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Abstract—Recent attacks have highlighted the insecurity of
the Internet of Things (IoT) paradigm by demonstrating the
impacts of leveraging Internet-scale compromised IoT devices.
In this paper, we address the lack of IoT-specific empirical
data by drawing upon more than 5TB of passive measurements.
We devise data-driven methodologies to infer compromised IoT
devices and those targeted by denial of service attacks. We
perform large-scale characterization analysis of their traffic, as
well as explore a public threat repository and an in-house mal-
ware database, to underlie their malicious activities. The results
expose a significant 26 thousand compromised IoT devices “in
the wild,” with 40% being active in critical infrastructure. More
importantly, we uncover new, previously unreported malware
variants that specifically target IoT devices. Our empirical results
render a first attempt to highlight the large-scale insecurity of the
IoT paradigm, while alarming about the rise of new generations
of IoT-centric malware-orchestrated botnets.

I. INTRODUCTION

In recent years, Internet connected devices, or what is

currently known as Internet of Things (IoT) devices, have been

widely adopted in various parts of our lives. IoT devices and

corresponding technologies facilitate efficient data collection,

monitoring, and information sharing for consumers (e.g., In-

ternet routers, smart TVs, health monitoring wearables), and

Cyber-Physical Systems (CPS) (e.g., power utilities, manufac-

turing plants, factory automation) [1]. Despite their benefits,

the always-connected nature of IoT devices and the inadequate

security measures implemented by some manufacturers [2],

have turned these devices into attractive targets for cyber

adversaries. Furthermore, IoT devices could be used as en-

ablers for orchestrating large-scale attacks towards a variety

of targets. The Mirai botnet for instance, utilized millions

of compromised IoT devices (e.g., CCTV cameras) to launch

Distributed Denial of Service (DDoS) attacks on several DNS

servers, resulting in service disruption for millions of Internet

users across the globe [3]. Very recently, the Reaper botnet

extended Mirai by exploiting IoT-specific vulnerabilities

rather than simply guessing credentials [4].

In order to adopt proper mitigation measures and prevent

large-scale, IoT-related cyber attacks, security researchers and

operators need to assess the magnitude of Internet-scale IoT

exploitations, in addition to characterizing and analyzing their

malicious activities. Nevertheless, given the lack of empirical

data related to IoT devices [5], in addition to their excessive

Internet-wide deployments in consumer and CPS, there is an

utmost need to explore data-driven methodologies to shed the

light and comprehend the characteristics of such compromised

IoT devices and their malicious behaviors. To address the

lack of knowledge about compromised IoT devices, there is a

need to posses an Internet-scale perspective of IoT devices

and their unsolicited activities over a period of time. This

indeed is quite challenging as it requires authorization from

different entities who own and operate these IoT devices in

their local realms. Furthermore, monitoring IoT traffic would

come with underlying privacy implications. Moreover, there

are tremendous variants of IoT devices operating from all

around the world and monitoring them would require scalable

systems and significant resources.

An effective approach to gain Internet-wide cyber threat

intelligence is to study passive measurements gathered using

designated sensors or traps that collect traffic from the In-

ternet [6], [7]. These sensors collect traffic targeted towards

routable, yet unused Internet Protocol (IP) addresses, which

are known as darknets or network telescopes [8]. Character-

istically, traffic destined to these inactive hosts is likely to

represent suspicious and unsolicited activities. Furthermore,

traffic captured at the darknet mainly consists of scanning [9],

[10], backscatter traffic resulting from DDoS attacks [11]–

[13], and misconfiguration [8], [14]. Therefore, by carefully

studying darknet traffic, one can generate useful insights on

a portion of unsolicited traffic related to different sources

including compromised machines (e.g., malware-infected) and

victims of DDoS attacks, to name a few. To this end, in

this work, we aim at addressing the problems of inferring

Internet-scale compromised IoT devices and analyzing their

unsolicited/malicious activities by exploring auxiliary, macro-

scopic, empirical passive darknet data obtained from a large

network telescope. Specifically, we frame the contributions of

this paper as follows:

• We draw-upon close to 5TB of recent darknet data and

execute correlations with a near real-time IoT database to

empirically characterize the magnitude of Internet-scale IoT

exploitations in both, consumer and critical CPS realms. The

generated insights not only render a first attempt ever to

empirically shed the light on the large-scale insecurity of



the IoT paradigm, but are also intended to contribute to

operational/actionable cyber security by providing Internet-

wide, IoT-tailored notifications of such exploitations, thus

permitting rapid remediation.

• We execute a first-of-a-kind, large-scale empirical charac-

terization and analysis of IoT-centric unsolicited activities

as perceived by a large network telescope. To this end, we

uncover the nature of such traffic, its sources, employed

protocols, targeted ports, upon various others. Given the

lack of IoT-specific attack signatures, we postulate that

the analyzed traffic from this work could be leveraged

to design such signatures, in addition to promoting and

facilitating further IoT-tailorted forensic investigations by

making the captured unsolicited empirical traffic available

to the research and operations communities at large.

