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Abstract Recently, automation, shared use, and electrifi-

cation are viewed as the ‘‘three revolutions’’ in the future

transportation sector, and the traditional scheduled public

transit system will be greatly enhanced with flexible ser-

vices and autonomous vehicle scheduling capabilities.

Many emerging scheduled transportation applications

include the fully automatic operation system in urban rail

transit, joint line planning, and timetabling for high-speed

rail as well as emerging self-driving vehicle dispatching.

The vehicle routing problem (VRP) holds promise for

seeking an optimal set of vehicle routes and schedules to

meet customers’ requirements and plays a vital role in

optimizing services for feature scheduled transportation

systems. Due to the difficulty of finding optimal solutions

for large-scale instances, enormous research efforts have

been dedicated to developing efficient algorithms, while

our paper presents a unique perspective based on a time-

dependent and state-dependent path searching framework.

An open-source and light-weight VRP with pickup and

delivery with time windows (VRPPDTW) modeling

package, namely VRPLite, has been developed in this

research to provide a high-quality and computationally

efficient solution engine for transportation on demand

applications. This paper describes the space–time–state
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modeling process of VRPPDTW using a hyper-network

representation. This solution framework can be embedded

in a column generation or Lagrangian relaxation frame-

work to handle many general applications. A number of

illustrated examples are presented to demonstrate the

effectiveness of the path search algorithm under various

traffic conditions and passenger travel requirements.

Keywords Vehicle routing problem with pickup and

delivery � Space–time–state network modeling � Column

generation � Lagrangian relaxation

1 Introduction

As population and personal travel activities continue to

increase, traffic congestion has remained as one of the

major concerns for transportation system agencies with

tight resource constraints. The next generation of trans-

portation scheduling initiatives aims to integrate various

demand management strategies and traffic control mea-

sures to actively achieve mobility, environment and sus-

tainability goals. Various approaches hold promises of

reducing the undesirable effects of traffic congestion due to

driving-alone trips. In this research, we mainly focus on

providing a time-dependent and state-dependent path

searching engine to serve the demand-responsive ride-

sourcing/urban transit services in next-generation trans-

portation on demand applications.

In general, there are two classes of the vehicle routing

problem (VRP): (1) designing line haul services for cus-

tomers from the depot and back haul services for customers

to the depot, and (2) transporting passengers or goods

between specific origins and destinations with possible

requested time windows. VRPLite can cover the above two

types of problems, but our discussion below focuses on the

second class without loss of generality. There are a number

of excellent reviews on vehicle routing problems with

pickup and delivery by Cordeau et al. [1], Parragh et al. [2]

and Psaraftis et al. [3]. When each transporting request is

defined by determinate pickup and delivery points, the

VRP becomes the vehicle routing problem with pickup and

delivery (VRPPD). Practical applications of the VRPPD

can be commonly found in urban rail transit management,

to name a few, rail transit line planning [4, 5], policy

decision making [6, 7], train operation management [8, 9],

train timetabling [10, 11], and metro-based freight trans-

portation [12]. In the emerging peer-to-peer ride-sharing

service, a passenger can ask the driver to take him/her

directly to the destination, and the passenger may also

share this ride with one or more passengers. The ride-

sharing problem can be mathematically modeled by the

classic vehicle routing problem with pickup and delivery

with time windows (VRPPDTW) [13]. Previous research

has made a number of important contributions along dif-

ferent formulations or solution approaches. On the other

hand, there are a number of modeling and algorithmic

challenges for a large-scale deployment of vehicle routing

and scheduling algorithms, especially for regional net-

works with various road capacity and traffic delay con-

straints on freeway bottlenecks and signal timing on urban

streets.

In the field of operations research, a few previous

studies directly consider the underlying transportation

network with time of day traffic congestion, while the

majority of studies define the VRPPDTW on a directed

graph with fixed shortest travel distance or least travel time

routes between origin–destination pairs. Due to the com-

plexity of variables and constraints, it is difficult to seek

optimal solutions for large-scale VRPs. The generalized

VRP problem also has a number of rich applications on the

urban transit and other related scheduling or logistics

problems [14, 15]. For example, the most featured one is

the transit vehicle assignment and routing problem, which

is usually studied as the generalized VRP problem. Other

related problems include crew scheduling, aircraft fleeting

and routing, fleet itinerary scheduling as well as network-

wide train timetabling which assigns trains to different

routes.

In this paper, we introduce our proposed algorithm from

the perspective of shortest path algorithms, which has rich

applications in the field of transportation network modeling

[16]. The physical network can be denoted by N;Að Þ,

where N is the set of nodes and A is the set of arcs, and then

the shortest path problem is to find a path with the minimal

cost that consists of a sequence of links i; jð Þ 2 A con-

necting origin node o to destination node d. The shortest

path problem can be represented as the minimal cost net-

work flow problem by sending one unit of flow from o to

d. A binary variable xi,j is used to denote whether the flow

passes the link i; jð Þ or not. The mathematical formulation

of the shortest path problem with node flow balance con-

straints is listed below [17].

minz ¼
X

i;jð Þ2A

ci;jxi;j ð1Þ

s.t.

