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a b s t r a c t 

Jointly optimizing multi-vehicle trajectories is a critical task in the next-generation trans- 
portation system with autonomous and connected vehicles. Based on a space-time lattice, 
we present a set of integer programming and dynamic programming models for schedul- 
ing longitudinal trajectories, where the goal is to consider both system-wide safety and 
throughput requirements under supports of various communication technologies. Newell’s 
simplified linear car following model is used to characterize interactions and collision 
avoidance between vehicles, and a control variable of time-dependent platoon-level re- 
action time is introduced in this study to reflect various degrees of vehicle-to-vehicle or 
vehicle-to-infrastructure communication connectivity. By adjusting the lead vehicle’s speed 
and platoon-level reaction time at each time step, the proposed optimization models could 
effectively control the complete set of trajectories in a platoon, along traffic backward 
propagation waves. This parsimonious multi-vehicle state representation sheds new lights 
on forming tight and adaptive vehicle platoons at a capacity bottleneck. We examine the 
principle of optimality conditions and resulting computational complexity under different 
coupling conditions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

As population, economic growth and personal travel activities continue to increase, traffic congestion remains as an 
extremely challenging problem due to limited road capacity and limited budgets for expanding infrastructure. A recently 
emerging technology, autonomous vehicles or automated vehicles (AV) are likely to create a revolutionary paradigm shift in 
the near future for real-time traffic system automation and control. AV technology is expected to provide a wide range of 
new opportunities for managing transportation networks, and also redefines what is tractable regarding full system-wide 
optimization through a tight integration among vehicles and system managers. 
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Varaiya (1993) outlined an automated highway systems (AHS) to significantly improve highway capacity and safety, in 
which a hierarchical control mechanism for AVs is provided at different spatial scales, ranging from a network, routes, 
freeway corridors, to dedicated lanes. In a recent review from the perspective of traffic flow theory and operations, 
Mahmassani (2016) highlighted many unique features and challenges in the next-generation transportation systems of op- 
timizing and controlling automated and connected vehicles. In the connected environment with different degrees of au- 
tomation and connectivity supports, we need to not only fully recognize the changing driver/vehicle behavior (including car 
following and lane-changing), but also design a system-optimal scheduling and control architecture to achieve robust, stable 
and effective traffic flow management. 

In our research, we focus on a longitude vehicle trajectory optimization problem, which is fundamental to many AV 

applications, such as vehicle platooning or adaptive cruise control. We briefly review the related research topics, including 
car following models and traffic-flow oriented trajectory optimization. 

1.1. Review of car-following models and AVs’ impact on traffic flow characteristics 

Since the 1950s, there are a wide range of car following models proposed for vehicles driven by humans. After the earliest 
car-following models developed by Reuschel (1950) and Pipes (1953) , many car-following models were developed based on 
the response-stimulus mechanism between a lead vehicle and a following vehicle. As examples, Kometani and Sasaki (1958, 
1959, 1961 ), Forbes et al. (1958), Forbes (1963) , and Chandler et al. (1958) had developed nonlinear car-following models, 
respectively. To overcome the complexity of those nonlinear models, Newell (1993, 2002 ) first presented a simplified car- 
following theory which is consistent with the macroscopic triangular flow-density relationship. Due to its simplicity without 
loss of flexibility, the Newell’s simplified car-following models have been calibrated in many locations using real-world 
trajectory data. For example, Ahn et al. (2004) calibrated the Newell’s car-following model using real-world vehicle trajectory 
data at signalized intersections. Taylor et al. (2015) applied the time-warping approach to investigate drivers’ situation- 
dependent perception and reaction to external impetus. In parallel, there are also many studies focusing on calibrating 
various stochastic and situation-dependent car-following models, to name a few, Hamdar et al. (2009), Laval and Leclercq 
(2010), Hoogendoorn et al. (2011) and Kim and Mahmassani (2011) . 

While most car-following models focus on human-operated vehicles, researchers in automated control and artificial intel- 
ligence started characterizing the driving behaviors of AVs and their potential impact on road capacity in the 1990s. Reliable 
actuators and sensors in AVs, as summarized by Ward (1997) , have made AVs more available and ready for field tests. There 
are two types of research efforts in parallel along this research line: one focusing on the interactions between AVs based on 
vehicle dynamics to derive possible changes to traffic characteristics; the other focusing on overall changes to the perfor- 
mance of road capacities brought by AVs under various conditions. As examples of the first type of research, Horowitz and 
Varaiya (20 0 0) described the findings from the automated highway system (AHS) development in the 1990s at the California 
PATH program. In general, the actuators make AVs react much faster than a normal or even sensitive human driver. Sensi- 
tive drivers can have a short perception-reaction time of 1.0 s to 1.5 s, as reported by NAHSC (1996) , compared to a typical 
perception-reaction time of 2.0–2.5 s. Further shorter AV reaction times, such as 0.7 s reported by Bose and Ioannou (1999) , 
can lead to closer spacing between cars and a higher roadway capacity. Another important aspect that motivates the devel- 
opment of AHS is based on optimal flow control through reducing or smoothing random errors in human drivers via the de- 
terministic and possibly optimized vehicle trajectory planning/control. An early prototype for single-lane vehicle platooning 
on automated highways was reported by Alvarez and Horowitz (1999) . They designed a safe zone between two platoons ac- 
cording to the distance, relative speed and maximum acceleration and deceleration rates. Horowitz and Varaiya (20 0 0) also 
evaluated many platooning methods in simulation as well as in the physical test beds. Recently, Lioris et al. (2017) demon- 
strate that platoons of connected vehicles can double throughput in urban roads based on by the analysis of three queuing 
models and by the simulation of a road network with 16 intersections and 73 links. 

A set of adaptive cruise controller (ACC) and the intelligent driver model controller (IDM by Treiber et al. (20 0 0 ) were 
tested by Milanés and Shladover (2014) in different traffic situations in order to measure the actual responses of the vehi- 
cles. Talebpour and Mahmassani (2015) proposed a non-linear acceleration framework for autonomous vehicles and evalu- 
ated the possible changes to traffic flow stability. Roncoli et al. (2015a, b) proposed a linear lane-based traffic flow model 
and discussed how to calibrate the model and optimize the traffic flow in the presence of autonomous vehicles. Using the 
relaxed Pontryagin’s minimum principle, Hu et al. (2016) proposed an optimal controller to improve fuel efficiency for a 
vehicle equipped with automatic transmission traveling on rolling terrain. Recently, by applying the Improved Intelligent 
Driver Model (IIDM) in a road traffic simulation package named SUMO, Askari et al. (2017) assess the impact of the maxi- 
mum vehicle acceleration and variable proportions of adaptive cruise control (ACC) and cooperative adaptive cruise control 
(CACC) vehicles on the throughput of an intersection. The results show that (C)ACC vehicles can obviously increase the urban 
mobility with little or no cost in infrastructure. 

1.2. Review of vehicle trajectory optimization models 

Vehicle trajectory optimization and control has been extensively studied in a broader domain, including surface vehi- 
cles, aircraft and Unmanned Aerial Vehicles (UAV). As summarized by Betts (1998) , nonlinear programming, optimal control, 
and dynamic programming are classical modeling approaches to describe vehicle dynamics with various constraints and 
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boundary conditions. Typical solution algorithms for single-vehicle trajectory optimization problems include direct shooting, 
indirect shooting, multiple shooting and direct/indirect transcription, where the last two methods aim to solve multipoint 
boundary value problems. By using a constrained optimization method on fuel consumption, He et al. (2015) proposed an 
approximation approach for providing advisory speed limit to drivers in the bottleneck. Along this line, Wu et al. (2015) ap- 
plied reduce electricity consumption of electric vehicles method in the intersection. Focusing on the multi-vehicle trajectory 
coordination problem, Schouwenaars et al. (2001) proposed a mixed integer linear programming (MILP) model to use read- 
ily available linear programming or integer programming solvers such as CPLEX. In their proposed model, a set of vehicles 
move from initial boundary states to final states, subject to obstacle and inter-vehicle collision avoidance constraints. Re- 
cent development along this line can be found in the studies by Grotli and Johansen (2012), Richards et al. (2002) and 
Grotli and Johansen (2016) for UAV trajectory coordination problems, which cover a richer set of vehicle dynamics, obsta- 
cle avoidance, task timing requirement and communication-connectivity constraints. In mobile leader–follower networks, 
Sun and Cassandras (2016) highlights the important features of continuously preserving connectivity in a convex mission 
space. 

Dynamic programming (DP)-based algorithms have been one key theoretic foundation for single-vehicle trajectory opti- 
mization, and its formulation typically involves several modeling elements: (i) the boundary of the search scope or map, (ii) 
discretized space-time lattices, (iii) a path searching algorithm that can find a safe trajectory to reach the destination and 
meet certain global goals, such as minimal fuel consumption or minimal travel times. While the DP-based trajectory opti- 
mization can reach the exact optimum, it is often too slow for real-time applications involving multiple vehicles. To address 
this issue, Flint et al. (2002) proposed an approximate DP algorithm for multiple vehicles to cooperatively search for targets. 
The dissertation by McNaughton (2011) , based on an AV system architecture described by Urmson et al. (2008) for the 2007 
DARPA Urban Challenge (DUC), proposed a novel five-dimensional search algorithm that recognizes kinematic and dynamic 
constraints in clearly defined spatial and temporal dimensions, and used graphics processing unit (GPU) to enable parallel 
search algorithms. Recent survey papers by Katrakazas et al. (2015) and Paden et al. (2016) reviewed the existing motion 
planning approaches for self-driving vehicles. 

