
Static Automated Program Repair for Heap Properties
Rijnard van Tonder

School of Computer Science
Carnegie Mellon University

rvt@cs.cmu.edu

Claire Le Goues
School of Computer Science
Carnegie Mellon University

clegoues@cs.cmu.edu

ABSTRACT

Static analysis tools have demonstrated effectiveness at finding
bugs in real world code. Such tools are increasingly widely adopted
to improve software quality in practice. Automated Program Repair
(APR) has the potential to further cut down on the cost of improving
software quality. However, there is a disconnect between these
effective bug-finding tools and APR. Recent advances in APR rely
on test cases, making them inapplicable to newly discovered bugs
or bugs difficult to test for deterministically (like memory leaks).
Additionally, the quality of patches generated to satisfy a test suite is
a key challenge. We address these challenges by adapting advances
in practical static analysis and verification techniques to enable a
new technique that finds and then accurately fixes real bugs without
test cases. We present a new automated program repair technique
using Separation Logic. At a high-level, our technique reasons
over semantic effects of existing program fragments to fix faults
related to general pointer safety properties: resource leaks, memory
leaks, and null dereferences. The procedure automatically translates
identified fragments into source-level patches, and verifies patch
correctness with respect to reported faults. In this work we conduct
the largest study of automatically fixing undiscovered bugs in real-
world code to date. We demonstrate our approach by correctly
fixing 55 bugs, including 11 previously undiscovered bugs, in 11
real-world projects.

CCS CONCEPTS

• Software and its engineering → Error handling and recov-

ery; Maintaining software; Software defect analysis;

KEYWORDS

Automated Program Repair, Separation Logic

ACM Reference Format:

Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Re-
pair for Heap Properties. In ICSE ’18: ICSE ’18: 40th International Conference

on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180250

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180250

1 INTRODUCTION

Software bugs are expensive and time-consuming [15, 43], moti-
vating research to find and fix them automatically. Research in
automated program repair (APR) holds promise for reducing soft-
ware maintenance costs due to buggy code. Considered broadly, a
program repair is simply a transformation that improves a program
with respect to some abstract domain that describes correct versus
incorrect program behavior. The vast majority of modern repair
techniques (e.g., [29, 33, 37, 39, 41, 49]) use test cases to construct
this domain. Tests are appealing because they are intuitive and
widely-used in practice (more so than, e.g., formal specifications)
and can straightforwardly indicate whether a given change im-
proves the program in question (i.e., by turning a previously failing
test case into a passing one).

However, tests are limiting in several ways, especially (though
not exclusively) for APR. Writing good tests is nontrivial [43],
rendering some real-world suites a weak proxy for patch correct-
ness [51]. APR techniques and humans alike can overfit to even
high quality tests, producing patches that do not generalize to the
true desired functionality change [53]. Developers must write a
deterministic, reproducible test case corresponding to a bug under
repair to use test-driven APR. This use case is particularly applicable
to, e.g., regressions, but is limiting for previously-unknown defects.

More fundamentally, tests are only suitable for finding and guid-
ing the repair of certain kinds of bugs. Some bug types are simply
difficult to test for in a finite, deterministic way [40]. Consider con-
currency errors or resource or memory leaks: Figure 1a shows an
example memory leak from Swoole1 (line 11), which may be fixed
by adding a call to the project-specific resource allocation wrapper
sw_free (Figure 1b). Alternatively, consider the code in Figure 2a,
from error-prone.2 The call to resolveMethod on line 3 can return
NULL, leading to a possible null pointer exception on line 6. A
developer committed a fix (with a test) that inserts a call to a cus-
tom error handler (checkGuardedBy, line 5). However, the very same

mistake had been made on lines 10–12, in the same switch statement,
but was not fixed for another 18 months. Even when bugs are de-
terministically reproducible, tests usually cannot identify recurring
mistakes like this.

Finding and fixing these types of bugs motivate the use of QA
techniques beyond testing. Considerable recent progress has been
made in expressive, high quality static analyses that can cost effec-
tively find real bugs like these examples in real programs [5, 14].
Companies like Ebay [25], Microsoft [14], Facebook [17], and oth-
ers are publicizing their development and use of static analysis

1Swoole is a popular event-driven networking engine for PHP, https://github.com/
swoole/swoole-src
2error-prone is an open-source static analysis tool, https://github.com/google/
error-prone

https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1145/3180155.3180250
https://github.com/swoole/swoole-src
https://github.com/swoole/swoole-src
https://github.com/google/error-prone
https://github.com/google/error-prone

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

1 swHashMap *hmap =

2 sw_malloc(sizeof(swHashMap));

3 if (!hmap) {

4 swWarn("malloc [1] failed.");

5 return NULL;

6 }

7 swHashMap_node *root =

8 sw_malloc(sizeof(swHashMap_node));

9 if (!root) {

10 swWarn("malloc [2] failed.");

11 return NULL; // returns, hmap not freed

12 }

(a) Memory leak: forgetting to free memory before return in Swoole.

1 # d e f i n e sw_f ree (p t r)
2 i f (p t r) {
3 f r e e (p t r) ;
4 p t r =NULL ;
5 swWarn (" f r e e ") ;
6 }

(b) sw_free wraps a call to free.

Figure 1: Fixing a memory leak in the Swoole project

tools in engineering practice. Some bug-finding tools, like error-

prone or Findbugs [8] even provide “quick fix” suggestions for certain
bug classes, simplifying the process of repairing them. Developers
find such suggestions very useful [9], and indeed their absence has
been identified as a barrier to uptake and utility of static analysis
tools [27]. However, the suggestions present in current tools are
simple, generic, and usually syntactic (e.g., recommending the addi-
tion of static or finalmodifiers to variable or function declarations).
Moreover, they provide no semantic correctness guarantees.

We propose a new technique that automatically generates patches
for bugs in large projects without a need for either tests or devel-
oper annotation, for a semantically rich class of bugs that can be
identified by recent, sophisticated static bug-finding techniques
based on Separation Logic [10, 11, 13, 21]. Our key insight lies in
the novel way we adapt local reasoning [44, 46, 62], “the workhorse
of a number of automated reasoning tools” [45], to pull out rel-
evant parts of program state, and then search for repairing code
from elsewhere in the same program. At a high level, our technique
searches for and adapts program fragments satisfying a generic,
pre-specified semantic effect that address a given bug class (such
as “if the file is open in the precondition of a program fragment, it
should be closed in the postcondition” to address resource leaks, like
the one shown in Figure 1a). These fix effects are generic, and need
only be specified once per bug class. They are also language- and
API-agnostic, which means our approach applies off-the-shelf to
multiple source languages, and its patches automatically conform to
the programming conventions in a given project (e.g., constructing
a patch using a project-specific custom resource handler like sw_free

for memory leaks, if available, or free, if not), without requiring
any additional customization.

