Urban Rail Transit
https://doi.org/10.1007/s40864-018-0083-7

@ CrossMark
http://www.urt.cn/

ORIGINAL RESEARCH PAPERS

Open-source VRPLite Package for Vehicle Routing with Pickup
and Delivery: A Path Finding Engine for Scheduled

Transportation Systems

Xuesong Zhou' - Lu Tong>> - Monirehalsadat Mahmoudi' - Lijuan Zhuge* -
Yu Yao* + Yongxiang Zhang® - Pan Shang® - Jiangtao Liu" - Tie Shi>”’

Received: 2 May 2018/Revised: 17 May 2018/ Accepted: 23 May 2018

© The Author(s) 2018

Abstract Recently, automation, shared use, and electrifi-
cation are viewed as the “three revolutions” in the future
transportation sector, and the traditional scheduled public
transit system will be greatly enhanced with flexible ser-
vices and autonomous vehicle scheduling capabilities.
Many emerging scheduled transportation applications
include the fully automatic operation system in urban rail
transit, joint line planning, and timetabling for high-speed
rail as well as emerging self-driving vehicle dispatching.
The vehicle routing problem (VRP) holds promise for
seeking an optimal set of vehicle routes and schedules to
meet customers’ requirements and plays a vital role in

< Lu Tong
Itong @buaa.edu.cn

Xuesong Zhou
xzhou74 @asu.edu

Monirehalsadat Mahmoudi
mmahmoudi @asu.edu

Lijuan Zhuge
16120948 @bjtu.edu.cn

Yu Yao
yaoyul @bjtu.edu.cn

Yongxiang Zhang
bk20100249 @my.swjtu.edu.cn

Pan Shang
Shangp16 @mails.tsinghua.edu.cn

Jiangtao Liu
jliu215@asu.edu

Tie Shi
tshi2005 @my.swjtu.edu.cn

Communicated by Jing Teng.

Published online: 06 June 2018

optimizing services for feature scheduled transportation
systems. Due to the difficulty of finding optimal solutions
for large-scale instances, enormous research efforts have
been dedicated to developing efficient algorithms, while
our paper presents a unique perspective based on a time-
dependent and state-dependent path searching framework.
An open-source and light-weight VRP with pickup and
delivery with time windows (VRPPDTW) modeling
package, namely VRPLite, has been developed in this
research to provide a high-quality and computationally
efficient solution engine for transportation on demand
applications. This paper describes the space-time—state

School of Sustainable Engineering and the Built
Environment, Arizona State University, Tempe, AZ 85281,
USA

School of Electronic and Information Engineering, Beihang
University, Beijing 100091, China

National Engineering Laboratory for Comprehensive
Transportation Big Data Application Technology,
Beijing 100091, China

School of Traffic and Transportation, Beijing Jiaotong
University, Beijing 100044, China

School of Transportation and Logistics, Southwest Jiaotong
University, Chengdu 610031, Sichuan, China

6 Department of Civil Engineering, Tsinghua University,

Beijing 100084, China

National United Engineering Laboratory of Integrated and
Intelligent Transportation, Southwest Jiaotong University,
Chengdu 610031, Sichuan, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40864-018-0083-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40864-018-0083-7&domain=pdf
https://doi.org/10.1007/s40864-018-0083-7
http://www.urt.cn/

Urban Rail Transit

modeling process of VRPPDTW using a hyper-network
representation. This solution framework can be embedded
in a column generation or Lagrangian relaxation frame-
work to handle many general applications. A number of
illustrated examples are presented to demonstrate the
effectiveness of the path search algorithm under various
traffic conditions and passenger travel requirements.

Keywords Vehicle routing problem with pickup and
delivery - Space-time—state network modeling - Column
generation - Lagrangian relaxation

1 Introduction

As population and personal travel activities continue to
increase, traffic congestion has remained as one of the
major concerns for transportation system agencies with
tight resource constraints. The next generation of trans-
portation scheduling initiatives aims to integrate various
demand management strategies and traffic control mea-
sures to actively achieve mobility, environment and sus-
tainability goals. Various approaches hold promises of
reducing the undesirable effects of traffic congestion due to
driving-alone trips. In this research, we mainly focus on
providing a time-dependent and state-dependent path
searching engine to serve the demand-responsive ride-
sourcing/urban transit services in next-generation trans-
portation on demand applications.

In general, there are two classes of the vehicle routing
problem (VRP): (1) designing line haul services for cus-
tomers from the depot and back haul services for customers
to the depot, and (2) transporting passengers or goods
between specific origins and destinations with possible
requested time windows. VRPLite can cover the above two
types of problems, but our discussion below focuses on the
second class without loss of generality. There are a number
of excellent reviews on vehicle routing problems with
pickup and delivery by Cordeau et al. [1], Parragh et al. [2]
and Psaraftis et al. [3]. When each transporting request is
defined by determinate pickup and delivery points, the
VRP becomes the vehicle routing problem with pickup and
delivery (VRPPD). Practical applications of the VRPPD
can be commonly found in urban rail transit management,
to name a few, rail transit line planning [4, 5], policy
decision making [6, 7], train operation management [8, 9],
train timetabling [10, 11], and metro-based freight trans-
portation [12]. In the emerging peer-to-peer ride-sharing
service, a passenger can ask the driver to take him/her
directly to the destination, and the passenger may also
share this ride with one or more passengers. The ride-
sharing problem can be mathematically modeled by the
classic vehicle routing problem with pickup and delivery

@ Springer

with time windows (VRPPDTW) [13]. Previous research
has made a number of important contributions along dif-
ferent formulations or solution approaches. On the other
hand, there are a number of modeling and algorithmic
challenges for a large-scale deployment of vehicle routing
and scheduling algorithms, especially for regional net-
works with various road capacity and traffic delay con-
straints on freeway bottlenecks and signal timing on urban
streets.

In the field of operations research, a few previous
studies directly consider the underlying transportation
network with time of day traffic congestion, while the
majority of studies define the VRPPDTW on a directed
graph with fixed shortest travel distance or least travel time
routes between origin—destination pairs. Due to the com-
plexity of variables and constraints, it is difficult to seek
optimal solutions for large-scale VRPs. The generalized
VRP problem also has a number of rich applications on the
urban transit and other related scheduling or logistics
problems [14, 15]. For example, the most featured one is
the transit vehicle assignment and routing problem, which
is usually studied as the generalized VRP problem. Other
related problems include crew scheduling, aircraft fleeting
and routing, fleet itinerary scheduling as well as network-
wide train timetabling which assigns trains to different
routes.

In this paper, we introduce our proposed algorithm from
the perspective of shortest path algorithms, which has rich
applications in the field of transportation network modeling
[16]. The physical network can be denoted by (N,A),
where N is the set of nodes and A is the set of arcs, and then
the shortest path problem is to find a path with the minimal
cost that consists of a sequence of links (i,j) € A con-
necting origin node o to destination node d. The shortest
path problem can be represented as the minimal cost net-
work flow problem by sending one unit of flow from o to
d. A binary variable x;; is used to denote whether the flow
passes the link (i,j) or not. The mathematical formulation
of the shortest path problem with node flow balance con-
straints is listed below [17].