In a very recent study by Zhou et al. (2017a) , they proposed a shooting heuristic algorithm to smooth trajectories of mul- 
tiple automated and connected vehicles, where a time geography-oriented approach is innovatively combined with Newell’s 
simplified car following model to consider safe vehicle driving boundaries. Ma et al. (2016) further discussed the compu- 
tational complexity and performance of their shooting algorithm in their preceding study. Bang and Ahn (2017) proposed 
an innovative framework to embed Newell’s simplified car-following model with different reaction times for connected and 
autonomous vehicles (CAV) in a spring-mass-damper system ( Yanakiev and Kanellakopoulos, 1998; Munigety et al., 2016 ). 
Their proposed swarm intelligence model is able to systematically characterize CAV platoon formation and evolution, un- 
der light traffic conditions. Gong et al. (2016) recently developed a rigorous convex program with quadratic constraints 
for representing the nonlinear safety distance constraint among coupled vehicles. To address the computational challenges, 
they used dual based distributed algorithms to iteratively refine the trajectory solutions and capture the desired transient 
and asymptotic dynamics. Compared these recent studies, our paper focuses on how to develop (linear) integer program- 
ming and dynamic programming model in a discretized multi-vehicle space-time representation. The parsimonious cou- 
pled multi-vehicle state representation to be constructed aims to not only shed new lights on defining the transient dy- 
namic progress for adaptive vehicle platoons, but also provide a traffic-flow-oriented modeling methodology for extending 
a wide range of dynamic programming based real-time vehicle trajectory control algorithms under heaving and light traffic 
conditions. 

In many multi-robot path planning applications, a group of autonomous vehicles follow predefined trajectories mov- 
ing in a formation, which offers many advantages such as reducing team-level cost, increasing the robustness, efficiency 
and flexibility of the system. Designing such a system in a dynamic environment with avoiding obstacles to make motion 
planning requires robust configuration and discrete transformations ( LaValle, 2006 ). Survey papers by Murray (2007) and 
Chen & Wang (2005) review the cooperative control and formation control of multi-vehicles/robots. With global and indi- 
vidually defined goals with different performance functions, the problem (e.g., addressed in an early study by Balch and 
Arkin (1998 ) typically aims to optimize multi-robot trajectories by controlling leader-follower trajectories, specifying a 
reference point and defining a virtual structure. Egerstedt and Hu (2001) presented a strategy on solving path fol- 
lowing problem based on multi-agent formation specifying virtual leader tracks as the reference trajectory, and avoid- 
ing obstacles by following a reference path. Focusing on minimizing system cost with a user-defined global function 
for using in D ∗ incremental search algorithm ( Stentz, 1994 ), Guo and Parker (2002) proposed an optimal motion plan- 
ning model based on searching path and velocity patterns with safety margins by using a multidimensional state ap- 
proach, which covers system states such as start and goal positions, environmental aspects and communication with other 
robots. 

In addition to optimizing the system performance, more inherently, the analysis on stability of the system and how to 
stabilize the system are also critical for controlling autonomous vehicles in traffic systems. Based on the given vehicle refer- 
ence posture and velocities, Kanayama et al. (1990) proposed a stable tracking control rule for non-holonomic autonomous 
mobile robots to find the most reasonable velocities, and Lyapunov function was adopted to prove the stability of the pro- 
posed rule. De Wit and Sordalen (1992) analyzed the exponential stabilization of two-degree-of-freedom mobile robots with 
non-holonomic constraints by a specific class of piecewise continuous controllers. Recently, Miao and Wang (2015) provided 
a time-dependent adaptive control scheme at the torque level to address the stabilization issue and tracking problem for 
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unicycle mobile robots with unknown dynamic parameters depending on the instantaneous and past information of the 
reference velocities. Liu et al. (2017) developed an innovative direct trajectory planning algorithm for 2-dimensional park- 
ing applications. The research groups led by Sprinkle and Work conducted a very interesting field experiment ( Stern et al., 
2017 ), in which an autonomous vehicle is controlled to dampen stop-and-go waves on a circular track with more than 20 
vehicles. Their results demonstrate the full potential of traffic flow control through a small set of self driving vehicles. To 
investigate the car-following behavior for human-operated vehicles under high speed situation, the research group led by 
Jiang also conducted a real world platoon experiment with 11 cars ( Huang et al., 2017 ), and they proposed a new Enhanced 
Two Dimensional Intelligent Driver Model to systematically describe the formation and evolution of oscillations and stripes 
structure. 

1.3. Motivation and challenges 

While previous studies in the areas of vehicle motion planning have made important contributions in various aspects, it 
is still critically important to develop mathematically rigorous optimization models and computationally tractable algorithms 
to (1) consider the dynamic effect of vehicle interactions and also (2) reach the full potential of many system-level perfor- 
mance measures such as throughput, capacity, stability and safety. Along this line, this paper aims to address the following 
theoretical research questions. 

(1) How to adapt the current car-following models to model traffic interactions of automated vehicles based on available 
connectivity and automated functions, and in particular the dynamic process of tight platoon formation and system- 
level control? 

(2) How to develop a theoretically rigorous optimization model (e.g., in the form of mixed integer programming models) 
which could be solvable using standard optimization software such as CPLEX? Desirable multi-vehicle trajectory op- 
timization models should be able to not only satisfy critical operational constraints such as obstacle avoidance, but 
also recognize the inherent nature of car following behavior to optimize platoon-level or system-level performance. 

(3) How to design on-line trajectory optimization algorithms to improve the performance of coupled AVs in a platoon, 
under complex traffic conditions with time-dependent capacity bottlenecks and obstacles of moving trajectories? 

Since vehicle dynamics is nonlinear in nature, most existing AV controller designs involve sophisticated nonlinear feed- 
back loops through time-continuous car following models. To provide tractable mathematical models for both offline and on- 
line vehicle trajectory optimization, we reformulate Newell’s simplified car-following model in a discretized high-resolution 
space-time lattice. As a result, we could approximate the time-continuous vehicle trajectory control problem first though 
a binary integer programming model, which enables a rich body of standard optimization algorithms such as branch and 
bound and column generations. To further develop a solid theoretical foundation for multi-vehicle optimal control and ef- 
ficient on-line optimization processes, we develop a family of efficient DP algorithms to schedule the optimal trajectory 
for multiple vehicles in a platoon. In particular, a new control variable of time-dependent platoon-level reaction time is 
introduced in this study to reflect various degrees of vehicle-to-vehicle or vehicle-to-infrastructure communication connec- 
tivity. By adjusting the leading vehicle’s speed and (location-dependent) platoon-level reaction time at each time step, the 
proposed DP algorithms could effectively control the complete set of trajectories in a platoon, along traffic backward prop- 
agation waves. This parsimonious multi-vehicle state representation sheds new light on forming tight and adaptive vehicle 
platoons at a capacity bottleneck. As a reduced reaction time in a platoon is associated with potentially negative safety 
impact due to possible communication delay and failure, we also extend a model by Przybyla et al. (2015) to analytically 
evaluate the situational risk associated with communication delay. By dynamically configuring vehicle reaction times that 
could form different slopes of backward waves, we hope a platoon with adaptive reaction times could better balance the 
goals of capacity throughput maximization and risk minimization, under complex driving and communication support con- 
ditions. 

The rest of this paper is organized as follows: In Section 2 , we describe how to adapt the traffic flow theories developed 
by Newell (2002) and related kinematic wave model to characterize the AVs’ dynamic trajectories. In Section 3 , we will de- 
velop an integer programming model to optimize the vehicle trajectories subject to minimal safe driving distances between 
cars, as well as different entrance and exit boundary conditions for using this formulation. In Section 4 , a sequence of dy- 
namic programming based solution algorithms are further developed for different scenarios to optimize the vehicle speed 
profiles as well as to predict the optimized vehicle’s impact on the following AVs. Finally, we demonstrate the potential of 
optimal trajectory control for both a single AV and multiple AVs through numerical analysis in Section 5 . 

2. Modeling simplified car-following behavior 

2.1. Simplified car-following behavior for AV 

The notation used in this section is listed below. 

L : length of vehicle (e.g., 20 feet or 4 m) 
d n : minimum distance between the front of the leading car and the front of following car 
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d 0 : the minimum safe rear-to-end distance after an emergency braking event 
v f : maximum or free-flow driving speed 
x n ( t ) and x n −1 ( t ): the position of following and lead vehicles, respectively, at a given time t 
S n : distance headway between the positions of leading and following vehicles 
v n : speed of the vehicle n 
a n : the deceleration rate of vehicle n 
I n ( t ): time headway between n th and ( n −1) th vehicles 
τ PR : perception-response time (PRT) 
τ n : slope in a linear spacing-speed function 
τ B : redundant time buffer used in linear car following model for autonomous vehicles 
k jam : jam density 
w b : backward wave speed. 

To clearly examine the perception-reaction and collision-avoidance mechanism for AVs, we first briefly review the related 
first-order car following models. Focusing on the time dimension in the car following behavior, Forbes’ model ( Forbes et al. 
1958; Forbes, 1963 ) considers two major elements: (i) the reaction time (e.g., 1.5 s) needed for human drivers to perceive 
the need to decelerate and apply the brakes; and (ii) the time duration for the following vehicle traversing its length (to 
avoid collision). Eq. (1) shows the equivalent distance headway. 

d n = 1 . 5 v n + L (1) 

In our research, using the human-driver car following behavior as the baseline, we are interested in how to adopt a 
linear car following model to approximate the time-continuous AV trajectories while maintaining the minimum safe driv- 
ing distances. In the original classical paper by Newell (2002) , he derived the linear car following model as an approxi- 
mation of high-order trajectories (through the mean-value theorem), while our focuses below are on how the underlying 
AV collision-avoidance behavior leads to space-time relationship between a pair of leading and following vehicles, as the 
collision-avoidance constraint between a pair of vehicles is a building block of the proposed optimization models. 

First, we need to compute the minimum safety distance S n based on the driving speed of both cars (namely v n −1 and 
v n ) before the emergency braking. The process of one leading vehicle n −1 and one following vehicle n under emergency 
braking condition is illustrated in Fig. 1 . 

Given the deceleration rates a n −1 and a n , it is easy to derive the braking distances l = S n + 
v 2 
n −1 

2 a n −1 
and l ′ = v n × τn + 

v 2 n 
2 a n 

and then establish Eq. (2) between S n and d n . 

d n = l − l ′ = S n + 
v 2 n −1 

2 a n −1 
− v n × τn −

v 2 n 

2 a n 
(2) 

which can be rewritten as 

d n = S n − v n × τn + 
v 2 n −1 

2 a n −1 
−

v 2 n 

2 a n 
(3) 

Since the following vehicle is tightly following the lead vehicle, we can assume a n −1 = a n and v n −1 = v n for the same or 
similar type of vehicles at the stable condition. In other words, our derivation focuses more on the stable states before and 
after the speed changes (state transition), so one can obtain Eq. (4) . 

