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Abstract—Technological advances and innovative business
models led to the modernization of the cyber-physical concept
with the realization of the Internet of Things (IoT). While IoT
envisions a plethora of high impact benefits in both, the consumer
as well as the control automation markets, unfortunately, security
concerns continue to be an afterthought. Several technical chal-
lenges impedes addressing such security requirements, including,
lack of empirical data related to various IoT devices in addition
to the shortage of actionable attack signatures.
In this paper, we present what we believe is a first attempt ever
to comprehend the severity of IoT maliciousness by empirically
characterizing the magnitude of Internet-scale IoT exploitations.
We draw upon unique and extensive darknet (passive) data and
develop an algorithm to infer unsolicited IoT devices which have
been compromised and are attempting to exploit other Internet
hosts. We further perform correlations by leveraging active
Internet-wide scanning to identify and report on such IoT devices
and their hosting environments. The generated results indicate a
staggering 11 thousand exploited IoT devices that are currently
in the wild. Moreover, the outcome pinpoints that IoT devices
embedded deep in operational Cyber-Physical Systems (CPS)
such as manufacturing plants and power utilities are the most
compromised. We concur that such results highlight the wide-
spread insecurities of the IoT paradigm, while the actionable
generated inferences are postulated to be leveraged for prompt
mitigation as well as to facilitate IoT forensic investigations using
real empirical data.

I. INTRODUCTION

The Internet of Things (IoT) paradigm represents advances

in computing power, electronics miniaturization and network

bandwidth interconnection, which have armed physical

objects with the ability to collect, process and act upon

various types of information. The widespread deployment

of IoT devices ranging from refrigerators to light bulbs to

Internet-controlled insulin pumps and mining equipment

brings forward a plethora of benefits in an effort to improve

various aspects of our everyday life [1]. In fact, home

automation, powered by the IoT, have provided essential

support for elderly or disabled residents, while wearable

health monitoring devices have increased the quality of

medical service and enabled the real-time provisioning of

medication [2]. Further, hazardous industrial plants, which

might pose various health and safety risks to their employees,

have indeed adopted the IoT to notify their personnel, in near

real-time, about critical incidents to avoid [3]. Additionally,

many case studies report the significant impact of IoT on

disaster and crime prevention, reduction in traffic congestion

and parking time, and improvement of emergency services

[4, 5]. The IoT paradigm also addresses the issue of water and

energy consumption, thus reducing the cost for homeowners,

companies, and entire cities [6]. Indeed, this prominent

notion holds a commitment to transform the majority of

business models, and to improve efficiency, service levels,

and customer satisfaction.

Indisputable benefits proposed by the IoT paradigm, in

both, consumer environments as well as Cyber-Physical

Systems (CPS) realms (i.e., manufacturing plants, power

utilities, building automation, etc.), are nevertheless coupled

with serious security flaws [7]. Time-to-market and cost

considerations along with the scarcity of related legislation

have stimulated manufacturers to design and produce

potentially insecure IoT devices, leaving an open door for

future exploitation. This practice continues to enable exposure

of user-centric information and data such as unprotected video

streaming of baby monitors [8] and sensitive cryptographic

primitives [9]. Moreover, poorly designed devices can

quickly be recruited into malicious botnets by allowing

the execution of arbitrary commands or re-programming of

device firmwares [10]. Given the large-scale deployment of

IoT devices, such vulnerabilities could affect the security

and the resiliency of the entire Internet space. The latter has

recently received tremendous media exposure. For instance,

an IoT smart refrigerator have participated in launching

massive phishing campaigns [11], while the Mirai malware

[12] and its extension Hajime [13] have demonstrated

how unsecured IoT devices can serve as entry points for

conducting orchestrated Denial of Service (DoS) attacks

and other malicious misdemeanors. Undoubtedly, such and

other security breaches largely challenge the trust level in the

IoT paradigm, hindering its wide-spread implementation in

various sectors and critical infrastructure.

While the security and networking research and operational
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communities are undertaking several steps towards the goal

of immuning the IoT paradigm from participating in or

being the target of debilitating cyber threats, significant

security weaknesses continue to exist, impeding IoT’s ability

to achieve its intended goals. In fact, the preliminary task

of Internet-scale characterization of the magnitude of IoT

exploitations is still relatively obscured. This is especially

factual when attempting to assess the maliciousness of the

IoT paradigm deployed in critical CPS. Indeed, one can not

devise effective IoT-relevant detection capabilities without

initially understanding the scale of this issue. Nevertheless,

several obstacles hampers the realization of the latter task,

including, lack of visibility into local IoT realms, which

prevents accessing and analyzing IoT-relevant empirical data

and the general insufficiency of IoT-specific attack signatures

[14].