Il’lil’lZ: Z CijXij (1)
(

ij)EA
S.t.
—1 Vi=o
Z Xij — Z Xji = 1 Vi=d (2)
{j:(ij)eA} {j:(i,i)eA} 0 otherwise
xij €{0,1} V(ij)eA (3)

In general, there are mainly two algorithmic approaches
to deal with the shortest path problem, namely label setting
and label correcting algorithm [17]. Both approaches

Urban Rail Transit

iteratively update the label cost of nodes at each step. The
label cost of nodes is designated as permanent in the label
setting algorithm at each iteration, while the label cor-
recting algorithm can change the label cost of nodes at any
step. This feature determines that label setting algorithm
cannot solve the shortest path problem with negative arc
costs, but the label correcting algorithm can deal with the
shortest path problem with arbitrary arc costs. The static
shortest path problem can be further extended to dynamic
version with time-dependent arc costs ¢;j; on link (i, j) for
vehicles leaving at time 7, and time-dependent link travel
time 17}, Ziliaskopoulos and Mahmassani [18] proposed
an efficient label correcting-based algorithm to find the
time-dependent shortest paths from all nodes in the net-
work to the single destination node. Chabini [19] aims to
reduce the worst-case complexity in solving the time-de-
pendent shortest path problem by adopting the dynamic
programming approach. Recently, the shortest path prob-
lem in three-dimensional networks or hyper-networks has
attracted significant interests in transportation optimization
problems. Mahmoudi and Zhou [20] developed a time-
dependent forward dynamic programming algorithm to
reformulate the VRPPD as a special version of the shortest
path problem with time-dependent and state-dependent arc
costs where the state represents the number of passengers
on the vehicle. Liu et al. [21] further considered an
extended version of household activity scheduling problem

by using a cumulative space—time—state representation to
reduce the number of complex constraints. A space—time—
speed hyper-network and the corresponding dynamic pro-
gramming algorithm are introduced by Zhou et al. [22]
with applications in joint optimization of train timeta-
bles and speed profiles. A resource-space—time network
was adapted by Lu et al. [23] to consider time-dependent
routing applications with energy resource considerations.
As an alternative representation to the high-dimension
network, a decomposition approach is considered by Tong
et al. [14] and Ruan et al. [24] with two coupled sub-
problems, i.e., a space—time network-based shortest path
problem and a general assignment problem, for customized
bus applications. By extending the space—time network-
based time-dependent shortest path algorithms, this
VRPLite package aims to solve the time-dependent and
state-dependent shortest path problem. As a particular note,
the cumulative service state of passengers is presented as
the “state” dimension in the VRPLite package.

Table 1 provides a detailed comparison of the above
shortest path algorithms from the perspectives of network
representation, arc cost, data structure to the solution
methods. In Table 2, we further list different state repre-
sentations in the space—time—state modeling framework to
show the potential of this modeling method in solving
difficult transportation problems.

The fully functional, open-source VRPLite package can
be downloaded from https://github.com/xzhou99/VRPLite.

Table 1 Comparison of different shortest path algorithms (network representation, arc cost, data structure, and solution methods)

Dimension Vertex Arc States Cost Network building Method
Space based [17] Physical Physical arcs - Negative Scan eligible list Label correcting
nodes or
positive
Physical Physical arcs - Positive Heap for find the Label setting
nodes minimal temporal
labels
Space-time, time- Physical Physical arcs, - Negative ~ Without explicitly Label correcting
dependent [18] nodes time- or building the space—
dependent positive time network
arc cost
Space—time, time- Physical Physical arcs, - Negative ~ Without explicitly Dynamic Programming
dependent [19] nodes time- or building the space—
dependent positive time network
arc cost
Space-time-—state, Space— Space—time— Seats, number of Negative = Without explicitly Dynamic Programming, but
time and state time— state links passengers or building the space— need to enumerate the vehicle
dependent [20] state positive time—state network carrying states
nodes
Space—time—state, Space— Space-time— 0, 1, 2, for Negative ~ Without explicitly Dynamic Programming,
time and state time— state links cumulative or building the space— dynamically generate the
dependent (this state service states of positive time—state network passenger cumulative service
research) nodes passengers states

@ Springer

https://github.com/xzhou99/VRPLite

Urban Rail Transit

Table 2 Typical different state representations

State

Applications Related papers

Vebhicle carrying
Passenger cumulative service

Resource, e.g., energy or emissions

Activity performing states

High-speed train speed

Cumulative working hours in crew scheduling, cumulative running distance in electric

multiple unit (EMU) maintenance scheduling

VRPPDTW Mahmoudi and
Zhou [20]
VRPPDTW Mahmoudi et al.
[25]
Green VRP Lu et al. [23]
Household activity pattern Liu et al. [21]
problem

Train scheduling

Crew scheduling, EMU
maintenance scheduling

Zhou et al. [22]
Chen et al. [26]

The goal of this package includes the following three
aspects.

1. Provide an open-source code base that enables trans-
portation researchers and software developers to
expand its range of capabilities to various traffic/trans-
portation management applications.

2. Provide a free, educational modeling framework for
students and researchers to understand the complex
space—time—state network modeling process for trans-
portation optimization applications, e.g., train time-
tabling, urban rail transit scheduling and ride-sharing
applications.

3. We introduce our solution approach and related
software implementation from a time-dependent and
state-dependent shortest path approach.

2 Space-Time-State-Based Models
2.1 Problem Statement

The VRPPDTW problem studied in this paper can be
formally defined by the following statement. Consider a
physical transportation network (N, M) with a finite set of
nodes N and a finite set of links M, where nodes i,j € N
and directed link (i,j) € M. A space—time network G =
(E,A) can be constructed for transportation network
(N,M) under planning time horizon T considering pas-
senger carrying state W with a finite set of space—time—state
vertices V and a finite set of space—time—state arcs A ac-
cording to optimization requirements. In a space—time—
state setting, each vertex (i,7,w) C V simultaneously rep-
resents time, location, and vehicle carrying state; each arc
(i,j,t,s,w,w') € A indicates a directed space-time-state
path from node i departing at time ¢ with passenger car-
rying state w to node j arriving at time s with passenger

@ Springer

carrying state w'. Because of the three-dimensional net-
work structure, it is easy to model passengers’ travel
requests, vehicles’ travel times changing over time, and
available passenger carrying states. Given a set of pas-
sengers P and their travel requests, as pickup/delivery
locations, op/d , and space-time windows, [ap,bp] and

{a;,,b;} , as well as vehicle capacity constraint Cap, and

other routing constraints, the VRPPDTW problem aims to
find optimal passenger-to-vehicle assignment, vehicle
routes and timetables for each vehicle v in the vehicle set
V under certain traffic conditions. The notations used in
this paper are listed in Tables 3 and 4.

