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Abstract—Cyber space continues to be threatened by
various debilitating attacks. In this context, executing passive
measurements by analyzing Internet-scale, one-way darknet
traffic has proven to be an effective approach to shed the light on
Internet-wide maliciousness. While typically such measurements
are solely conducted from the empirical perspective on already
deployed darknet IP spaces using off-the-shelf Intrusion
Detection Systems (IDS), their multidimensional theoretical
foundations, relations and implications continue to be obscured.
In this paper, we take a first step towards comprehending
the relation between attackers’ behaviors, the width of the
darknet vantage points, the probability of detection and the
minimum detection time. We perform stochastic modeling,
derivation, validation, inter-correlation and analysis of such
parameters to provide numerous insightful inferences, such as
the most effective IDS and the most suitable darknet IP space,
given various attackers’ activities in the presence of detection
time/probability constraints. One of the outcomes suggests that
the widely-deployed Bro IDS is ideal for inferring slow, stealthy
probing activities by leveraging passive measurements. Further,
the results do not recommend deploying the Snort IDS when
the available darknet IP space is relatively small, which is a
typical scenario when darknets are operated and employed on
organizational sub-networks. We concur that the generated
derivations and mathematical relations put forward a first-of-a-
kind formal and an accurate characterization of darknet-centric
notions, which possess significant implications on Internet
and passive measurements. This is especially factual with the
advent of evolving paradigms such as IPv6 deployments and the
proliferation of highly-distributed, orchestrated, large-scale and
stealthy probing botnets.

Index Terms—Probing activities, Stochastic analysis, Darknet
traffic, Data analytics

I. INTRODUCTION

Cyber space has radically altered our every day life and

have impacted a large number of its crucial aspects. This is

clearly realized nowadays with the large-scale adoption of

the Internet-of-Things (IoT) paradigm [1], the modernization

of Cyber-Physical Systems (CPS) [2] and the continuous

rise and utilization of digital currencies [3], to name a few.

Nevertheless, the increasing dependence on cyber space

continues to make organizations and Internet-wide services

highly vulnerable to targeted threats and exploitations. In an

attempt to thwart such malicious attempts, typically, Intrusion

Detection Systems (IDS) are often configured, deployed

and managed. Complementary, in recent years, security

operators and researchers have become increasingly interested

in passive monitoring of unused Internet address spaces,

which is often known as darknets or network telescopes [4].

A darknet is a collection of routable, allocated yet unused

Internet Protocol (IP) addresses. These IP addresses have

no interaction with other hosts and only passively gather

packets without generating any replies. Since these unused

address blocks contain no legitimate hosts, the received

packets are characteristically unsolicited and are often the

results of Internet-scale probing activities [5], backscattered

packets from victims of denial of service attacks [6] or

misconfiguration traffic [7].

As noted above, one of the most prevalent darknet traffic

type is related to probing activities. Such activities are

indeed a first step and an enabler of a large number of

cyber attacks. For instance, autonomous spreading worms

[8] employ probing to fingerprint other vulnerable hosts to

infect them. Botmasters, orchestrating large-scale botnets [9],

adopt probing activities to identify and add more bots to their

campaigns [10]. Very recently, the IoT-centric malware Mirai

was inferred to be generating a momentous amount of probing

activities in an attempt to exploit Internet-facing IoT cameras

and video recorders [11]. To this end, promptly detecting such

probing activities often aids in preventing actual attacks from

occurring or at least contributes in limiting the expansion of

botnets. In this context, a darknet has recurrently proven its

capability to infer probing activities by analyzing incoming

packets to unused IP addresses [12].

While a plethora of research contributions have been

conducted on passive detection methods and the practical

implementations of darknets [4], nevertheless, to the best of

the authors’ knowledge, the research effort which endeavors

to theoretically derive and analyze darknet-specific notions in

the context of vantage points, IDS operating on such darknet

IP spaces, and attackers’ behaviors, among various others,



have never been attempted before. Indeed, the lack of such

formal understanding hinders the optimized deployments and

usage of the dakrnet IP space in a given network subnet.

