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Abstract—Cyber space continues to be threatened by
various debilitating attacks. In this context, executing passive
measurements by analyzing Internet-scale, one-way darknet
traffic has proven to be an effective approach to shed the light on
Internet-wide maliciousness. While typically such measurements
are solely conducted from the empirical perspective on already
deployed darknet IP spaces using off-the-shelf Intrusion
Detection Systems (IDS), their multidimensional theoretical
foundations, relations and implications continue to be obscured.
In this paper, we take a first step towards comprehending
the relation between attackers’ behaviors, the width of the
darknet vantage points, the probability of detection and the
minimum detection time. We perform stochastic modeling,
derivation, validation, inter-correlation and analysis of such
parameters to provide numerous insightful inferences, such as
the most effective IDS and the most suitable darknet IP space,
given various attackers’ activities in the presence of detection
time/probability constraints. One of the outcomes suggests that
the widely-deployed Bro IDS is ideal for inferring slow, stealthy
probing activities by leveraging passive measurements. Further,
the results do not recommend deploying the Snort IDS when
the available darknet IP space is relatively small, which is a
typical scenario when darknets are operated and employed on
organizational sub-networks. We concur that the generated
derivations and mathematical relations put forward a first-of-a-
kind formal and an accurate characterization of darknet-centric
notions, which possess significant implications on Internet
and passive measurements. This is especially factual with the
advent of evolving paradigms such as IPv6 deployments and the
proliferation of highly-distributed, orchestrated, large-scale and
stealthy probing botnets.

Index Terms—Probing activities, Stochastic analysis, Darknet
traffic, Data analytics

I. INTRODUCTION

Cyber space has radically altered our every day life and
have impacted a large number of its crucial aspects. This is
clearly realized nowadays with the large-scale adoption of
the Internet-of-Things (IoT) paradigm [1], the modernization
of Cyber-Physical Systems (CPS) [2] and the continuous
rise and utilization of digital currencies [3], to name a few.
Nevertheless, the increasing dependence on cyber space
continues to make organizations and Internet-wide services
highly vulnerable to targeted threats and exploitations. In an

attempt to thwart such malicious attempts, typically, Intrusion
Detection Systems (IDS) are often configured, deployed
and managed. Complementary, in recent years, security
operators and researchers have become increasingly interested
in passive monitoring of unused Internet address spaces,
which is often known as darknets or network telescopes [4].
A darknet is a collection of routable, allocated yet unused
Internet Protocol (IP) addresses. These IP addresses have
no interaction with other hosts and only passively gather
packets without generating any replies. Since these unused
address blocks contain no legitimate hosts, the received
packets are characteristically unsolicited and are often the
results of Internet-scale probing activities [5], backscattered
packets from victims of denial of service attacks [6] or
misconfiguration traffic [7].

As noted above, one of the most prevalent darknet traffic
type is related to probing activities. Such activities are
indeed a first step and an enabler of a large number of
cyber attacks. For instance, autonomous spreading worms
[8] employ probing to fingerprint other vulnerable hosts to
infect them. Botmasters, orchestrating large-scale botnets [9],
adopt probing activities to identify and add more bots to their
campaigns [10]. Very recently, the loT-centric malware Mirai
was inferred to be generating a momentous amount of probing
activities in an attempt to exploit Internet-facing IoT cameras
and video recorders [11]. To this end, promptly detecting such
probing activities often aids in preventing actual attacks from
occurring or at least contributes in limiting the expansion of
botnets. In this context, a darknet has recurrently proven its
capability to infer probing activities by analyzing incoming
packets to unused IP addresses [12].

While a plethora of research contributions have been
conducted on passive detection methods and the practical
implementations of darknets [4], nevertheless, to the best of
the authors’ knowledge, the research effort which endeavors
to theoretically derive and analyze darknet-specific notions in
the context of vantage points, IDS operating on such darknet
IP spaces, and attackers’ behaviors, among various others,



have never been attempted before. Indeed, the lack of such
formal understanding hinders the optimized deployments and
usage of the dakrnet IP space in a given network subnet.
Further, without such formal analysis, one can not determine
the best IDS to leverage, given a certain attacker’s behavior
and the available network resources. Additionally, given the
proliferation of evolving cyber events such as large-scale,
stealthy probing botnets [13], one ought to possess a formal
grasp of the available passive measurement strategies and
inference mechanisms coupled with their implications in
order to select the most suitable approach to employ against
these ever-evolving phenomena. Additionally, with the
continuous deployment of IPv6, one needs to comprehend
the implications of passive measurements in such deployment
settings, given an operated IDS and certain requirements on
detection time and probability.