We instantiate our approach in a tool called FootPatch, an ex-
tension to the Infer [17]3 static analysis tool. Infer finds bugs by
automatically inferring Separation Logic assertions over program

3https://github.com/facebook/infer

1 case IDENTIFIER: {

2 MethodSymbol mtd =

3 resolver.resolveMethod(node , id.getName ());

4 // mtd may be null

5 + checkGuardedBy(mtd != null , id.toString ());

6 return bindSelect(computeBase(context , mtd), mtd);

7 }

8 case MEMBER_SELECT: {

9 ...

10 MethodSymbol mtd =

11 resolver.resolveMethod(node , id.getName ());

12 // same problem!

13 return bindSelect(computeBase(context , mtd), mtd);

14 }

(a) Developers fixed the potential null pointer exception on line 6;

18 months later, they addressed the very similar bug on lines 10–12.

1 public static void checkGuardedBy(boolean cnd ,

2 String fmtStr , Object ... fmtArgs) {

3 if (!cnd) {

4 throw new IllegalGuardedBy(String.format(fmtStr ,

fmtArgs));

5 }

6 }

(b) error-prone’s custom guard handler.

Figure 2: Fixing a null dereference in Google’s error-prone tool.

statements. Infer reasons over a semantic, analysis-oriented Inter-
mediate Language (IL), and applies to large, real-world programs
written in multiple source languages. Separation Logic can be used
to encode a variety of desirable correctness properties [17, 22]. We
situate our approach by extending analyses that find bugs related
to the violation of pointer safety properties, the focus of Infer. In
this paper, we restrict our focus to constructing additive patches for
resource leaks, memory leaks, and null dereferences. We discuss
directions for generalizing our technique in Section 4.5.

Our approach provides several important benefits over previous
techniques for automatic patch generation or fix suggestion. By
integrating directly into the static analysis workflow, our approach
addresses different types of bugs than are handled by most dynamic
APR techniques, and can encourage the adoption of these robust
static bug finding tools in practice [27]. Because of the way our
approach uses compositional specifications, it can produce fixes
that are significantly semantically richer than existing static “quick
fix” suggestions. FootPatch can construct repairs that cross proce-
dure boundaries, entail multiline fixes, and are robust to program-
specific customization like wrapper APIs. These benefits are evident
in the above examples, both of which FootPatch can repair au-
tomatically. Note, for example, a call to checkGuardedBy does not on
its own constitute a repair, as it simply checks the results of a
boolean expression. FootPatch can determine that the function
implements the desired behavior because it searches over composi-
tional function call results. Additionally, both bug fixes use custom
resource wrappers, which are often desirable as fixes because they
are consistent with the convention in other parts of the program.
For example, sw_free wraps the free function, and performs addi-
tional, non-interfering operations by setting the pointer to null

https://github.com/facebook/infer

Static Automated Program Repair for Heap Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

and logging a debug message. Finally, unlike previous repair tech-
niques that build on more formal abstract domains [19, 30, 35, 48],
our approach scales to real-world programs, automatically instan-
tiates and applies its patches, and relies on a principled semantic
treatment to argue patch correctness and prevent patch overfitting.
That is: FootPatch demonstrates a promising and previously un-
derdeveloped application of end-to-end identification and repair of
previously undiscovered bugs in real programs.

Our contributions are the following:
• Program Repair with Separation Logic. We present a
repair technique using Separation Logic to ensure a desired
correctness property based on pointer safety. The abstract
domain provides a basis for reasoning about explicit semantic
effects introduced by patch fragments, and enables a formal
argument for semantic patch correctness.

• Repair Extraction and Application Formalism.We for-
malize the search and extraction of program fragments with
respect to a repair specification, and define the conditions
for patch generation and automatic patch application with
respect to a detected bug.

• Evaluation. We present an evaluation on popular software
projects. Our approach fixes 24 resource leaks, 7 memory
leaks, and 24 null dereferences in popular Java and C pro-
grams, including 11 previously undiscovered bugs. We are
unaware of any prior repair tool that supports multiple lan-
guages under a single analysis. Our implementation runs on
big projects (> 200 kLOCs). Run time ranges from 7 seconds
to 21 minutes per project, to perform both finding and fixing
bugs within the project. For applicable projects, our exper-
iments show that the majority of correct patches (53) are
found by searching for repair candidates that are callgraph-
local to the bug, and expanding repair search to the project
globally fixes 2 additional bugs. We observe a false positive
rate of only 7% for fixes. Moreover, we demonstrate anecdo-
tal evidence that our technique can lead the original static
analysis to discover more bugs after performing repair.

• Open Source Repair Tool. We implement our technique
in a tool called FootPatch, built on top of the open source
Infer static analyzer.4

Section 2 provides background theory underpinning our ap-
proach. Section 3 details our repair approach using Separation
Logic. Section 4 evaluates FootPatch, a tool that implements our
approach. Section 5 discusses related work; Section 6 concludes.

2 PRELIMINARIES

We build our approach on top of the analysis engine used in In-
fer [16], an open source framework that uses Separation Logic and
Hoare-style reasoning to scalably find bugs, particularly those re-
lated to heap or pointer errors. This analysis abstracts a program
to an intermediate language, and then symbolically interprets it to
find paths that may lead to particular property violations (like null
pointer dereferences). This section outlines background concepts
underpinning our approach and the analysis it extends: the ab-
stract program model and Separation Logic assertions (Section 2.1),

4https://github.com/squaresLab/footpatch

E ::= x | nil | c

B ::= E = E | E , E

S ::= x := E | x := [E] | [E] := E | x := new() | dispose(E)

C ::= S | C ;C | if (B) {C } else {C } | while(B) [I] {C } | x := f (
−→
E)

P ::= · | f (
−→
E){local

−→
E ;C ; return E };P

(a) A simplified Smallfoot grammar, for illustration.

H ::= E ↦→ E

Σ ::= H1 ∗ · · · ∗ Hn | emp
Π ::= B1 ∧ · · · ∧ Bn | true | false
P, Q ::= Π ∧ Σ | if B then P else P

(b) The assertion language grammar.

Figure 3

the frame inference procedure for discovering specifications (Sec-
tion 2.2), and an overview of how the concepts fit together to find
bugs statically in real-world programs (Section 2.3).