• Motivated by the rise of new malware families/variants

that specifically target and exploit IoT devices such as

Persirai, Hajime and BrickerBot, to name a few,

we execute non-intrusive correlations between passive mea-

surements and malware threat intelligence to uncover new,

previously unreported malware families targeting the IoT

paradigm. In this context, we explore a publicly available

threat repository and an in-house built malware database

facilitated by instrumenting a large corpus of malware

samples in a controlled sandbox. The results not only alarm

about the severity of this malware issue in the context of the

IoT, but also paves the way for future work for addressing

the rise of IoT-centric, orchestrated botnets.

The remainder of the paper is organized as follows. Section

II reviews the recent literature on various concerned topics

to highlight the uniqueness of the proposed work. Section III

details the methodology to infer Internet-scale compromised

IoT devices by leveraging network telescopes. Section IV

performs a large-scale empirical characterization of the gener-

ated unsolicited traffic from such IoT devices, putting special

emphasis on understanding the nature of the traffic. Section

V explores the maliciousness of the identified IoT devices,

highlighting their involvement in various misdemeanors as

well as pinpointing several newly discovered IoT-specific

malware families. Lastly, Section VI provides a discussion on

several insightful observations and current work limitations,

while Section VII summarizes the outcomes of this work and

highlights several topics that pave the way for future work.

II. RELATED WORK

In this section, we review the literature on various concerned

topics and highlight the added-value of the proposed work.

IoT security and protocol vulnerabilities. The majority of

IoT security research work has been dedicated to synthesizing

IoT context-aware permission models. For instance, Yu et

al. [5] proposed a policy abstraction language that is capable

of capturing relevant environmental IoT contexts, security-

relevant details, and cross-device interactions, to vet IoT-

specific network activities. Along the same research direction,

Jia et al. [15], proposed ContextIoT, a system that is capable

of supporting complex IoT-relevant permission models through

efficient and usable program-flow and runtime taint analysis.

Fernandes et al. [16] proposed a similar program-flow tracking

approach that used taint arithmetic to detect policy violations

and restrict traffic generated from exploited IoT application.

In the context of protocol vulnerabilities, Ur et al. [17] studied

numerous types of home automation IoT devices and unveiled

various insights with regards to the security and usability of the

implemented access control models. Ronen and Shamir [18]

demonstrated information leakage attacks by instrumenting a

set of IoT smart lights.

IoT data capturing initiatives. Given the rareness of IoT-

relevant empirical data, several recent efforts were proposed

to collect, curate, and analyze such data. The first IoT tailored

honeypot, namely, IoTPOT, was designed and deployed by

Pa et al. [19]. IoTPOT emulates Telnet services of various

IoT devices running on different CPU architectures. In alter-

native work, Guarnizo et al. [20] presented the Scalable high-

Interaction Honeypot platform for IoT devices (SIPHON). The

authors demonstrated how by leveraging worldwide worm-

holes and few physical devices, they were able to mimic

various IoT devices on the Internet and to attract significant

malicious traffic.

Network telescope measurements and analysis. The idea

of leveraging network telescopes to monitor unused IP ad-

dresses for security purposes was first brought to light in

the early 1990’s by Bellovin for AT&T’s Bell Labs Internet-

connected computers [21], [22]. Since then, the focus of

network telescope studies has shifted several times, closely

following the volatile nature of new threat actors. For instance,

some of the important contributions include the discovery

of the relationship between backscattered traffic and DDoS

attacks in 2001 [23], worm propagation analysis between 2003

and 2005 [24], [25], the use of time series and data mining

techniques on telescope traffic in 2008 [26], the monitoring of

large-scale cyber events through telescopes in 2014 [27], and

more recently, the study of amplification DDoS attacks using

telescope sensors [28], [29].

This paper compliments the previous contributions by ex-

tending network telescope research to particularity address the

problem of IoT security, which has yet to be attempted. To

this end, the paper develops unique data-driven methodologies

to infer and characterize compromised IoT devices, their

unsolicited traffic, and their involvement in illicit activities.

The paper also sheds light on new, previously undocumented

malware families that specifically target IoT devices.

III. IDENTIFYING UNSOLICITED INTERNET-SCALE IOT

DEVICES

We initiate our work by addressing the problems of identify-

ing and characterizing Internet-scale unsolicited IoT devices.

We refer to IoT devices as being unsolicited (or compromised)

if they were found to be generating any network packets

towards the network telescope. Please note that Section IV

will detail the nature of such unsolicited traffic and provide

an in-depth characterization of its modus-operandi. We herein

initially elaborate on the employed datasets and subsequently



















TABLE VII
IDENTIFIED, PREVIOUSLY UNREPORTED MALWARE FAMILIES EXPLOITING

IOT DEVICES

Malware Family

Ramnit

Starman

Kryptik

Nivdort

Razy

Zusy

Bayrod

Artemis

MSIL

Vupa

Allaple

Section III (i.e., 26,881 devices) and the malware database.