Further, without such formal analysis, one can not determine

the best IDS to leverage, given a certain attacker’s behavior

and the available network resources. Additionally, given the

proliferation of evolving cyber events such as large-scale,

stealthy probing botnets [13], one ought to possess a formal

grasp of the available passive measurement strategies and

inference mechanisms coupled with their implications in

order to select the most suitable approach to employ against

these ever-evolving phenomena. Additionally, with the

continuous deployment of IPv6, one needs to comprehend

the implications of passive measurements in such deployment

settings, given an operated IDS and certain requirements on

detection time and probability.

Having identified the aforementioned research gap, we

frame the contributions of this paper as follows:

• Formalizing the operations of three, widely-deployed

detection mechanisms and open source IDS by focusing

on their probing detection modus operandi when operated

on the darknet IP space.

• For each of the formalized detection approaches, we

perform stochastic modeling, derivation and validation

of their detection probabilities, their minimum detection

time and the minimum number of required darknet IP

addresses to achieve a certain detection promptness and

accuracy, when conducting passive measurements.

• Executing several insightful experimentation, shedding

the light on the impact of detection time, given a certain

probing rate and a particular width of the darknet van-

tage points, while maximizing the detection probability.

Moreover, we discuss several implications and provide

a number of suggestions that are deduced from the

proposed passive measurements formalization scheme,

in the context of stealthy probing activities and IPv6

deployments.

The road-map of this paper is as follows. In the next section,

we review the literature on various topics such as probing

events, darknet as a means of probing detection and stochastic

analysis of scanning behavior. In Section III, we formally

define the considered detection systems and other required

preliminaries. To this end, we also present the stochastic

derivation, validation and analysis of the defined detection

systems in the context of detection probability and time. In

Section IV, we execute, compare and contrast several exper-

imentation by leveraging the proposed formalization scheme.

Subsequently, in Section V, we discuss the implications of

some of the results on today’s cyber security and Internet

measurement challenges. Finally, in Section VI, we summarize

the contributions of this work and pinpoint several topics that

aim at paving the way for future work.

II. RELATED WORK

Since probing activities play an important role in cyber

security and Internet measurements, it has been the focus

of attention in many research contributions. In [5], the

authors provide an extensive survey in which they categorize

the scanning topic based on their natures, strategies and

approaches. In [14], the authors analyze data from a large

darknet to study Internet-wide probing activities. Other

research work have been dedicated to studying the impact of

reducing the number of utilized darknet IP addresses (i.e., the

width of darknet vantage points). For instance, in [15], the

authors introduce the concept of sparse darknet, a network

subnet that is sparsely populated with darknet addresses, as a

way to study the impact of this reduction on its effectiveness.

Alternatively, other literature approaches analyze effective

sensor placement strategies such as distributed darknet IP

address placement [16], considering placing such IP addresses

near live hosts or analyzing the impact of special patterns

of localization [17]. Leonard et al. [18] performed stochastic

derivation of a number of relations in order to propose an

optimal stealth distribution scanning activity based on the

probability of detection. The authors undertook the attackers’

perspective (and not the measurement point of view) in order

to significantly minimize the probability of detection.

In contrast, we present a first attempt ever which exploits

darknet-specific parameters and variables to formally

comprehend the multidimensional relations between darknet

vantage points, various IDS operating on such darknet

IP spaces, the rate of the probing activities and the

detection time/probability. The proposed formalization

passive measurement scheme aims at laying the theoretic

foundation for the field of Internet passive measurements for

cyber security by putting forward such formalizations. We

hope that this work would initiate much-needed discussions

related to the implications of theoretical models on practical

passive measurements in the short and long terms.