2.1 Program Model and Assertion Language

Infer and our analysis both begin by abstracting a source program
in one of several languages (e.g., Java, C, C++) to the Smallfoot
Intermediate Language (SIL) [10]. SIL is an intermediate analysis
language that represents source programs in a simpler instruction
set describing the program’s effect on symbolic heaps. This is par-
ticularly suitable for static analyses that find bugs related to pointer
safety properties.
Program Model. Figure 3a shows a simplifed Smallfoot grammar
to illustrate the overall program model. A SIL program P is a set of
procedures [11, 12, 18]. SIL procedures have single return values
and do not access global variables. Procedures consist of a series
of commands (C , in Figure 3a), which model actions that generate
assertions over symbolic heaps (described next). The storage model
is fairly standard [18, 47]: Heap is a partial function from locations
Loc to values Val (for simplicity, locations are positive integers and

values are integers): Heap
def
= Loc⇀ Val. Stack is a function from

variables to values Stack
def
= (Var ∪ LVar) ⇀ Val. Variables are

two disjoint sets: a set of program variables Var and a set of logical
variables LVar. A program State is simply the combination of its

heap and stack: State
def
= Stack × Heap.

Assertions. SIL commands primarily capture effects over symbolic
heaps, which comprise the abstract domain for detecting faulting
conditions (e.g., memory leaks, resource leaks, null dereferences).5
These effects can be described via pre- and postconditions expressed
in Separation Logic, which decorate the SIL commands accordingly.
Figure 3b shows the assertion language grammar. The grammar
encodes heap facts using points-to heap predicates over program
and logical variables (i.e., E ↦→ E). Heap predicates are considered
“separate” sub-heaps (or heaplets), whose separation is denoted by

5Symbolic heaps enable a decidable proof system for entailments under a prescribed
semantics [10]; we elide details for brevity.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

the separating conjunction ∗ (read “and separately”). The separat-
ing conjunction implies that the two sub-heaps are disjoint. Pure
boolean predicates of the form B1∧ · · ·∧Bn assert conditional facts
over heap predicates (e.g., E = nil).

Given our focus on repair, assertions are relevant insofar as they
describe semantic effects of statements (as predicates) on the heap.
We denote by E Z⇒ alloced a predicate alloced on E (e.g., we may
represent it in the grammar by the assertion E ↦→ x ∧ true for x
fresh). For simplicity, this notation may assume a program variable
evaluates to a heap location (such as hmap); we do this with the
understanding that stores and heaps are typically treated separately
in the storage model [18].

2.2 Frame Inference

A key novelty in our work is the way we extend frame inference [11]
to find bug repairs; we thus briefly overview frames and frame in-
ference in this context. Infer’s Separation Logic-based analysis uses
Hoare-style reasoning to find specification violations. It does this at
scale by summarizing the effects of individual terms in a procedure,
and then composing them into procedure-level specifications. Local
reasoning [44, 46] is used to summarize the effects of those individ-
ual terms. Local reasoning is enabled by the fact that a program
command can often affect only a sub-part of the heap. For exam-
ple, the statement hmap = sw_malloc(sizeof(swHashMap)) is modeled as
affecting only hmap; the rest of the heap is unaffected by the alloca-
tion. The fact that sub-states can change in isolation is modeled by
the separating conjunction. The unchanged part of the heap for a
command is its frame; the parts of the heap a command changes is
known as its footprint.

Thus, frame inference, which automatically infers command
frames such that they can be composed efficiently into proce-
dure summaries [18]6 is key to a number of automated reasoning
tools [45]. By discovering the unchanged heap portion of an op-
eration, frame inference discovers footprints, expressed as small
specifications of program terms [11, 22, 42].

More formally, the Frame Rule codifies the notion of reasoning
over local behavior:

{P} C {Q}

{P ∗ F } C {Q ∗ F }
Frame Rule

The Frame Rule allows analysis of a commandC with a specifica-
tion {P} C {Q} and a heap state H to proceed, without considering
unaffected parts of H (the frame F), if it can be separated into parts
{P ∗ F }. Frame inference [11, 18, 20] discovers a frame F that allows
the Frame Rule to fire, enabling local reasoning over the footprint.
We can summarize frame inference as follows. Let Frame(H , S) be
the frame inference procedure that returns a frame F (if it succeeds)
for a given heap state H and a specification S of a command (ex-
pressed in the grammar of Figure 3b). The procedure consists of a
proof system using subtraction and normalization rules to partition
the heap H into S ∗ F . We refer to previous work for the complete
algorithm and proof system [11].

6 For completeness, this compositional analysis also infers anti-frames, or the missing
parts of the heaps state. Anti-frame inference allows the analysis to deal with unknown
calling contexts and increases precision by propagating intermediate results. Anti-
frame inference is not critical to our approach.

2.3 Finding bugs using Separation Logic

The previously described reasoning enables scalable, compositional
static bug finding with minimal developer effort (in the form of,
e.g., annotations or customization) over real-world code bases. Infer
implements these by ideas by converting source programs into SIL,
and then infers specifications (described as symbolic heaps) for SIL
program fragments. It discovers bugs by symbolically executing SIL
commands over symbolic heaps, according to a set of operational
rules that update symbolic heap assertions [11]. The general goal
of this static analysis is to discover program paths with symbolic
heaps that violate heap-based properties.

Infer currently supports detecting a wide number of heap-related
bugs using Separation Logic: resource leaks, memory leaks, null
dereferences, as well as experimental support for buffer overflow
detection, thread safety, and taint-style information flow bugs (e.g.,
detecting SQL injections for unsanitized values) [3, 4]. While we
believe our approach generalizes to these bug types, in this work
focus on pointer-safety properties of heaps for repair, specifically
resource leaks, memory leaks, and null dereferences, as the support
for them in Infer is most mature.We leave extension of our approach
to further classes of bugs for future work.

To illustrate, consider the memory leak described in Figure 1a.
Infer disovers this error by identifying the path through line 11
where the variable hmap is allocated but not freed before becoming
dead. When it discovers such an error, the symbolic interpreter
enters a special state, fault. We denote this formally by Cℓ ,σ {
fault, meaning that the interpretation step{ for instruction C at
location ℓ in symbolic state σ results in a fault. For this example,
hmap is still allocated in the symbolic heap (denoted by the predicate
alloced , i.e., {hmap Z⇒ alloced}) at the location ℓ = 11 when it
becomes dead: returnℓ , {hmap Z⇒ alloced} { fault.7 At this
point, our approach takes over from the bug-finding analysis, to
seek a potential fix.