2.2 Modeling Methodology Based on the Space—
Time-State Network Representation

A simple example with two travel requests and one vehicle
in our previous study [20] is used to demonstrate key
modeling features of space—time—state network represen-
tation. Consider a general physical transportation network
containing six nodes. Each link in this network is associ-
ated with time-dependent travel time TT(i,j,t). Two
requests are with the same pickup node (node 2) and the
same drop-off node (node 3), but with different pickup and
drop-off time windows. Only one vehicle is available for
serving the two requests. Moreover, we assumed that the
vehicle starts its route from node 4 and ends it at node 1.
One dummy origin node and one dummy destination node
need to be built to correspond to its pickup node and drop-
off node for each request. As shown in Fig. 1, Passenger 1
should be picked up from dummy node o, in time window
[4,7] and dropped off at dummy node d; in time window
[11,14], while Passenger 2 should be picked up from
dummy node o0, in time window [8,10] and dropped off at
dummy node d, in time window [13,16]. Vehicle 1 also has

Urban Rail Transit

Table 3 Indexes and variables

Symbol Definition
used to describe the VRPPDTW
problem Vv Set of physical vehicles
Vv Set of virtual vehicles
P Set of passengers
N Set of physical transportation nodes in the physical traffic network
M Set of physical transportation links in the physical traffic network
w Set of possible passenger carrying states
v Vehicle index
v; Index of virtual vehicle exclusively dedicated for passenger p
4 Passenger index
w Passenger carrying state index
@@p Index of physical link between adjacent nodes i and j
TT(i,j,t) Link travel time from node i to node j starting at time t
Cap, Maximum capacity of vehicle v
a, Earliest departure time from passenger p’s origin
b, Latest departure time from passenger p’s origin
a; Earliest arrival time at passenger p’s destination
b;, Latest arrival time at passenger p’s destination
[ap, by] Departure time window for passenger p’s origin
[a, b;>] Arrival time window for passenger p’s destination
o, Dummy node for vehicle v’s origin
d, Dummy node for vehicle v’s destination
e, Vehicle v’s earliest departure time from the origin depot
L, Vehicle v’s latest arrival time to the destination depot
op Dummy node for passenger p’s origin (pickup node for passenger p)
d, Dummy node for passenger p’s destination (delivery node for passenger p)

Table 4 Indexes and variables used for the model formulation

Symbol Definition

(i, t,w), (j,s,w')

(i7j7 l7 s7 W7 W/)

Indexes of space—time—state vertexes

Index of a space—time—state arc indicating that one can travel from node i at time ¢ with passenger carrying state w to the
node j at time s with passenger carrying state w’

1% Set of vertices in the proposed space—time—state network
Vv Set of virtual vehicles
B, Set of space—time—state arcs in vehicle v’s network

C(V, i7j7 t’ ‘Y7 w7 w/)

Routing cost of arc (i,], , s, w,w') traveled by vehicle v, including transportation costs, passenger waiting time and vehicle

waiting time, converted through the values of time

IT(V, i,j,t,S,W,Wl)

Travel time of arc (i,j,t,s, w,w') traveled by vehicle v

Y, Set of pickup service arcs of passenger p in vehicle v’s networks

y(v7 i7j7 t7 S7 W7 W’)

= 1 if arc (i,j,1,s,w,w) is used by vehicle v; = 0 otherwise

the earliest departure time from its starting depot, 7 = 1,
and the latest arrival time at its ending depot, ¢ = 20.
Note that the shortest path with node sequence
(0],4,2,01,2,02,2,5,6,3,d1,3,d2,3,1,d;) from vehicle
1’s origin to its ending depot is shown by bold arrows when

it serves both requests. To use a space—time—state network
representation for model formulation, the time horizon is
discretized into a set of time intervals with the same time
unit, e.g., 1 min. Selected arcs constituting the shortest
paths from vehicle 1’s origin to its destination are

@ Springer

Urban Rail Transit

[11,14] @
W SO ainl
r e s i
- 2 1 !
@ : & m| U ANIRA
~ ” - A
2)/@_'—’@\ 25 LT
3
a [
e) & 55 \ \[pll pl.p2] [p2] -
y 2 LA
/ |1T] Tl 02 .
(4] o
(47 o2 o : 1
[8.10] 4 _
Time
(@) (b)
Dummy pickup node . Transportation arcs Time window for vehicle v at
starting and ending depots
[| Dummy delivery node TR Waiting Arc P assenge;p sfpre erred departure
. L time window from origin
Dummy depot Service arc corresponding pickup — Passenger p’s preferred arrival

O Transportation node — Service arc corresponding drop-off time window to destination

Fig. 1 a Six-node transportation network, transportation network with the corresponding dummy nodes, where [e,] represents passenger time
windows; b shortest paths in the space—time network, where [], [p1], [p1] and [p1l, p2] represent vehicle carrying states [20]

demonstrated in the vehicle’s space—time network illus-
trated in Fig. 1 (b).

Each vehicle starts its trip from the empty state in which
the vehicle carries 0 passenger. We call this empty state as
the initial state w,. Each vertex in the constructed space—
time—state network is recognized by a triplet of three dif-
ferent indexes: node index i, time interval index f, and
passenger carrying state index w.

In the space—time—state transportation network, we can
identify a traveling arc (i,j,t,s,w,w') starting from node
i at time ¢ with passenger carrying state arriving w to node
Jj at time s with passenger carrying state w'. Accordingly, in
the space-time—state network, each vertex (i,,w) is con-
nected to vertex (j,s,w’) through arc (i,j,¢,s,w,w').

The VRPPDTW model based on space—time—state net-
work representation was first proposed by Mahmoudi and
Zhou [20]. The model used in VRPLite is given in
Egs. (4)—-(9). For more detailed information, we refer
interested readers to the original research paper and the
GAMS source code can be found at https://github.com/
xzhou99/VRPLite/tree/master/GAMS_SourceCode.

Objective function:

minZ = Z Z

ve(VUV*) (ijts,ww)

C(v’ i?j7 [7 s7 w7 W’)y(v’ i?j? l7 s7 W7 W’)

(4)

@ Springer

Flow balance constraints at vehicle v’s origin vertex:

Z y(V,i,j,t,s,w,WI):l
(i,t,5,w,W')EB, (5)
i=o t=e,w=w=w, Wwe VUV

Flow balance constraint at vehicle v’s destination vertex
>y ts,won) =1

(igi,t,5,w,W)EB, (6)
:d:},S:lv,W:W/:Wm VVE(VUV*)

Flow balance constraint at intermediate vertex
>y tys,wow) = > y(vifins 6w, w) =0
(,s,w") (s ")
(i,t,w) & { (0}, ev,w0), (d}, Ly, wo) }, Vv e (VUVY)
(7)

Passenger p’s pickup request constraint

> D

ve(VUV*) (ijtsww)ew,,

yv,ij,t,s,ww) =1 VYpeP (8)

Binary definitional constraint

y(v,i,j t,s,w,w') € {0,1} V(i,j,t,5,w,w') € B,,
.)
Yv e (VUVvY)

https://github.com/xzhou99/VRPLite/tree/master/GAMS_SourceCode
https://github.com/xzhou99/VRPLite/tree/master/GAMS_SourceCode

Urban Rail Transit

2.3 Understanding Different Optimization Models
Within VRPLite Package

The transportation optimization problem for large-scale
instances gives rise to challenges requiring innovative
concepts and solution techniques. Our VRPLite package
tackles with routing and scheduling problems with time
dimensions and incorporates theoretical models and prac-
tical methods, such as VRP, the assignment problem, the
knapsack problem, time-dependent and state-dependent
problem, Lagrangian relaxation solution framework, and
column generation framework.

1. Vehicle routing problem

The family of VRP problem is a class of linear program-
ming problems with a special structure of two layers.
Specifically, when it comes to the freight transportation,
each source has a fixed supply of units, which must be
distributed to the destinations. Each destination has a fixed
demand for units, which must be satisfied by the sources. In
dial-a-ride, transportation on demand problem or
VRPPDTW problem for passenger transporting, each pas-
senger needs to be transported from his/her origin to des-
tination in a complex transportation network.

2. Assignment problem

The assignment problem needs to match a number of
agents to a number of tasks. Any agent can be assigned to
perform any task, incurring some costs that may vary
depending on the agent-to-task assignment relationship. It
is required to perform all tasks by assigning agents to tasks
following certain rules in such a way that the total cost of
the assignment is minimized. In the VRPPDTW problem,
vehicles need to be assigned to serve passengers. By fol-
lowing a variable splitting method introduced by Fisher
[27], the complex space-time—state variables can be
decomposed into assignment variables for both passengers
and vehicles and space—time routing variables for vehicles.
The merit of variable dimensionality reduction lies in
avoiding the enumeration of vehicle states. Therefore, the
assignment problem-based VRP model is superior when
dealing with high-capacity transportation modes, such as
customized buses, public transit and etc.