In this paper, we take a first step towards comprehending

the severity and scale of IoT maliciousness. To this end,

we scrutinize Internet-scale empirical unsolicited traffic to

identify exploited IoT devices and their hosting environments.

In summary, we frame the contributions of this paper as

follows:

• Proposing an innovative approach which fuses extensive

passive measurements with results from Internet-wide

scanning to shed the light on compromised IoT devices.

In this context, it is important to note that the approach

is also capable of generating IoT-relevant malicious

empirical data and attack signatures, which we hope

to be shared with the research community at large to

facilitate further forensic investigation and advanced IoT

data analytics.

• Developing and operating a probing inference algorithm

that is capable of fingerprinting malicious activities

which are generated from exploited IoT devices.

• Evaluating the proposed approach by employing 130

GB of real darknet data and reporting on more than

11 thousand exploited IoT devices that are currently in

the wild. Such results could indeed be leveraged for

immediate mitigation by local IoT operators.

The road-map of this paper is as follows. In the next section,

we review related works on various concerned IoT security

topics and demonstrate the added value of the proposed

approach. In Section III, we present the proposed methods

and techniques for inferring Internet-scale unsolicited IoT

devices. In Section IV, we discuss the obtained results, while

in Section V, we summarize our contributions and pinpoint

several research topics that aim at paving the way for future

work in this impactful IoT security research area.

II. RELATED WORK

In this section, we review the recent literature on various

concerned topics, including, IoT vulnerabilities, empirical

characterization of devices and IoT data capturing initiatives.

The majority of IoT security research work has been

dedicated to addressing IoT security flaws. To this end, Ur et

al. [15] analyzed IoT access control by studying numerous

types of home automation devices. The authors investigated

ownership rules, roles, and monitoring capabilities, which

unveiled various issues such as revoked access permissions,

insufficient auditing capabilities, and usability flaws. In

alternative work, Ho et al. [16] explored IoT smart lock

systems and demonstrated how network architectures, trust

models, and malicious replay traffic could unlock doors,

allowing unauthorized physical access. Further, the authors

noted that most of the investigated devices lacked access to

elaborative logging procedures, rendering it impossible for

users to know who have accessed their devices and what

type of traffic was generated. Moreover, Ronen and Shamir

[9] illustrated information leakage attempts by simulating

an attack on a set of smart LED light bulbs. The authors

were able to extract sensitive information from an air-gapped

infrastructure, including encryption primitives and passwords.

In a different work, Sachidananda et al. [17] conducted port

scanning, process enumeration, and vulnerability scans of

numerous IoT devices. Their investigations unveiled that a

plethora of devices have open ports, allowing attackers to

obtain information related to their vulnerabilities by means

of fingerprinting their deployed operating systems and device

types/firmwares. In this work, we extend such research efforts

by uniquely leveraging and correlating empirical data to

understand, macroscopically, the magnitude of Internet-scale

IoT exploitations.

In the area of empirical measurements for device

characterization, Cui and Stolfo [18] executed a large-scale

active probing of the Internet space to uncover close to half a

million vulnerable embedded devices. In more recent works,

Costin et al. [19] statically analyzed more than 30 thousand

firmware images derived from embedded devices to shed the

light on their insecurities, while Fachkha et al. [20] conducted

passive measurements to analyze attackers’ intentions when

targeting protocols of Internet-facing CPS. In a similar work,

Bodenheim et al. [21] evaluated the Shodan service, a search

engine for Internet-connected devices, in its capability to

scan and index online industrial control systems. In contrast,

in this work, we particularly address the IoT paradigm and

develop an algorithm operating an passive darknet data to not

only infer compromised IoT devices but also pinpoint their

activities as they attempt to exploit other Internet hosts.

In the context of IoT data capturing initiatives, the first

IoT tailored honeypot, namely IoTPOT, was designed and

deployed by Pa et al. [22]. IoTPOT emulates telnet services of



various IoT devices running on different CPU architectures.

IoTPOT demonstrated its capability to capture various types

of malware samples for the sake of performing in-depth

analysis of IoT targeted attacks. In alternative work, Guarnizo

et al. [23] presented the Scalable high-Interaction Honeypot

(SIPHON) platform for IoT devices. The authors demonstrated

how by leveraging worldwide wormholes and few physical

devices, they were able to mimic various IoT devices on

the Internet and to attract massive malicious traffic. The

authors further characterized such traffic by elaborating on

attackers’ frequency and their employed protocols. Auxiliary,

several attempts to fingerprint IoT devices were executed.