X

j: i;jð Þ2Af g

xi;j �
X

j: j;ið Þ2Af g

xj;i ¼
�1 8i ¼ o

1 8i ¼ d

0 otherwise

8

<

:

ð2Þ

xi;j 2 0; 1f g 8 i; jð Þ 2 A ð3Þ

In general, there are mainly two algorithmic approaches

to deal with the shortest path problem, namely label setting

and label correcting algorithm [17]. Both approaches
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iteratively update the label cost of nodes at each step. The

label cost of nodes is designated as permanent in the label

setting algorithm at each iteration, while the label cor-

recting algorithm can change the label cost of nodes at any

step. This feature determines that label setting algorithm

cannot solve the shortest path problem with negative arc

costs, but the label correcting algorithm can deal with the

shortest path problem with arbitrary arc costs. The static

shortest path problem can be further extended to dynamic

version with time-dependent arc costs ci;j;t on link (i, j) for

vehicles leaving at time t, and time-dependent link travel

time TTi,j,t. Ziliaskopoulos and Mahmassani [18] proposed

an efficient label correcting-based algorithm to find the

time-dependent shortest paths from all nodes in the net-

work to the single destination node. Chabini [19] aims to

reduce the worst-case complexity in solving the time-de-

pendent shortest path problem by adopting the dynamic

programming approach. Recently, the shortest path prob-

lem in three-dimensional networks or hyper-networks has

attracted significant interests in transportation optimization

problems. Mahmoudi and Zhou [20] developed a time-

dependent forward dynamic programming algorithm to

reformulate the VRPPD as a special version of the shortest

path problem with time-dependent and state-dependent arc

costs where the state represents the number of passengers

on the vehicle. Liu et al. [21] further considered an

extended version of household activity scheduling problem

by using a cumulative space–time–state representation to

reduce the number of complex constraints. A space–time–

speed hyper-network and the corresponding dynamic pro-

gramming algorithm are introduced by Zhou et al. [22]

with applications in joint optimization of train timeta-

bles and speed profiles. A resource-space–time network

was adapted by Lu et al. [23] to consider time-dependent

routing applications with energy resource considerations.

As an alternative representation to the high-dimension

network, a decomposition approach is considered by Tong

et al. [14] and Ruan et al. [24] with two coupled sub-

problems, i.e., a space–time network-based shortest path

problem and a general assignment problem, for customized

bus applications. By extending the space–time network-

based time-dependent shortest path algorithms, this

VRPLite package aims to solve the time-dependent and

state-dependent shortest path problem. As a particular note,

the cumulative service state of passengers is presented as

the ‘‘state’’ dimension in the VRPLite package.

Table 1 provides a detailed comparison of the above

shortest path algorithms from the perspectives of network

representation, arc cost, data structure to the solution

methods. In Table 2, we further list different state repre-

sentations in the space–time–state modeling framework to

show the potential of this modeling method in solving

difficult transportation problems.

The fully functional, open-source VRPLite package can

be downloaded from https://github.com/xzhou99/VRPLite.

Table 1 Comparison of different shortest path algorithms (network representation, arc cost, data structure, and solution methods)

Dimension Vertex Arc States Cost Network building Method

Space based [17] Physical

nodes

Physical arcs – Negative

or

positive

Scan eligible list Label correcting

Physical

nodes

Physical arcs – Positive Heap for find the

minimal temporal

labels

Label setting

Space-time, time-

dependent [18]

Physical

nodes

Physical arcs,

time-

dependent

arc cost

– Negative

or

positive

Without explicitly

building the space–

time network

Label correcting

Space–time, time-

dependent [19]

Physical

nodes

Physical arcs,

time-

dependent

arc cost

– Negative

or

positive

Without explicitly

building the space–

time network

Dynamic Programming

Space–time–state,

time and state

dependent [20]

Space–

time–

state

nodes

Space–time–

state links

Seats, number of

passengers

Negative

or

positive

Without explicitly

building the space–

time–state network

Dynamic Programming, but

need to enumerate the vehicle

carrying states

Space–time–state,

time and state

dependent (this

research)

Space–

time–

state

nodes

Space–time–

state links

0, 1, 2, for

cumulative

service states of

passengers

Negative

or

positive

Without explicitly

building the space–

time–state network

Dynamic Programming,

dynamically generate the

passenger cumulative service

states
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The goal of this package includes the following three

aspects.

1. Provide an open-source code base that enables trans-

portation researchers and software developers to

expand its range of capabilities to various traffic/trans-

portation management applications.

2. Provide a free, educational modeling framework for

students and researchers to understand the complex

space–time–state network modeling process for trans-

portation optimization applications, e.g., train time-

tabling, urban rail transit scheduling and ride-sharing

applications.

3. We introduce our solution approach and related

software implementation from a time-dependent and

state-dependent shortest path approach.

2 Space–Time–State-Based Models

2.1 Problem Statement

The VRPPDTW problem studied in this paper can be

formally defined by the following statement. Consider a

physical transportation network (N, M) with a finite set of

nodes N and a finite set of links M, where nodes i; j 2 N

and directed link i; jð Þ 2 M. A space–time network G ¼

E;Að Þ can be constructed for transportation network

N;Mð Þ under planning time horizon T considering pas-

senger carrying stateW with a finite set of space–time–state

vertices V and a finite set of space–time–state arcs A ac-

cording to optimization requirements. In a space–time–

state setting, each vertex i; t;wð Þ � V simultaneously rep-

resents time, location, and vehicle carrying state; each arc

i; j; t; s;w;w0ð Þ 2 A indicates a directed space–time–state

path from node i departing at time t with passenger car-

rying state w to node j arriving at time s with passenger

carrying state w0. Because of the three-dimensional net-

work structure, it is easy to model passengers’ travel

requests, vehicles’ travel times changing over time, and

available passenger carrying states. Given a set of pas-

sengers P and their travel requests, as pickup/delivery

locations, op=dp, and space–time windows, ap; bp
� �

and

a0p; b
0
p

h i

, as well as vehicle capacity constraint Capv and

other routing constraints, the VRPPDTW problem aims to

find optimal passenger-to-vehicle assignment, vehicle

routes and timetables for each vehicle v in the vehicle set

V under certain traffic conditions. The notations used in

this paper are listed in Tables 3 and 4.