S n = τn v n + d n (4) 

Eq. (4) is consistent with Newell’s simplified car-following model that distance headway S n changes linearly with speed 
v n , where τ n and d n are independent of its vehicle speed v n . The relation between spacing S n and velocity v n and the 
simplified car-following trajectory is shown in Fig. 2 . 

Now we discuss possible values of perception and reaction time parameter τ n under different cases. 

(I) If the lead car is human operated (but possibly connected) and the following one is an automated car, τ n should 
include a detection delay (about 0.3 s) and emergency braking delay (about 0.4 s). 

(II) If both vehicles are AVs and their driving speed information is completely shared in real time, τ n can be significantly 
small as 0. This implies that S n = d n . This case applies to the AVs among an AV platoon. 

To reduce the unexpected secondary accident impact, and to ensure the overall system reliability and stability, in the 
AHS designed by Varaiya (1993) and Bose and loannou (2003) , an extra distance buffer v n × τ B is given as shown in Eq. (5) . 

S n = v n × τPR + v n × τB + d n (5) 

where τ PR + τ B in Eq. (5) is the desired time headway of autonomous vehicles, defined as the time taken to cover the 
distance S n −d n . Within a speed-spacing relationship described in Eq. (4) , a unified formula for the slope parameter τ n can 
be represented as τ n = τ P + τ R + τ B , where τ P and τ R are the corresponding perception and reaction time and T PR = τ P + τ R . 

Table 1 further examines the differences of the above mentioned car-following models in both human operated and 
autonomous vehicles. 
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Fig. 1. The process of car-following behavior change. 

Fig. 2. Relation between spacing and velocity and piecewise linear approximation to vehicle trajectories with a speed change (adapted from Newell 2002 ). 

Table 1 

Different interpretations of linear car following model S n = τ n × v n + d n with sample settings. 

Model Time Offset τ n Distance offset 

Perception time Response time Redundant time 
buffer 

Newell’s Model (human 
operated cars) 

1–1.3 0.4 Not defined d n 

Automated and connected car 
model 

Very small, related to 
communication delay 

Very small, related to machine 
and vehicle processing time 

τ B d n 
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In this section, we are interested in deriving the corresponding macroscopic flow-speed or flow-density relationship 
based on the proposed microscopic AV driving behavior, like given τ k and d k . As shown in Fig. 2 , based on Eq. (4) , we can 
derive the time headway I n ( t ) between n th and ( n −1) th vehicles as shown in Eq. (6) , 

I n = 
S n 

v n ( t ) 
= 

τn × v n ( t ) + d n 

v n ( t ) 
= τn + 

d n 

v n ( t ) 
(6) 

So the general time headway can be as, Ī = τ̄ + 
d̄ 
v , where τ̄ = 

1 
n 

∑ n 
k =1 τk and d̄ = 

1 
n 

∑ n 
k =1 d k 

Since the flow rate q can be expressed as q = 
1 
Ī 
, the capacity (maximum flow rate) is derived when speed reaches the 

maximum speed, free-flow speed v max . 

q max = 1 / 

(

τ̄ + 
d̄ 

v max 

)

(7) 

Where jam density k jam = 
1 
d̄ 
, and backwave speed 

w b = 
q max − 0 

k jam − k c 
= 

d̄ 

τ̄
. (8) 

Eqs. (7) and (8) have been shown as a critical bridge between Newell’s microscopic car-following model and macroscopic 
flow-density fundamental triangle diagram, and many studies (e.g., Mahmassani, 2016 ) have used a similar form to quantify 
the capacity impact under a connected or automated vehicle environment under different driving conditions. 

2.2. Model leader-follower behavior in multi-AV formation control with changeable reaction times 

As shown in the right plot of Fig. 2 , before the speed changes from v 1 , one can show that, s n = τ n × v 1 + d n . If the velocity 
changes to v 2 , similarly, it can obtain s ′ n = τn × v 2 + d n . Assuming that the following vehicle n is tightly following the lead 
vehicle n −1, it is obvious that x n −1 ( t ) − x n ( t + τ n ) = S n − τ n × v 1 = d n and x n −1 (t) − x n ( t + τn ) = S ′ n − τn × v 2 = d n . Thus we 
can further derive the car-following constraints in the time and space dimension, before and after speed changes. 

x n ( t + τn ) = x n −1 ( t ) − d n (9) 

By considering both free-flow and car following mode, we can obtain an inequality constraint in Eq. (10) shown by 
Newell (2002) as shown in Fig. 3 . 

x n ( t + τn ) = min 
{

x n ( t ) + v f × τn , x n −1 ( t ) − d n 
}

(10) 

If we extend Eq. (10) to another following vehicle n + m recursively, one can easily derive 

x n + m 

( 

t + 

n + m 
∑ 

i = n 

τi 

) 

= min 

{ 

x n + m ( t ) + v f ×

( 
n + m 
∑ 

i = n 

τi 

) 

, x n −1 ( t ) −
n + m 
∑ 

i = n 

d i 

} 

(11) 

Now, to better control the multi-robot trajectory, we consider a leader-follower formation control approach with dynam- 
ically changing reaction times, which is motivated by two reasons: (i) it is still a challenge to fully control each individual 
autonomous vehicle in a large scale, and (ii) a changeable reaction time (which is greater than the minimum reaction time) 
can reduce the collision risk, to some extent. The details will be discussed later. 

Trajectories of a platoon consisting of 5 AVs are shown in Fig. 4 (a) with constant reaction time and variable speed 30 mph 
to 60 mph. As shown in Eq. (6) or (7) , capacity or time headway consumed by a set of vehicles, is dependent on two factors: 
reaction time and speed. By reducing or dynamically changing the reaction time during the journey of a multi-vehicle 
moving process, as illustrated in Fig. 4 (b), we can increase the capacity throughput at the critical bottleneck as shown in 
Fig. 4 (d) and (e) where the speed is 30 mph. All AVs in the platoon can pass the bottleneck without any splitting when the 
reaction time is 0 s in Fig. 4 (d) and (e). To show the effectiveness of changing reaction times, possible trajectories of AVs 
with regular reaction time, τ 1 = 1.5 s , are plotted as green dashed lines at the critical bottleneck. As can be seen in Fig. 4 (d) 
and (e), if the reaction time didn’t change, not all AVs in the platoon could pass the bottleneck without splitting. That is, 2 
vehicles in Fig. 4 (d) and (e) are left behind the green time interval. 

When we are able to adjust the variable reaction time between two optimization time steps, we need to carefully con- 
sider a special constraint to ensure the follower still moves forward as a result of two backward wave propagations. As 
shown in Fig. 4 (b), after changing the reaction time, the new timestamp of the follower must be greater than the previous 
timestamp, which leads to Eq. (12) . 

t + �K + m ∗ τ ′ > t + m ∗ τ (12) 

where �K is time difference between timestamps of reaction time change events, τ is the previous reaction time, τ ′ is 
current reduced reaction time. Assuming �K as 1 time interval, we can rewrite constraint (12) as t + 1 + m ∗τ ′ > t + m ∗ τ , 
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Fig. 3. Vehicle trajectories based on simplified car following model. 

which leads to 

(

τ − τ ′ 
)

< 
1 

m 
(13) 

That is, the magnitude of reaction time change �τ must be less then 1 
m . After changing the reaction time, we need to 

ensure that the vehicle is not moving backward. That is, the new position of the followers must be larger than their previous 
position: 

x n −1 ( t + �K ) − m ∗ d ′ ≥ x n −1 ( t ) − m ∗ d (14) 

where d and d ′ are the previous and current minimum distance between leading and following cars, respectively. For sim- 
plicity, if we assume d and d ′ have the same value, inequality (14) always holds. 

It should be noted that in the transition process above, it is possible that the following vehicle(s) could have a short time 
period where the prevailing speed could temporally exceed the speed limit. For example, the lead vehicle is driving at the 
speed limit and the following vehicles need to catch up and form the platoon. This is the by-product of variable reaction 
times. To mitigate this issue, one could either reduce the speed of the lead vehicle to allow the following vehicles to catch 
up under the speed limit requirement, or expand the transition duration for variable reaction time so we have a smoother 
transition to reduce the possibility of temporally violating speed limit for the following cars. 

To satisfy speed limits for all vehicles, it has to be define new constraint in the course of reaction time changing while 
vehicles are coupling. As shown in Fig. 4 (c), while the last following vehicle keeps its speed, the leading vehicle should 
slow down. For the last vehicle: �X = ( x n −1 ( t + �K ) −m ∗d ′ ) − ( x n −1 ( t ) −m ∗d ). Since d = d ′ , �X = x n −1 ( t + �K ) − x n −1 ( t ). For 
the last vehicle: �T = ( t + �K + m ∗τ ′ ) − ( t + m ∗τ ), which leads to �t = �K − m ( τ − τ ′ ) . Therefore, if the last vehicle cannot 
have a speed greater than speed limit, �X 

�T ≤ v f . Thus we can further derive the speed limit constraint for changing reaction 
time. 

x n −1 ( t + �K ) − x n −1 ( t ) 

�K − m ( τ − τ ′ ) 
≤ v f (15) 

In general, a cooperative driving environment is expected to provide significant improvements for road safety and traf- 
fic flow efficiency ( Kesting et al., 2010; Jia and Ngoduy, 2016a, b ). Before presenting further analytical results, we now 

briefly review the related studies for measuring the impact of communication delay in different vehicular communication 
environments. Bai and Krishnan (2006) analyzed vehicle-to-vehicle (V2V) reliability in the application level, as a function 
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Fig. 4. Vehicle trajectories with changing reaction time. 
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Fig. 5. Probability density function (PDF) of communication delay and its impact on driving risk (adapted from Przybyla et al. (2015) . 

of (i) distance headways between successive following vehicles and (ii) tolerance time window. According to their exper- 
imental results based on different distance headway from 25 m up to 400 m, packet delivery ratio, a common metric in 
the literature, is changing between 93% and 58%, respectively. Many studies, such as Xu et al. (2014) , focused on quanti- 
tative characterization of the communication latency in a platoon, dependent on communication structures and content as 
well as communication standards. For instance, it has been shown that communication delay can reach up to 1.5 s within 
the IEEE 802.11p standard, and a failed transmission of vehicle braking events could have a ripple effect on all follow- 
ing vehicles. More recently, the concept of 5 G network has been widely discussed for supporting autonomous vehicles to 
provide better data capacity, scalability of network, ultra-low latency and V2V connectivity ( Kreutz et al., 2015; Akyildiz 
et al., 2016; Intel, 2017 ). For example, Cheng et al. (2017) proposed a 5G-enabled cooperative intelligent vehicular (5Gen- 
CIV) framework to provide secure autonomous driving by enabling ultra-low latency typically requiring a time delay in 
the scale of microseconds, which could enable higher speed and lower space in the CAV environment discussed in our 
paper. 