For instance, very recently, Meidan et al. [24] leveraged

network traffic analysis to classify IoT devices connected to

an organization’s network, by applying techniques rooted in

machine learning supervised data classification. In contrary,

our analysis draws upon pure passive darknet data to present

a first look on compromised IoT devices in both, consumer

and CPS environments. Further, the proposed approach is

envisioned to be leveraged to extract raw empirical data

related to various IoT devices to support supplementary

forensic investigations as well as capture tangible IoT attacks

signatures. The latter two artifacts are currently lacking in the

academic as well as the security operations communities.

III. PROPOSED APPROACH

In this section, we detail our proposed approach which

aims at leveraging passive empirical measurements to infer

unsolicited Internet-scale IoT devices.

A. Exploiting Darknet Data

Having access to empirical IoT data is indeed quite chal-

lenging. Several hurdles confirm the latter, including, the lack

of visibility into local IoT realms due to logistic and privacy

concerns, the general scarcity of malicious empirical data

related to unsolicited IoT devices [25], and the lack of tangible

IoT-specific attack signatures [14]. To this end, complementary

methods ought to be explored; without access to tangible IoT

empirical data, the notion of maliciousness in this context can

not be elaborated. In this work, we uniquely exploit passive

measurements rendered by analyzing darknet data to achieve

the latter task. A darknet (also commonly referred to as a

network telescope) is a set of routable and allocated yet unused

IP addresses [26, 27]. It represents a partial view of the entire

Internet address space. From a design perspective, a darknet is

transparent and indistinguishable compared with the rest of the

Internet space. From a deployment perspective, it is rendered

by network sensors that are implemented and dispersed on nu-

merous strategic points throughout the Internet. Such sensors

are often distributed and are typically hosted by various global

entities, including Internet Service Provides (ISPs), academic

and research facilities, and backbone networks. The aim of

a darknet is to provide a lens on Internet-wide unsolicited

traffic; since darknet IP addresses are unused, any traffic

targeting them represents anomalous traffic. Such traffic (i.e.,

darknet data) could be leveraged to generate various cyber

threat intelligence, including inferences and insights related to

probing activities [27]. Such events are indeed the very first

signs of infections and propagation [28]. In this context, a

darknet is capable of capturing some of the probes of Internet-

scale infected hosts. Recall, that the probing machine, while

spraying its probes, can not avoid the darknet as it does not

have any knowledge about its existence. Further, it is known

that it is extremely rare if not impossible for a probing source

to have any capability dedicated to such avoidance [29]. Thus,

the proposed approach endeavors to scrutinize darknet data to

infer probing activities which are generated from Internet-scale

unsolicited IoT devices as an indicator of their exploitations.

We are fortunate to have access to real-time darknet data

from a /8 network telescope through our collaboration with

the Center for Applied Internet Data Analysis (CAIDA)1.

B. Probing Inference

To infer probing activities from darknet data, we present

Algorithm 1, which exploits flow-based parameters.

Algorithm 1 Probing Inference Algorithm

1: Input: A set (F) of unique darknet flows (f ),
2: Each flow f contains packet count (pkt cnt) and rate (rate)

Tw: Time window
Pth: Packet threshold
Rth: Rate threshold,
Tn: Time of packet number n in a flow
pkt: Packet
Output: Probing flag, Pr flag

3:
4: for Each f in F do

5: pkt cnt ← 0
6: T1 ← pkt gettime()
7: Tf ← T1 + Tw

8: while pkt in f do

9: Tn= pkt gettime()
10: if Tn < Tf then

11: pkt cnt ← pkt cnt + 1
12: end if

13: end while

14: rate ←
pkt cnt

Tw
15: if pkt cnt > Pth & rate > Rth then

16: Pr flag() ← 1
17: end if

18: end for

Algorithm 1 operates on darknet flows, which are defined

by a series of consecutive packets sharing the same source

IP address. The algorithm counts the number of packets per

flow to measure the rate of the suspicious activities within a

certain time window (Tw). If the flow packet count (pkt cnt) is

beyond a specific threshold, the flow is deemed as a probe. To

this end, we employ the packet count threshold from [30],

defined by 64 probed darknet addresses on the same port.

Please note, that typically, the probing engine would have also

required and established a rate threshold (Rth). Nevertheless,

we do not enforce one here, to enable the algorithm to

infer very low rate, possible stealthy activities. Indeed, the

1http://www.caida.org/home/
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