Having identified the aforementioned research gap, we
frame the contributions of this paper as follows:

o Formalizing the operations of three, widely-deployed
detection mechanisms and open source IDS by focusing
on their probing detection modus operandi when operated
on the darknet IP space.

o For each of the formalized detection approaches, we
perform stochastic modeling, derivation and validation
of their detection probabilities, their minimum detection
time and the minimum number of required darknet IP
addresses to achieve a certain detection promptness and
accuracy, when conducting passive measurements.

o Executing several insightful experimentation, shedding
the light on the impact of detection time, given a certain
probing rate and a particular width of the darknet van-
tage points, while maximizing the detection probability.
Moreover, we discuss several implications and provide
a number of suggestions that are deduced from the
proposed passive measurements formalization scheme,
in the context of stealthy probing activities and IPv6
deployments.

The road-map of this paper is as follows. In the next section,
we review the literature on various topics such as probing
events, darknet as a means of probing detection and stochastic
analysis of scanning behavior. In Section III, we formally
define the considered detection systems and other required
preliminaries. To this end, we also present the stochastic
derivation, validation and analysis of the defined detection
systems in the context of detection probability and time. In
Section IV, we execute, compare and contrast several exper-
imentation by leveraging the proposed formalization scheme.
Subsequently, in Section V, we discuss the implications of
some of the results on today’s cyber security and Internet
measurement challenges. Finally, in Section VI, we summarize
the contributions of this work and pinpoint several topics that
aim at paving the way for future work.

II. RELATED WORK

Since probing activities play an important role in cyber

security and Internet measurements, it has been the focus
of attention in many research contributions. In [5], the
authors provide an extensive survey in which they categorize
the scanning topic based on their natures, strategies and
approaches. In [14], the authors analyze data from a large
darknet to study Internet-wide probing activities. Other
research work have been dedicated to studying the impact of
reducing the number of utilized darknet IP addresses (i.e., the
width of darknet vantage points). For instance, in [15], the
authors introduce the concept of sparse darknet, a network
subnet that is sparsely populated with darknet addresses, as a
way to study the impact of this reduction on its effectiveness.
Alternatively, other literature approaches analyze effective
sensor placement strategies such as distributed darknet IP
address placement [16], considering placing such IP addresses
near live hosts or analyzing the impact of special patterns
of localization [17]. Leonard et al. [18] performed stochastic
derivation of a number of relations in order to propose an
optimal stealth distribution scanning activity based on the
probability of detection. The authors undertook the attackers’
perspective (and not the measurement point of view) in order
to significantly minimize the probability of detection.
In contrast, we present a first attempt ever which exploits
darknet-specific parameters and variables to formally
comprehend the multidimensional relations between darknet
vantage points, various IDS operating on such darknet
IP spaces, the rate of the probing activities and the
detection time/probability. The proposed formalization
passive measurement scheme aims at laying the theoretic
foundation for the field of Internet passive measurements for
cyber security by putting forward such formalizations. We
hope that this work would initiate much-needed discussions
related to the implications of theoretical models on practical
passive measurements in the short and long terms.

III. FORMAL MODELING AND STOCHASTIC ANALYSIS

The purpose of this section is to formalize and define
various kinds of probing IDS with the aim of finding relations
between different parameters such as minimum number of
required darknet IP addresses, minimum detection time and
the probability of detection for different scanning rates. Given
a subnet S, consisting of |S| IP addresses, we notate the
set of darknet IP addresses, randomly distributed within S
and utilized in the detection process, as DIP. In this paper,
following the natural behavior of large-scale probing events
[13], we consider that the attacker intends to scan all IP
addresses in S.