3. Knapsack problem

The knapsack problem refers to the common problem of
packing the most valuable or useful items subject to the
overall knapsack capacity constraints. In the VRPPDTW,
we need to decide which passengers should be served by
each vehicle because of the limited carrying capacity of
vehicles or limited time budgets.

4. Time-dependent and state-dependent shortest path
problem

In graph theory, the shortest path problem is the problem of
finding a path between two vertices (or nodes) in a graph
such that the sum of the weights of its constituent edges is
minimized. Interested readers could get more information
on space-time network construction and computationally
time-dependent shortest path algorithms in [17, 18]. In the
VRPPDTW, we need to compute time-dependent and state-
dependent shortest path for each vehicle.

5. Dynamic programming

Several efficient algorithms have been developed to com-
pute time-dependent shortest paths in networks with time-
dependent arc costs. In the path searching engine, a time-
indexed dynamic programming algorithm is used to solve
the shortest path problem.

6. Lagrangian relaxation solution framework
Lagrangian relaxation is a relaxation method which
approximates a difficult problem of constrained optimiza-
tion by a simpler problem. To find the optimal solution for
the Lagrangian dual problem, VRPLite computes time-
dependent and state-dependent least-cost path for each
vehicle based on updated multipliers by calling the pro-
posed time-dependent forward dynamic programming
algorithm.

7. Column generation framework

Column generation, to be detailed further, provides an
effective way to find solutions for linear programs with
numerous variables. The predominant concept is that the
primal problem is split into two problems: the master
problem and the subproblem. The master problem is the
original problem with only a subset of variables being
considered. The subproblem is a new problem created to
identify a new variable. The VRPPDTW problem can be
split into set partitioning problems and time-dependent
shortest path problems, which can be solved by standard
optimizer and proposed time-dependent dynamic pro-
gramming algorithm, respectively.

3 Software Architecture, Data Flow
and Implementation

3.1 Data Flow Chart of VRPLite

The software architecture designed in VRPLite aims to
integrate passenger-to-vehicle assignment and time-de-
pendent routing into an open-source VRP modeling pack-
age. As shown in Fig. 2, there are three major modeling
components, including: (1) dynamic programming based
on a node-link network structure and vehicle states tran-
sition; (2) Lagrangian relaxation module, which utilizes
passenger’s prices to determine vehicle’s pickup and

@ Springer

Urban Rail Transit

delivery decision in (1) dynamic programming module; (3)
column (i.e., vehicle paths) generation for large-scale
problems. The final output includes passenger costs/profits
(e.g., total waiting cost, transportation cost), passenger-to-
vehicle assignment and vehicle space—time trajectories.

3.2 A Dynamic Programming Solution Framework
Implemented as a Beam Search Process

Within a dynamic programming (DP) framework, Fig. 3
shows the data flow chart and the solution framework of
VRPLite. In general, dynamic programming is suitable for
multistep or sequential decision processes with given state
transition. In our case, the time horizon serves as the stages
in DP, and at current node and current time, (cumulative
service) states are defined by the vehicle’s path node
sequence, path time sequence, and served passenger
sequence.

Figure 4 depicts the pseudo-code of the time-indexed
beam search algorithm, which is an improved version
compared with the three-loop dynamic programming
algorithm by Mahmoudi and Zhou [20]. Essentially, a
vehicle starts from its depot at departure time and scans
three loops with the index of time, the index of k for the
beam search and the index of outgoing nodes from the
current node. At each time, all the possible states are
evaluated by the objective function and the best K partial
solutions are selected to move forward. It should be noted
that the current node is stored in the time-indexed vector
td_state[t] [k] and only the k best solutions are selected to
move forward. The final solution is output as the vehicle
reaches its destination within its time window. Figure 5
depicts the process of the time-indexed beam search
algorithm.

To handle the demand satisfaction constraint (8) of our
model, we introduce Lagrangian relaxation to relax this
constraint, with added passenger profits (i.e., dual price) in
the new objective function. Iteratively, passenger profits

Network data
(Link Capacity, free-

are updated according to a subgradient method, that is,
checking how many times a passenger has been served
during the current iteration to increase or decrease the price
accordingly. For a large-scale application, we use a multi-
vehicle column generation process to better define and
search for feasible solutions.

3.3 Column Generation Framework for Finding
Multi-vehicle Routing Solutions

The VRPPDTW, in its original arc-based form, can also be
reformulated as a set partitioning problem by applying
Dantzig—Wolfe decomposition. We could introduce a new
set of path-based variables x(v,p), which equals 1 if pas-
senger p is served by vehicle v and equals 0 otherwise. The
set partitioning formulation of the VRPPDTW can be
expressed as follows.

Min Z = Z Z c(v)x(v,p) (10)

peEP veV
S.t.
Z x(v,p)=1 VYpeP (11)
veVUVx

x(v,p)={0,1} VpePveV (12)

The objective function (10) minimizes the cost of the
chosen paths. The constraint (11) guarantees that each
passenger is served exactly once. The linear programming
(LP) relaxation of (10)—(12) with a subset of feasible paths
is called the Restricted Master Problem (RMP), which can
be solved by a standard optimizer. We are also able to
obtain dual prices for each passenger 7(p) from the solu-
tion of the RMP. Those dual prices are then utilized in the
objective function of the subproblem, which searches for
variables with negative reduced cost. The objective func-
tion of the underlying pricing subproblem can be formu-
lated as Eq. (13).

(2) Lagrangian Relaxation

Passenger cost/profit,
passenger-to-vehicle
assignment,

flow/time- dependent l
travel time)
Vehicle data T Dual prices
(OD, capacity, time Sl
. state structure
window)

|

Passenger data
(OD, time window)

Fig. 2 Software architecture with key modeling components

@ Springer

(1) Dynamic Programming
State transition

!

vehicle trajectory

(3) Column generation

Vehicle path

Urban Rail Transit

| from_ to_ departure_ arrival _ canacitvlbase profit 1. The basic input data for VRPLite includes
eent_IG1agent_tyPe| ;1 ode id [node id|time window |time window | *P2CY[ase_P (a) passenger information with origin node
1 0 2 3 [4.7) [11,14]) 50 o . X ’

2 0 > 3 [8.10] [13.16] 50 destination node, time window and base profit,

1 1 4 1 [0.2] [2021] 3 (b) wvehicle information with depot, time

{J agent_type=0 {§ agent_type=1 window and capacity constraint, and (d)

(a) Passenger ||;_,“:| (b) Vehicle

I (d) Network l#]:! [(c) Virtual node/link l
link_id | from_node id | to_node id

1 S(virtual node) 2

2 6(virtual node) 4

transportation network with links (travel time)
and nodes. To impose flow balance constraints,
we add (c) virtual nodes and links.

2. Solution algorithm is composed mainly by
(e) Lagrangian relaxation relaxes ‘hard”
constraints and adds them to the objective

(e) Lagrangian relaxation iteration:

update

iteration=iteration+1:
for all vehicles:

function represented by (g) passenger profits,
which are updated according to how many times
passenger has been served during the current
iteration and provided to (f) dynamic

(g) Passenger profit —»l (f) Dynamic programming

I programming as an input.

|

l (h) Output ‘

l |

3. The output data includes (i) vehicle space-
time-state trajectories provided by (f) dynamic
programming and (j) passenger profit/cost

| (i) Vehicle trajectory ‘

I (j) Passenger profit/cost |

information updated by (e) Lagrangian
relaxation.