III. FORMAL MODELING AND STOCHASTIC ANALYSIS

The purpose of this section is to formalize and define

various kinds of probing IDS with the aim of finding relations

between different parameters such as minimum number of

required darknet IP addresses, minimum detection time and

the probability of detection for different scanning rates. Given

a subnet S, consisting of |S| IP addresses, we notate the

set of darknet IP addresses, randomly distributed within S
and utilized in the detection process, as DIP . In this paper,

following the natural behavior of large-scale probing events

[13], we consider that the attacker intends to scan all IP

addresses in S.

Indeed, there exists various scanning patterns such as se-

quential and uniform probing, which are typically employed

for scanning Internet networks. In this context, we note the

average scanning rate r and the average inter-probe delay
1

r
. As long as we assume that the darknet IP addresses are

distributed uniformly in the intended network, which is the



de-facto practice [4], there is no difference between sequential

and uniform probing. Thus, we consider the uniformity of the

scans, which indicates that, on average, every 1

r
, the scanner

would send a packet to an IP address in the analyzed network.

Performing the stochastic modeling of the detection systems

would be the first required step for comprehending and analyz-

ing the detection probability and the relations between various

passive measurement parameters. For the sake of this work, we

focus on three different detection rules based on well-known,

highly-deployed IDS.

Definition 1: ρ(τ) is the probability of detecting a probing

activity X in less than τ time units from the start of the scan.

ρ(τ) =

∫ τ

0

Pr(alarm(t) = TRUE)dt (1)

Definition 2: For a probing activity X with an average

scanning rate r over a subnet S and given a certain Detection

System (DS), the minimum detection time τ εmin is the mini-

mum required time for DS to detect the scan with probability

more than 1− ε.

τ εmin = inf{t ≥ 0 : ρ(t) ≥ 1− ε} (2)

A. FH Detection System

The first considered detection method is the First-Hit (FH)

algorithm, which raises an alarm on the detection of the

very first probe. Indeed, this represents the simplest detection

system that we analyze here to specify some bounds on

the parameters. After the first hit, this DS raises the alarm.

Algorithm 1 shows the simplistic DSFH algorithm. This

method intuitively uses the lowest amount of memory and

processing requirements for detection. While this approach

might be effective, it undoubtedly could lead to a high false

positive rate; it might identify received darknet packets caused

by backscattered activities or misconfiguration as probing

activities. Thus, we consider this technique and its detection

time/probability as a reference model rather than a DS that

can actually be operated in practice.

Algorithm 1: First-hit detection algorithm

1 Ci(0) = 0;

2 alarm = FALSE;

3 while do

4 if A packet from souce i is received then

5 Ci(t) = 1;

6 alarm = TRUE;

7 end

8 end

Recall that there exists |DIP | darknet IP addresses in

the subnet S. Thus, the probability of one of these darknet

IP addresses being hit by probing packets is q = |DIP |
|S| .

Therefore, the effective rate λ, the scanning rate that would

actually be sensed by the darknet, would be λ = qr. Now

given an average scanning rate r, we can write ρ(τ) as in

ρ(τ) = 1− e−λτ (3)

Based on (2) and some mathematical operations, we can easily

derive τ εmin from equation (3), as in

τ εmin =
log(ε)

−λ
(4)

Further, we can infer the minimum required darknet IP ad-

dresses for specific τ εmin and ε, as follows.

min |DIP | =
|S| ln(ε)

−rτ εmin

(5)

B. DSI Detection System

The second detection method is a window-based detection

technique that is based on the widely-deployed, open source

Snort [19] IDS. We refer to this detection system as DSI

and subsequently describe its operations. Consider a counter

Ci(t) = 0 for each observed source IP address i. After its reset

(at time t), it starts counting received packets in a time window

[t, t+∆DSI]. During this time window, if the counter hits the

threshold αDSI, DSI raises an alarm, otherwise, the counter

and the time window will be re-initiated. This algorithm

is clearly more complex than the FH algorithm because it

requires a timer to check the window’s timeout and thus

memory is required for storing Ci(t) for all packets arriving

from different source IP addresses i. The operations of DSI

is summarized in Algorithm 2.