With changeable reaction time, we not only need to precisely compute the benefit of increased capacity, but also estimate 
the associated risk due to reduced reaction time threshold, as shown in the probability density function (PDF) of communi- 
cation delay in Fig. 5 (a). τ n is a team-based reaction time threshold agreed upon by each vehicle in the platoon. τ x is the 
extra communication delay (due to transmission error of data) beyond τ n , and τ a is the actual combined time delay as the 
summation of τ n and τ x . The magnitude of τ x depends on the specific communication system used. As Fig. 5 (a) shows, τ x 

is greater under a standard communication system (e.g. DSRC) than under enhanced communication system (e.g. 5 G). In a 
perfect car following behavior, the following vehicle should start to slow down at time t + τ n , and starts emergency braking 

at time t + τ a . For a given extra delay τ x , the braking time is �t T C = 
v n −v n −1 

a n 
and the braking distance is �x T C = 

v 2 n −v 2 
n −1 

2 a n 
., as 

illustrated by the space-time diagram shown in Fig. 5 (b). 
In order to guarantee the leading and following vehicles ( X a 

n −1 and X 
a 
n ) do not collide, the position relationship between 

them at time ( �t + τ a + t TC ) should meet the following inequality constraint. 

X a n −1 ( t + τ a + �t T C ) ≥ X a n ( t + τ a + �t T C ) + L (16) 

Following the derivation step by Przybyla et al. (2015) for distracted driving, at time ( t + τ a + �t TC ), the position of the 
leading and following vehicle could be represented as 

X a n −1 ( t + τ a + �t T C ) = v n −1 × ( τ a + �t T C ) + X a n −1 ( t ) (17) 

X a n ( t + τ a + �t T C ) = X a n −1 ( t ) − d n − τn ∗ v n + v n × τ a + �x T C (18) 

Using the Eqs. (17) and (18) , the probability of success equals to 

P s n = P rob(X a n −1 ( t + τ a + �t T C ) > X a n ( t + τ a + �t T C ) ) (19) 

It should be noted that the probability of success depends on the distribution of actual communication delay τ a , and the 
preset response time value τ n for given speed and positions of two vehicles. The team-based risk probability for m vehicles 
in the platoon can be calculated as follows 

R c = 1 −
m 
∏ 

n=1 

P s n (20) 
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Fig. 6. Illustration of physical communication and traffic network and its space-time network. 

Fig. 7. Illustration of restricted points based on Newell’s car-following model. 

3. Binary integer programming formulation 

3.1. Problem statement 

To construct the binary integer programming model, without loss of generality, we only consider autonomous vehicles 
along a single-lane facility with a given communication system. As shown in Fig. 6 (a), there are two segments AB and 
BC, and each segment has a communication system, which provides the reaction time of those autonomous vehicles or 
backward wave speed in those segments. The corresponding time-discretized space-time network is built in Fig. 6 (b). At 
each time stamp along time horizon from 0 to T , one vehicle can travel in one of K ( K = 4) alternative speed values from 0 
to its speed limit, which can be represented by travelling arcs and waiting arcs. The travel cost of each arc in the space-time 
network is defined as its travel time in advance. At each physical destination node, a corresponding virtual super-destination 
node is built at the big time T. The travel cost of arcs from the destination node to the virtual super node is 0. To avoid the 
obstacles such as the time period of traffic red signals, we can delete those travelling arcs which go through or depart at 
the signal red time at the signal location in the space-time network. 

The relation between the lead vehicle and the following vehicle is displayed in Fig. 7 (a) based on Newell’s simplified car- 
following model, where the displacement of time and space establishes an incompatible area so that both vehicles cannot 
exist there simultaneously. The detail is further drawn in Fig. 7 (b) when the reaction time and minimum spacing are 3- 
time interval and 3 space interval for the following vehicle, respectively. Fig. 7 (c) shows the incompatible area with reduced 
displacement time from 3-time interval to 2-time interval. The set of incompatible points at each vertex can be enumerated 
based on the given reaction time or backward wave speed w in each segment with a built communication system. In short, 
our problem aims to optimize all autonomous vehicles’ trajectories to minimize the total system travel cost while satisfying 
Newell’s simplified car-following constraints. 
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3.2. Mathematical programming formulation 

Notation used for this section. 

Indices Definition 

i, j Index of nodes, i, j ∈ N 
( i, j ) Index of physical link between two adjacent nodes, ( i, j ) ∈ L 
a Index of agents/vehicles, a ∈ A 
t, s Index of time intervals in the space-time network 
w Index of communication time of autonomous vehicles 
k Index of segments with different communication time 
o ( a ) Index of origin node of agent a 
d ( a ) Index of destination node of agent a 
Sets 

N Set of nodes in the physical transportation network 
L Set of links in the physical transportation network 
A Set of agents 
W Set of communication time of self-driving cars 
S Set of segments 
V Set of vertices in the space-time network 
E Set of edges/arcs in the space-time network 
Parameters 

DT a The departure time of agent a 
AT a The assumed arrival time of agent a 
c i,j, t, s Travel cost of traveling arc ( i, j, t, s ) in the space-time network 
T The time horizon in the space-time network 
φ( w,i, j, t, s ) φ( w,i, j, t, s ) = 1, if the vertex ( j, s ) visited by the following vehicle with reaction time w , the vertex ( i, t ) cannot be visited 

by its leading vehicle. 
Variables 

θ a 
i,t Binary variable, indicator of vertex ( i, t ) visited by agent a 

x a 
i, j,t,s = 1, if Agent a is assigned on traveling/waiting arc ( i, j, t, s ) in the space-time network; = 0 otherwise 

The objective function in Eq. (21) is to minimize the total generalized travel cost of all autonomous vehicles un- 
der centralized control. Eq. (22) is a standard vehicle-based flow balance constraint, similar to recent studies by Liu and 
Zhou (2016) and Lu et al. (2016) . Eq. (23) defines whether or not vehicle a visits vertex ( i, t ) by θ a 

i,t 
. Specifically, if θ a 

i,t 
= 1 , 

vehicle a visits vertex ( i, t ) and 
∑ 

( j,s ) 

x a 
i, j,t,s 

= 1 , which indicates that only one arc from vertex ( i, t ) is chosen. Otherwise, 

θ a 
i,t 

= 0 , and no arcs from vertex ( i, t ) will be chosen by vehicle a . Inequality (24) represents the safe driving constraints of 
a pair of lead and following vehicles based on Newell’s simplified car-following model. φ( w,i,j,t,s ) is a parameter with value of 
1 that defines the incompatible relation among vertexes ( i, t ) visited by the lead vehicle and the vertex ( j, s ) visited by the 
following vehicle under given reaction time/backward wave speed w at different road segments. As a result, our proposed 
model is a 0–1 integer linear programming model, which could be directly solved by standard optimization solvers, such as 
CPLEX. 

Integer Programming Model: 

Objective function:

min 
∑ 

a 

∑ 

( i, j,t,s ) 

x a i, j,t,s × c i, j,t,s (21) 

Subject to, 
Vehicle-based flow balance constraint: 

∑ 

i,t : ( i, j,t ,s ) ∈ E 

x a i, j,t,s −
∑ 

i,t: ( j,i,s,t ) ∈ E 

x a j,i,s,t = 

{ 
−1 j = o ( a ) , s = D T a 

1 j = d ( a ) , s = T 
0 otherwise 

, ∀ a (22) 

Indicator of vertex visited by vehicles: 

θ a 
i,t = 

∑ 

( j,s ) 

x a i, j,t,s , ∀ ( i, t ) , ∀ a (23) 

Simplified car-following safety constraints: 
∑ 

( i,t ) 

( ϕ ( w,i, j,t,s ) × θ a 
i,t ) + θ a +1 

j,s ≤ 1 , ∀ ( j, s ) ∈ ϕ ( w,i, j,t,s ) , ∀ a (24) 

Binary variables: x a 
i, j,t,s 

= { 0 , 1 } ; 

As a remark, traffic boundary condition (closed or semi-open) is an important input for autonomous vehicle trajectory 
control/optimization. Our proposed model can handle not only the closed boundary condition in the space-time network 
but also the semi-open boundary condition through building a virtual super-destination node with the objective of travel 
time, fuel consumption, emissions, etc. 
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Fig. 8. 3D illustration of trajectories of AVs’ and reaction time changing at the critical bottlenecks. 

Fig. 8 illustrates in three dimensions (reaction time, space, and time) how reducing reaction times in follower vehicles 
increases capacity throughput at signalized intersections. The trajectories of the lead vehicle and four following vehicles are 
analyzed along a three-segment roadway with two traffic signals under three free flow speeds at different segments and 
four reaction times. Four different colors representing four changing reaction times (green for 1.5 s, blue for 1.0 s, brown for 
0.5 s, and orange for 0 s). 

In order to achieve a tightly coupled platoon with zero or closer-to-zero reaction time, as shown at intersections in Fig. 8 , 
this requires a future generation of communication standard higher than 5 G with maximum service rate (MSR) of 4114 
vehicles per hour per lane (vphpl) at intersection 1 and 6171 vphpl at inter Section 2 for speeds of 30 km/h and 45 km/h, 
respectively. For a reaction time of 1.5 s, with the MSR of 1728 vphpl and 1516 vphpl for speeds of 45 km/h and 30 km/h, 
respectively, dedicated short range communication (DSRC) seems to be sufficient based on our very simplified analysis. More 
importantly, Fig. 8 aims to shed some lights to another important research problem, namely how to optimize vehicle/platoon 
approaches to signals considering this potential automated vehicle condition. 

