, factory automation) [1]. Despite their benefits,
the always-connected nature of IoT devices and the inadequate
security measures implemented by some manufacturers [2],
have turned these devices into attractive targets for cyber
adversaries. Furthermore, IoT devices could be used as en-
ablers for orchestrating large-scale attacks towards a variety
of targets. The Mirai botnet for instance, utilized millions
of compromised IoT devices (e.g., CCTV cameras) to launch
Distributed Denial of Service (DDoS) attacks on several DNS
servers, resulting in service disruption for millions of Internet
users across the globe [3]. Very recently, the Reaper botnet
extended Mirai by exploiting loT-specific vulnerabilities
rather than simply guessing credentials [4].

In order to adopt proper mitigation measures and prevent
large-scale, loT-related cyber attacks, security researchers and
operators need to assess the magnitude of Internet-scale IoT
exploitations, in addition to characterizing and analyzing their
malicious activities. Nevertheless, given the lack of empirical
data related to IoT devices [5], in addition to their excessive

Internet-wide deployments in consumer and CPS, there is an
utmost need to explore data-driven methodologies to shed the
light and comprehend the characteristics of such compromised
IoT devices and their malicious behaviors. To address the
lack of knowledge about compromised IoT devices, there is a
need to posses an Internet-scale perspective of IoT devices
and their unsolicited activities over a period of time. This
indeed is quite challenging as it requires authorization from
different entities who own and operate these IoT devices in
their local realms. Furthermore, monitoring IoT traffic would
come with underlying privacy implications. Moreover, there
are tremendous variants of IoT devices operating from all
around the world and monitoring them would require scalable
systems and significant resources.

An effective approach to gain Internet-wide cyber threat
intelligence is to study passive measurements gathered using
designated sensors or traps that collect traffic from the In-
ternet [6], [7]. These sensors collect traffic targeted towards
routable, yet unused Internet Protocol (IP) addresses, which
are known as darknets or network telescopes [8]. Character-
istically, traffic destined to these inactive hosts is likely to
represent suspicious and unsolicited activities. Furthermore,
traffic captured at the darknet mainly consists of scanning [9],
[10], backscatter traffic resulting from DDoS attacks [11]—
[13], and misconfiguration [8], [14]. Therefore, by carefully
studying darknet traffic, one can generate useful insights on
a portion of unsolicited traffic related to different sources
including compromised machines (e.g., malware-infected) and
victims of DDoS attacks, to name a few. To this end, in
this work, we aim at addressing the problems of inferring
Internet-scale compromised IoT devices and analyzing their
unsolicited/malicious activities by exploring auxiliary, macro-
scopic, empirical passive darknet data obtained from a large
network telescope. Specifically, we frame the contributions of
this paper as follows:

e« We draw-upon close to 5TB of recent darknet data and
execute correlations with a near real-time IoT database to
empirically characterize the magnitude of Internet-scale IoT
exploitations in both, consumer and critical CPS realms. The
generated insights not only render a first attempt ever to
empirically shed the light on the large-scale insecurity of



the IoT paradigm, but are also intended to contribute to
operational/actionable cyber security by providing Internet-
wide, IoT-tailored notifications of such exploitations, thus
permitting rapid remediation.

o We execute a first-of-a-kind, large-scale empirical charac-
terization and analysis of IoT-centric unsolicited activities
as perceived by a large network telescope. To this end, we
uncover the nature of such traffic, its sources, employed
protocols, targeted ports, upon various others. Given the
lack of IoT-specific attack signatures, we postulate that
the analyzed traffic from this work could be leveraged
to design such signatures, in addition to promoting and
facilitating further IoT-tailorted forensic investigations by
making the captured unsolicited empirical traffic available
to the research and operations communities at large.

« Motivated by the rise of new malware families/variants
that specifically target and exploit IoT devices such as
Persirai, Hajime and BrickerBot, to name a few,
we execute non-intrusive correlations between passive mea-
surements and malware threat intelligence to uncover new,
previously unreported malware families targeting the IoT
paradigm. In this context, we explore a publicly available
threat repository and an in-house built malware database
facilitated by instrumenting a large corpus of malware
samples in a controlled sandbox. The results not only alarm
about the severity of this malware issue in the context of the
IoT, but also paves the way for future work for addressing
the rise of IoT-centric, orchestrated botnets.

The remainder of the paper is organized as follows. Section
II reviews the recent literature on various concerned topics
to highlight the uniqueness of the proposed work. Section III
details the methodology to infer Internet-scale compromised
IoT devices by leveraging network telescopes. Section IV
performs a large-scale empirical characterization of the gener-
ated unsolicited traffic from such IoT devices, putting special
emphasis on understanding the nature of the traffic. Section
V explores the maliciousness of the identified IoT devices,
highlighting their involvement in various misdemeanors as
well as pinpointing several newly discovered IoT-specific
malware families. Lastly, Section VI provides a discussion on
several insightful observations and current work limitations,
while Section VII summarizes the outcomes of this work and
highlights several topics that pave the way for future work.

II. RELATED WORK

In this section, we review the literature on various concerned
topics and highlight the added-value of the proposed work.
IoT security and protocol vulnerabilities. The majority of
IoT security research work has been dedicated to synthesizing
IoT context-aware permission models. For instance, Yu et
al. [5] proposed a policy abstraction language that is capable
of capturing relevant environmental IoT contexts, security-
relevant details, and cross-device interactions, to vet IoT-
specific network activities. Along the same research direction,
Jia et al. [15], proposed ContextloT, a system that is capable
of supporting complex IoT-relevant permission models through

efficient and usable program-flow and runtime taint analysis.
Fernandes et al. [16] proposed a similar program-flow tracking
approach that used taint arithmetic to detect policy violations
and restrict traffic generated from exploited IoT application.
In the context of protocol vulnerabilities, Ur et al. [17] studied
numerous types of home automation IoT devices and unveiled
various insights with regards to the security and usability of the
implemented access control models. Ronen and Shamir [18]
demonstrated information leakage attacks by instrumenting a
set of IoT smart lights.