Indeed, there exists various scanning patterns such as se-
quential and uniform probing, which are typically employed
for scanning Internet networks. In this context, we note the
average scanning rate r and the average inter-probe delay
%. As long as we assume that the darknet IP addresses are
distributed uniformly in the intended network, which is the



de-facto practice [4], there is no difference between sequential
and uniform probing. Thus, we consider the uniformity of the
scans, which indicates that, on average, every %, the scanner
would send a packet to an IP address in the analyzed network.
Performing the stochastic modeling of the detection systems
would be the first required step for comprehending and analyz-
ing the detection probability and the relations between various
passive measurement parameters. For the sake of this work, we
focus on three different detection rules based on well-known,
highly-deployed IDS.

Definition 1: p(7) is the probability of detecting a probing
activity X in less than 7 time units from the start of the scan.

p(T) = /T Pr(alarm(t) = TRUE)dt (1)
0

Definition 2: For a probing activity X with an average
scanning rate r over a subnet S and given a certain Detection
System (DS), the minimum detection time 7,/,,,, is the mini-
mum required time for DS to detect the scan with probability
more than 1 —e.

Toin =f{t >0:p(t) >1—¢€}

min

2

A. FH Detection System

The first considered detection method is the First-Hit (FH)
algorithm, which raises an alarm on the detection of the
very first probe. Indeed, this represents the simplest detection
system that we analyze here to specify some bounds on
the parameters. After the first hit, this DS raises the alarm.
Algorithm 1 shows the simplistic DSy algorithm. This
method intuitively uses the lowest amount of memory and
processing requirements for detection. While this approach
might be effective, it undoubtedly could lead to a high false
positive rate; it might identify received darknet packets caused
by backscattered activities or misconfiguration as probing
activities. Thus, we consider this technique and its detection
time/probability as a reference model rather than a DS that
can actually be operated in practice.

Algorithm 1: First-hit detection algorithm

1 C;(0) = 0;

2 alarm = FALSE,

3 while do

4 if A packet from souce i is received then
Ci (t) = ].;
alarm = TRUFE;

end
end

5
6
7
8

Recall that there exists |DIP| darknet IP addresses in
the subnet S. Thus, the probability of one of these darknet
IP addresses being hit by probing packets is ¢ = ‘D‘é‘PI.
Therefore, the effective rate A, the scanning rate that would

actually be sensed by the darknet, would be A\ = ¢r. Now
given an average scanning rate r, we can write p(7) as in

p(r) =1—¢e " 3)

Based on (2) and some mathematical operations, we can easily

derive 7;,;, from equation (3), as in
log(e)

€. — 4

mwn _)\ ( )

Further, we can infer the minimum required darknet IP ad-
dresses for specific 7;,,,, and €, as follows.
S| 1
min |[D1P| = 51 )

“TTmin

n

B. DSI Detection System

The second detection method is a window-based detection
technique that is based on the widely-deployed, open source
Snort [19] IDS. We refer to this detection system as DSI
and subsequently describe its operations. Consider a counter
C;(t) = 0 for each observed source IP address i. After its reset
(at time t), it starts counting received packets in a time window
[t,t + Apgi]. During this time window, if the counter hits the
threshold apg;, DSI raises an alarm, otherwise, the counter
and the time window will be re-initiated. This algorithm
is clearly more complex than the FH algorithm because it
requires a timer to check the window’s timeout and thus
memory is required for storing C;(¢) for all packets arriving
from different source IP addresses i. The operations of DJSI
is summarized in Algorithm 2.