3 REPAIR WITH SEPARATION LOGIC

This section presents our program repair technique using Separa-
tion Logic. Section 3.1 formalizes our notion of repair with respect
to heap-based property violations. In Section 3.2 we formalize the
search procedure to discover candidate patch code, drawn from
existing program fragments (i.e., from elsewhere in the program un-
der repair). In Section 3.3 we describe the application of candidate
fragments in source code, in terms of where to introduce a change
and how we filter out invalid candidates. We illustrate throughout
by referring to the motivating example in Figure 1.

3.1 Formulating Repair

Fundamentally, any program transformation (for repair or other-
wise) is composed of either one or a combination of two primitive
operations: addition and removal of program terms. Taking Sep-
aration Logic as the abstract domain, a bug fix corresponds to a
program transformation that leads to a fault-avoiding interpreta-
tion in the analysis with respect to the property in question. We
presently consider only additive program transformations, and do
not perform removal operations, because the types of bugs we
consider are typically caused by the lack of certain operations on
7For illustration, we consider only the predicate on hmap, ignoring the rest of the state.

Static Automated Program Repair for Heap Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

explicit heap content (e.g., resource release, freeing memory, or
checking nullness of return values). For instance, developers of-
ten forget to insert missing checks [6, 60]. Bug-fixing changes for
these types of bugs thus correspond to inserting missing statements
(e.g., checks, initializations, or cleanup handlers). Other types of
repairs are certainly valuable, in this domain and others, but we
leave discovery of them to future work.

The central repair question is thus: Does there exist a fragment
?C that can be used to transform the program such that the fault
state is no longer triggered? We express this formally as follows:

Definition 3.1. Program Repair. Let HBad be the heap configu-
ration that results in a fault under interpretation of a commandC at
location ℓ. A repair is an additive transformation T on a program P
that transitions the fault-inducing predicate in the heap state HBad
to a heap stateHGood that preserves a fault-avoiding interpretation
for C at ℓ. A repair satisfies:

Cℓ ,HBad { fault =⇒ Tℓ′ ,H
∗
{Cℓ ,HGood ̸{ fault

The additive transformation T is a program fragment (operating
on the program heap H at some point ℓ′) that induces a desired fix

effect on the heap, producing HGood at ℓ. The fix effect precisely
defines what it means to avoid the fault state.

We encode the transformation T (i.e., the fix effect) as a Hoare-
style triple that we call a Repair Specification. We specify T as
two singleton heaps (i.e., a single points-to relation as in Figure 3b):
F mapping to a fixable predicate over a placeholder variable pvar in
the precondition, and a corresponding F ′ mapping to a fixed pred-
icate over that placeholder pvar variable in the postcondition. F
and F ′ express the desired symbolic transition on the abstract pred-
icates. For example, F = {pvar Z⇒ alloced}, F ′ = {pvar Z⇒ f reed},
specifies a generic fix effect for memory leaks over placeholder
variable pvar . Note that such fix effects are generic to entire bug
classes. By expressing repair over the abstract domain describing
what the code does, this fix effect specification approach is multi-
language and resilient to syntactic customizations (like APIs or
wrapper functions).

Definition 3.2. Repair Specification. A Repair Specifica-
tion R is a specification containing a program term repair frag-

ment CR (a command C in the Smallfoot grammar) that effects a
state transition from an error heap configuration F to a fixed heap
configuration F ′, denoted {F } CR {F ′}, via an atomic update of an
abstract predicate.

In this paper, we manually specify appropriate F and F ′ corre-
sponding to the general bug classes in question. Defining a mecha-
nism to automatically determine F and F ′ (e.g., by formally deriving
it from a violation reported by an analysis) is an interesting and
plausible research direction that we leave for future work. Note
however, that fix effects are generic to an entire bug class, and thus
need only be specified once per analysis type to be applied to a
given program. Moreover, the static analysis provides a degree of
confidence in the choice of F and F ′: a poor choice will not ensure
a fault-avoiding interpretation for a particular fault, and will be
detected by analysis of the transformed program.

Our implementation provides default fix effects for the bug
classes we consider that suffice for many off-the-shelf projects,

requiring customization only when a project uses a particular or
unique paradigm for handling, e.g., custom exceptions. Extend-
ing our technique to new static checkers (employing automated
semantic reasoning as found in Infer) could similarly involve speci-
fying default fix effects for patching them, eliminating the need for
developer-provided specifications for many real-world projects.

3.2 Searching for Repairs

Repair Queries. Different automated techniques can discover re-
pairs, including program synthesis [30] or syntactic program muta-
tion [33]. Our technique does so by searching over existing program
fragments, which can often exhibit the desired semantic effects to
fix faults [30, 31, 37]. Using existing program fragments also pre-
serves program-specific syntactic structure and semantic shape
that accompany a fix, and may decrease the risk of overfitting
repairs [29]. We thus search for program fragmentsCR in the Small-
foot IL from across the rest of the program with a Repair Query. A
Repair Query encodes the desired semantic transition and returns
satisfying Repair Specifications.

We illustrate this overall framing with respect to our running
example in Figure 4: The computation in (1) shows the seman-
tic change that must be induced by some ?Cℓ to preserve a fault-
avoiding interpretation, fixing the memory leak bug in question.
The computation in (1) informs the repair question labeled (2) in
Figure 4. The specification in (2) describes a desired program frag-
ment ?C that induces the desired fix effect on symbolic variable
pvar , which is allocated on precondition to ?C , and freed on post-
condition. Note that this fix effect is flexible, and could describe
fix code such as free modeled in generic C or the custom sw_free

function. A Repair Query seeking to repair a file resource leak,
on the other hand, could find fragments such as close or fclose in
C, or f.close() for a file f modeled in Java. Although the fix effects
must be either inferred or specified, their portability across mul-
tiple programs and languages amortizes the manual burden and
represents an important improvement over the labor required to
use test-based APR techniques, which require a triggering test case
per bug under repair.

?Cℓ′, {map Z⇒ alloced} { returnℓ, {map Z⇒ freed} ̸{ fault (1)

{pvar Z⇒ alloced} ?C {pvar Z⇒ freed} (2)

Figure 4: Modeling repair search.