IoT data capturing initiatives. Given the rareness of IoT-
relevant empirical data, several recent efforts were proposed
to collect, curate, and analyze such data. The first [oT tailored
honeypot, namely, IoTPOT, was designed and deployed by
Pa et al. [19]. IoTPOT emulates Telnet services of various
IoT devices running on different CPU architectures. In alter-
native work, Guarnizo et al. [20] presented the Scalable high-
Interaction Honeypot platform for IoT devices (SIPHON). The
authors demonstrated how by leveraging worldwide worm-
holes and few physical devices, they were able to mimic
various [oT devices on the Internet and to attract significant
malicious traffic.

Network telescope measurements and analysis. The idea
of leveraging network telescopes to monitor unused IP ad-
dresses for security purposes was first brought to light in
the early 1990’s by Bellovin for AT&T’s Bell Labs Internet-
connected computers [21], [22]. Since then, the focus of
network telescope studies has shifted several times, closely
following the volatile nature of new threat actors. For instance,
some of the important contributions include the discovery
of the relationship between backscattered traffic and DDoS
attacks in 2001 [23], worm propagation analysis between 2003
and 2005 [24], [25], the use of time series and data mining
techniques on telescope traffic in 2008 [26], the monitoring of
large-scale cyber events through telescopes in 2014 [27], and
more recently, the study of amplification DDoS attacks using
telescope sensors [28], [29].

This paper compliments the previous contributions by ex-
tending network telescope research to particularity address the
problem of IoT security, which has yet to be attempted. To
this end, the paper develops unique data-driven methodologies
to infer and characterize compromised IoT devices, their
unsolicited traffic, and their involvement in illicit activities.
The paper also sheds light on new, previously undocumented
malware families that specifically target IoT devices.

III. IDENTIFYING UNSOLICITED INTERNET-SCALE 10T
DEVICES

We initiate our work by addressing the problems of identify-
ing and characterizing Internet-scale unsolicited IoT devices.
We refer to IoT devices as being unsolicited (or compromised)
if they were found to be generating any network packets
towards the network telescope. Please note that Section IV
will detail the nature of such unsolicited traffic and provide
an in-depth characterization of its modus-operandi. We herein
initially elaborate on the employed datasets and subsequently
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Fig. 1. Top 15 countries hosting the most (a) deployed IoT devices in the obtained data (cumulative percentage 69.3%), and (b) compromised IoT devices

(CPS and consumer IoT devices).

provide the methodology and results towards the goal of
inferring compromised IoT devices.

A. Obtained Data

1) IoT Device Information: It is quite difficult, if not impos-
sible, to obtain technical information related to Internet-wide
IoT devices that have been deployed in consumer and CPS
environments due to privacy and logistic reasons. In addition,
there is a lack of knowledge about effective fingerprinting
approaches for identifying IoT devices by solely observing
network traffic. Considering these challenges however, in this
work, we leverage a near real-time IoT database provided by
Shodan [30]. This service executes large-scale active mea-
surements to identify and index Internet-facing IoT devices.

To this end, we obtained information related to 331,000
IoT devices from Shodan. These IoT devices, which were
deployed in more than 200 countries all around the world,
belong to consumer and CPS realms. On one hand, consumer
IoT devices represent wireless access points and routers,
IP cameras (e.g., webcams and CCTV cameras), printers,
network storage media, satellite TV box and digital video
recorders (DVRs), and electric hubs/outlets. On the other
hand, IoT devices in CPS realms are involved in monitoring,
controlling, and managing industrial/automation operations.
They represent programmable logic controllers (PLC), remote
terminal units (RTU), or other smart equipment that are used
in industrial control systems (ICS), supervisory control and
data acquisition systems (SCADA), and/or distributed control
system (DCS). We obtained information related to approx-
imately 181,000 consumer IoT devices, including, routers
(46.9%), printers (29.1%), IP cameras (18.3%), and network
storage media (4.6%). The remaining consumer IoT devices
accumulate to only 1.1% of the total devices. We also obtained
data related to 150,000 IoT devices in CPS that supported
31 industrial/control automation protocols/services. These CPS
devices belong to a number of industries including but not
limited to: building automation, power generation and distri-
bution, control systems, plant/factory automation, oil and gas
transportation, and embedded IoT communications.

As depicted in Figure 1a, the U.S. hosted the largest number
of IoT devices (25%), followed by a significantly less number

of devices hosted in the U.K. (6%), Russia (5.9%), and China
(5%), respectively. Furthermore, by looking at the top 15 coun-
tries with the most number of IoT devices (Figure 1a), which
account for about 69% of all IoT devices, we noticed that
the number of consumer IoT devices were relatively higher
than those deployed in CPS for the listed countries except for
China, France, Canada, Vietnam, Taiwan, and Spain.

2) Network Telescope Data: Darknet data consists of one-
way traffic targeted towards routable, allocated yet unused
IP addresses (dark IP addresses). Since these IP addresses
are not bound to any services, any traffic targeting them
is characteristically unsolicited [8], [14]. Typically, darknet
data consists of scanning, backscatter, and misconfiguration
traffic [8], [9], [11], [12], [14], [31]. We explored over 5TB
of darknet traffic between April 12-18, 2017 (about 80 GB of
daily traffic). The darknet traffic is obtained from the UCSD
real-time network telescope data maintained by the Center for
Applied Internet Data Analysis (CAIDA) [32]. It is one of
largest available sources of passive darknet traffic with about
16.7 million globally routed destination IPv4 addresses (i.e.,
/8 network) capturing over a billion packets every hour. The
processed darknet traffic is stored in “flowtuple” files. Each
file represents incoming flows towards the darknet that consist
of the following flowtuple information: source/destination IP
addresses and used ports, protocol, time to live (TTL), TCP
flags, IP length, and total number of packets. The daily darknet
traffic consists of unique compressed files representing hourly
traffic (maximum of 24 files per day). We found that the
available data for April 18 was incomplete, with only 15 hours
of collected traffic (data might be missing due to technical
issues at the telescope). To maintain consistency, we decided
to remove the incomplete data from further analysis throughout
the paper, resulting in 143 hours of analyzed darknet data that
was obtained over 6 days between April 12-17, 2017.