2.2 Modeling Methodology Based on the Space–

Time–State Network Representation

A simple example with two travel requests and one vehicle

in our previous study [20] is used to demonstrate key

modeling features of space–time–state network represen-

tation. Consider a general physical transportation network

containing six nodes. Each link in this network is associ-

ated with time-dependent travel time TT i; j; tð Þ. Two

requests are with the same pickup node (node 2) and the

same drop-off node (node 3), but with different pickup and

drop-off time windows. Only one vehicle is available for

serving the two requests. Moreover, we assumed that the

vehicle starts its route from node 4 and ends it at node 1.

One dummy origin node and one dummy destination node

need to be built to correspond to its pickup node and drop-

off node for each request. As shown in Fig. 1, Passenger 1

should be picked up from dummy node o1 in time window

[4,7] and dropped off at dummy node d1 in time window

[11,14], while Passenger 2 should be picked up from

dummy node o2 in time window [8,10] and dropped off at

dummy node d2 in time window [13,16]. Vehicle 1 also has

Table 2 Typical different state representations

State Applications Related papers

Vehicle carrying VRPPDTW Mahmoudi and

Zhou [20]

Passenger cumulative service VRPPDTW Mahmoudi et al.

[25]

Resource, e.g., energy or emissions Green VRP Lu et al. [23]

Activity performing states Household activity pattern

problem

Liu et al. [21]

High-speed train speed Train scheduling Zhou et al. [22]

Cumulative working hours in crew scheduling, cumulative running distance in electric

multiple unit (EMU) maintenance scheduling

Crew scheduling, EMU

maintenance scheduling

Chen et al. [26]
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the earliest departure time from its starting depot, t = 1,

and the latest arrival time at its ending depot, t = 20.

Note that the shortest path with node sequence

ðo01; 4; 2; o1; 2; o2; 2; 5; 6; 3; d1; 3; d2; 3; 1; d
0
1Þ from vehicle

1’s origin to its ending depot is shown by bold arrows when

it serves both requests. To use a space–time–state network

representation for model formulation, the time horizon is

discretized into a set of time intervals with the same time

unit, e.g., 1 min. Selected arcs constituting the shortest

paths from vehicle 1’s origin to its destination are

Table 3 Indexes and variables

used to describe the VRPPDTW

problem

Symbol Definition

V Set of physical vehicles

V� Set of virtual vehicles

P Set of passengers

N Set of physical transportation nodes in the physical traffic network

M Set of physical transportation links in the physical traffic network

W Set of possible passenger carrying states

v Vehicle index

v�p Index of virtual vehicle exclusively dedicated for passenger p

p Passenger index

w Passenger carrying state index

(i, j) Index of physical link between adjacent nodes i and j

TT i; j; tð Þ Link travel time from node i to node j starting at time t

Capv Maximum capacity of vehicle v

ap Earliest departure time from passenger p’s origin

bp Latest departure time from passenger p’s origin

a
0

p
Earliest arrival time at passenger p’s destination

b0p Latest arrival time at passenger p’s destination

ap; bp
� �

Departure time window for passenger p’s origin

a0p; b
0
p

h i

Arrival time window for passenger p’s destination

o0v Dummy node for vehicle v’s origin

d0v Dummy node for vehicle v’s destination

ev Vehicle v’s earliest departure time from the origin depot

lv Vehicle v’s latest arrival time to the destination depot

op Dummy node for passenger p’s origin (pickup node for passenger p)

dp Dummy node for passenger p’s destination (delivery node for passenger p)

Table 4 Indexes and variables used for the model formulation

Symbol Definition

i; t;wð Þ, j; s;w0ð Þ Indexes of space–time–state vertexes

i; j; t; s;w;w0ð Þ Index of a space–time–state arc indicating that one can travel from node i at time t with passenger carrying state w to the

node j at time s with passenger carrying state w0

V Set of vertices in the proposed space–time–state network

V� Set of virtual vehicles

Bv Set of space–time–state arcs in vehicle v’s network

c v; i; j; t; s;w;w0ð Þ Routing cost of arc i; j; t; s;w;w0ð Þ traveled by vehicle v, including transportation costs, passenger waiting time and vehicle

waiting time, converted through the values of time

TT v; i; j; t; s;w;w0ð Þ Travel time of arc i; j; t; s;w;w0ð Þ traveled by vehicle v

Wp;v Set of pickup service arcs of passenger p in vehicle v’s networks

y v; i; j; t; s;w;w0ð Þ = 1 if arc i; j; t; s;w;w0ð Þ is used by vehicle v; ¼ 0 otherwise
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demonstrated in the vehicle’s space–time network illus-

trated in Fig. 1 (b).

Each vehicle starts its trip from the empty state in which

the vehicle carries 0 passenger. We call this empty state as

the initial state w0. Each vertex in the constructed space–

time–state network is recognized by a triplet of three dif-

ferent indexes: node index i, time interval index t, and

passenger carrying state index w.