We call (2) the Repair Query, a Hoare triple containing a “hole”
for an instructionC that induces the desired semantic change under
the standard partial correctness interpretation. For example, the
fixing fragment sw_free(map); corresponds in the IL to a command
C of the form {map Z⇒ alloced} call(·) {map Z⇒ f reed}, with the
concrete program variable map bound to pvar .
Semantic Search Constraints. A RepairQuery expresses a sym-

bolic transition on the abstract predicates, providing a basic struc-
ture that expresses fixes in terms of desired semantic heap prop-
erties. So far, our example Repair Query specifies CR program
fragments that perform strictly the desired symbolic transition,

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

disallowing anyCR that may introduce extra semantic effects. How-
ever, as a practical consideration, it may be desirable to search for
program fragments that introduce extra semantic effects in addi-
tion to the fixing effect. For example, sw_free performs cleanup and
logging in addition to resource freeing; in other cases, such side
effects may be benign, or undesirable.

Fortunately, Separation Logic allows us to elegantly relax strict
Repair Queries by explicitly allowing for and then capturing extra
semantic effects beyond the desired fix effect. This produces a repair
search method that can be parameterized by extra semantic effects,
explicitly partitioning such effects from the fixing effect (absent
a priori knowledge to the fixing effect). Such a search returns re-
laxed Repair Specifications of the form {F ∗ P} CR {F ′ ∗ Q},
where (potential) extra semantic effects are bound in the pre- (P)
or postcondition (Q) respectively. Finding satisfying Repair Speci-
fications comes with an analogous extension of a RepairQuery,
i.e., {F ∗ P} ?C {F ′ ∗ Q}.

Pertinently, we can use frame inference in a novel way to solve
two important (and distinct) purposes in the program repair search
problem: (1) Check whether a given specification satisfies a repair
query, and (2) discover the extra semantic effects not part of the
fix. That is, suppose some commandC has a footprint, expressed as
{SP } C {SQ }. Our first goal is to check whether the footprint satis-
fies the Repair Query,which we do with respect to corresponding
pre- and postconditions F and F ′. Our second goal is to partition
the footprint into the fixing transitions and extra semantic effects
for pre- and postconditions, respectively.

Our key insight is to perform the frame inference procedure
Frame (Section 2) on the footprint precondition (resp. postcondition)
with respect to the Repair Query precondition (resp. postcondition).
Formally, C is a candidate repair fragment when the following
entailments hold:

In the precondition:
Frame(SP , F) = P =⇒ SP ⊢ F ∗ P (3)

Respectively, in the postcondition:
Frame(SQ , F ′) = Q =⇒ SQ ⊢ F ′ ∗ Q (4)

We achieve (1) because the entailment does not hold (frame in-
ference fails) when F is not satisfied by the query. If frame inference
succeeds, it pulls out P (resp. Q), discovering the extra semantic
effects in the footprint of C , achieving (2). Our approach is sound
and decidable by the frame inference procedure [11].

Assume F contains the specifications inferred over all individ-
ual commands in a program. Algorithm 1: FindCandidates(R,F)
soundly returns all candidate Repair Specifications for query R.
In Line 4 and 5 of Algorithm 1, we use the frame inference proce-
dure Frame, to match candidate fragments with a repair query as
the conjunction of matching pre- and postconditions. Note that the
procedure returns the entire Repair Specification because we use
assertions in the precondition for repair application (Section 3.3).

3.3 Applying repairs: from logic to programs

A Repair Specification in the abstract domain must be translated
to a syntactic program fragment in the source program. Every
intermediate language (IL) instruction corresponds to a line in the
original program source. When a candidate program fragment is
translated from IL to source, we rename the program variable bound

Algorithm 1: Find Candidate Repair Fragments
1 Match(S ,R);
2 let {RF } ?CR {RF ′ } = R in

3 let {SP } C {SQ } = S in

4 if Frame(SP ,RF) = RP , fail ⇒ SP ⊢ RF ∗ RP
5 ∧ Frame(SQ ,RF ′) = RQ , fail⇒ SQ ⊢ RF ′ ∗ RQ then

6 return {RF ∗ RP } ?CR {RF ′ ∗ RQ }[C/?CR]
7 else

8 return fail
9 end

10

11 FindCandidates(R ,F);
12 C := ∅ // Candidates

13 foreach S ∈ F do

14 if Match(S ,R) = C , fail then
15 C := C ∪ C

16 end

17 end

18 return C

to pvar in the fixing fragment to that of the fault-inducing variable,
if necessary. This substitution is the only syntactic transformation
that we apply on source fragments. Beyond this renaming, we
must decide where to insert repairs, and check translated code
for compatibility given associated heap assumptions and available
variables and type information (available in the IL).
Determining Repair Location. Repair techniques typically rely
on dynamic fault localization techniques to determine placement or
manipulation of code [7]. By contrast, we rely on the static analysis
to localize faults: When the symbolic interpreter enters a fault
state, it provides a location ℓ where the fault occurs.

In general, the fault class bears on the choice of where to apply
a repair fragment. For null dereferences, we speculate that a devel-
oper might typically expect a change before the null dereference
(e.g., a check), whereas for resource leaks we expect a change after
the point at which the resource is last used (e.g., closing a file).
Using Infer, a null dereference reports the location ℓ immediately
preceding the dereference. For resource leaks and memory leaks,
the location ℓ is the point where the resource (resp. memory) goes
out of scope without being closed (resp. freed). We make the de-
sign choice to insert a repair fragment CR directly preceding the
program term at location ℓ, satisfying

CRℓ′
,HBad {Cℓ ,HGood ̸{ fault

We refer to the example in Section 1 to motivate our choice. Our
approach places the sw_free call at line 11 in Figure 1a. The first
motivation is that repair location is typically restricted to few alter-
natives; the only other correct choice of placement is line 10. The
location ℓ thus offers the most immediate (and sometimes strictly)
correct choice. The second motivation is that among multiple place-
ment locations, the semantic effects of repair remain the same. For
example, placing sw_free at line 10 in Figure 1a. produces the same
effect since the swWarn(...) statement does not affect the heap. Thus,
although there is no universally correct choice for repair placement,
our domain of repair benefits from a general strategy that preserves
semantic correctness. Determining the ideal placement of patches

Static Automated Program Repair for Heap Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

with respect to non-semantic attributes may vary by context, and
may be subject to stylistic conventions and human judgment that
go beyond the scope of this work.