B. Inferring and Characterizing Unsolicited IoT Devices

To infer compromised IoT devices, we executed a cor-
relation algorithm that leverages IP header information to
associate the obtained IoT device information with darknet
flows. A significant 26,881 IoT devices were found interacting
with the darknet, representing relatively more compromised
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Fig. 2. The cumulative number of daily discovered compromised CPS and
consumer IoT devices at the darknet over the 6 days analysis interval.

consumer IoT devices (57%) than CPS (43%). As shown in
Figure 2, slightly over 12,000 (46%) unsolicited IoT devices
were correlated with the darknet data at the first day of the
analysis (April 12, 2017). For the remaining time period, we
discovered an average of about 2,900 newly compromised
IoT devices per day. Considering the overall and cumulative
numbers of uncovered unsolicited IoT devices, we definitely
anticipate that an extended analysis period would result in
discovering even more compromised IoT devices.

The compromised IoT devices were located across 161
countries, with the largest number of devices to be hosted
in Russia (24.5%), followed by China (8.6%), and the U.S.
(8.1%), respectively (Figure 1b). It is worth noting that while
the U.S. and the U.K. hosted more number of IoT devices as
compared to Russia and China (Figure 1a), the latter countries
were found to host a relatively higher number of unsolicited
IoT devices, as illustrated in Figure 1b. Furthermore, while
Thailand, Indonesia, Singapore, Turkey, Ukraine, and India
were not listed among the top 15 hosts with the most deployed
IoT devices (Figure 1la), it is interesting to find them among
the top 15 countries with the most number of uncovered com-
promised IoT devices. In fact, Figure 1b illustrates a significant
difference in the percentage of unsolicited IoT devices found
in Russia (31%) and Ukraine (30%), as compared to countries
such as the U.S. (2.4%) and the U.K. (2.5%). While the actual
reason behind this significant difference is quite obscured,
this might indicate the enforcement of a stronger and more
effective IoT security measures and policies in the U.S. and
the U.K. in comparison to other countries.

1) Compromised IoT Devices in Consumer Realms: We
identified 15,299 unsolicited consumer IoT devices that were
correlated with the darknet over the analysis period. These
IoT devices were located across 145 countries, with Russia
hosting the highest percentage of compromised consumer IoT
devices (32%), followed by the U.S. (9%), Indonesia (4%),
and Thailand (4%), respectively. These IoT devices were
connected to the Internet via 1,762 different Internet Service
Providers (ISP), with the Russian “JSC ER-Telecom” hosting
the highest percentage of compromised consumer IoT devices
(27.6%), as summarized in Table I. In addition, about 52.4%
of compromised consumer IoT devices were Internet routers,
followed by IP cameras (25.2%), printers (18%), and network
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Fig. 3. Percentage of compromised consumer IoT devices by type/category.
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storage media (3.6%), respectively. As illustrated in Figure 3,
these aforementioned devices accounted for about 99.4% of
all consumer IoT devices, while TV boxes/DVRs and electric
hubs/outlets represented less than 0.6% of all compromised
consumer devices.

TABLE I
Top 5 ISPS HOSTING THE HIGHEST NUMBER OF COMPROMISED
CONSUMER IOT DEVICES.

ISP Country Devices %

JSC ER-Telecom  Russian F. 4,205 27.6
PT Telkom Indonesia 542 3.6
Korea Telecom R. of Korea 339 2.2
PLDT Philippine 311 2.0
TOT Thailand 277 1.8

2) Compromised IoT Devices in CPS Realms: We identified
11,582 compromised IoT devices in CPS environments that
were located in 136 countries, with China, Russia, Korea, and
the U.S. hosting about 17%, 14.8%, 8.3%, and 6.9% of all the
compromised devices respectively. The IP addresses of these
devices were associated with 2,279 different ISP across the
identified countries. As pinpointed in Table II, “Rostelecom”
hosts the highest percentage of compromised IoT devices
(about 4%), followed by “Korea Telecom” (3.8%) and “Turk
Telekom” (3.2%), respectively.

TABLE II
Top 5 ISPS HOSTING THE HIGHEST NUMBER OF COMPROMISED [0T
DEVICES IN CPS REALMS.

ISP Country Devices %
Rostelecom Russian F. 461 4.5
Korea Telecom R. of Korea 429 3.8
Turk Telekom Turkey 347 32
HiNet Taiwan 261 2.5
JSC ER-Telecom  Russian F. 277 1.8

Furthermore, a range of 31 services/protocols were operated
by such compromised IoT devices. These services are not
mutually exclusive, and therefore, an IoT device in a specific
CPS might support one or more of these services. The top
10 operated services/protocols by the most number of unso-
licited IoT devices are summarized in Table III. Among all
the supported services/protocols, Telvent OASyS DNA (20%),



TABLE III
Top 10 CPS REALMS HOSTING COMPROMISED IOT DEVICES.

Service/Protocol Common applications Devices %
Telvent OASyS DNA Oil and Gas transportation pipelines and distribution networks 2,328 20.0
SNC GENe Control systems 2,126 18.3
Niagara Fox Building automation systems 1,554 13.4
MQ Telemetry Transport IoT communications, sensory networks, safety-critical communications 1,497 12.9
Ethernet/IP Manufacturing automation 1,490 12.8
ABB Ranger Power generating plants, transmission lines, mining operations, and transportation systems 1,061 9.1
Siemens Spectrum PowerTG ~ Utility networks 685 5.9
Modbus TCP Power utilities 639 5.5
Foxboro/Invensys Foxboro Plant automation systems, flowmeters, single-loop controllers, and product support services 590 5.1
Foundation Fieldbus HSE Plant and factory automation 354 3.0

which operates in critical oil and gas CPS, and Niagara Fox 60 MCPS W Consumer

(13.4%), which is common in building automation systems, 50 46.8

appear among the most prevalent. CPS hosting compromised © 40 38.8

IoT devices also include those related to power utilities and g 30

manufacturing plants. Having noted this, it is indeed alarming 5 20

N i i X
(to say the least) to infer over 11,000 compromised IoT devices 10 39 65 22 19
operating in such critical and error-sensitive environments. 0 —
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IV. CHARACTERIZING UNSOLICITED TRAFFIC FROM
INTERNET-SCALE IOT DEVICES