Algorithm 2: DSI detection algorithm
1 C;(0) =0;

2 alarm = FALSE;

3 t_reset =0;

4 while do

5 if t <t_reset + Aps; then

6 if A packet from souce i is received then
7 Ci(t) =Ci(t) + 1,

8 if Oz(t) > apsi then

9 ‘ alarm = TRUE;
10 end

1 end

12 else

13 t_reset = t_reset + Apsr;
14 C;(t) = 0;

15 end

16 end

The detection system DSI is defined with the parameter pair
(Apsi,apsi). Let 7 = pApgi+v where 0 < v < Apgy, then

we can compute p(7), as follows.
p(r)=1-Ww, (6)

where

a—1 k
k=0

~ (a—1)!
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Fig. 1. Validating the accuracy of the relation derived in (6) against simulation
results (marked with asterisks) for DSI.

and

a—1 k
W1 _ e*)\l/ Z ()‘V) o F(Oé,)\ll)

K (a- 1) ®

where T'(«, ) is the upper incomplete gamma function.
We use the probability of events for a Poisson distribution,
which is a typical distribution observed for malicious packets
targeting the darknet IP space [20], to derive W, and Wj.
The default values of (Apgr,apgr) for the Snort IDS are
(60,5).

We validate the accuracy of the formulation in Figure 1,
which shows the derived relation in (6) against executed
simulation results for DSI. For different values of A\, we
can note a close to perfect accuracy, which corroborates the
soundness of the derived relation.

C. DSII Detection System

The third inference method is also a window-based DS
related to the well-known Paxon’s Bro IDS [21]. We use
DSII to refer to this detection method. In such an IDS, for
each source IP address ¢, a counter C;(t) is created. After
receiving a packet from source host ¢ at time ¢, the technique
will wait Apgy time unit to receive another packet. In case a
packet hit the detection system during [¢,t + Apgn], the IDS
will increment C;(t); otherwise it will reset C;(t). Algorithm
3 summarizes the modus operandi embedded within DSII.

p(7) for DSII can be calculated based on (9), where p,, (%)
is the probability of Pr(Alarm(t) = True) for DSII with
threshold «. To this end, we compute the Probability Distri-
bution Function (PDF) of DSII with parameter «, recursively,

Algorithm 3: DSII detection algorithm
1 C;(0) =05

2 alarm = FALSEFE,

3 t_reset = 0;

4 while do

5 if t <t_reset + Apgr then
6 if A packet from souce i is received then
7 Ci(t)y=Ci(t) + 1;

8 t_reset =t;

9 if Ci(t) > apst then
10 | alarm = TRUF,
11 end
12 end
13 else
14 t_reset =1t;

15 Ci(t) = 0;
16 end
17 end

based on the PDF of DSII with threshold o — 1. Consequently,
we can derive the CDF which in fact refers to p(7).

e JApsn, (@)Ae NP d, it > Apgy
Pedl) = L paci(@)Ae XD dz,if t < Apgn
9

where A = (1—e~*Apsn) Equation (9) can be shown with
convolution operator as in (10). We employ Laplace Transform
for calculating these recursive convolutions.

Pa(t) = a1 ()% = 9(t) = pas(t)r A (ult)—u(t—A))

A A
(10)

Therefore, p1(t) = e Mul(t) S Transform Pi(s) = 25
and g(t) = Ae M(u(t) — u(t — A)) ST Gy =

25 (1 — e 26TV). We know that in S-Transform, we have

the relation f(t) * g(t) <> F(s)G(s). Thus, we can rewrite
(10) as in (11).

Pals) = P 1(9)G(5) = o PG (5)
— 1 A a1 _ ,—A(s+HA)ya—1
= Fer ) e T an
1 /\ a—1 1 ‘
— (T e
k=0

Inverse Laplace Transform of (11) can be calculated and
the result of (12) would be the PDF of the detection at time



t. Now, we transfer the equation to the time domain, as in:

(t) )\aef)\t
Pa\l) = 21— 11
A=l a—1)! =
(12)
If we define the integral of the first term of (12) as in
X5() = g= fy (a’\fol)!t“e Ay(t)dt, then

p(1) = /OTpa(t)dt = Z_:(*l)’“ <a N 1) eTMAXTTR®)

k=0

= XJ(t) - AA( . )Xg_A(t)+...
(13)

Therefore, based on (13) for 7 < A only the first term
is nonzero and for A < 7 < 2A only the first and second
term is nonzero and so on. Further, because the A values are
usually large, the coefficient e **2 for k > 1 is very small
(for A = 0.1 and A = 600, e~ %9 ~ 8.75¢—27). Thus, we can
solely consider the first term in our formulation. Additionally,
the value of ﬁ is approximately equal to 1 for A > 0.01
and A = 600. After some mathematical manipulations, we
can derive the probability of detection for DSII as in (14).

por) = X5 = | T( ”) ey (t)dt
— (At Je’)‘t T
Z
S0
:1—e*AT(1+Ar+(A;) +---+%)
T(a, A1)
C (a—1)!