In the space–time–state transportation network, we can

identify a traveling arc i; j; t; s;w;w0ð Þ starting from node

i at time t with passenger carrying state arriving w to node

j at time s with passenger carrying state w0. Accordingly, in

the space–time–state network, each vertex i; t;wð Þ is con-

nected to vertex j; s;w0ð Þ through arc i; j; t; s;w;w0ð Þ.

The VRPPDTW model based on space–time–state net-

work representation was first proposed by Mahmoudi and

Zhou [20]. The model used in VRPLite is given in

Eqs. (4)–(9). For more detailed information, we refer

interested readers to the original research paper and the

GAMS source code can be found at https://github.com/

xzhou99/VRPLite/tree/master/GAMS_SourceCode.

Objective function:

minZ ¼
X

v2 V[V�ð Þ

X

i;j;t;s;w;w0ð Þ2Bv

c v; i; j; t; s;w;w0ð Þy v; i; j; t; s;w;w0ð Þ

ð4Þ

Flow balance constraints at vehicle v’s origin vertex:
X

i;j;t;s;w;w0ð Þ2Bv

y v; i; j; t; s;w;w0ð Þ ¼ 1

i ¼ o0v; t ¼ ev;w ¼ w0 ¼ w0; 8v 2 V [ V�ð Þ
ð5Þ

Flow balance constraint at vehicle v’s destination vertex
X

i;j;t;s;w;w0ð Þ2Bv

y v; i; j; t; s;w;w0ð Þ ¼ 1

j ¼ d0v; s ¼ lv;w ¼ w0 ¼ w0; 8v 2 V [ V�ð Þ
ð6Þ

Flow balance constraint at intermediate vertex
X

j;s;w00ð Þ

y v; i; j; t; s;w;w00ð Þ �
X

j0;s0;w0ð Þ

y v; j0; i; s0; t;w0;wð Þ ¼ 0

i; t;wð Þ 62 o0v; ev;w0

� �

; d0v; lv;w0

� �� �

; 8v 2 V [ V�ð Þ

ð7Þ

Passenger p’s pickup request constraint
X

v2 V[V�ð Þ

X

i;j;t;s;w;w0ð Þ2Wp;v

y v; i; j; t; s;w;w0ð Þ ¼ 1 8p 2 P ð8Þ

Binary definitional constraint

y v; i; j; t; s;w;w0ð Þ 2 0; 1f g 8 i; j; t; s;w;w0ð Þ 2 Bv;
8v 2 V [ V�ð Þ

ð9Þ

4

3
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1

1

2 222
1

1

1

1

1
1 1 1 1
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1

o2 o’1

o1

d2

d1d’1

[4,7]

[11,14]

[8,10]

[13,16]

2

5

6

3

1

4

o2

o1

d2

d1

o’1

d’1

Dummy pickup node

Dummy delivery node

Dummy depot

Transportation node

Transportation arcs 

Waiting Arc

Time window for vehicle v at 

starting and ending depots
Passenger p’s preferred departure 

time window from origin

Passenger p’s preferred arrival 

time window to destination

Service arc corresponding pickup 

Service arc corresponding drop-off 

S
p

a
c
e

[_]

[_]

[p1] [p1,p2]

[p1,p2]

[p2] [_]

[_]

(a)
Time

(b)

Fig. 1 a Six-node transportation network, transportation network with the corresponding dummy nodes, where [•,•] represents passenger time

windows; b shortest paths in the space–time network, where [], [p1], [p1] and [p1, p2] represent vehicle carrying states [20]
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2.3 Understanding Different Optimization Models

Within VRPLite Package

The transportation optimization problem for large-scale

instances gives rise to challenges requiring innovative

concepts and solution techniques. Our VRPLite package

tackles with routing and scheduling problems with time

dimensions and incorporates theoretical models and prac-

tical methods, such as VRP, the assignment problem, the

knapsack problem, time-dependent and state-dependent

problem, Lagrangian relaxation solution framework, and

column generation framework.

1. Vehicle routing problem

The family of VRP problem is a class of linear program-

ming problems with a special structure of two layers.

Specifically, when it comes to the freight transportation,

each source has a fixed supply of units, which must be

distributed to the destinations. Each destination has a fixed

demand for units, which must be satisfied by the sources. In

dial-a-ride, transportation on demand problem or

VRPPDTW problem for passenger transporting, each pas-

senger needs to be transported from his/her origin to des-

tination in a complex transportation network.

2. Assignment problem

The assignment problem needs to match a number of

agents to a number of tasks. Any agent can be assigned to

perform any task, incurring some costs that may vary

depending on the agent-to-task assignment relationship. It

is required to perform all tasks by assigning agents to tasks

following certain rules in such a way that the total cost of

the assignment is minimized. In the VRPPDTW problem,

vehicles need to be assigned to serve passengers. By fol-

lowing a variable splitting method introduced by Fisher

[27], the complex space–time–state variables can be

decomposed into assignment variables for both passengers

and vehicles and space–time routing variables for vehicles.

The merit of variable dimensionality reduction lies in

avoiding the enumeration of vehicle states. Therefore, the

assignment problem-based VRP model is superior when

dealing with high-capacity transportation modes, such as

customized buses, public transit and etc.

3. Knapsack problem

The knapsack problem refers to the common problem of

packing the most valuable or useful items subject to the

overall knapsack capacity constraints. In the VRPPDTW,

we need to decide which passengers should be served by

each vehicle because of the limited carrying capacity of

vehicles or limited time budgets.