The aim of this section is to dissect, thoroughly compre-
hend, and characterize the unsolicited traffic generated by the
inferred compromised IoT devices as perceived by the network
telescope. We observed about 141.3M packets that were sent
to the darknet from the 26,881 compromised IoT devices
(daily mean = 23.5M and o = 0.92M packets). On average,
we captured 10,889 unsolicited IoT devices generating traffic
towards the darknet on a daily basis, with slightly larger
number of active consumer [oT devices (53%) on a daily basis.
In general, consumer [oT devices, which represent 57% of all
compromised IoT devices, generated more packets towards the
darknet as compared to compromised devices in CPS realms,
with approximately 62M packets (daily mean = 10M and
o = 1.01M), and 50M packets (daily mean = 8.3M and
o = 1.056M) for each device type respectively.

Considering the critical CPS contexts in which the compro-
mised [oT devices operate in, it is worrisome to observe their
aggressive role in generating significant amount of unsolicited
activities. Interestingly, the statistical analysis using a Mann-
Whitney U test indicated that the number of packets generated
towards the darknet was significantly greater for devices in
CPS than for consumer IoT devices (p < 0.0001). The higher
activities however, might be attributed to the nature of the
compromised IoT devices in CPS, which might have access
to more powerful processing capabilities, as compared to
other IoT devices, which typically have limited processing
and memory resources. By contrast, the lower activity rate
of compromised consumer IoT devices might be due to the
stealthy nature of their generated activities, which aim at max-
imizing reachability while attempting to avoid detection. In
what follows, we further explore the natures and characteristics

Fig. 4. Percentage of TCP, UDP, and ICMP traffic generated by compromised
IoT devices in CPS and consumer realms.

of unsolicited traffic that have been generated by Internet-scale
compromised IoT devices.

A. Unsolicited UDP Traffic

The analyzed UDP packets represent about 10.4% of all
traffic generated by the unsolicited IoT devices, with slightly
more UDP packets generated by compromised consumer [oT
devices as compared to those in CPS, as illustrated in Figure 4.
Indeed, it is well known that UDP packets have been used
to scan the Internet for open ports/services [9], [33], in
addition to being employed to perform DoS attacks by flooding
destination IP addresses or by exploiting open resolvers,
causing amplification DoS attacks [29]. Thus, due to the
stateless nature of UDP packets, it is quite challenging to
classify them into a specific traffic category without further
packet inspection. To maintain the focus of this paper, we do
not address this challenging objective herein, though we will
explore methodologies similar to [13] in future work to achieve
this task. Nonetheless, to gain insights related to IoT-generated
UDP traffic, we provide an overall characteristic analysis of
the observed UDP packets in the following sub-sections.

1) UDP Packets: Overall, we observed about 13M UDP
packets generated by a total of 25,242 compromised IoT
devices, among which, about 60% were compromised con-
sumer IoT devices, generating 63% of all UDP packets. Such
IoT devices also targeted a significantly higher number of
ports and destination IP addresses on an hourly average, as
compared to those compromised IoT devices deployed in
CPS (Figure 5). More specifically, compromised consumer [oT
devices targeted an average of about 29,000 ports on more than
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Fig. 5. Overall UDP packets sent by compromised (a) CPS and (b) consumer IoT devices to destination IP addresses and ports.

48,000 destination addresses, while compromised IoT devices
in CPS targeted less ports (about 18,000) on significantly less
number of destination addresses (14,700).

The comparison of the overall behavior of compromised IoT
devices in CPS and consumer realms in terms of the generated
UDP packets, and targeted destination addresses and ports,
illustrates a number of differences. First, the compromised
consumer IoT devices were actively sending UDP packets
during repeated intervals that lasted for longer hours than
those compromised in CPS. Second, the total number of
generated UDP packets per hour by compromised consumer
IoT devices was very close to the total number of targeted
destination IP addresses (Figure 5b), and therefore, very few
packets were sent towards each destination IP. We also found
a strong positive correlation between the number of targeted
ports and destination IP addresses by compromised consumer
IoT devices (Pearson’s correlation » = 0.95 and p < 0.0001),
which may indicate the effort of such devices to reach a wider
range of new destination IP addresses on various ports at each
interval. Finally, the compromised CPS devices generated a
significantly larger number of UDP packets per hour towards
the targeted destinations, with packets possibly sent to a
relatively larger number of ports on the same destinations, as
illustrated by the recurring spikes in the number of contacted
destination ports per hour (Figure S5a).

2) UDP Ports: The compromised IoT devices generated
UDP packets towards all available UDP ports (65,535). About
10.7% of all UDP packets were targeting the top 10 ports (Ta-
ble IV), while the remaining packets (89.3%) were distributed
among over 60,000 ports. As shown in Table IV, port 37547
received about 329,000 UDP packets (2.5% of all), followed
by port 137 (NetBIOS) and port 53413 with 2.06% and 2.05%
of all UDP traffic respectively. In addition, while destination
ports 37547, 32124, and 28183 were targeted by more than
9,000 compromised IoT devices, the remaining ports received
UDP packets from significantly less number of compromised
IoT devices (Table IV). We identified 5 assigned (well-known)
services/protocols that correspond to the top 10 targeted ports.
Nevertheless, although the remaining ports were not officially
assigned to any services/protocols, some of them are known
to be associated with known vulnerabilities. For instance, port

37547 has been associated with a backdoor to exploit and
control “Netcore/Netis” routers [34].

TABLE IV
Topr 10 TARGETED UDP PROTOCOLS/PORTS.