The question for the collaborative vehicle driving is how the transition is carried out to maximize the throughput or 
capacity utilization, while balancing the risk associated with different reaction times. 

As shown in Fig. (8) we can define a multi-dimensional arc variable as; 

x a 
i, j,t ,t ′ ,τ, τ ′ = 1, if Agent a is assigned on traveling/waiting arc ( i, j, t, t ′ , τ, τ ′ ) in the space-time-reaction time network for using reaction time 

τ at time t, and using τ ′ at time t’ 
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Table 2 

Description of different modes. 

No. Mode Description Control Variable 

(1) 1 One single optimized autonomous vehicle Single vehicle trajectory 
(2) 1 + 1 Two jointly optimized autonomous vehicles (the second 

vehicle is not necessary at a following mode) 
Trajectories of leader and follower 

(3) 1 + m One optimized lead AV and m following vehicles with 
fixed reaction time 

Trajectory of leader 

(4) 1 + m(w) One optimized lead AV and m following vehicles with 
variable reaction time 

Trajectory of leader and (variable) platoon-level reaction 
time along backward wave line 

Subject to, 
Vehicle-based flow balance constraint: 

∑ 

i,t , : ( i, j,t ,t ′ ,τ, τ ′ ) ∈ E 

x a i, j,t ,t ′ ,τ, τ ′ −
∑ 

i,t , : ( j,i,t ′ ,t ,τ ′ ,τ ) ∈ E 

x a j,i,t ′ ,t,τ ′ ,τ = 

{ 
−1 j = o ( a ) , t ′ = D T a τ ′ = τ (0) 
1 j = d ( a ) , t ′ = T , τ ′ = τ (T ) , ∀ a 
0 otherwise 

(25) 

In this extended formation, the indicator of a vertex visited by vehicles can be represented as 

θ a 
i,t,τ = 

∑ 

( j,t ′ ,τ ′ ) 

x a i, j,t ,t ′ ,τ,τ ′ , ∀ ( i, t, τ ) , ∀ a (26) 

One can still use the simplified car-following safety constraint (24) to ensure the 3D safety headway. Eq. (26) de- 
fines whether or not vehicle a visits 3D vertex ( i, t , τ ). Explicitly, when θ a 

i,t,τ
= 1 , vehicle a visits vertex ( i, t , τ ) and 

∑ 

( j,t ′ ,τ ′ ) 

x a 
i, j,t ,t ′ ,τ,τ ′ = 1 , which means that only one arc from vertex ( i, t , τ ) is selected. Otherwise, θ a 

i,t,τ
= 0 , and no arcs from 

vertex ( i, t , τ ) could be selected by vehicle a . Again, we need to impose τ transition constraints to ensure vehicles are 
moving forward, as shown in Fig. 4 (b) and Eqs. (13) and (14) . For example, the magnitude of the reaction time change 
( τ − τ ′ ) must be less than 1 

m , where m is the size of a platoon. 
As a remark, by enabling this variable reaction time process, we in fact aim to find an alternative method to indirectly 

implement the speed and trajectory control for multiple vehicles that form the platoon dynamically meanwhile consider- 
ing tradeoff between safety and efficiency due to the possible communication delay. Specifically, we should note that the 
proposed model does assume the reaction time is controllable and its minimum reaction requirement is determined by the 
communication environment or the nature of the communication facilities. What is more, the result of controllable reaction 
time on following vehicles is our desired speed change or trajectory control for platoon formation under acceptable collision 
risks. In some cases, permitting the reaction time equal to 0 may cause traffic safety issue, while our examples could be 
easily re-implemented using a more realistic but small value like 0.1 s or 0.5 s. 

4. Dynamic programming for multiple vehicle trajectory optimization with changeable reaction times in a platoon 

4.1. Different models and control variables 

As shown in the extended form of Newell’s car following model with multiple following vehicles in Eq. (11) , one can 
control the lead vehicle to implicitly control all following autonomous vehicles. Overall, it is computationally involving to 
solve the proposed integer program using Eq. (23) . To enable the real-time platoon formation and control, we transform 

the vehicle control model as a dynamic programming problem, which serves as a foundation for many vehicular movement 
controllers. 

There are different levels of longitude vehicle trajectory control problems (with simplified car following model), as shown 
in Fig. 9 . Table 2 lists all basic elements of dynamic programming for single vehicle trajectory control (mode 1) and two 
coupled vehicle trajectory control (mode 1 + 1), 1 leader controlling tightly coupled followers (mode 1 + m), and 1 leader 
controlling tightly coupled followers with variable backwave speed w, (mode 1 + m (w)). 

In Fig. 9 , the discretized time unit is one-time interval, and the discretized space unit is also defined on the basis of 
feasible vehicle speeds, which have three alternatives from 0 to the maximum speed limit for constraint (10) . Assume that 
the optimized vehicle trajectory has been found through dynamic programming as shown in Fig. 9 . The green trajectory is 
for the lead vehicle and the orange trajectory is for following vehicles. The dashed lines are the backward wave for the tight 
car following condition. The backward wave speed is equal to d / τ based on Eq. (8) . For satisfying constraint (23) , the solid 
red trajectory represents the safety boundary of the lead vehicle that all following vehicles cannot enter in Fig. 9 (b). 

Fig. 9 (a) shows the possible trajectory of a single optimized autonomous vehicle from point A to point B. This trajectory is 
used as the leader trajectory for the other trajectory control modes in Fig. 9 (b)–(d). In Fig. 9 (b) possible trajectories between 
the lead and the following vehicles are analyzed. The following vehicle starts with free flow speed until it reaches the 
lead vehicle safety boundary. At that point, the following vehicle adjusts its speed to that of the lead vehicle according to 
constraint (10) . Fig. 9 (c) depicts the trajectories of the optimized leading and multiple following vehicles with fixed reaction 
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Fig. 9. Discretized space-time network for vehicle trajectory optimization for all modes. 
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Table 3 

All elements of dynamic programming for all optimization types. 

No. Elements Single vehicle (mode (1) ) Two vehicles (mode(1 + 1)) Multiple vehicles with 
fixed displacement time 
(mode (1 + m)) 

Multiple vehicles with 
variable displacement 
time (mode(1 + m(w))) 

(1) Stage 0, 1,.., T 0, 1,.., T 0, 1,.., T 0, 1,.., T 
(2) State S = [ x 1 ( t )] Location S = [ x 1 ( t ), x 2 ( t + τ )] Location 

of leader, location of 
follower 

S = [ x 1 ( t )] Location of 
leader, derived locations 
of followers 2,…, m 

S = [ x 1 ( t ), τ ( t )] Location of 
leader, derived locations 
of followers 2, …, m, 
reaction time τ for the 
platoon 

(3) Policy control/ decision 
variables 

v 1 ( t ), ( i.e . x 1 ( t + 1) − x 1 ( t ) v 1 ( t ), v 2 ( t + τ ) v 1 ( t ), v m ( t + τ ∗m ) v 1 ( t ), v m ( t + τ ( t ) ∗m ), 
reaction time τ ( t ) 

(4) Vehicle location 
updating 

x 1 ( t + 1) = x 1 ( t ) + v 1 ( t ) x 1 ( t + 1) = x 1 ( t ) + v 1 ( t ) 
x 2 ( t + τ + 1) = 

min {x 2 ( t + τ ) + 

v 2 ( t ), x 1 ( t + 1) − d 2 } 

x 1 ( t + 1) = x 1 ( t ) + v 1 ( t ); 
x m ( t + τ ∗m + 1) = 

min { x m ( t + τ ∗m ) + 

v m ( t ), x 1 ( t + 1) − d m 
∗m } 

x 1 ( t + 1) = x 1 ( t ) + v 1 ( t ); 
x m ( t + τ ( t ) ∗m + 1) = 

min { x m ( t + τ ( t ) ∗m ) + 

v m ( t ), x 1 ( t + 1) − d m 
∗m } 

(5) Cost function for both 
control and derived 
variables: 

c [ x 1 ( t ), x 1 ( t + 1)] c [x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), 
x 2 ( t + τ + 1)] 

Cumulative cost across all 
vehicles in a platoon 
cc [x 1 ( t ), x 1 ( t + 1), x 2 ( t + 

τ ), x 2 ( t + τ + 1, …, 
x m ( t + τ ∗m ), x m ( t + 1 + 

τ ∗m )] 

Cumulative cost across all 
vehicles in a platoon 
cc [x 1 ( t ), x 1 ( t + 1), x 2 ( t + 

τ ( t )), x 2 ( t + τ ( t ) + 1, …, 
x m ( t + τ ( t ) ∗m ), x m ( t + 1 
+ τ ( t ) ∗m ) 

(6) Value function for 
control variables 

L ( t , x 1 ( t )) L ( t , x 1 ( t ), x 2 ( t + τ )) L (t, x 1 ( t )) L ( t , x 1 ( t ), τ ( t )) 

time where the leader is controlling the tightly coupled followers. The following vehicles in the platoon travel with the 
same speed as the leader. However, in the case of the optimized lead AV and multiple tightly coupled following vehicles 
with variable reaction time, as shown in Fig. 9 (d), the trajectories of the following vehicles in the platoon vary according to 
the changing reaction times, according to a given objective function to optimize. 

4.2. Formulation and optimality conditions in dynamic programming for coupled vehicles 

From the control point of view, it seems to be straightforward to control vehicle’ speed and deceleration individually, 
but it is very complex and challenging to optimize all vehicles’ trajectories independently. In our opinion, it is beneficial 
to first take a platoon-based approach for optimizing and synchronizing the same variable reaction time of m autonomous 
vehicles, depending on the available vehicle to vehicle communication capabilities, and then accordingly use this group of 
(optimized) reference trajectories to further apply vehicle speed and acceleration control at an individual level. 

The dynamic programming proposed for the 4 modes in Table 3 is analyzed in Table 3 . 