4. Time-dependent and state-dependent shortest path

problem

In graph theory, the shortest path problem is the problem of

finding a path between two vertices (or nodes) in a graph

such that the sum of the weights of its constituent edges is

minimized. Interested readers could get more information

on space–time network construction and computationally

time-dependent shortest path algorithms in [17, 18]. In the

VRPPDTW, we need to compute time-dependent and state-

dependent shortest path for each vehicle.

5. Dynamic programming

Several efficient algorithms have been developed to com-

pute time-dependent shortest paths in networks with time-

dependent arc costs. In the path searching engine, a time-

indexed dynamic programming algorithm is used to solve

the shortest path problem.

6. Lagrangian relaxation solution framework

Lagrangian relaxation is a relaxation method which

approximates a difficult problem of constrained optimiza-

tion by a simpler problem. To find the optimal solution for

the Lagrangian dual problem, VRPLite computes time-

dependent and state-dependent least-cost path for each

vehicle based on updated multipliers by calling the pro-

posed time-dependent forward dynamic programming

algorithm.

7. Column generation framework

Column generation, to be detailed further, provides an

effective way to find solutions for linear programs with

numerous variables. The predominant concept is that the

primal problem is split into two problems: the master

problem and the subproblem. The master problem is the

original problem with only a subset of variables being

considered. The subproblem is a new problem created to

identify a new variable. The VRPPDTW problem can be

split into set partitioning problems and time-dependent

shortest path problems, which can be solved by standard

optimizer and proposed time-dependent dynamic pro-

gramming algorithm, respectively.

3 Software Architecture, Data Flow

and Implementation

3.1 Data Flow Chart of VRPLite

The software architecture designed in VRPLite aims to

integrate passenger-to-vehicle assignment and time-de-

pendent routing into an open-source VRP modeling pack-

age. As shown in Fig. 2, there are three major modeling

components, including: (1) dynamic programming based

on a node-link network structure and vehicle states tran-

sition; (2) Lagrangian relaxation module, which utilizes

passenger’s prices to determine vehicle’s pickup and
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delivery decision in (1) dynamic programming module; (3)

column (i.e., vehicle paths) generation for large-scale

problems. The final output includes passenger costs/profits

(e.g., total waiting cost, transportation cost), passenger-to-

vehicle assignment and vehicle space–time trajectories.

3.2 A Dynamic Programming Solution Framework

Implemented as a Beam Search Process

Within a dynamic programming (DP) framework, Fig. 3

shows the data flow chart and the solution framework of

VRPLite. In general, dynamic programming is suitable for

multistep or sequential decision processes with given state

transition. In our case, the time horizon serves as the stages

in DP, and at current node and current time, (cumulative

service) states are defined by the vehicle’s path node

sequence, path time sequence, and served passenger

sequence.

Figure 4 depicts the pseudo-code of the time-indexed

beam search algorithm, which is an improved version

compared with the three-loop dynamic programming

algorithm by Mahmoudi and Zhou [20]. Essentially, a

vehicle starts from its depot at departure time and scans

three loops with the index of time, the index of k for the

beam search and the index of outgoing nodes from the

current node. At each time, all the possible states are

evaluated by the objective function and the best K partial

solutions are selected to move forward. It should be noted

that the current node is stored in the time-indexed vector

td_state[t] [k] and only the k best solutions are selected to

move forward. The final solution is output as the vehicle

reaches its destination within its time window. Figure 5

depicts the process of the time-indexed beam search

algorithm.

To handle the demand satisfaction constraint (8) of our

model, we introduce Lagrangian relaxation to relax this

constraint, with added passenger profits (i.e., dual price) in

the new objective function. Iteratively, passenger profits

are updated according to a subgradient method, that is,

checking how many times a passenger has been served

during the current iteration to increase or decrease the price

accordingly. For a large-scale application, we use a multi-

vehicle column generation process to better define and

search for feasible solutions.

3.3 Column Generation Framework for Finding

Multi-vehicle Routing Solutions

The VRPPDTW, in its original arc-based form, can also be

reformulated as a set partitioning problem by applying

Dantzig–Wolfe decomposition. We could introduce a new

set of path-based variables x v; pð Þ, which equals 1 if pas-

senger p is served by vehicle v and equals 0 otherwise. The

set partitioning formulation of the VRPPDTW can be

expressed as follows.

Min Z ¼
X

p2P

X

v2V

c vð Þx v; pð Þ ð10Þ

s.t.
X

v2V[V�

x v; pð Þ ¼ 1 8p 2 P ð11Þ

x v; pð Þ ¼ 0; 1f g 8p 2 P; v 2 V ð12Þ

The objective function (10) minimizes the cost of the

chosen paths. The constraint (11) guarantees that each

passenger is served exactly once. The linear programming

(LP) relaxation of (10)–(12) with a subset of feasible paths

is called the Restricted Master Problem (RMP), which can

be solved by a standard optimizer. We are also able to

obtain dual prices for each passenger p pð Þ from the solu-

tion of the RMP. Those dual prices are then utilized in the

objective function of the subproblem, which searches for

variables with negative reduced cost. The objective func-

tion of the underlying pricing subproblem can be formu-

lated as Eq. (13).