> 0.001, the exact
formulation in (13) and the approximation in (14) have similar
values, demonstrating high accuracy. Additionally, Figure 2
clearly depicts that the derived equation in (14) is quite
accurate in comparison with generated simulation results.
Please note that the closed form derivation of the minimum
required darknet IP addresses (i.e., the minimum width of the
darknet vantage point), min |DIP|, for DSI and DSII will be
accomplished in future work.

Numerical results shows that for A >

IV. EXPERIMENTATION AND RESULTS

In this section, we execute several experimentation to com-
prehend (1) the impact of the probing rate on the minimum
detection time related to various employed IDS operated on
the darknet IP space and (2) the implication of the width of the
darknet IP space on detection time. Further, motivated by real
deployments of darknets, we analyze two case studies to shed
the light on the implications of the discussed detection systems
in contrast with their detection promptness when operated on
those specific darknet IP spaces.

Figure 3 shows various values of effective rate A in contrast
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Fig. 2. Validating the accuracy of the relation derived in (14) against
simulation results (marked with asterisks) for DSII.
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Fig. 3. Minimum detection time 7,5, versus effective rate A for e = 0.0001

with the minimum detection time for DSI and DSII. Recall
that A\ = gr = Ifl)élplr, and therefore, A is clearly dependent
on the scanning rate 7 and the ratio of number of darknet IP
addresses to the subnet size |S|. It is revealed from Figure 3
that for A > 0.1, DSI outperforms DSII with respect to the
minimum detection time and for A < 0.1, DSII outperforms
DSI. From such results, one can extract that for stealthy, low-
rate probing events, the Bro IDS is more suited to perform
the detection when operated on the darknet IP space. Please
note that the result for the FH detection technique is solely
depicted to show the lower bound for minimum detection time;
a DS can not reach a lower detection time than the minimum
detection time of the FH algorithm for a specific \.

We proceed by illustrating Figure 4, which shows the
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Fig. 4. Portion of darknet IP addresses deployed within a certain subnet versus
minimum detection time (7y,;» ) for scanning rate » = 100; e = 0.0001

minimum required portion of deployed darknet IP addresses
in the intended subnet in order to achieve a specific minimum
detection time. We notate /x, which refers to the number
of darknet IP addresses; 2% of all the subnet address space.
Therefore, x = logz(%) and a larger value for z indicates
a lower portion of allocated darknet IP addresses. We compare
DSI and DSII with their default parameters for Snort and Bro,
respectively, given a fixed scanning rate » = 100. Figure 4
demonstrates that for » = 100 and 7,,,;, < 300sec, DSI re-
quires less number of darknet IP addresses (thus reducing cost
and management/monitoring resources) in comparison with
DSII. Therefore, by employing the Snort IDS, one can achieve
the same minimum detection time by utilizing a lower number
of darknet IP addresses. On the other hand, for 7,,,;, > 300sec,
the minimum required darknet IP addresses is far lower for
DSII. For instance, consider 7,,;, = 10000, then the required
darknet IP space would be a /11 for DSI and about /15 for
DSII. This indicates that 232711 = 22! darknet IP addresses
are required to detect a large-scale probing activity targeting
the entire IPv4 address space with probability more that 0.9999
in 10000 seconds if one employs the Snort IDS, and only
232-15 — 217 darknet IP addresses would be needed if one
employs the Bro IDS to achieve the same objective.