Protocol/Port Packets (K) % Devices
Not Assigned/37547 329.6 2.52 10,115
NetBIOS/137 269.9 2.06 144
Not Assigned/53413 268.1 2.05 91
Not Assigned/32124 141.2 1.08 9,488
Not Assigned/28183 122.5 0.94 9,710
mDNS/5353 99.4 0.76 165
Not Assigned/4605 50.3 0.38 150
DNS/53 42.6 0.33 158
Teredo/3544 34.4 0.26 226
OpenVPN/1194 34.0 0.26 96

B. Unsolicited Backscatter Traffic

Backscatter traffic, in the context of this work, is a byprod-
uct of (D)DoS attacks that target IoT devices. When a victim
IoT device is attacked by a flood of packets generated from
spoofed source IP addresses (that happened to be belonging
to the network telescope IP space), the device will generate
reply packets destined to the darknet, which can then be
collected and extracted. These packets are mainly TCP (SYN-
ACK and RST) or ICMP reply packets (Echo Reply, Destina-
tion Unreachable, Source Quench, Redirect, Time Exceeded,
Parameter Problem, Timestamp Reply, Information Reply, or
Address Mask Reply) [13].

Our analysis revealed a total of 839 IoT devices that have
fallen victims of DoS attacks, with about 10.3M backscatter
packets generated towards the darknet (8.2% of total traffic).
Approximately half of the victim IoT devices generated less
than 170 backscatter packets towards the darknet, while about
17% of the IoT devices generated 10,000 or more backscat-
ter packets (Figure 6). Moreover, only 7 devices generated
100,000 or more backscatter packets, among which 5 of them
were likely to be operating in critical CPS realms. In general,
about 73% of all backscatter packets were generated by IoT
devices in CPS, which represent slightly more than half of the
DoS victims (53%). In fact, 5 IoT devices in CPS contributed
to about 43% of all backscatter traffic, with two devices
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that generated about 1.1 and 3.4 million packets respectively.
These observations may reflect the nature of the inferred DoS
attacks that were focused on target devices in CPS with higher
intensity as compared to consumer IoT devices.

1) IoT DoS Victims: By investigating the distribution of
backscatter packets as illustrated in Figure 7, we observed few
instances with noticeable increase in the number of generated
backscatter packets by the IoT devices (e.g., between intervals
6 and 8). These sudden spikes indicate a large magnitude of
DoS attacks against CPS and consumer IoT devices during the
specified time intervals. It is apparent that IoT devices in CPS
realms were attacked more often and with higher intensity as
compared to consumer [oT devices. In fact, a conducted Mann-
Whitney U test showed a statistically significant difference
between the number of generated backscatter packets per hour
when comparing IoT devices in CPS and consumer realms
(p < 0.0001, U = 6061, and Z = —5.95).

To further investigate targeted IoT devices as DoS victims,
we focused at intervals with sudden spikes in the number of
backscatter packets. Interestingly, a single victim IoT device
generated almost all the packets during every DoS attack
interval. For instance, an IoT device in a CPS realm located
in China was responsible for more than 99% of all backscatter
traffic during intervals 6-8 and 53-55, and about 89% of traffic
at interval 56. Similarly, a different CPS device from China
was found to be under DoS attacks during intervals 99 and
127, generating about 91% and 97% of all backscatter traffic
at those intervals respectively. Both of the aforementioned IoT
device operated Ethernet/IP on TCP/UDP port 44818, which is
used in manufacturing automation. After some investigations,
we inferred that this service is associated with “Rockwell
Automation Control Logix PLC” vulnerabilities, which can
cause DoS on the targeted IoT devices.! Finally, an IoT
device in a CPS from Switzerland, which supports Telvent
OASyS DNA (used in oil and gas transportation pipelines and
distribution networks), contributed towards about 85% of the
backscatter traffic at interval 94, indicating another instance
of targeted DoS attacks.

Analyzing the DoS events for the consumer IoT devices
resulted in similar behavior as the CPS devices. For instance,
a printer located in the Netherlands, generated over 104,000
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Fig. 7. Distribution of the generated backscatter packets by CPS and consumer
ToT devices (143 hours).

backscatter packets at interval 49, contributing towards 98%
of all packets at this interval. In addition, another printer from
the U.K. was found to be under targeted DoS attacks as it
generated about 85% of all backscatter packets at interval 81.

2) Targeted Countries: The targted IoT devices were found
to be located in 80 countries, with China, Singapore, and
the U.S. hosting the highest number of DoS IoT victims,
respectively (Figure 8a). Moreover, China and the U.S. hosted
the most number of targeted IoT devices in CPS realms (103
and 49 devices, respectively), while Singapore and Indonesia
hosted the highest number of consumer IoT device victims
(64 and 52 devices). From a different perspective, about
52% of all backscatter traffic was generated by IoT devices
hosted in China, followed by devices in the U.S. (5.9%) and
the U.K. (4.1%), respectively. In addition, we noticed that
the U.K, Brazil, Switzerland, and Argentina, were among
the top 15 countries with the highest number of generated
backscatter packets (Figure 8b), while hosting relatively few
victim IoT devices (10, 16, 4, and 5 devices, respectively).
This corroborates our previous findings regarding the nature
of the observed DoS attacks during the analysis intervals,
which represent intensive targeted attacks on a small number
of victim IoT devices.

C. Unsolicited Scanning Traffic

Probing traffic generated from unsolicited IoT devices that
target the network telescope is an indicator of exploitations of
such IoT devices. Such compromised devices would typically
be scanning the Internet looking to exploit vulnerable hosts or
other IoT devices. In order to identify IoT-generated scanning
traffic, we first looked at the remaining non-backscatter ICMP
packets, which represented a very small percentage of the
total generated traffic by compromised IoT devices (0.23%).
More than 99.9% of these packets were ICMP Echo requests,
which are typically used for remote network scans (e.g., ping).
Moreover, these packets were originated from 56 exploited [oT
devices, among which 32 consumer IoT devices generated the
majority of the ICMP scanning packets (93%). We also iden-
tified slightly over 100M TCP packets that were not classified
as backscatter. These TCP packets were mainly TCP-SYN
packets (99.97%), which are commonly used for scanning the
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Fig. 9. Overall TCP scanning packets generated towards destination IP addresses and ports by exploited (a) CPS and (b) consumer IoT devices.