Vehicle data

(OD, capacity, time 

window)

Passenger data

(OD, time window)

Space-time-

state structure

Network data

(Link Capacity, free-

flow/time- dependent 

travel time)

Passenger cost/profit, 

passenger-to-vehicle 

assignment, 

vehicle trajectory

(3) Column generation

Vehicle path

(2) Lagrangian Relaxation

(1) Dynamic Programming

State transition

Dual prices

Fig. 2 Software architecture with key modeling components
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Min r ¼
X

i;j;t;s;w;w0

c v; i; j; t; s;w;w0ð Þy v; i; j; t; s;w;w0ð Þ

�
X

p

p pð Þx v; pð Þ ð13Þ

The pricing problem is essentially a time-dependent

shortest path problem in a network with time-dependent arc

costs, while several efficient algorithms have been devel-

oped to solve such a problem. Along this line, the time-

dependent and state-dependent path searching engine

developed based on a dynamic programming framework

can be used to compute the subproblem within the general

column generation framework.

As shown in Fig. 6, by solving the Restricted Master

Problem, the outputting optimal solution with dual prices

of passengers being its byproduct results could be served as

the input of the pricing subproblem. Iteratively, the pricing

subproblem is solved to generate a new path of the vehicle,

as a new column to be added to the master problem.

Finally, the optimized vehicle routes are obtained. For

more details of column generation algorithms, especially

about the branch and price framework and its final con-

vergence criteria, interested readers are referred to Lüb-

becke and Desrosiers [28].

In the column generation algorithm, the RMP is relaxed

into a linear programming problem; thus, the optimal

solution we obtain might be fractional. However, the

variables x v; pð Þ, which represent if the vehicle v serves

passenger p or not, should be binary variables. Thus we

have to design branching strategies to find feasible integer

solutions. When the algorithm branches on variables

x v; pð Þ, it indicates that x v; pð Þ is fractional and typically

imposes two branches x v; pð Þ ¼ 0 and x v; pð Þ ¼ 1.

4 Numerical Experiments

4.1 The First Toy Example on a Corridor

A small corridor network consisting of 6 physical nodes

and 5 physical links is shown in Figs. 7 and 6 dummy

nodes and 10 dummy links are also included. The internal

number of physical and dummy nodes is determined with a

given labeling rule. First, all of the physical nodes are

labeled from 1 to N where N is the number of physical

nodes. Second, the pickup and delivery nodes of each

passenger are numbered sequentially from N ? 1 to

N ? 2P where P represents the total number of passengers.

Finally, we mark the number of origin and destination

depots of each vehicle in sequence from N ? 2P ? 1 to

N ? 2P ? 2M. In addition, the departure and arrival time

windows are specified directly beside those dummy nodes.

In this example, one vehicle will travel from node 1 to node

6 to serve two passengers on its way. The first passenger A

departs from node 2 and needs to alight the vehicle at node

1. The basic input data for VRPLite includes 

(a) passenger information with origin node, 

destination node, time window and base profit, 

(b) vehicle information with depot, time 

window and capacity constraint,  and (d)

transportation network with links (travel time) 

and nodes. To impose flow balance constraints, 

we add (c) virtual nodes and links.

2. Solution algorithm is composed mainly by

(e) Lagrangian relaxation relaxes “hard” 

constraints and adds them to the objective 

function represented by (g) passenger profits,

which are updated according to how many times 

passenger has been served during the current 

iteration and provided to (f) dynamic

programming as an input. 

3. The output data includes (i) vehicle space-

time-state trajectories provided by (f) dynamic 

programming and (j) passenger profit/cost

information updated by (e) Lagrangian 

relaxation.

Fig. 3 Data flow chart of VRPLite
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Initialize vector td_state[t0] = [o], end_state[v] = [], KBestSize, build virtual node for each passengers’ and 

vehicle’s origin-destination node

Do while t in (T0, T)

Sort td_state[time t] according to the overall cost (transportation cost + profit for serving passengers+ 

passenger and vehicle waiting cost)

Do while index k < min (td_state[t0].size (), KBestSize)

current_node = td_state[t0] [k].current_node

Do while to_node in current_node.outbound_node_vector.size ()

to_node_time = t + outbound_link’s travel time when entering link at time t

Case 1: to_node is a dummy pick up or drop-off node and the arrival time to_node_time is within the 

service time window. If passenger p is not in td_state[t0] [k], then v can pick up passenger p; if 

p has been in vehicle v’s carrying state td_state[t0] [k], then v wold drop off passenger p.  

Update the vehicle carrying states in td_state[to_node_time] with its current_node = to_node and 

new cost with possible service profit.

Case 2: to_node is a physical node. 

Update td_state[to_node_time] with its current_node = to_node and updated cost.

Case 3: to_node is vehicle’s destination node d. 

Update end_state[v] with td_state[to_node_time] and updated cost.

End // downstream node

End // index k

End // time t

Sort end_state[v] according to its cost, choose the first one as our solution.

Parameter and variable definitions:

td_state: vehicle’s time-dependent state

end_state: vehicle’s ending state at destination

to_node_time: vehicle arrival time at the downstream node of the current node. 

Index k: the index for beam search with the KBestSize as beam width

Fig. 4 Pseudo-code of time-indexed beam search process for each v with origin o departure time T0, destination d arrival time T

Fig. 5 The process of the time-indexed beam search algorithm, with the time dimension as the horizontal axis
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4, while the second passenger B needs to travel from node

3 to node 5. The internal number of nodes shown in Fig. 7

is labeled in Table 5 by following our cost updating rule. In

Figs. 7, 9, 11 and 13, texts in circles, rectangles and tri-

angles denote node numbers, and texts on links represent

corresponding travel costs.