We now consider two various darknet deployments, represent-
ing two practical darknet setups that are currently deployed “in
the wild”. One refers to a /8 darknet, which resembles a large
network telescope that is operated by the Center for Applied
Internet Data Analysis (CAIDA)!, while the other represents
a /13 darknet operated by Farsight Security Information
Exchange (SIE)?. On one hand, Figure 5 shows that for the
/13 darknet, the execution of DSII on passive measurements
leads to a lower minimum detection time in comparison with

Thttp://www.caida.org/data/passive/telescope-near-real-time_dataset.xml
2https://archive.farsightsecurity.com/SIE_Channel_14/
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Fig. 6. A /8 Network Telescope; ¢ = 0.0001

DSI (for a practical range of probing rate 1 < r < 1000).
Therefore, for a /13 darknet, the Bro IDS seems to be a more
effective detection system, resulting in a lower detection time.
On the other hand, Figure 6 shows comparative results for the
/8 darknet. We can deduce that for this darknet setup, DSI (the
Snort IDS) appears to be a more suitable choice for detection,
given an average probing rate 30 < < 10000.

V. DISCUSSION

The implications of the proposed passive measurement
formalization scheme can be discussed in the context of two
topics. First, with the continuous transition from IPv4 to
IPv6, the IP address space has intensively increased from
232 to 2!28, This larger cyber space indeed requires much
more efforts and resources to be monitored, measured and
assessed. The darknet IP space, being one of the main sources



of Internet measurements for cyber threat intelligence, should
also be adapted. To this end, the choice of the optimal required
number of darknet IP addresses would be more challenging
when dealing with IPv6. Consider » = 100, ¢ = 0.0001 and
Tmin = 10000. As deduced from Section IV, the minimum
required portion of darknet IP addresses for DSI is /15 and
for DSII is /11, for those considered parameters. Recall that
this indicates that 22! darknet IP addresses are required to
detect a probing activity targeting the entire IPv4 address
space using the Snort IDS and 2'7 darknet IP addresses are
needed using the Bro IDS. In contrast, when dealing with
IPv6, these numbers are orders of magnitude larger and the
implications are even more imperative; for the Snort IDS, one
requires 212811 = 2117 darknet IP addresses and for the
Bro IDS, 2!28-15 — 9113 {arknet IP addresses are needed,
to infer a complete scan of the IPv6 address space. Thus, for
IPv4, the difference in terms of required darknet IP addresses
related to various IDS types is 15 x 217 while for IPv6, it is a
momentous 15 x 2113, One can hence note that the choice of
IDS employment on passive measurements can severely affect
(and amplify) the cost of the resources as well as the darknet
management efforts.

Second, we ought to consider highly-distributed scans, similar
to the large-scale event reported in [13]. With distributed
scans, the probing activity is divided among large number
of bots and as a result, the effective scanning rate that is
sensed by the darknet is divided by the number of bots
participating in the probing campaign. This phenomena can
significantly reduce the effective rate A. Hence, as observed
in Figure 3, as A\ continues to decrease, the gap between
DSI and DSII increases vastly, pinpointing the importance
of selecting a suitable detection methodology for combating
such ever-evolving events. Nevertheless, one has to note that
as seen in Figure 3 related to the minimum detection time, no
current detection system is ideal for inferring such large-scale,
orchestrated and distributed probing events, paving the way for
more tailored detection systems to be researched, designed and
implemented in the near future.

VI. CONCLUDING REMARKS

Motivated by the fact that passive measurements by exploit-
ing darknet IP spaces are significantly effective in generating
various cyber threat intelligence in addition to the lack of
formal modeling of darknet-centric parameters, this paper
presented a first formal perspective in such contexts. Several
detection systems based on highly-employed methods were
formalized and a number of derivations were computed and
validated to shed the light on the relations between detection
probability/time, scanners’ rates, and the width of the darknet
vantage points. Some of the outcomes suggested the practical
usage of the Bro IDS for inferring low-rate probing, its
effective application in smaller darknet IP spaces, given a
setup that somehow tolerates a delay in detection, and its cost-
reduction characteristics when implemented in IPv6 darknet
deployment settings. Another outcome pinpointed the lack
of effective passive detection methodologies that are capable

of inferring large-scale, distributed probes in a timely and
practical manner. As for future work, apart from addressing
a number of current limitations as discussed throughout this
paper, we are conducting various experimentation using real
darknet data to better situate the formalization scheme in
addition to formally investigating the impact of contemporary
IoT attacks in the context of passive measurements.
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