(1) Stage: based on the discretized time in the space-time network for mode (1), mode (1 + 1), mode (1 + m) and in 
space-time-reaction time network for mode (1 + m(w)), all modes can have the same stage from time 0 to time T ; 

(2) State: For mode (1), its state can be represented by location only as S = [ x 1 ( t )]. For example, if the space-time network 
in Fig. 9 (a) is built for mode (1), the possible states are {0, 1, 2} when time is 1 depends on selected velocity. 
For mode (1 + 1), since the two vehicles need to keep a safety spacing, we can represent the state as a safe-driving 
state vector with two dimensions as S = [x 1 ( t ), x 2 ( t + τ )]. If the space-time network in Fig. 9 (b) is used for illustrating 
mode (1 + 1), in order to satisfy constraint (10) , the safety states are {0, 1, 2, 3, 4} at time 6. 
Mode (1 + m) considers the lead vehicle position as the state and then derives the locations for multiple following ve- 
hicles by using constant reaction time. Thus, we only have one independent state represented as an one-dimensional 
vector S = [ x 1 ( t )], shown in Fig. 9 (c). 
Mode (1 + m(w)) adds variable reaction time into the state vector of mode (1 + m), so the state in the platoon is 
represented as S = [x 1 ( t ), τ ( t )], shown in Fig. 9 (d). 

(3) Control: For mode (1), the control/ decision variable is the speed of optimized vehicle v 1 ( t ). There are two control/ 
decision variables in mode (1 + 1): the speed of the lead vehicle at time t, v 1 ( t ), and the speed of the following 
vehicle at a different time index t + τ , v 2 ( t + τ ). For mode (1 + m), the control/ decision variable for the leading 
vehicle is v 1 ( t ). Mode (1 + m(w)) considers two control variables v 1 ( t ) and τ ( t ), which further determine the remaining 
following vehicles’ trajectories (as derived variables). 

(4) Cost function of decisions used in optimality conditions: Mode (1) and mode (1 + 1) can be represented as 
c [ x 1 ( t ), x 1 ( t + 1)] and c [x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ + 1)], respectivly. The total system travel cost for multiple ve- 
hicles can be calculated by summing each vehicle’s cost cumulatively in the platoon. The cumulative cost value in the 
case of platoon trajectory control for mode (1 + m) and for mode (1 + m(w)) can be represented as cc [x 1 ( t ), x 1 ( t + 1), 
x 2 ( t + τ ), x 2 ( t + τ + 1), …, x m ( t + τ ∗m ), x m ( t + 1 + τ ∗m )] and cc [x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ( t )), x 2 ( t + τ ( t ) + 1), …, 
x m ( t + τ ( t ) ∗m ), x m ( t + 1 + τ ( t ) ∗m ), respectively. 
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Fig. 10. Illustration of maximum completion time. 

If the capacity consumption is concerned for a tight car-following platoon, we can consider as maximum completion 
time as the cost of platoon, shown as the along time 0 to ( t + m ∗τ ) in Fig. 10 . Please note that, the reaction time τ is 
a variable in this mode, thus the selection of τ would affect the boundary of the platoon. That is, a smaller reaction 
time can reduce the platoon footprint in the space-time diagram. 

(5) Value function: This is described as the cumulative value from stage 0 to the current stage. For both mode (1) and 
mode (1 + m), it can be represented as L ( t, x 1 ( t )). Since the two vehicles are controlling in mode(1 + 1), the label cost 
can be represented as L ( t , x 1 ( t ), x 2 ( t + τ ))as a 3-dimenstional vector. mode (1 + m(w) also a 3-dimenstional label cost 
vector as L ( t , x 1 ( t ), τ ( t )), because of controlling multiple vehicle trajectories and reaction time. 

The aforementioned problem contains two principle features: (1) it is in essence a discrete-time (e.g., every second) 
dynamic (i.e., time-dependent) system; (2) the total cost is additive in a sense that the generalized cost incurred at time k 
is accumulated over time. The system’s state at time t + 1 is only determined by the decisions made at t and its previous 
state at t . As a result, the optimal vehicle trajectories can be solved by using dynamic programming. Those algorithms 
mentioned in Table 3 will be stated in detail in Section 4.3 . 

4.3. Dynamic programming algorithms 

Mode (“1+m”) 
Denote L ( t, x 1 ( t )) as the value function of state( t , x 1 ( t ),…, x m ( t + τ ∗m )) at t, t ∈ [0, T ], x ∈ [0, D ] and cc as the cumulative 

cost function from vehicle 1 to vehicle m in the platoon. 

// initialization 
L ( t, x 1 ( t )): = + ∞ ; 
L ( t, x 1 (0)): = 0; 
for t = 0 to T do //stage 

for x 1 ( t ) = 0 to D do //state 
for x 1 ( t + 1) = x 1 ( t ) to x ( t ) + d max do //control decision 
cc = c [ x 1 ( t ), x 1 ( t + 1)] 
for m = 1 to M do 

x m ( t + τ ∗ m + 1 ) = min { ( x m ( t = 0 ) + v f × ( t + τ ∗ m + 1 ) , x 1 (t) −
m 
∑ 

i =2 
d i } //(vehicle m’s position 

cc = cc + c [ x m ( t + τ ∗m ), x m ( t + τ ∗m + 1)]; // cost of decision 
endfor 

if x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ + 1), …, x m ( t + τ ∗m ), x m ( t + τ ∗m + 1)are within feasible space-time regions and L ( t, x 1 ( t )) + cc < L ( t + 1, 
x 1 ( t + 1)) 

then L ( t + 1, x 1 ( t + 1)) = L ( t, x 1 ( t )) + cc ; 
endfor 

endfor; 

endfor; 

Mode (“1 + m(w)”) 
Denote L ( t , x 1 ( t ), τ ( t )) as the value function of state S = [x 1 ( t ), x m ( t + τ ( t ) ∗m )] at t, t ∈ [0, T ], x ∈ [0, D ], τ ∈ [0, τ ] and 

cc as the cumulative cost function from vehicle 1 to vehicle m in the platoon. Assume τU ( d ) as the maximum reaction 
time along d to D, τ L ( d ) as the minimum reaction time supported by a selected communication technology along d to 
D, τ change ( t ) as a binary variable along t to T satisfying the reaction time changing constraints in Eqs. (12) –(14) . By using 
the extended Newell’s inequality constraint for multiple vehicles in Eq. (11 ) and control decision for leading vehicle as 
written x 1 ( t + 1) = x 1 ( t ) to x 1 ( t ) + d max , the flow balance constraint in Eq. (24) is always ensured by controlling whether or 
not any vehicle visits 3D vertex ( i, t , τ ). In this proposed multi-vehicle control model, we can solve the semi-open boundary 
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optimization problem, by only defining the initial position of vehicles, by building a time-space-reaction time network with 
the desired objective, such as emissions, fuel consumption, travel time etc. 

The DP-based optimization algorithm is described as below: 

// initialization 
L ( t, x 1 ( t ), τ )): = + ∞ ; // value of state ( x 1 ( t )) 
L ( t = 0, x 1 (0), τ )): = 0; 
for t = 0 to T do // 1st loop: time stage 

for x 1 ( t ) = 0 to D do //2nd loop: feasible space state 
for x 1 ( t + 1) = x 1 ( t ) to x 1 ( t ) + d max do //3rd loop: speed control decision 
for τ = τ L ( x 1 ( t )) to τU ( x 1 ( t )) do //4th loop: reaction time levels 

for τ ′ = max( τ − τ change , τ L ( x 1 ( t ))) to min( τ + τ change , τU ( x 1 ( t ))) do // 5th loop: reaction time change 
cc = c [ x 1 ( t ), x 1 ( t + 1)] 
for m = 1 to M do //6th loop: number of vehicles in a platoon 

x m ( t + τ ‘ ∗ m + 1 ) = min { ( x m ( t = 0 ) + v f × ( t + τ ’ ∗ m + 1 ) , x 1 (t) −
m 
∑ 

i =2 
d i } // vehicle m’s position 

cc = cc + c[ x m ( t + τ ∗ m ) , x m ( t + τ ‘ ∗ m + 1 ) ] ;// cost of decision 
endfor; 

if x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ+ 1), …, x m ( t + τ ∗m ), x m t + τ ∗m + 1 are within feasible space-time regions; and L ( t , τ , x 1 ( t )) + cc < 

L ( t + 1, x 1 ( t + 1), τ ′ ) 
then L ( t + 1, x 1 ( t + 1), τ ′ ) = L ( t, x 1 ( t ), τ ) + cc 

endfor; 

endfor; 

endfor; 

endfor; 

endfor; 

The corresponding DP algorithms for modes “1” and “1 + 1” can be found at Appendix A . 
As stated in chapter 20 in the book by Jensen and Bard (2003) , the dynamic programming approach has two different 

types of recursion relationships: backward recursion and forward recursion. As shown in our platoon trajectory optimization 
problem Mode “1 + m”, we use the following label cost updating functions (27) to implement the forward recursive Eq. (28) : 

If L ( t , x 1 ( t ) ) + cc < L ( t + 1 , x 1 ( t + 1 ) ) then L ( t + 1 , x 1 ( t + 1 ) ) = L ( t , x 1 ( t ) ) + cc; (27) 

Forward recursive equation 

L ( t + 1 , x 1 ( t + 1 ) ) = min { L ( t , x 1 ( t ) ) + cc } for time stage t = 0 , 1 , . . . , T (28) 

where cc is the cumulative cost across all vehicles in the platoon at time t ; and the vehicle location states are subject to 
the following two constraints. 

x 1 ( t + 1 ) = x 1 ( t ) + v 1 (t) ;
x m ( t + τ ∗ m + 1 ) = min { x m ( t + τ ∗ m ) + v m ( t ) , x 1 ( t + 1 ) − d m ∗ m } 

One can use a backward recovery procedure to identify the optimal path from the final state associated with the min- 
imum label cost. A detailed discussion on the equivalent relationship between backward induction and forward induction 
can be also found in chapter 11 of the book by Bradley et al. (1977) . In short, the procedure in our paper uses a forward 
recursive function from one time stage to a successor time stage, so the overall solution searching framework still follows a 
dynamic programming approach. 