The outcome is intended to demonstrate if any malware variant

has communicated with (possibly exploited) IoT devices.

Our findings revealed 33 domain names and 24 unique

malware hashes/variants associated with the identified IoT

devices. Given the extracted malware hashes from the malware

database, we leveraged VirusTotal to unveil 11 malware

families that were found to be associated with the IoT devices.

The uncovered malware families are summarized in Table VII.

While some of the families are already quite popular, such

as the Ramnit as a backdoor, and Zusy for generating

email spam, our results demonstrate that new variants of

such families are already being empowered to target the IoT

paradigm. To the best of our knowledge, such results (i)

render a first attempt ever to shed the light on IoT-centric

malware families by correlating passive measurements and

malware samples facilitated through dynamic analysis, (ii)

highlight on new, previously unreported families (and variants)

that have empirically been demonstrated to target the IoT

paradigm, and (iii) alarm about the rise of new malware

variants, which undoubtedly would facilitate the establishment

of ever-evolving, IoT-tailored, malware-orchestrated botnets.

VI. DISCUSSION

In this section, we elaborate on a few topics that are worthy

of being discussed in the context of the proposed work.

Comprehensively inferring Internet-scale unsolicited IoT

devices. While this work leveraged the Shodan service to

gather a large dataset of IP information related to deployed

IoT devices in order to facilitate their correlation with passive

measurements, identifying technical information for Internet-

wide IoT devices remains a challenging objective. Indeed,

without addressing this issue at large, approaches similar

to the one presented in this paper would remain partially

lacking (at least operationally). In this context, we foresee two

approaches moving forward. The first is of technical nature

and is rendered by exploring fuzzy matching algorithms and

fuzzy hashes/signatures to identify a broader range of IoT

devices (previously not indexed by Shodan) as perceived

by the network telescope by leveraging IoT-relevant darknet

traffic (from previously inferred IoT devices). The second is

a non-technical approach, requiring ISPs, local IoT operators

and industry to collaborate to make such IoT information

available. Indeed, the authors are already in touch with Cisco

Systems to have access to their IoT platform dubbed as

Jasper, for a larger corpus of IoT device information. The

vision is that threat intelligence from the proposed work will

be fed back to Cisco Jasper.

Malware attribution for tailored remediation. With the

continuous rise of new malware variants that specifically target

IoT devices in consumer and critical CPS sectors, the objective

to attribute such exploitations to certain malware variants is

undeniably of high significance. While this work provided

initial results from such attempt, further exploration is needed.

To this end, we are currently exploring formal correlation ap-

proaches between passive measurements and malware network

traffic samples to fortify the attribution evidence.

Real-time IoT operational cyber security capabilities and

artifacts. IoT-tailored actionable cyber security capabilities are

quite lacking and we hope that this work would motivate

the research and operational communities to devise such

capabilities. In fact, we are currently working to automate

the devised methodologies in this work to index, in near

real-time, unsolicited Internet-scale IoT devices. We are also

working on creating an authenticated API to share IoT-relevant

malicious empirical data, IoT-centric attack signatures, and

threat intelligence derived from passive measurements with

the research community at large.

VII. CONCLUSION

The Internet of Things (IoT) is an emerging paradigm of

technical, social, and economic significance. Nevertheless, the

initial priorities of IoT vendors have been focused on pro-

viding novel functionality, getting products to market sooner,

and making IoT devices more accessible and easier to use.

Unfortunately, security concerns have not received as much

attention. To this end, this paper presented a first empirical

look at the magnitude of compromised IoT devices that have

been deployed in both consumer and CPS realms. Initially,

large-scale correlations between passive measurements and

IoT-relevant information is conducted to shed the light on

Internet-wide unsolicited IoT devices. Subsequently, empirical

measurements, characterization, and analysis is presented to

thoroughly investigate IoT-generated unsolicited traffic, in-

cluding backscattered traffic from IoT devices that have been

targeted by DoS attacks, and scanning activities from exploited

IoT devices. Finally, an attempt is made to uncover the

maliciousness of such unsolicited IoT devices by utilizing

a publicly available threat repository and an in-house built

malware database. Some of the outcomes include more than

15,000 compromised consumer IoT devices and more than

11,000 compromised IoT devices operating in critical CPS

(including oil and gas, manufacturing plants and power utili-

ties). The results also demonstrate the aggressiveness of more

than 5,000 compromised IoT devices in CPS in exploiting

other services. The outcome also pinpoints the involvement of

a large number of IoT devices in malevolent activities as well



as the rise of new malware variants that specifically target the

IoT paradigm. Overall, the presented measurements from this

work highlight, at large, the insecurity of the IoT paradigm. As

for future work, apart from addressing a number of tasks and

issues that have been pinpointed throughout this paper, we are

working on addressing the challenging problem of identifying

and clustering IoT botnets and their illicit activities by solely

scrutinizing passive measurements.
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