Fig. 3 Data flow chart of VRPLite

. .o 1l .. /
Ming = E cvyiyj, tys,w,w)y(v,i,j t,s, w,w')
ij,t,s,ww

= 3 7 pn(r.p) (13)

The pricing problem is essentially a time-dependent
shortest path problem in a network with time-dependent arc
costs, while several efficient algorithms have been devel-
oped to solve such a problem. Along this line, the time-
dependent and state-dependent path searching engine
developed based on a dynamic programming framework
can be used to compute the subproblem within the general
column generation framework.

As shown in Fig. 6, by solving the Restricted Master
Problem, the outputting optimal solution with dual prices
of passengers being its byproduct results could be served as
the input of the pricing subproblem. Iteratively, the pricing
subproblem is solved to generate a new path of the vehicle,
as a new column to be added to the master problem.
Finally, the optimized vehicle routes are obtained. For
more details of column generation algorithms, especially
about the branch and price framework and its final con-
vergence criteria, interested readers are referred to Liib-
becke and Desrosiers [28].

In the column generation algorithm, the RMP is relaxed
into a linear programming problem; thus, the optimal
solution we obtain might be fractional. However, the
variables x(v,p), which represent if the vehicle v serves

passenger p or not, should be binary variables. Thus we
have to design branching strategies to find feasible integer
solutions. When the algorithm branches on variables
x(v,p), it indicates that x(v,p) is fractional and typically
imposes two branches x(v,p) = 0 and x(v,p) = L.

4 Numerical Experiments
4.1 The First Toy Example on a Corridor

A small corridor network consisting of 6 physical nodes
and 5 physical links is shown in Figs. 7 and 6 dummy
nodes and 10 dummy links are also included. The internal
number of physical and dummy nodes is determined with a
given labeling rule. First, all of the physical nodes are
labeled from 1 to N where N is the number of physical
nodes. Second, the pickup and delivery nodes of each
passenger are numbered sequentially from N 4 1 to
N + 2P where P represents the total number of passengers.
Finally, we mark the number of origin and destination
depots of each vehicle in sequence from N + 2P + 1 to
N + 2P + 2M. In addition, the departure and arrival time
windows are specified directly beside those dummy nodes.
In this example, one vehicle will travel from node 1 to node
6 to serve two passengers on its way. The first passenger A
departs from node 2 and needs to alight the vehicle at node

@ Springer

Urban Rail Transit

Initialize vector td state[t0] = [o], end state[v] = [], KBestSize, build virtual node for each passengers’ and
vehicle’s origin-destination node
Do while t in (T0, T)
Sort td state[time t] according to the overall cost (transportation cost + profit for serving passengers+
passenger and vehicle waiting cost)
Do while index k < min (td_state[t0].size (), KBestSize)
current node = td_state[t0] [k].current_node
Do while to_node in current_node.outbound_node_vector.size ()
to_node time =t + outbound link’s travel time when entering link at time t
Case 1: to_node is a dummy pick up or drop-off node and the arrival time to_node_time is within the
service time window. If passenger p is not in td_state[t0] [k], then v can pick up passenger p; if
p has been in vehicle v’s carrying state td_state[t0] [k], then v wold drop off passenger p.
Update the vehicle carrying states in td_state[to node time] with its current node =to node and
new cost with possible service profit.
Case 2: to_node is a physical node.
Update td_state[to node time] with its current node = to_node and updated cost.
Case 3: to_node is vehicle’s destination node d.
Update end_state[v] with td_state[to_node time] and updated cost.
End // downstream node
End // index k
End // time t
Sort end_state[v] according to its cost, choose the first one as our solution.

Parameter and variable definitions:

td_state: vehicle’s time-dependent state

end_state: vehicle’s ending state at destination

to_node_time: vehicle arrival time at the downstream node of the current node.
Index k: the index for beam search with the KBestSize as beam width

Fig. 4 Pseudo-code of time-indexed beam search process for each v with origin o departure time T, destination d arrival time T

A
State K[j][w] Beam Width KBestSize =2
: _
: - 5
: -
(o " TDstate[t+3][j16][w16]
bt - :
i o= '
;" A TDstate[t22][jl 1][w11]
/ :
’ b4
/ &
/ // : .
/’ ’ : : TDstate[t+3][j15][w13]
v/ ; ! :
// . B 2 # ,
: 44 S R
: s p. AP
v - s o
- 7 = i
TDstatelt-1]40w4] 7 A e
: : 2t AT :|Z| =
s - TDstate[t+2][{6][w6]
/' s :
7 ﬁ,/// z i "
7 H i V
’ I|Z| &=~ :
7/ 4
e ‘TDstate[t+1][j2][w2]
P :
7/
” v
’ ™
7 -
/A
TD_state[t0][j0][w0] &= >
Vehicle Depot: jO t+1 Select t+2 Select t+3 t

Fig. 5 The process of the time-indexed beam search algorithm, with the time dimension as the horizontal axis

@ Springer

Urban Rail Transit

Initialization

A 4
Restricted Master Problem
(RMP)

4

A

Pricing Subproblem Add column to RMP

Is the reduced cost
] Ye
negative?

No

end

Fig. 6 Column generation framework for finding multi-vehicle
routing solutions

4, while the second passenger B needs to travel from node
3 to node 5. The internal number of nodes shown in Fig. 7
is labeled in Table 5 by following our cost updating rule. In
Figs. 7, 9, 11 and 13, texts in circles, rectangles and tri-
angles denote node numbers, and texts on links represent
corresponding travel costs.

Both the upper bound and lower bound of the small
example are equal to 20, so it is proved that the optimal
solution is 20. In addition, the optimal routes and schedules
for the single vehicle are shown in Table 6, and the space—
time trajectory of the vehicle for the basic example is
illustrated in Fig. 8. It is remarked that there is no

o'
[1,1]

[5,7] [9,11]

Physical node

Physical link

Fig. 7 Network layout and time-window settings for the basic example

Table 5 Internal number of the nodes shown in the basic example

Name Internal node Type

number
1 1 Physical node
2 2 Physical node
3 3 Physical node
4 4 Physical node
5 5 Physical node
6 6 Physical node
01 7 Dummy node, passenger A pickup node
d; 8 Dummy node, passenger A delivery node
0, 9 Dummy node, passenger B pickup node
d 10 Dummy node, passenger B delivery node
0 11 Dummy node, vehicle 1 origin depot
d, 12 Dummy node, vehicle 1 destination depot

passenger waiting time or vehicle waiting time in this
example. That is, in the optimal solution the vehicle can
arrive at the service points just at the time when the service
time windows start.

4.2 The Second Example with Extended Link
Travel Time

The travel time of links (2, 3) and (4, 5) is extended to 4, as
shown in Fig. 9, and the departure and arrival time win-
dows of passengers A and B are updated accordingly, so
that no vehicle or passenger waiting time is introduced, as
shown in Table 7, and the space—time trajectory of the
vehicle is shown in Fig. 10.