On the other hand, one could re-express the proposed forward DP model using a backward recursive search relationship 
and we do believe this backward approach is much closer to the original open-loop feedback control framework in standard 
DP. However, the classical backward (closed-loop) approach requires (i) a clear definition of the ending states and associated 
boundary conditions at time T and (ii) the initial state at time t = 0 can be backward reachable from the defined ending 
states. In comparison, our proposed forward approach is more suitable for propagating the current initial states of the 
platoon into the (partially unknown) future states and one can select one of feasible ending states as the final optimal 
solution to back trace to the initial boundary. 

It should be further remarked that, the model of 1 + m(w) treats reaction time as discrete variables, so our problem 

indeed changes the feasible space compared with the original problem of controlling all vehicles with continuous reaction 
times. Under this feasible space, we only keep the best feasible solutions at each space-time-state vertex with the minimal 
label cost, and the other dominated solutions are pruned by the optimality conditions. If an enumeration algorithm is used 
(instead of our proposed DP algorithms), then one has to explore all possible paths from the beginning which might still 
contain many sub-optimal subpaths based on our proposed optimality criteria. 

4.4. Improving computational complexity 

As there are multiple loops in the proposed DP algorithm, we need to carefully examine its efficiency on a discretized 
network. For the first two loops with the time and space indexes, one can greatly reduce the space search range by consid- 
ering the feasible prism of the vehicle trajectories, and a time geography based approach has been systematically discussed 
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Fig. 11. Illustration of three different search space for mode 1 + m(w). 

Table 4 

Processing time for three different cases. 

a) b) c) 

Time and space by using 0.5 s and 0.5 m as simulation resolution, 1st and 2nd loops 200 ∗10 3 134 ∗10 3 134 ∗10 3 

Maximum number of the steps, 3rd loop 16 16 8 
Reaction time levels, 4th loop 4 4 4 
	 τ , 5th loop 1 1 1 
Vehicle count, 6th loop 5 5 5 
Total 6400 ∗10 4 4288 ∗10 4 2144 ∗10 4 

CPU running time (s) 17.55 13.94 9.72 

by Zhou et al. (2017a) . The 3rd loop is related to the maximum number of steps considered in the discretized grid, e.g., 
around 8–20 steps used in our experiment. The 4th loop is related to the number of reaction time levels, e.g., 4 levels for a 
maximum reaction time of 2 s. The 5th loop requires very limited efforts, as typically only very smooth changes (e.g., 0, 1, 2 
steps) in reaction times are allowed. The last loop considers all the vehicles in a platoon, typically in a size of 2–4. Overall, 
even there are multiple nested loops in the proposed DP algorithm, many loops as associated with very small values and 
we could further intelligently reduce the search effort s by selecting the most likely and most promising state changes in 
order to avoid the curse of dimensionality. 

Reducing search space in the discretized network is a potentially useful approach to improve the computational efficiency. 
For this purpose, we perform experiments to demonstrate how to reduce search space by selecting feasible space-time grid 
cells and maximum number of steps values for 2nd and 3rd loops. Fig. 11 shows three different search spaces: full search 
space without any optimization (a), reduced search space by assuming maximum speed limit and preferred latest arrival 
time as the space boundary (b), and reduced search space with optimized step size by additionally selecting desirable speed 
lower bound (c). Table 4 shows the resulting CPU running time by using a kind of traditional personal computer which has 
i7 CPU 2.4 GHz, 8 GB RAM, 256 GB SSD and optimizing steps for (b) and (c) in bold, for applying search space reduction 
before as (a) and after as (b) and (c), as 17.55 s, 13.24 s and 9.72 s, leading to an about 55% reduction in CPU time due to 
reduced search space. 

In addition, the possibility of considering the proposed trajectory control in a more complex condition, such as, the 
process of merging, is discussed in Appendix B . 

5. Numerical experiments 

In this section, we perform experiments to demonstrate how to optimize vehicle trajectories by using dynamic program- 
ming and binary integer programming. Specifically, DP algorithms are performed for “1 + m” (one lead automated vehicle 
control with considering the impacts to m human-driven following vehicles, which could be further organized as a pla- 
toon) and “1 + m(w)” (one leading automated vehicle and m following automated vehicle’s reaction time control), and The 
GAMS program (CPLEX) is used for our proposed integer programming models, which aim at modes “1 + 1” (or “1 + 1 + 1…”) 
to control all autonomous vehicles individually for a small subset of vehicles due to the possible large number of integer 
variables. Modes “1 + m” and “1 + m(w)” solved by DP algorithms can be treated as special cases of integer programming 
models. 
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Fig. 12. Layout of hypothetical road segment. 

5.1. Platoon analysis by using mode “1 + m (w)”

Fig. 12 shows the layout of hypothetical environment, where the total length of the road segment is 10 0 0 m and total 
time horizon is 150 s; the free flow speed is 60 kms per hour in segment 1 and segment 3, from origin to 250 m and from 

750 m to 10 0 0 m, respectively. Segment 2 is a speed-reduction zone with the speed of 30 km/h from 250 m to 750 m. At 
250 m is a traffic signal where the red phase duration is 20 s and green is 15 s. In addition, there is a traffic signal at 750 m 

where the red phase duration is 35 s and green is 20 s. 
The trajectory of the leader vehicle and reaction time in a platoon have been optimized to obtain the minimum total 

system travel time after reaching its destination. For the configuration of Newell’s car-following model, we set the rear-to- 
end distance d 0 = 2 m and τ is variable at intersection regions between 2 s to 0 s with the step size of reaction time change 
is 0.2 s. There are 5 tightly coupled autonomous and connected vehicles along a one-lane roadway. Fig. 13 shows a typical 
vehicle trajectory as a black dash line and optimal AVs trajectories as solid blue lines. 

Trajectories and speed of AVs can be changed to find optimal solution with minimum system level emission objec- 
tives or energy consumption based on the corresponding speed-related polynomial cost function (e.g. Abdul Aziz and 
Ukkusuri, 2012 ). While human-driving vehicles have to wait at intersections (shown was dash lines), all AVs can pass 
through the intersections without waiting by reducing reaction time and optimized speed along the journey. Since the 
reaction time and speed have been changed at different segments to find the optimal solution, maximum service rates can 
be also calculated analytically at different locations. To derive more practically useful capacity estimation results under dif- 
ferent communication standards, a more systematically designed study should be conducted to provide the guidelines using 
realistic settings and real-world geometry features. In addition, the last vehicle in Fig. 13 (a) appears to violate the speed 
limit. As noted in Section 2.2 , it is possible for the following vehicle when the reaction time is changeable in the state tran- 
sition process. However, as a control variable, the speed of lead vehicle cannot exceed the maximum speed in this mode. 
Different simulation results can be obtained by assigning different settings such as enforcing speed limit for leading vehicle 
in transition process in Fig. 13 (b). While the last vehicle in the platoon can speed up to catch up leading vehicle in Fig. 13 (a), 
the last vehicle keeps its speed and the leading vehicles slow down in transition process in Fig. 13 (b). 

It should be remarked that, the solution obtained by DP may be just one of optimal solutions to reach system-level 
minimal travel cost. The result with an optimal reaction time greater than the minimum reaction time can improve the 
safety, to some extent, when using an unchanged minimum reaction time can also reach the minimal system cost. 

5.2. Platoon analysis by using mode “1 + M” for automated vehicles with surrounding obstacles 

One challenge of deploying autonomous vehicles in the real world is to consider the influence from moving obstacles (e.g. 
human-driving vehicle) and static obstacles (e.g. stuffs left unintentionally on roads). In this section, we perform experiments 
to demonstrate how to optimize vehicle trajectories for avoiding moving obstacles, which can be detected in real time by 
sensors from autonomous vehicles. Since the mode is still at “1 + m”, the lead autonomous vehicle is just under control and 
its following autonomous vehicles have a fixed reaction time and adjust their trajectory based on the change of the lead 
vehicle. 

Fig. 14 shows AV’s trajectories by using mode (1 + m) with surrounding real-world human driving car trajectories ob- 
tained from the NGSIM project for I-80 in California ( USDOT, 2006 ). Trajectories of human operated vehicles on lane 1 and 
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Fig. 13. Optimal vehicle trajectories by using mode ‘1 + m(w)’. 

Table 5 

MSR (vphpl) by using different reaction times with moving obstacles. 

Human-operated vehicles Human-operated and AVs with different reaction time (s) 

τ = 1.5 s τ = 1 s τ = 0.5 s τ = 0 s 
458 1047 1309 1898 3665 

lane 2 have been used for experiments where identification numbers are 1247, 1253, 1255, 1284, 1297, 1306 and 1325; 
3360, 417, 436, 447, 448, 459, 469, 472, 488, 494 and 507 respectively. The total length of the road segment is 500 m and 
the speed limit is 70 miles per hour. For the configuration of Newell’s car-following model, we set d 0 = 2 m and τ is fixed as 
0.5 to show mixed traffic condition trajectories. Hypothetical layout of experiments has been illustrated in Fig. 14 (a), human 
operated vehicles trajectories have been shown in Fig. 14 (b). Further experiments only for lane 2, human operated vehicles 
which identification numbers are 3360 and 488 have been excluded. AVs and human operated vehicles trajectories from 

origin to destination and zooming view of highlighted region in Fig. 14 (c) have been shown Fig. 14 (c) and (d), respectively. 
Table 5 shows the maximum MSR values in mixed traffic condition for lane 1. As can be seen, MSR increases as reaction 
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Fig. 14. AV’s trajectories by using mode (1 + m) with real human driving car trajectories obtained from NGSIM Data. 
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Fig. 15. Optimized vehicle trajectories of tests 1 and 2 in discetized space-time grid from integer programming model. 

times decrease. Also for lane 2, in heavy traffic condition, MSR increases 50% by excluding only two human operated vehi- 
cles. 