Determining Patch Compatibility. Patch compatibility deter-
mines whether we can insert a syntactic program fragment at a
particular program point (ℓ, in our case). FootPatch performs
two compatibility checks. The first addresses bugs that can have
multiple candidates. For example, memory may be freed by the
standard C library free call, or a wrapper function such as sw_free

as in Listing 1b. When multiple candidate fragments in SIL matches
the desired semantic effect (based on predicates that do not con-
sider types), FootPatch prioritizes patch generation by matching
type information of a candidate fragment’s variable and the fault-
inducing variable. This means that FootPatch prefers sw_free over
free in our example, because we can infer the type of hmap to be
swHashMap *, which matches the same type of map in the candidate
fixing fragment sw_free(map). FootPatch falls through to matching
candidates with generic types (i.e., void * for C) if it cannot match
specific types. Although typing information could be used to refine
patches for null dereferences, we ignore typing information in this
case, since any object can be compared to null.

Recompilation serves as our second compatibility check, en-
suring (a) that syntactically malformed patches fail (due to poor
IL-to-source translation or fault locations), and (b) that program
fragments with unbound free variables are invalidated. For instance,
the fix for the bugs in Figure 2 binds to the variable id that is in
scope. If id were not in scope, patch generation fails. Relatedly,
FootPatch allows capture of program variables (beyond the fault-
inducing variable) in fixing fragments if they are available (such as
id which is in scope).

4 EVALUATION

This section describes the results of using FootPatch to fix bugs
in real-world programs. Section 4.1 describes our experimental
setup. Section 4.2 describes overall repair results, where we use
FootPatch to fix 55 bugs in 11 projects. In Section 4.3 we discuss
patch quality, and particularly its relationship to Infer’s underlying
static analysis and our other design decisions. Section 4.4 analyzes
FootPatch’s repair discovery for resource leaks, memory leaks, and
null dereferences in the context of our general formalism (Section 3).
Section 4.5 provides limitations and further discussion.

4.1 Setup

Implementation. Based on the techniques described above, we
implemented an automatic bug repair tool called FootPatch ex-
tending the Infer static analyzer. FootPatch works on multiple
source languages (we evaluate on programs in C and Java; Infer
also supports C++ and ObjectiveC) because, like Infer, it reasons
over programs translated into SIL. FootPatch uses the same predi-
cates in the IL irrespective of source language, meaning it can apply
directly to new languages as support for them is added to Infer.

FootPatch uses three general specifications for repairing null
dereferences, resource leaks, and memory leaks; Figure 5 provides
a simplified representation. The specifications are implemented as
OCaml functions that match pre/post conditions on heap state and

{ pvar Z⇒ Null } ?C { _ Z⇒ Exn e } (5)
{ pvar Z⇒ ⟨File, Acquired⟩ } ?C { pvar Z⇒ ⟨File, Release⟩ } (6)

{ pvar Z⇒ ⟨Memory, Acquired⟩ } ?C { pvar Z⇒ ⟨Memory, Release⟩ } (7)

Figure 5: Repair Specifications.

predicates (referencing Infer’s datatypes). Note that this specifi-
cation mechanism is not intrinsic to the technique (i.e., it is pos-
sible write a DSL for expressing such specifications). FootPatch
performs type matching for determining patch compatibility, (Sec-
tion 3.3) by extending specifications (6) and (7) in Figure 5 with an
optional guard clause “when pvar.type = t” if we can determine the
type t of a faulting variable. In general, since simple expressions do
not model semantic effects of interest to the bug types in question,
we restrict repair queries to calls and branch statements in the IL.
Data and experimental parameters. We ran our experiments
on an Ubuntu 16.04 LTS server, with 20 Xeon E5-2699 CPUs and
20GB of RAM. Table 1 includes projects which (a) successfully built
on our system, (b) could be analyzed by Infer, and (c) generated
patches. Our project selection represents a convenience sample,
intended to substantiate our claims about FootPatch applicability
to real bugs in real and actively developed open-source systems;
we include discussion of sources of failures and other technique
limitations in Section 4.5. We evaluate on 8 C programs and 3 Java
programs averaging 64 kLOC. We initially developed FootPatch
based on existing bugs in error-prone and jfreechart and new bugs
found in swoole. The rest of the projects are C and Java repositories
on GitHub that are either (a) randomly sampled from the top one
thousand most popular repositories (by user favorites/stars) for C
and Java respectively, or (b) contain any combination of the terms
“leak”, “resource”, “memory”, “file”, or “fix” in their commitmessages.
Projects in our sample are excluded if they fail to compile in our
environment, if they cannot be analyzed by Infer, or if FootPatch
did not find patches (either because no bugs were found or due to
some other failure).

We evaluated FootPatch in two modes to characterize its search
behavior. In callgraph-local mode, FootPatch searches over can-
didates from the callgraph of functions where Infer reports a bug.
This mode tracks whether candidates are found local to the function
containing the bug, local to the file containing the bug, or from an
external file. In global mode, FootPatch searches over all (disjoint)
callgraphs. Global mode subsumes callgraph-local mode and, in
our experiments, only discovers additional repair candidates in
external files not included in the local callgraph. Global mode is
naturally more time-intensive, but may identify additional patches;
comparing the two modes allows a more precise understanding of
the importance of locality in searching for bug fixes within a given
program. In all results discussion, ∆GL indicates the increment
searching globally has over searching locally.

4.2 Repair results

Table 1 show results for each project. “Bugs” indicates the number
of bugs detected by Infer of the given type. It is possible for multiple
semantic fragments to repair each type of bug, found at different
locations in the SIL callgraph. For each bug type per program, “Max
Cands” shows maximum number of IL repair candidates before the

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

Time Bug Max

Project Lang kLOC (s) ∆GL Type Bugs Cands ∆GL Fixes ∆GL FP ∆GL

Swoole C 44.5 20 +83 Res. Leak† 7 1 +6 1 +2 0 +0
Mem. Leak† 20 3 +0 6 +0 3 +0

lxc C 63.0 51 - Res. Leak 3 5 - 1 - 0 -
Mem. Leak 8 13 - 0 - 1 -

Apktool Java 15.0 584 +92 Res. Leak† 19 3 +2 1 +0 0 +0
dablooms C 1.2 9 +0 Res. Leak† 7 2 +0 7 +0 0 +0
php-cp C 9.0 20 +5 Res. Leak† 4 3 +1 1 +0 0 +0
armake C 16.0 10 +13 Res. Leak† 5 7 +4 4 +0 0 +0
sysstat C 24.9 28 +10 Res. Leak 1 10 +0 1 +0 0 +0
redis C 115.0 79 +121 Res. Leak† 8 8 +10 6 +0 0 +0
rappel C 2.1 7 +3 Mem. Leak† 1 6 +0 1 +0 0 +0
error-prone Java 149.0 262 +602 Null Deref 11 66 +0 2 +0 0 +0
jfreechart Java 282.7 1,268 - Null Deref 53 221 - 22 - 0 -

Table 1: Bugs repaired with FootPatch. “Bugs” is the number of bugs detected by Infer’s static analysis. “Max Cands” is the

maximum number of IL repair candidates for the bug (pre-compatibility check). “Fixes” are the number of unique patches fix-

ing unique bugs (post check). † indicates one ormore fixes for previously undiscovered bugs. “∆GL” is the change in associated

column when using the global search space.

compatibility check which determines whether a patch candidate is
suitable syntactically. FootPatch emits the first compatible patch
produced from the candidates. “Fixes” shows the number of unique
patches that fix true semantic errors. Conversly, “FP” shows the
number of unique patches that fix false positive bug reports; we
discuss patch quality and correctness in Section 4.3.