Both upper bound and lower bound of this problem are
equal to 24, which increases by 4 compared to the optimal
solution of the first example. Obviously, it is for the reason
that the travel time of links (2, 3) and (4, 5) increases by 4

[13,15]

.
:
O

[17,19]

A

_

Dummy node

Dummy link

@ Springer

Urban Rail Transit

Table 6 The evolution of.path LR iteration Step size Node sequence Time sequence

node sequences and path time

sequences for the basic example ¢ 1 11:1:2:3:4;5:6;12 1;2:4:6:8:10;12;13
1 1 11;1;257;2;3;9;3;4:8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
2 0.5 11;1;2;7;2;3;9;3;4:8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
3 0.333333 11;51;2;7;2;3;9;3;4;8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
4 0.25 11;1;2;7;2;3;9;3;4:8;4:5;10;5;6;12 1;2;4,5;6;8;9;10;12;13;14;16;17;18;20;21
5 0.2 11;1;2;7;2;3;9;3;4:8;4;5;10;5;6; 12 1;2:4;5;6;8;9;10;12;13;14;16;17;18;20;21
6 0.166667 11;1;2;7;2;3;9;3;4;8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
7 0.142857 11;1;2;7;2;3;9;3;4:8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
8 0.125 11;1;2;7;2;3;9:3;4:8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
9 0.111111 11;1;2:7;2:3;9;3;4:8;4:5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
Upper bound: 11;1;2;7;2;3;9;3;4:8;4;5;10;5;6; 12 1;2:455;6;8;9;10;12;13;14;16;17;18;20;21

d7

S OQHEHEECOEOEG

S}
Sy

Fig. 8 Vehicle space—-time trajectory for the basic example

(5,71 [11,13]
O Physical node A D Dummy node
_ Physical link —_— Dummy link

Fig. 9 Network layout and time-window settings for the example with extended link travel time

@ Springer

Urban Rail Transit

Table 7 The evolution of path

LR iteration Step size Node sequence Time sequence

node sequences and path time

sequences for basic example 0 1 11:1:2:3:4;5:6;12 1;2:4;6:8:10;12;13

with extended link travel time 1 151:2:7:2:3:93:4:8:4:5: 10555612 152:4;5:6:8:9;10512313;14;16;17;18:20:21
2 0.5 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2:4,5;6;8;9;10;12;13;14;16;17;18;20;21
3 0.333333 11;1;2;7;2;3;9;3:4:8:4:5;10;5;6;12 1;2:4;5;6;8;9;10;12;13;14;16;17;18;20;21
4 0.25 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2:4,5;6;8;9;10;12;13;14;16;17;18;20;21
5 0.2 11;1;2;7;2;3;9;3;4;8;4:5;10;5;6;12 1;2:4;5;6;8;9;10;12;13;14;16;17;18;20;21
6 0.166667 11;1;2;7;2;3;9;3:4:8;4:5;10;5;6;12 1;2;4;5;6:8;9;10;12;13;14;16;17;18;20;21
7 0.142857 11;1;2;7;2;3;9;3;4:8:4,5;10;5;6;12 1;2;4;5;6;8;9;10;12;13;14;16;17;18;20;21
8 0.125 11;1;2;7:2;3;9;3;4:8:4;5;10;5;6;12 1;2:4;5;6;8:9;10;12;13;14;16;17;18;20;21
9 0111111 11;1;2;7;2;3;9;3;4:8:4:5;10;5;6;12 1;2:4;5;6;8;9;10;12;13;14;16;17;18;20;21

Upper bound:

11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12

1;2;4,5:6;8;9;10;12;13;14,;16;17;18;20;21

e 2§y gy S B S

A
I
| L4
al 0
I
C),,,L ,,,,,,,,,,,,,,,
|
|
I
dZ i
|
|
I
I
|
d F-—-F+—-——+--
|
I
Y Y R R——
|
(5 |
gl F--Lo—L_ 1 __L__L__1l____
[=5 |
a |
|
O] e e e
|
|
O =T~ T~ T~ T~ g\~ "1~~~ >~
I
I
@ -~ r——t—-—1—
|
I
@ | | | | | |
| | | | | |
L————+
o1 i i I I I I I i i I
| | |
Il Il Il
2

| | | | | | |
I I I I I I I
3 4 5 6 7 8 9 1

Time

Fig. 10 Space-time trajectory of the vehicle for the example with extended link travel time

and no extra vehicle or passenger waiting time is
introduced.

4.3 The Third Example with Extra Vehicle Waiting
Time

In order to test the influence of vehicle waiting time on the
optimal vehicle routes and schedules, the departure time
window of passenger A is delayed from [5, 7] to [10, 12].
Therefore, the vehicle will have to wait at node o; until
passenger A gets ready to depart at time 10. In addition, the
arrival time window of passenger A and the time windows
of passenger B are modified accordingly, so that the
vehicle will not wait at other places. The updated time
window settings are shown in Fig. 11.

The upper bound and lower bound of this example are
equal to 22.5, which turns out to be the optimal solution.
The optimal routes and schedules for the vehicle are shown
in Table 8, and the space—time trajectory of the vehicle is
shown in Fig. 12. It can be observed that the vehicle arrives
at node 0, at time 5 and waits until time 10, so the vehicle
waiting time is 5. Besides, the total travel time of the
vehicle is 25, but the cost ratio of vehicle waiting time is
only 0.5, and then the optimal value of total cost is equal to
25 — 0.5 x (10 = 5) = 225.

4.4 The Forth Example with Extra Passenger
Waiting Time

If the vehicle departs late from the origin deport, then the
passengers will have to wait until the vehicle arrives.

@ Springer

Urban Rail Transit

S

[10,12] [14,16]

Physical node

Physical link

A D Dummy node

Dummy link

Fig. 11 Network layout and time-window settings for the example with extra passenger waiting time with extra vehicle waiting time

Table 8 The evolution of path node sequences and path time sequences for the example with extra vehicle waiting time

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4;5;6;12 1;2:4;6;8;10;12;13

1 1 11;1;2;7;7;2;3;9;3:4;8:4;5;10;5;6;12 1;2:4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
2 0.5 11;1;2;7;7;2;3;9;3:4;8:4;5,10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
3 0.333333 11;1;257;7;253;9;3:4;8;4;5;10;5;6;12 1;2;4:5;10;11;13;14;15;17;18;19;21;22;23;25;26
4 0.25 11;1;2;7;7;2;3;9;3;4:8:4:5;10;5;6;12 1;2:4:5;10;11;13;14;15;17;18;19;21;22;23;25;26
5 0.2 11;1;2;7;7;253;9;3:4:8;4;5;10;5;6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
6 0.166667 11;1;2;7:7;2;3:9;3;4,8:4;5;10;5,6;12 1;2;4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
7 0.142857 11;1;2:;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2:4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
8 0.125 11;1;2;7;7;2:3;9;3:4:8;4,5;10,5;6;12 1;2:4;5;10;11;13;14;15;17;18;19;21;22;23;25;26
9 0.111111 11;1;2;7;7;2;3;9;3;4;8;4;5;10;5;6;12 1;2:4:5;10;11;13;14;15;17;18;19;21;22;23;25;26

Upper bound:

11;1;2;7;7;2;3;9;3:4:8:4;5,10;5;6;12

1;2:4;5;10;11;13;14;15;17;18;19;21;22;23;25;26

Space

ST OQHEHEEOCHEOEAEG

Fig. 12 Space-time trajectory of the vehicle for the example with extra vehicle waiting time

@ Springer

d7

Urban Rail Transit

[5,10]

[14,16]

Physical node

O

_— Physical link

Dummy node

A O

_— Dummy link

Fig. 13 Network layout and time-window settings for the example with extra passenger waiting time

Table 9 The evolution of path node sequences and path time sequences for the example with extra passenger waiting time