Algorithm 2: DSI detection algorithm

1 Ci(0) = 0;

2 alarm = FALSE;

3 t reset = 0;

4 while do

5 if t ≤ t reset+∆DSI then

6 if A packet from souce i is received then

7 Ci(t) = Ci(t) + 1;

8 if Ci(t) ≥ αDSI then

9 alarm = TRUE;

10 end

11 end

12 else

13 t reset = t reset+∆DSI;

14 Ci(t) = 0;

15 end

16 end

The detection system DSI is defined with the parameter pair

(∆DSI, αDSI). Let τ = p∆DSI+ν where 0 ≤ ν ≤ ∆DSI, then

we can compute ρ(τ), as follows.

ρ(τ) = 1−W p
0
W1 (6)

where

W0 = e−λ∆

α−1∑
k=0

(λ∆)k

k!
=

Γ(α, λ∆)

(α− 1)!
(7)









of Internet measurements for cyber threat intelligence, should

also be adapted. To this end, the choice of the optimal required

number of darknet IP addresses would be more challenging

when dealing with IPv6. Consider r = 100, ε = 0.0001 and

τmin = 10000. As deduced from Section IV, the minimum

required portion of darknet IP addresses for DSI is /15 and

for DSII is /11, for those considered parameters. Recall that

this indicates that 221 darknet IP addresses are required to

detect a probing activity targeting the entire IPv4 address

space using the Snort IDS and 217 darknet IP addresses are

needed using the Bro IDS. In contrast, when dealing with

IPv6, these numbers are orders of magnitude larger and the

implications are even more imperative; for the Snort IDS, one

requires 2128−11 = 2117 darknet IP addresses and for the

Bro IDS, 2128−15 = 2113 darknet IP addresses are needed,

to infer a complete scan of the IPv6 address space. Thus, for

IPv4, the difference in terms of required darknet IP addresses

related to various IDS types is 15× 217 while for IPv6, it is a

momentous 15× 2113. One can hence note that the choice of

IDS employment on passive measurements can severely affect

(and amplify) the cost of the resources as well as the darknet

management efforts.

Second, we ought to consider highly-distributed scans, similar

to the large-scale event reported in [13]. With distributed

scans, the probing activity is divided among large number

of bots and as a result, the effective scanning rate that is

sensed by the darknet is divided by the number of bots

participating in the probing campaign. This phenomena can

significantly reduce the effective rate λ. Hence, as observed

in Figure 3, as λ continues to decrease, the gap between

DSI and DSII increases vastly, pinpointing the importance

of selecting a suitable detection methodology for combating

such ever-evolving events. Nevertheless, one has to note that

as seen in Figure 3 related to the minimum detection time, no

current detection system is ideal for inferring such large-scale,

orchestrated and distributed probing events, paving the way for

more tailored detection systems to be researched, designed and

implemented in the near future.

VI. CONCLUDING REMARKS

Motivated by the fact that passive measurements by exploit-

ing darknet IP spaces are significantly effective in generating

various cyber threat intelligence in addition to the lack of

formal modeling of darknet-centric parameters, this paper

presented a first formal perspective in such contexts. Several

detection systems based on highly-employed methods were

formalized and a number of derivations were computed and

validated to shed the light on the relations between detection

probability/time, scanners’ rates, and the width of the darknet

vantage points. Some of the outcomes suggested the practical

usage of the Bro IDS for inferring low-rate probing, its

effective application in smaller darknet IP spaces, given a

setup that somehow tolerates a delay in detection, and its cost-

reduction characteristics when implemented in IPv6 darknet

deployment settings. Another outcome pinpointed the lack

of effective passive detection methodologies that are capable

of inferring large-scale, distributed probes in a timely and

practical manner. As for future work, apart from addressing

a number of current limitations as discussed throughout this

paper, we are conducting various experimentation using real

darknet data to better situate the formalization scheme in

addition to formally investigating the impact of contemporary

IoT attacks in the context of passive measurements.
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