In total, we discover 24 fixes for resource leaks, 7 fixes for mem-
ory leaks, and 24 fixes for null dereferences. The “Time” columns
of Table 1 shows total time required to both find and patch all bugs
of all types considered in that program. Performance ranges from
7 seconds to 22 minutes over all projects (note that FootPatch per-
formance is intertwined with Infer’s analysis time). The jfreechart

experiment failed to terminate in global mode because the Infer
analysis phase ran out of memory; lxc failed to build in the global
configuration.

Global mode (∆GL) discovers only 2 additional fixing patches.
This patch fixes a resource leak due to discovering a close-like
function that is not present in the local search. Our results suggest
that localizing search for fixing fragments is an effective strategy
for repair. This is consistent with empirical results that suggest that
code is redundant locally, especially within a module [55].

4.3 Patch quality

Patch correctness and success. All produced patches ensure a
fault-avoiding interpretation; in practice, we apply each patch gen-
erated by FootPatch and rerun the static analyzer to see if the patch
removes the bug (all did). Where possible, we ran a project’s test
suite after applying our patches to validate that our changes do not
break tests. We successfully ran the test suites for Apk-tool, armake,
and error-prone, which pass. Two projects contained no tests, and the
remaining six test suites could not be successfully configured/built.

A “fix” in Table 1 produces a patch that addresses a true posi-
tive bug report from the static analysis. To be useful in practice,
analyses approximate [34]. Infer is no exception, and it sometimes

1 fp = fopen(rdbfilename ,"r");

2 ...

3 if (memcmp(buf ,"REDIS" ,5) != 0) {

4 rdbCheckError("Wrong signature trying to load

DB from file");

5 + fclose(fp);

6 return 1;

7 }

8 rdbver = atoi(buf+5);

9 if (rdbver < 1 || rdbver > RDB_VERSION) {

10 rdbCheckError("Can't handle RDB format

version %d",rdbver);

11 + fclose(fp);

12 return 1;

13 }

14 ...

Figure 6: fp can be leaked on at least two paths (lines 6 and 12), but

Infer short circuits the analysis and only reports the leak on line 6

by default. With FootPatch, the leak is fixed at line 6, allows Infer

to find the another resource leak, which is then also fixed at line 11.

skips inferring specifications for a function due to an analysis time-
out, continuing with partial results. This can lead to false positives.
FootPatch uses Infer’s results to perform patching, and cannot
distinguish between true and false positives (if it could, it would
be a better analysis than Infer; this task is outside its scope). A
manual inspection of Infer’s reports indicate that its false positives
generally arose when it failed to analyze loops or clean up functions
due to time out. Due to the complexity of jfreechart it is difficult to
precisely determine how many of the Infer-reported null derefer-
ences are false positives. However, our manual inspection of did not
reveal obvious errors in reasoning behind the produced patches.

False positives that produced patched bugs are listed in column
“FP” of Table 1. In general, the false positive rate is low, in the order
of 7%, where fixes are produced for false positive error reports (“FP”
column) compared to fixes for true positives (“Fixes” column).

Static Automated Program Repair for Heap Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

1 int fd = open(filename , O_RDONLY);

2 ...

3 swString *content = swString_new(filesize);

4 if (! content) {

5 + close(fd); // FootPatch repair

6 return NULL; // function returns with fd not closed

7 }

8 ... // continues with normal operation

Figure 7: Resource Leak: forgetting to close a file.

On the other hand, Infer may find bugs that do not result in a fix
(there are typically more “Bugs” than “Fixes” in Table 1). FootPatch
finds 55 fixes out of 145 bugs (excluding false positives). Patch
generation fails when no repair candidate can be found for the bug.
Generally, this happens when (a) Infer’s analysis times out (e.g.,
due to loops), leading to incomplete function specifications or short
circuited analysis that miss fixing fragments, (b) Infer does not
resolve program variables associated with a bug report, (c) no type
compatible fragments are discovered, or (d) memory time outs occur
for parallel analysis processes, short circuiting analysis results.
Patch location. As motivated in Section 3.3, FootPatch heuristi-
cally places fix code at the line where Infer reports the violation.
For resource and memory leaks, feasible repair locations are con-
strained by the number of lines at which the resource is no longer
in use, but before it is officially dead. In our data, the maximum
number of possible correct locations across all 31 fixing patches for
resource/memory leaks is 3, while the average is 1.7. This implies
little opportunity to vary placement outside of our convention, sim-
ilar to our motivating example in Figure 1a. For null dereferences,
checks may plausibly be placed anywhere between the point at
which an object becomes null and its dereference. Our inspection
based on Infer’s bug reports revealed that the number of locations
ranges from 1 to 30, which poses more variability for placement.
Patches reveal more bugs. An especially interesting implication
of unifying bug detection and repair is the potential for the latter
to extend the capabilities of the former. In our experiments, Foot-
Patch generated patches for the redis project that then allowed
Infer to find two additional unique bugs. Figure 6 shows a snippet of
the code in question. The fp file pointer leaks on at least two paths
(lines 6 and 12). Before patching, Infer only reports a resource-leak
for the variable fp, because it “short circuits” its analysis once the
first leak is detected. After FootPatch inserts fclose(fp); on line
5, Infer reports the second leak on line 11. Rerunning FootPatch
yields an additional fix on line 11. To the best of our knowledge, this
is the first demonstration that automated patching has the potential
to improve static analysis.