Internet [9]. The TCP scanning packets were generated by
a total of 12,363 compromised IoT devices (55% consumer
IoT devices). We illustrate the overall distribution of the TCP
scanning packets generated by compromised IoT devices in
both, CPS and consumer realms in Figure 9. On average,
exploited consumer IoT devices generated more TCP scanning
packets per hour, as compared to exploited IoT devices in CPS,
with about 382,000 and 318,000 packets for each device type
respectively. Nevertheless, while the compromised IoT devices
included more consumer IoT devices (55%), the analysis
showed no linear correlation between the number of compro-
mised IoT devices and the total generated scanning packets per
hour (Pearson’s  ~ 0 and p > 0.05). In addition, exploited
consumer loT devices targeted relatively more destinations per
hour, as compared to those deployed in CPS, with an average
of 280,000 and 215,000 destinations respectively. Interestingly,
while the exploited IoT devices in CPS scanned relatively
less number of destinations, they seemed to be scanning a
wider range of destination ports as compared to consumer
IoT devices, with an average of 576 scanned ports per hour
(min 271 and max 987). Exploited consumer I[oT
devices on the other hand, scanned a smaller range of ports
per hour (average of 246 ports), except at interval 119, where
a sudden increase in the number of scanned ports is clearly
observed (Figure 9b). Investigating the data at interval 119
revealed 734 IoT devices that were generating TCP scanning
packets. Among those devices, a single IP camera hosted in
the Dominican Republic was responsible for scanning 10,249

ports on 55 destination addresses.

1) Scanned Protocols/Services: We summarize the top 14
protocols/services that received the most scanning activities
from the exploited IoT devices in Table V. Telnet received
the highest portion of all TCP scanning packets (about 50%),
followed by HTTP and SSH, which received significantly less
number of packets, with about 9.4% and 7.7% of all TCP
scanning packets respectively.

TABLE V
ToOP 14 PROTOCOLS/PORTS WITH THE MOST TCP SCANNING PACKETS
GENERATED BY EXPLOITED IOT DEVICES (CP=93.3%).

Packets Consumer CPS
Protocol/Port ™M) (%) | (%) 1P (%) 1P
Telnet /23/2323/23231 | 50.08 50.2 | 63.4 643 | 36.6 553
HTTP /80/8080/81 941 94 94,5 1418| 5.5 345
SSH /22 7.68 1.7 337 64 66.3 80
BackroomNet /3387 6.2 6.2 - - 100 1
CWMP /7547 449 45 448 169 | 552 244
WSDAPI-S /5358 4.05 4.1 59 94 41 48
MSSQLServer /1433 333 33 362 8 63.8 13
Kerberos /88 267 27 99 1061 1 23
MS DS /445 249 25 453 43 54.7 330
EthernelP 10 /2222 0.68 0.7 41.6 50 58.4 65
iRDMI /8000 0.67 0.7 98.5 1055 1.5 18
Unassigned /21677 0.57 0.6 0 1 100 87
RDP /3389 0.51 0.5 46.8 42 53.2 61
FTP /21 029 0.3 46 20 54 33

Overall, we observed that HTTP, Telnet, Kerberos, and
iRDMI, were scanned by a noticeably larger number of



compromised [oT devices as compared to other protocols (Ta-
ble V). In addition, a significantly larger number of compro-
mised consumer IoT devices were scanning HTTP, Kerberos,
and iRDMI protocols, contributing towards the majority of
generated TCP scanning packets at these ports (TableV). On
the other hand, while only one exploited IoT device in a
CPS realm was actively scanning port 3387 (BackroomNet),
almost all scanning packets generated towards port 21677 were
also found to be generated by compromised CPS IoT devices
(negligible TCP traffic was generated by a single compromised
consumer IoT device).

The distribution of the TCP scanning packets targeting
the top 5 protocols/services is illustrated in Figure 10. It
is important to note that most of these protocols were also
associated with the recent loT-initiated cyber attacks (e.g., the
Mirai botnet and its variations) [3]. In fact, our analysis
revealed a number of compromised IoT devices that were
actively involved in scanning these protocols. Moreover, these
compromised devices were corroborated to perform malicious
scanning by comparing them against a publicly available threat
repository (Cymon [35]), as elaborated in Section V. In what
follows, we present further analysis with regards to the top
scanned protocol/services.

Telnet. It is clearly observed that Telnet received the highest
amount of TCP scanning packets from 1,196 exploited IoT
devices. In addition, slightly more compromised consumer [oT
devices (54%) were scanning Telnet as compared to those
deployed in CPS, generating about 63% of all TCP scans.
Moreover, a total of 7 compromised IoT devices contributed
towards 55% of all TCP packets targeting Telnet. These ex-
ploited IoT devices, which were hosted in different countries,
represent three IP cameras, one router, DVR, and printer, and
two devices in CPS associated to power utilities and utility
networks. Interestingly, these compromised IoT devices were
also associated with malicious scanning as indexed by Cymon.
SSH. We noticed sudden increases in the overall scanning
activities towards SSH at intervals 32 and 69 (Figure 10),
with about 242,000 and 253,000 TCP packets generated by
compromised IoT devices respectively. Surprisingly, only a
hand full of compromised IoT devices, mainly those in CPS,
were generating the majority of the TCP scans at these
intervals. In particular, two exploited routers hosted in Russia
and Australia, and three compromised [oT in CPS (two hosted
in China and one in Brazil), generated about 93% of the
scans at interval 32. Interestingly, the three exploited IoT in
CPS, which generated about 80% of the scanning packets at
interval 32, were also found to generate the majority of all
scanning traffic at interval 69 (about 90%). In fact, all of
the five aforementioned compromised IoT devices were also
associated with malicious scanning and/or SSH brute force
attacks by Cymon.