LR iteration Step size Node sequence Time sequence

0 1 11;1;2;3;4:5;6;12 6;7;9;11;13;15;17;18

1 1 11;1;2;7:2;3:9;3:4:8:4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26
2 0.5 11;1;2;7;2;3;9;3:4:8:4:5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26
3 0.333333 11;1;2;7;2;3;9;3;4:8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26
4 0.25 11;1;2;7;2;3;9;3:4:8:4:5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26
5 0.2 11;1;2;7;2;3;9;3;4;8;4;5;10;5;6;12 6;7:9;10;11;13;14;15;17;18;19;21;22;23;25;26
6 0.166667 11;1;2;7;2;3;9;3;4;8:4:5;10;5;6;12 6;7:9;10;11;13;14;15;17;18;19;21;22;23;25;26
7 0.142857 11;1;2;7;2:3:9;3:4:8:;4;5;10;5;6;12 6;7:9;10;11;13;14;15;17;18;19;21;22;23;25;26
8 0.125 11;1;2:;7;2;3;9;3:4;8;4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25,26
9 0.111111 11;1;2;7;2;3:9;3;4:8:4;5;10;5;6;12 6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

Upper bound:

11;1;2;7:2;3:9;3;4:8:4;5;10;5;6;12

6;7;9;10;11;13;14;15;17;18;19;21;22;23;25;26

Therefore, the departure time window of the vehicle is
delayed by 5 compared with the basic example, and the
departure and arrival time windows of those two passen-
gers are adjusted accordingly. The new time-window set-
tings are shown in Fig. 13.

The upper bound and lower bound of this example are
equal to 21.5, and the optimal routes and schedules of the
vehicle are shown in Table 9, and the space—time trajectory
of the vehicle is shown in Fig. 14. It is obvious that pas-
senger A starts to wait at time 5 until the vehicle arrives at
time 10, so the waiting time of passenger A is 5. In addi-
tion, because the cost ratio of passenger waiting time is 0.5
and the total travel time of the vehicle is 20, the optimal
value of the total cost is 20 + 0.3 x 5 =21.5.

4.5 The Fifth Example for Branching Process
Within a Column Generation Process

We test our column generation algorithm on the six-node
transportation network illustrated in Fig. 1 for a scenario
with three passengers and two vehicles. Table 10 shows
origin—destination pairs, and passengers’ departure and
arrival time windows. Terms “TW” and “TH” stand for
time window and time horizon, respectively. The code and
related data of this example can be downloaded at https://
github.com/YaoYuBJTU/VRPLite-python.

Based on this scenario, we obtain a fractional optimal
solution during solving the RMP. The solution, x(1,1) =
x(1,2) =0.5,x(2,1) =x(2,3) =0.5,x(3,2) =x(3,3) =
0.5 shows that three types of paths are used (two passen-
gers can be served through the ride-sharing mode by the
vehicle going through each path), but the value of the
decision variable = 0.5 means that only 0.5 vehicles go
through that path, which has no physical significance. As a

@ Springer

https://github.com/YaoYuBJTU/VRPLite-python
https://github.com/YaoYuBJTU/VRPLite-python

Urban Rail Transit

Space

5]
O 4

Fig. 14 Space-time trajectory of the vehicle for the example with extra passenger waiting time

Table 10 Passengers’ origin—destination pairs and corresponding departure and arrival time windows

B 7 B 7

01 d, 0, d, 03 ds 01 d; 0, d

2 6 2 3 5 3 4 1 4 1
™W,, TWy, ™W,, Wy, TW,, TWy, TH,, Cap,, TH,, Cap,,
[5,7] [8,11] [5.8] [11,15] [7.9] [12,14] [1, 30] 2 [1, 30] 2

result, branching is needed to obtain the feasible solutions,
i.e., for the fractional value x(1,1) = 0.5, we could force
x(1,1) tobe 1 and 0 as two child nodes, ensuring passenger
pl is served by vehicle vl or not. After a branching step,
column generation is used again and a series of new paths
are generated through the subproblem. The feasible solu-
tion of branch x(1,1)=1 is x(1,1)=x(1,2)
= 1,x(4,3) = 1, while for the other branch x(1,1) =0,
there are two feasible solutions, x(2,1)=x(2,3) =
1,x(5,3) =1 and x(3,2)=x(3,3)=1,x(6,1)=1.
Finally, we could obtain the feasible optimal solu-
tion,x(3,2) = x(3,3) = 1,x(6, 1) = 1, which means p2 and
p3 are served by one vehicle through the ride-sharing mode
and pl is served by another vehicle.

5 Discussions and Conclusions

This research aims to improve the scheduled transportation
system performance by enabling better vehicle scheduling
capabilities in complex transportation on demand applica-
tions. Specifically, the VRPLite package addresses several
fundamental research issues in scheduled transportation
systems, which offers a set of solution platforms on holistic

@ Springer

traveler mobility optimization, agent-based trajectory
control under the new environment of shared self-driving
car or automated guided vehicle (AGV) networks. This
open-source and educational modeling framework could
help researchers understand the complex space—time—state
network modeling methodologies, especially from a time-
dependent and state-dependent shortest path perspective.
Because the shipping of passengers and goods by shared
self-driving cars or automated urban rail trains needs to be
fully coordinated and cooperative, we hope this algorithm
could help to demonstrate how to reduce the transportation
cost and improve the efficiency in shipping passengers or
goods [29], especially in the area of city logistics [30]. In
particular, if the shared self-driving cars are electrified, the
gas emission caused by the transportation process could
decrease to a large extent [31].

It should be highlighted that, unlike the shared self-
driving cars, AGVs usually move on the visual track-based
networks with specially required path topologies and two
AGVs may conflict on the interactions of their paths [32]
where the paths of AGVs are planned in advance to avoid
all kinds of obstacles [33, 34]. In this situation, the
scheduling and routing of AGVs is very similar to that of
scheduled rail systems [35-37] where each spatial and

Urban Rail Transit

temporal resource can only be occupied by at most one
train. It can be shown that the scheduling and routing of
AGVs are also a variant of the vehicle routing problem,
and the readers can refer to [32, 38] for detailed reviews on
the corresponding solution approach and applications of
AGVs.

In addition, the VRPLite package uses a discretized
space—time—state modeling approach, so it is natural to
consider time-dependent link travel time in the program,
such as the vehicle routing problem with time-dependent
link travel time and path flexibility in the paper [39], as
well as spatial and temporal conflicts between AGVs.

We hope that, the theoretical methodologies, insights
and open-source tools developed from this research will be
useful for modeling and optimizing new autonomous
vehicle operation and control methods for metropolitan
regions. In the future, a new class of ubiquitous distributed
computing-based algorithms will be further studied, to
include joint trip assignment, routing and scheduling
problems.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Cordeau JF, Laporte G, Potvin JY, Savelsbergh MWP (2007)
Chapter 7 transportation on demand. Handbooks in operations
research and management science. Elsevier B.V, New York

2. Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup
and delivery problems. Journal Fiir Betriebswirtschaft
58(1):21-51

3. Psaraftis HN, Wen M, Kontovas CA (2016) Dynamic vehicle
routing problems: three decades and counting. Networks
67(1):3-31

4. Cheng WC, Schonfeld P (2015) A Method for optimizing the
phased development of rail transit lines. Urban Rail Transit
1(4):227-237

5. Lu K, Han B, Zhou X (2018) Smart urban transit systems: from
integrated framework to interdisciplinary perspective. Urban Rail
Transit. https://doi.org/10.1007/s40864-018-0080-x