Both the upper bound and lower bound of the small

example are equal to 20, so it is proved that the optimal

solution is 20. In addition, the optimal routes and schedules

for the single vehicle are shown in Table 6, and the space–

time trajectory of the vehicle for the basic example is

illustrated in Fig. 8. It is remarked that there is no

passenger waiting time or vehicle waiting time in this

example. That is, in the optimal solution the vehicle can

arrive at the service points just at the time when the service

time windows start.

4.2 The Second Example with Extended Link

Travel Time

The travel time of links (2, 3) and (4, 5) is extended to 4, as

shown in Fig. 9, and the departure and arrival time win-

dows of passengers A and B are updated accordingly, so

that no vehicle or passenger waiting time is introduced, as

shown in Table 7, and the space–time trajectory of the

vehicle is shown in Fig. 10.

Both upper bound and lower bound of this problem are

equal to 24, which increases by 4 compared to the optimal

solution of the first example. Obviously, it is for the reason

that the travel time of links (2, 3) and (4, 5) increases by 4

Initialization 

Restricted Master Problem

RMP

Pricing Subproblem

Is the reduced cost

negative?    

Add column to RMP

Yes

end

No

Fig. 6 Column generation framework for finding multi-vehicle

routing solutions

1 2 3 4 5 6

d1

o1

d2

o2

OП1 dП1

[1,1]

1 2 2 2 2 2 1

1 1 1 1

1 1 1 1

[5,7] [9,11]

[13,15] [17,19]

[13,53]

Physical node Dummy node

Physical link Dummy link

Fig. 7 Network layout and time-window settings for the basic example

Table 5 Internal number of the nodes shown in the basic example

Name Internal node

number

Type

1 1 Physical node

2 2 Physical node

3 3 Physical node

4 4 Physical node

5 5 Physical node

6 6 Physical node

o1 7 Dummy node, passenger A pickup node

d1 8 Dummy node, passenger A delivery node

o2 9 Dummy node, passenger B pickup node

d2 10 Dummy node, passenger B delivery node

o01 11 Dummy node, vehicle 1 origin depot

d01 12 Dummy node, vehicle 1 destination depot
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Table 6 The evolution of path

node sequences and path time

sequences for the basic example

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4;5;6;12 1;2;4;6;8;10;12;13

1 1 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

2 0.5 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

3 0.333333 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

4 0.25 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

5 0.2 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

6 0.166667 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

7 0.142857 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

8 0.125 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

9 0.111111 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

Upper bound: 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
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Fig. 8 Vehicle space–time trajectory for the basic example
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Physical node Dummy node
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Fig. 9 Network layout and time-window settings for the example with extended link travel time
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and no extra vehicle or passenger waiting time is

introduced.

4.3 The Third Example with Extra Vehicle Waiting

Time

In order to test the influence of vehicle waiting time on the

optimal vehicle routes and schedules, the departure time

window of passenger A is delayed from [5, 7] to [10, 12].

Therefore, the vehicle will have to wait at node o1 until

passenger A gets ready to depart at time 10. In addition, the

arrival time window of passenger A and the time windows

of passenger B are modified accordingly, so that the

vehicle will not wait at other places. The updated time

window settings are shown in Fig. 11.

The upper bound and lower bound of this example are

equal to 22.5, which turns out to be the optimal solution.

The optimal routes and schedules for the vehicle are shown

in Table 8, and the space–time trajectory of the vehicle is

shown in Fig. 12. It can be observed that the vehicle arrives

at node o1 at time 5 and waits until time 10, so the vehicle

waiting time is 5. Besides, the total travel time of the

vehicle is 25, but the cost ratio of vehicle waiting time is

only 0.5, and then the optimal value of total cost is equal to

25 - 0.5 9 (10 - 5) = 22.5.

4.4 The Forth Example with Extra Passenger

Waiting Time

If the vehicle departs late from the origin deport, then the

passengers will have to wait until the vehicle arrives.
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Fig. 10 Space–time trajectory of the vehicle for the example with extended link travel time

Table 7 The evolution of path

node sequences and path time

sequences for basic example

with extended link travel time

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4;5;6;12 1;2;4;6;8;10;12;13

1 1 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

2 0.5 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

3 0.333333 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

4 0.25 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

5 0.2 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

6 0.166667 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

7 0.142857 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

8 0.125 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

9 0.111111 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21

Upper bound: 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
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Fig. 11 Network layout and time-window settings for the example with extra passenger waiting time with extra vehicle waiting time

Table 8 The evolution of path node sequences and path time sequences for the example with extra vehicle waiting time

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4;5;6;12 1;2;4;6;8;10;12;13

1 1 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

2 0.5 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

3 0.333333 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

4 0.25 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

5 0.2 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

6 0.166667 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

7 0.142857 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

8 0.125 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

9 0.111111 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

Upper bound: 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
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Fig. 12 Space–time trajectory of the vehicle for the example with extra vehicle waiting time
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Therefore, the departure time window of the vehicle is

delayed by 5 compared with the basic example, and the

departure and arrival time windows of those two passen-

gers are adjusted accordingly. The new time-window set-

tings are shown in Fig. 13.

The upper bound and lower bound of this example are

equal to 21.5, and the optimal routes and schedules of the

vehicle are shown in Table 9, and the space–time trajectory

of the vehicle is shown in Fig. 14. It is obvious that pas-

senger A starts to wait at time 5 until the vehicle arrives at

time 10, so the waiting time of passenger A is 5. In addi-

tion, because the cost ratio of passenger waiting time is 0.5

and the total travel time of the vehicle is 20, the optimal

value of the total cost is 20 ? 0.3 9 5 = 21.5.