5.3. Integer programming model 

The proposed mathematical model defined by Eqs. (20 )–(23) is applied in the following tests, where autonomous vehicles 
move along a one-lane roadway with three segments (AB, BC, and CD) and total 30 space units (e.g., 2 or 3 m). Each segment 
has one specific communication facility, which indicates that each vehicle can only have one particular reaction time to its 
leading vehicle. In these tests, the total time horizon is 40 time intervals (e.g., 20 s or 40 s). Each vehicle is assumed to 
have four speed values to be selected at each time stamp, including 0, 1 space unit, 2 space units, and 3 space units. 
The minimum spacing d jam between two autonomous vehicles is assumed as 2 space units. The reaction and operation 
times w of segments AB, BC, and CD are 1 time unit, 2 time units and 3 time units, respectively. Tests 1 and 2 focus on two 
autonomous vehicles in order to perform the sensitivity of departure time with the impact on system-wide travel times. In 
all tests, all vehicles depart at node/space 1 and should arrival at node 30. 

When departure times of vehicles 1 and 2 are 1 and 4, respectively, the problem is directly solved in GAMS based on our 
proposed mathematical model. Fig. 15 (a) shows the optimized vehicles’ trajectories. It is expected that vehicle 1 can always 
move in speed limit as 3 space units at each time interval in this discretized space-time network. However, the vehicle 
reduces its speed at time 8, because if it moves in speed limit, it will reach at node/space 31 after 10 time units rather 
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Table 6 

Model statistics of three tests with 30 by 40 space time grid based on GAMS with CPLEX solver. 

number of equations number of binary variables objective value (time unit) computation time (second) 

Test 1 (2 vehicles) 6083 8972 21 1.3 
Test 2 (2 vehicles) 6083 8972 22 1.4 
Test 3 (5 vehicles) 17,006 22,430 65 2.8 

than node 30 as the destination due to the discretization property of space-time networks. The red rectangle defines the 
incompatible zone for the following vehicle (vehicle 2) when its reaction time is 3 time units. As shown in Fig. 15 (a), at the 
beginning, vehicle 1 stays at the incompatible zone of vehicle 2 if vehicle 2 has communication time of 3 time units, which 
indicates that vehicle 2 should reduce its speed to ensure there is no conflict with vehicle 1 after node 20 (at segment CD). 
As a result, the total system travel time is 21 where vehicles 1 and 2 have travel time of 10 and 11, respectively. The shock 
wave is not obviously found in the result. One possible reason is that the solution above is just one of multiple optimal 
solutions for our system optimal problem, so vehicles could reduce or increase its speed at different locations with a same 
minimum system travel time. In other words, once all vehicles can be controlled as autonomous vehicles, vehicles can 
reduce its speed at any locations before the bottleneck and then drive with a higher speed to pass the following roadway, 
and it is possible that traditional shock wave happened at bottlenecks will not be obviously observed in future. 

In Test 2, the departure time of vehicle 2 is changed to be 3. Then the final optimization result from GAMS is shown in 
Fig. 15 (b). It can be also observed that vehicle 2 needs to reduce its speed to accommodate the high communication time 
at segment CD. The total travel time will increase to 22 instead of 21 in Test 1. 

Further, we consider Test 3 with 5 autonomous vehicles, whose departure times are at 1st, 3rd, 6th, 9th, and 11en time 
interval. The optimization result from GAMS (with CPLEX solver) shows that vehicle 5 waits and moves with a high speed at 
segment AB. As remarked in Test 2, the optimization result could be one of multiple optimal solutions, so vehicle 5 can also 
drive with medium speeds at segment AB without violating car-following constraints. The model statistics of three tests, 
including number of equations, number of variables, optimal objective value, and computation time, are listed in Table 6 . 

6. Conclusion 

The main focus of this paper is to present a novel control strategy for autonomous and connected vehicles. This study 
constructs a family of efficient optimization models and algorithms to embed vehicle kinematics and minimum safe distance 
between consecutive following vehicles by using extended Newell’s simplified car-following model. The main advantage of 
the proposed model is to enhance the service rate by adjusting vehicle trajectory speed and system level platoon reaction 
time at critical bottlenecks. Unlike similar control strategies, which handle only closed boundary conditions, the proposed 
model solves efficiently semi-open boundary conditions by using integer programming and dynamic programming mod- 
els with travel time, throughput and fuel consumption optimization objectives. The two aspects namely (i) adjustment of 
system level reaction time in discretized space-time-reaction time network and (ii) focusing on the optimality of system 

through controlling simultaneously all vehicles in the platoon, contribute new knowledge to the existing vehicle trajectory 
optimization studies. 

The results of numerical experiments have revealed efficiency of controlling reaction time as a new control variable, 
and increasing system level flexibility and optimality by forming vehicle platoons adaptively at critical bottlenecks. Also, 
these results give projections for communication connectivity considering team based safety when reaction time dynamically 
changes under communication support conditions. Both approaches for integer programming and dynamic programming 
under typical time-dependent bottleneck scenarios are examined to show the benefits of optimizing AVs trajectories with 
achievement of desired goals. Finally, through the numerical experiments for configuring platoon level reaction time under 
complex driving conditions by using real world trajectories data, it can be noted that multiple AVs increase the service 
rate under supported communication conditions. Future work will mainly focus on (i) using backward and forward DP 
algorithms to better refine the feasible space prim and iteratively search the feasible ending states for ultimate optimal 
solutions, (ii) better selecting the discretization granularity for our multi-dimensional discretized networks (e.g., Zhou et al., 
2017b ), (iii) smoothing vehicle trajectories generated by Newell’s car-following model, and (iv) developing control models 
for the formation of swarms consisting of multiple AVs in a large scale application. The other critical research directions also 
include a joint optimization of connected/ autonomous vehicles and traffic signal timing (e.g. Li and Zhou, 2017, Li and Ban, 
2017 ), a better designed distributed control mechanism (e.g., Yang et al., 2016 ), as well as a further connection with urban 
rail system with similar track-based trajectory control methods ( Kai et al., 2016; Lai and Schonfeld, 2016; Zhang et al., 2017 ). 
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Appendix A. Dynamic programming algorithms for modes “1 ′′ and “1 + 1 ′′ 

Mode (“1”) 
The DP-based optimization algorithm for mode (1) is described as below: 
We denote D as the total distance under consideration, d max as the maximum distance one vehicle can travel at one time 

step, L ( t, x ( t )) as the value function of state x ( t ) at t, t ∈ [0, T ], x ∈ [0, D ], d max as the maximum distance one vehicle can 
travel at one time step (equal to v max in this paper), and the initial L ( t, x ( t )) values are all positive infinity. 

// initialization 
L ( t, x 1 ( t )): = + ∞ ; // value of state ( x 1 ( t )) 
L (0, x 1 (0)): = 0; 

for t = 0 to T do 
for x 1 ( t ) = 0 to D (within the feasible range) do 

for x 1 ( t + 1) = x 1 ( t ) to min{ D, x 1 ( t ) + d max } do 
if x 1 ( t ) and x 1 ( t + 1) are within feasible space-time regions; 
and L ( t, x 1 ( t )) + c [ x 1 ( t ), x 1 ( t + 1)] < L ( t + 1, x 1 ( t + 1)) 
then L ( t + 1, x 1 ( t + 1)) = L ( t, x 1 ( t )) + c [ x 1 ( t ), x 1 ( t + 1)]; 

endfor; 

endfor; 

endfor; 

After all iterations, search the corresponding time index with the minimal label cost at D and trace back to get the 
optimal vehicle trajectory. Total cost ( t = T ∗, x = D ) = min t {L(t,x = D)}, where T ∗ is the time index leading to the minimum 

cost value at distance D. 
Mode (“1 + 1”) 
Denote L ( t , x 1 ( t ), x 2 ( t + τ )) as the value function of state( x 1 ( t ), x 2 ( t + τ )) at t, t ∈ [0, T ], x ∈ [0, D ]. 

// initialization 
L ( t, x 1 ( t ), x 2 ( t + τ )): = + ∞ ; // value of state ( x 1 ( t ), x 2 ( t + τ )) 
L ( t, x 1 (0), x 2 (0 + τ )): = 0; 
for t = 0 to T do 

for x 1 ( t ) = 0 to D do 
for x 2 ( t + τ ) = 0 to x 1 ( t ) − d do 

for x 1 ( t + 1) = x 1 ( t ) to x 1 ( t ) + d max do 

for x 2 ( t + τ + 1) = x 2 ( t + τ ) to min{ x 1 ( t + 1) − d, x 2 ( t + τ ) + d max } do 
if x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ+ 1) are within feasible space-time regions; 
and L ( t, x 1 ( t ), x 2 ( t + τ )) + c ( x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ + 1)) < L ( t + 1, x 1 ( t + 1), x 2 ( t + τ + 1)) 
then L ( t + 1, x 1 ( t + 1), x 2 ( t + τ + 1)) = L ( t, x 1 ( t ), x 2 ( t + τ )) + c ( x 1 ( t ), x 1 ( t + 1), x 2 ( t + τ ), x 2 ( t + τ + 1)); 

endfor; 

endfor; 

endfor; 

endfor; 

endfor; 

Because the final arrival times at the space boundary are not fixed, we need to search the corresponding time indices 
of two vehicles with the minimal label cost at D and trace back to obtain the optimal vehicle trajectory of each vehicle 
respectively. 

Appendix B. Possible Extension to Multi-Platoon Merging Control 

Vehicle merging on ramps is a major traffic flow problem on highways which causes congestion, speed breakdown and 
traffic flow oscillations ( Chen et al., 2014; Sun et al., 2014 ). The merging process in human operated vehicle environment 
consists of the following three steps: choosing possible gap for the adjacent target lane, adjusting speed, and performing 
required maneuvers ( Ntousakis et al., 2016 ). As a simple conceptual illustration, the merging process in AV environment 
can be performed with satisfying desired objectives and ensuring safety constraints. We can provide optimized solution for 
merging process by controlling all AVs in on-ramp and mainstream, and by defining different reaction times for platoon level 
( τ p ) and system level ( τ s ). As shown in Fig. 16 , there are two different platoons before merging consisting of 3 and 2 AVs, 
respectively. In this merging process, the system level reaction time is symmetrically adjusted to meet distance headway 
constraints between vehicles from two different platoons. In our illustrative example, the merging point is assumed to be 
the end of the acceleration lane. 
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Fig. 16. Illustration of merging process by using multi-platoon formation control. 
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