6. Bao X (2018) Urban rail transit present situation and future
development trends in China: overall analysis based on national
policies and strategic plans in 2016-2020. Urban Rail Transit
4(1):1-12. https://doi.org/10.1007/s40864-018-0078-4

7. Kelly J, Marinov M (2017) Innovative interior designs for urban
freight distribution using light rail systems. Urban Rail Transit
3(4):238-254

8. Wang Y, Zhang M, Ma J, Zhou X (2016) Survey on driverless
train operation for urban rail transit systems. Urban Rail Transit
2(3-4):106-113

9. He L, Liang Q, Fang S (2016) Challenges and innovative solu-
tions in urban rail transit network operations and management:

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

China’s Guangzhou metro experience. Urban Rail Transit
2(1):33-45

Niu H, Zhou X (2013) Optimizing urban rail timetable under
time-dependent demand and oversaturated conditions. Transp Res
Part C Emerg Technol 36:212-230

. Shang P, Li R, Liu Z, Yang L, Wang Y (2018) Equity-oriented

skip-stopping schedule optimization in an oversaturated urban
rail transit network. Transp Res Part C Emerg Technol
89:321-343

Dampier A, Marinov M (2015) A study of the feasibility and
potential implementation of metro-based freight transportation in
Newcastle upon Tyne. Urban Rail Transit 1(3):164—182

Toth P, Vigo D (eds) (2002) The vehicle routing problem. Society
for Industrial and Applied Mathematics, Philadelphia

Tong L, Zhou L, Liu J, Zhou X (2017) Customized bus service
design for jointly optimizing passenger-to-vehicle assignment
and vehicle routing. Transp Res Part C Emerg Technol
85:451-475

Niu H, Zhou X, Tian X (2018) Coordinating assignment and
routing decisions in transit vehicle schedules: a variable-splitting
Lagrangian decomposition approach for solution symmetry
breaking. Transp Res Part B Methodol 107:70-101

Pallottino S, Scutella MG (1998) Shortest path algorithms in
transportation models: classical and innovative aspects. equilib-
rium and advanced transportation modelling. Springer, Berlin
Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory,
algorithms, and applications. Prentice Hall, Upper Saddle River
Ziliaskopoulos AK, Mahmassani HS (1993) A time dependent
shortest path algorithm for real time intelligent vehicle/highway
systems. Transp Res Rec J Transp Res Board 1408:94-100
Chabini I (1998) Discrete dynamic shortest path problems in
transportation applications: complexity and algorithms with
optimal run time. Transp Res Rec J Transp Res Board
1645:170-175

Mahmoudi M, Zhou X (2016) Finding optimal solutions for
vehicle routing problem with pickup and delivery services with
time windows: a dynamic programming approach based on state—
space—time network representations. Transp Res Part B 89:19-42
Liu J, Kang JE, Zhou X, Pendyala R (2017) Network-oriented
household activity pattern problem for system optimization.
Transp Res Part C. https://doi.org/10.1016/j.trc.2017.09.006
Zhou L, Tong L, Chen J, Tang J, Zhou X (2017) Joint opti-
mization of high-speed train timetables and speed profiles: a
unified modeling approach using space-time-speed grid networks.
Transp Res Part B Methodol 97:157-181

Lu G, Zhou X, Mahmoudi M, Shi T, Peng Q (2018) Optimizing
resource recharging location-routing plans: A resource-space-
time network modeling framework for railway locomotive refu-
eling applications. Computers & Industrial Engineering (in press)
Ruan JM, Liu B, Wei H, Qu Y, Zhu N, Zhou X (2016) How many
and where to locate parking lots? A space—time accessibility-
maximization modeling framework for special event traffic
management. Urban Rail Transit 2(2):59-70

Mahmoudi M, Chen J, Shi T, Zhang Y, Zhou X (2018) A
cumulative service state representation for the pickup and
delivery problem with synchronized transfers (Submitted)

Chen R, Zhou L, Yue Y, Tang J, Lu C (2018) The integrated
optimization of robust train timetabling and electric multiple unit
circulation and maintenance scheduling problem. Adv Mech Eng
10(3):1-16

Fisher ML, Jornsten KO (1997) Vehicle routing with time win-
dows: two optimization algorithms. INFORMS, Catonsville
Liibbecke ME, Desrosiers J (2005) Selected topics in column
generation. Oper Res 53(6):1007-1023

Arslan A, Agatz N, Kroon L, Zuidwijk R (2016) Crowdsourced
delivery: A dynamic pickup and delivery problem with ad-hoc

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s40864-018-0080-x
https://doi.org/10.1007/s40864-018-0078-4
https://doi.org/10.1016/j.trc.2017.09.006

Urban Rail Transit

30.

31.

32.

33.

34.

drivers. Technical report, ERIM Report Series Reference. http://
ssrn.com/abstract2726731

Savelsbergh M, Van Woensel T (2016) 50th anniversary invited
article—city logistics: challenges and opportunities. Transp Sci
50(2):579-590

Muiioz-Villamizar A, Montoya-Torres JR, Faulin J (2017) Impact
of the use of electric vehicles in collaborative urban transport
networks: a case study. Transp Res Part D Transp Environ
50:40-54

Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and
routing algorithms for AGVs: a survey. Int J Prod Res
40(3):745-760

Chen X, Li Y (2006) Smooth formation navigation of multiple
mobile robots for avoiding moving obstacles. Int J Control
Autom Syst 4(4):466—479

Ota J (2006) Multi-agent robot systems as distributed autono-
mous systems. Adv Eng Inform 20(1):59-70

@ Springer

35.

37.

38.

39.

Yin J, Tang T, Yang L, Gao Z, Ran B (2016) Energy-efficient
metro train rescheduling with uncertain time-variant passenger
demands: an approximate dynamic programming approach.
Transp Res Part B Methodol 91:178-210

. Rao X, Montigel M, Weidmann U (2016) A new rail optimisation

model by integration of traffic management and train automation.
Transp Res Part C Emerg Technol 71:382-405

YinJ, Yang L, Tang T, Gao Z, Ran B (2017) Dynamic passenger
demand oriented metro train scheduling with energy-efficiency
and waiting time minimization: mixed-integer linear program-
ming approaches. Transp Res Part B Methodol 97:182-213
Fazlollahtabar H, Saidi-Mehrabad M (2015) Methodologies to
optimize automated guided vehicle scheduling and routing
problems: a review study. J Intell Robot Syst 77(3—4):525-545
Huang Y, Zhao L, Van Woensel T, Gross JP (2017) Time-de-
pendent vehicle routing problem with path flexibility. Transp Res
Part B Methodol 95:169-195

http://ssrn.com/abstract2726731
http://ssrn.com/abstract2726731

	Open-source VRPLite Package for Vehicle Routing with Pickup and Delivery: A Path Finding Engine for Scheduled Transportation Systems
	Abstract
	Introduction
	Space--Time--State-Based Models
	Problem Statement
	Modeling Methodology Based on the Space--Time--State Network Representation
	Understanding Different Optimization Models Within VRPLite Package

	Software Architecture, Data Flow and Implementation
	Data Flow Chart of VRPLite
	A Dynamic Programming Solution Framework Implemented as a Beam Search Process
	Column Generation Framework for Finding Multi-vehicle Routing Solutions

	Numerical Experiments
	The First Toy Example on a Corridor
	The Second Example with Extended Link Travel Time
	The Third Example with Extra Vehicle Waiting Time
	The Forth Example with Extra Passenger Waiting Time
	The Fifth Example for Branching Process Within a Column Generation Process

	Discussions and Conclusions
	Open Access
	References