4.5 The Fifth Example for Branching Process

Within a Column Generation Process

We test our column generation algorithm on the six-node

transportation network illustrated in Fig. 1 for a scenario

with three passengers and two vehicles. Table 10 shows

origin–destination pairs, and passengers’ departure and

arrival time windows. Terms ‘‘TW’’ and ‘‘TH’’ stand for

time window and time horizon, respectively. The code and

related data of this example can be downloaded at https://

github.com/YaoYuBJTU/VRPLite-python.

Based on this scenario, we obtain a fractional optimal

solution during solving the RMP. The solution, x 1; 1ð Þ ¼

x 1; 2ð Þ ¼ 0:5; x 2; 1ð Þ ¼ x 2; 3ð Þ ¼ 0:5; x 3; 2ð Þ ¼ x 3; 3ð Þ ¼
0:5 shows that three types of paths are used (two passen-

gers can be served through the ride-sharing mode by the

vehicle going through each path), but the value of the

decision variable = 0.5 means that only 0.5 vehicles go

through that path, which has no physical significance. As a
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d2

o2

OП1 dП1
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Physical node Dummy node

Physical link Dummy link

Fig. 13 Network layout and time-window settings for the example with extra passenger waiting time

Table 9 The evolution of path node sequences and path time sequences for the example with extra passenger waiting time

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4;5;6;12 6;7;9;11;13;15;17;18

1 1 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

2 0.5 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

3 0.333333 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

4 0.25 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

5 0.2 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

6 0.166667 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

7 0.142857 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

8 0.125 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

9 0.111111 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

Upper bound: 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26
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result, branching is needed to obtain the feasible solutions,

i.e., for the fractional value x 1; 1ð Þ ¼ 0:5, we could force

x 1; 1ð Þ to be 1 and 0 as two child nodes, ensuring passenger

p1 is served by vehicle v1 or not. After a branching step,

column generation is used again and a series of new paths

are generated through the subproblem. The feasible solu-

tion of branch x 1; 1ð Þ ¼ 1 is x 1; 1ð Þ ¼ x 1; 2ð Þ

¼ 1; x 4; 3ð Þ ¼ 1, while for the other branch x 1; 1ð Þ ¼ 0,

there are two feasible solutions, x 2; 1ð Þ ¼ x 2; 3ð Þ ¼

1; x 5; 3ð Þ ¼ 1 and x 3; 2ð Þ ¼ x 3; 3ð Þ ¼ 1; x 6; 1ð Þ ¼ 1.

Finally, we could obtain the feasible optimal solu-

tion,x 3; 2ð Þ ¼ x 3; 3ð Þ ¼ 1; x 6; 1ð Þ ¼ 1, which means p2 and

p3 are served by one vehicle through the ride-sharing mode

and p1 is served by another vehicle.

5 Discussions and Conclusions

This research aims to improve the scheduled transportation

system performance by enabling better vehicle scheduling

capabilities in complex transportation on demand applica-

tions. Specifically, the VRPLite package addresses several

fundamental research issues in scheduled transportation

systems, which offers a set of solution platforms on holistic

traveler mobility optimization, agent-based trajectory

control under the new environment of shared self-driving

car or automated guided vehicle (AGV) networks. This

open-source and educational modeling framework could

help researchers understand the complex space–time–state

network modeling methodologies, especially from a time-

dependent and state-dependent shortest path perspective.

Because the shipping of passengers and goods by shared

self-driving cars or automated urban rail trains needs to be

fully coordinated and cooperative, we hope this algorithm

could help to demonstrate how to reduce the transportation

cost and improve the efficiency in shipping passengers or

goods [29], especially in the area of city logistics [30]. In

particular, if the shared self-driving cars are electrified, the

gas emission caused by the transportation process could

decrease to a large extent [31].

It should be highlighted that, unlike the shared self-

driving cars, AGVs usually move on the visual track-based

networks with specially required path topologies and two

AGVs may conflict on the interactions of their paths [32]

where the paths of AGVs are planned in advance to avoid

all kinds of obstacles [33, 34]. In this situation, the

scheduling and routing of AGVs is very similar to that of

scheduled rail systems [35–37] where each spatial and

eca
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Fig. 14 Space–time trajectory of the vehicle for the example with extra passenger waiting time

Table 10 Passengers’ origin–destination pairs and corresponding departure and arrival time windows
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[5,7] [8,11] [5,8] [11,15] [7,9] [12,14] [1, 30] 2 [1, 30] 2
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temporal resource can only be occupied by at most one

train. It can be shown that the scheduling and routing of

AGVs are also a variant of the vehicle routing problem,

and the readers can refer to [32, 38] for detailed reviews on

the corresponding solution approach and applications of

AGVs.

In addition, the VRPLite package uses a discretized

space–time–state modeling approach, so it is natural to

consider time-dependent link travel time in the program,

such as the vehicle routing problem with time-dependent

link travel time and path flexibility in the paper [39], as

well as spatial and temporal conflicts between AGVs.

We hope that, the theoretical methodologies, insights

and open-source tools developed from this research will be

useful for modeling and optimizing new autonomous

vehicle operation and control methods for metropolitan

regions. In the future, a new class of ubiquitous distributed

computing-based algorithms will be further studied, to

include joint trip assignment, routing and scheduling

problems.
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