BackroomNet. We noticed that BackroomNet was scanned by
a single compromised IoT in CPS located in Canada, which
operated BACnet/IP (used in building automation). As shown
in Figure 10, the intensive scanning activity started at interval
113 (April 16), generating over 6.2 million packets during
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Fig. 10. The distribution of TCP scanning packets generated by exploited
ToT devices towards the top 5 targeted protocols/services.

the next 30 hours (average of approximately 200,000 TCP
scanning packets per hour). We also compared this suspicious
activity against Cymon, and confirmed that it was being
involved in malicious scanning activities.

HTTP. A total of 1,763 compromised IoT devices scanned
HTTP ports, among which about 80% are consumer I[oT
devices. Moreover, these compromised consumer devices con-
tributed towards the the majority (94.5%) of the scanning
packets targeting HTTP ports, with an hourly average of about
62 thousand generated scanning packets from 415 exploited
devices. It is interesting to see that despite the gradual increase
in the number of generated scanning packets towards HTTP
ports after interval 92 (Figure 10), the overall distribution of
the scanning packets illustrates a more organized and uniform
scanning behavior that does not involve noticeable behavioral
changes from the compromised IoT devices. This behavior
however, might be resulting from orchestrated stealthy scans
generated by compromised IoT devices towards the Internet.
Proving this would require further investigations and will be
considered for future work.

CWMP. The CPE WAN Management Protocol (CWMP) is
a web-based protocol that enables remote configuration and
management of routers, gateways, and other IoT devices [36].
More importantly, CWMP was utilized by some variants of
the Mirai botnet to exploit routers [3]. A total of 413
compromised IoT devices, among which 59% were CPS-
related, generated more than 4M TCP scanning packets to-
wards CWMP (Table V). On average, CWMP was scanned
by 36 compromised IoT devices, generating more than 31,000
scanning packets per hour. As illustrated in Figure 10, these
scans had the least variations in terms of magnitude of the
generated packets during the analysis interval. Despite that, we
noticed an exploited router, which was located in Australia,
to generate relatively more scanning packets (10.6%), as
compared to other compromised IoT devices. Moreover, a total
of 5 exploited CPS-related IoT devices were also found to
generate relatively more packets than those others deployed in
other CPS, representing a total of about 25% of all scanning
traffic on CWMP. Three of these devices, which supported
Ethernet/IP (used in manufacturing automation), were hosted
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Fig. 11. Distribution of received packets from the top 8,839 IoT devices and
the malicious devices flagged by Cymon (N = 816).

in Korea. The remaining two devices, which were used in
control systems (SNC GENe) and oil and gas transportation
pipelines and distribution networks (Telvent OASyS DNA),
were located in China and South Africa, respectively. Finally,
all but two of the aforementioned compromised IoT devices
were confirmed to be performing malicious scanning of the
Internet using Cymon.

V. ANALYZING THE MALICIOUSNESS OF UNSOLICITED
INTERNET-SCALE 10T DEVICES

In this paper, we identified a large number of compro-
mised/exploited IoT devices while characterizing their unso-
licited traffic, which pinpointed to some malicious scanning
activities. Motivated by these findings, and the plethora of
IoT-centric malware that are currently “in the wild” (e.g.,
Mirai and Hajime), in this section, we aim at exploring
the maliciousness of the inferred IoT devices by investigating:
(1) whether such IoT devices are involved in other illicit
activities, and (2) whether there exists other malware families
and variants that could possibly be exploiting such IoT devices.

A. IoT lllicit Activities

To investigate the involvement of such IoT devices in
malicious activities, we relied on a publicly available cyber-
threat intelligence service provided by Cymon [35]. The latter
renders a service to track and aggregate Internet-scale events
related to IP addresses and domains, which are involved
in malware, phishing, botnets, spamming, DNS blacklisting,
scanning, and web attacks. We investigated the malicious
activities associated with 8,839 exploited IoT devices, which
represent all devices that generated backscatter traffic (839
DoS victims), and the top 4,000 compromised IoT devices
with the most generated scanning and UDP packets from each
IoT device category (consumer and CPS). As presented in
Figure 11, about 10% of the explored IoT devices sent 50
or less packets to the darknet, while only 15% of them sent
10,000 packets or more during the analysis interval. In fact,
while less than 2% generated 100,000 packets or more, only 15
devices sent more than 1M packets (max = 6.25M packets).
By correlating the explored IoT devices against those IP
addresses indexed by Cymon, we uncovered 816 IoT devices
(9.2%) that were linked to one or more malicious activities.

TABLE VI
IDENTIFIED THREATS SUMMARY. NOTE THAT THE IDENTIFIED THREATS
ARE NOT MUTUALLY EXCLUSIVE.

Threat Category IoT Devices %

Scanning 786 96.3
Miscellaneous (Web/FTP attacks, DNSBL, 574 70.3
Malicious domains, VoIP)

Brute force (SSH) 252 30.9
Spam (Mail, IMAP) 227 27.8
Malware (Virus, Worm, Bot/Botnet, Trojan) 117 14.3
Phishing 5 0.6

We amalgamated the identified activities into 6 illicit cate-
gories, as summarized in Table VI. It is worthy to note that
the threat categories are not mutually exclusive, since different
sources of cyber threat intelligence (within Cymon) might flag
a given host/IP with multiple malicious activities. The majority
of the identified malicious IoT devices were associated with
illicit scanning (96.3%). Furthermore, about 70% of the IoT
devices were flagged as miscellaneous (e.g., Web attacks),
while about 31% and 28% were associated with SSH brute
force attacks and spamming respectively. Interestingly, a total
of 117 IoT devices were linked to malware-related activities
(14.3%), while only 5 devices were associated with phishing
activities. Specifically, our findings identified a significant
91 IoT devices operating in various CPS realms that were
indeed associated with malware, with the majority (85 devices)
to be involved in TCP scanning activities. Furthermore, 26
consumer IoT devices were linked to malware, with 23 devices
performing scanning activities. It is interesting to observe that
a total of 9 devices (generating the DoS peaks of Figure 7),
were found to be related to malware as well.

B. IoT-Centric Malware Families

Given the fact that we have identified 117 IoT devices
that were related to malware, we attempted herein to further
explore this matter. In this context, we relied on an in-
house built database of malware information. The database
is an artifact of conducting large-scale dynamic malware
instrumentation. Indeed, we have been receiving a malware
feed on a daily basis with an average of 30,000 malware
samples from ThreatTrack Security.? XML reports are
produced by analyzing the malware binaries in a controlled
environment. It is worthy to mention that these reports contain
the executed activities by the malware samples at the network
and system levels. On one hand, the network level activities
refer to the connections and the exchanged packets, including
IP addresses, port numbers, URLs, visited domains and the
actual payload data that has been sent. On the other hand,
the system level activities constitute the list of Dynamic-link
Library (DLL) files that are utilized by the malware, the
key registry changes, and the memory usage. The malware
database is built by parsing and indexing such XML malware
reports. We executed correlations (using IP address informa-
tion) between all the inferred unsolicited IoT devices from

2www.threattrack.com



TABLE VII
IDENTIFIED, PREVIOUSLY UNREPORTED MALWARE FAMILIES EXPLOITING
10T DEVICES

Malware Family

Ramnit
Starman
Kryptik
Nivdort
Razy
Zusy
Bayrod
Artemis
MSIL
Vupa
Allaple

Section III (i.e., 26,881 devices) and the malware database.
The outcome is intended to demonstrate if any malware variant
has communicated with (possibly exploited) IoT devices.
Our findings revealed 33 domain names and 24 unique
malware hashes/variants associated with the identified IoT
devices. Given the extracted malware hashes from the malware
database, we leveraged VirusTotal to unveil 11 malware
families that were found to be associated with the IoT devices.
The uncovered malware families are summarized in Table VII.
While some of the families are already quite popular, such
as the Ramnit as a backdoor, and Zusy for generating
email spam, our results demonstrate that new variants of
such families are already being empowered to target the IoT
paradigm. To the best of our knowledge, such results (i)
render a first attempt ever to shed the light on IoT-centric
malware families by correlating passive measurements and
malware samples facilitated through dynamic analysis, (if)
highlight on new, previously unreported families (and variants)
that have empirically been demonstrated to target the IoT
paradigm, and (iii) alarm about the rise of new malware
variants, which undoubtedly would facilitate the establishment
of ever-evolving, IoT-tailored, malware-orchestrated botnets.

VI. DISCUSSION

In this section, we elaborate on a few topics that are worthy
of being discussed in the context of the proposed work.
Comprehensively inferring Internet-scale unsolicited IoT
devices. While this work leveraged the Shodan service to
gather a large dataset of IP information related to deployed
IoT devices in order to facilitate their correlation with passive
measurements, identifying technical information for Internet-
wide IoT devices remains a challenging objective. Indeed,
without addressing this issue at large, approaches similar
to the one presented in this paper would remain partially
lacking (at least operationally). In this context, we foresee two
approaches moving forward. The first is of technical nature
and is rendered by exploring fuzzy matching algorithms and
fuzzy hashes/signatures to identify a broader range of IoT
devices (previously not indexed by Shodan) as perceived
by the network telescope by leveraging IoT-relevant darknet
traffic (from previously inferred IoT devices). The second is

a non-technical approach, requiring ISPs, local IoT operators
and industry to collaborate to make such IoT information
available. Indeed, the authors are already in touch with Cisco
Systems to have access to their IoT platform dubbed as
Jasper, for a larger corpus of IoT device information. The
vision is that threat intelligence from the proposed work will
be fed back to Cisco Jasper.

Malware attribution for tailored remediation. With the
continuous rise of new malware variants that specifically target
IoT devices in consumer and critical CPS sectors, the objective
to attribute such exploitations to certain malware variants is
undeniably of high significance. While this work provided
initial results from such attempt, further exploration is needed.
To this end, we are currently exploring formal correlation ap-
proaches between passive measurements and malware network
traffic samples to fortify the attribution evidence.

Real-time IoT operational cyber security capabilities and
artifacts. [oT-tailored actionable cyber security capabilities are
quite lacking and we hope that this work would motivate
the research and operational communities to devise such
capabilities. In fact, we are currently working to automate
the devised methodologies in this work to index, in near
real-time, unsolicited Internet-scale IoT devices. We are also
working on creating an authenticated API to share loT-relevant
malicious empirical data, IoT-centric attack signatures, and
threat intelligence derived from passive measurements with
the research community at large.

VII. CONCLUSION

The Internet of Things (IoT) is an emerging paradigm of
technical, social, and economic significance. Nevertheless, the
initial priorities of IoT vendors have been focused on pro-
viding novel functionality, getting products to market sooner,
and making IoT devices more accessible and easier to use.
Unfortunately, security concerns have not received as much
attention. To this end, this paper presented a first empirical
look at the magnitude of compromised IoT devices that have
been deployed in both consumer and CPS realms. Initially,
large-scale correlations between passive measurements and
IoT-relevant information is conducted to shed the light on
Internet-wide unsolicited IoT devices. Subsequently, empirical
measurements, characterization, and analysis is presented to
thoroughly investigate IoT-generated unsolicited traffic, in-
cluding backscattered traffic from IoT devices that have been
targeted by DoS attacks, and scanning activities from exploited
IoT devices. Finally, an attempt is made to uncover the
maliciousness of such unsolicited IoT devices by utilizing
a publicly available threat repository and an in-house built
malware database. Some of the outcomes include more than
15,000 compromised consumer IoT devices and more than
11,000 compromised IoT devices operating in critical CPS
(including oil and gas, manufacturing plants and power utili-
ties). The results also demonstrate the aggressiveness of more
than 5,000 compromised IoT devices in CPS in exploiting
other services. The outcome also pinpoints the involvement of
a large number of IoT devices in malevolent activities as well



as the rise of new malware variants that specifically target the
IoT paradigm. Overall, the presented measurements from this
work highlight, at large, the insecurity of the IoT paradigm. As
for future work, apart from addressing a number of tasks and
issues that have been pinpointed throughout this paper, we are
working on addressing the challenging problem of identifying
and clustering IoT botnets and their illicit activities by solely
scrutinizing passive measurements.
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