4.4 Fixing by semantic effects

Resource andMemory Leaks. Resource leaks often occur when a
function returns prematurely due to an error [6, 59]. Figure 7 shows
a leak of an unreleased file handle in the Swoole8 project. FootPatch
uses the Repair Query { pvar Z⇒ ⟨File, Acquired⟩ } ?C { pvar Z⇒
⟨File, Release⟩ } from (6), Figure 5, to discover a close(fd); elsewhere
in the program. This demonstrates the importance of the compati-
bility check, which guards against applying alternative “close” op-
erations (e.g., fclose) by using typing information. The pull request
8Swoole is the 34th most popular C project on GitHub at the time of writing.

based on the patch in Figure 7 was accepted,9 an important mile-
stone for end-to-end automatic repair of a previously undiscovered
bug.

Note that, although conceptually similar to resource leaks, mem-
ory leaks deserve separate semantic treatment because they tend
to occur in programs written in languages that are not garbage
collected. Anecdotally, memory leaks may entail more complex
fixes in terms of semantic effects. All resource leak patches con-
form to strict Repair Specifications (meaning they only affect the
heap location of interest). However, fixing fragments for memory
leaks may entail extra semantic effects. One example fragment is
swHashMap_node_free(hmap, root); from the Swoole project, which frees
a data member root that is in the table hmap. A necessary precon-
dition to inserting this fragment for freeing root is that hmap be in
scope (which it is, where it is used in our produced patches). We
obtain such a fragment by relaxing the Repair Query to allow
extra semantic effects. One implication of relaxing repairs is that
application may be contextual, and subject to additional compati-
bility checks (e.g., scope and variable capture) with respect to extra
semantic effects. In summary, our results show that FootPatch the
majority of leak fixes conform to strict Repair Specifications, but
enables more complex fixes when relaxing the repair constraint.
Null dereferences. The FootPatch patch for the null derefer-
ence(s) in Figure 2 throws an exception when an object is null.
However, in general, multiple semantic fix effects may address a
given null dereference: initializing a null object, returning or throw-
ing an exception when an object is null, or predicating execution on
a condition that an object is not null. More than one of these forms
may be correct with respect to a preserving a non-null property,
and in general we cannot decide which one is preferred [35].

We therefore experimented with Repair Specification queries
in FootPatch over multiple SIL commands to discover null derefer-
ence fixes (i.e., function calls entailing nullness checks, conditional
expressions). Our approach alleviates the problem of multiple po-
tential fixes by relying on existing code to guide repair. For example,
for jfreechart, FootPatch produces 22 patches from a candidate
which throws an exception when the object is null. This may be
the desirable fix, as witnessed by human-written fixes for the error-

prone bug [2]. Regardless, from a semantic perspective, FootPatch
finds candidate fixes from the existing project that removes the
fault with respect to the analysis.

4.5 Limitations and discussion

FootPatch currently fixes resource leaks, memory leaks, and null
dereferences; these bugs are a mature focus of Infer’s analysis do-
main and are common in practice [16, 17]. Given both our under-
lying technique, which addresses general heap-based properties,
and the continual addition of new analyses to Infer [4], we expect
FootPatch to generalize to, for example, information flow bugs.
FootPatch currently requires a simple manual fix specification,
generally per bug type. This formulation provides flexibility to ad-
dress particular attributes over diverse bug classes and languages.
The manual effort is competitive with effort required to produce a
test per bug, required by dynamic repair techniques. Moreover, we

9https://github.com/swoole/swoole-src/commit/e12c7db38c9737234695d35d9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

recognize an opportunity for automatically inferring fixing effects
with the aid of a static analyzer, for future work.

FootPatch does not consider the full diversity of possible fixes
for the considered defects, especially for null dereferences (we in-
vestigated checking nullness and throwing an exception, accepted
ways for fixing these bugs, but not instantiating new objects gener-
ally). Our approach currently inspects only semantic patch charac-
teristics, ignoring, for example, string constants in an error message.
We leave such considerations to future work.

Beyond false positives, Infer can produce inaccurate fault loca-
tions, impacting the validity of FootPatch patches. Approximate
locations are acceptable for bug reports, and approximate patches
may still be informative [57], but truly automated program repair
requires precise locations. This can be addressed practically by
improving the accuracy of IL-to-source translation during analysis.

We do not explicitly compare our technique to prior repair tech-
niques. Overall, FootPatch is orthogonal (and thus difficult to com-
pare) to prior dynamic repair techniques. Two of our bug classes,
resource and memory leaks, are difficult to test for deterministically,
and thus underaddressed in the current repair literature. There does
exist work addressing repair of null dereferences, which are easier
to expose via tests. We attempted to run and fix the null deref-
erences in Apache Commons Math considered by NOPOL [61].
However, Infer’s analysis skips a number of intermediate calls, and
fails to detect the null dereferences covered in the associated test
suite. Practically speaking, we find that tests for null dereferences
considered in prior work (such as Defects4J [28]) simply cover
different null dereference bugs from Infer. This highlights one prop-
erty of static analysis for repair: analysis may miss bugs that could
be covered by tests, but may simultaneously find those in corner
cases that humans neglected to test. Related techniques based on
verification [35] lack detailed breakdown of bugs to inform a com-
parative study, and is intended to provide patch suggestions to a
developer, which lacks automatic patch application. We are un-
aware of “quick fix” suggestions from existing static tools [1, 2, 27]
that target semantic bugs like those we consider.

5 RELATEDWORK

Work in automatic program repair over the past decade predomi-
nantly use test cases to validate correctness. Generate-and-validate
or heuristic repair techniques explore search spaces of templated
repairs as applied to the abstract syntax tree program level; this in-
cludes techniques like GenProg [33], RSRepair [50], and HDRepair
[32] which traverse the space using classic search algorithms like ge-
netic programming or random search. Other techniques like AE [58]
SPR [37] and Prophet [36] use predefined transformation schemas
and probabilistic models on the AST to discover and apply candi-
date syntactic fragments. At a high level, such techniques operate
on ASTs to indirectly achieve a desired semantic effect that fixes
a bug with respect to a test suite. Constraint- or semantics-based
approaches reason about semantics more directly, synthesizing
fragments using input-output pairs to codify a notion of program
semantics [38, 39, 41, 61]. SearchRepair [29] lies between these
approaches, using input-output pairs to search over a semantic
encoding of candidate repair fragments (and is perhaps closest in
spirit to our approach). These techniques all share the property that

they use test cases to define patch correctness and guide a search
towards a semantically-desirable fix; as a result, they also require
developer labor to specify those tests; are limited to fixing bugs
that are deterministically testable, and may overfit to the provided
tests [54]. The main point of contrast with our work is that our
approach is static, and therefore cannot overfit to provided dynamic
witnesses of desired behavior. In the previous body of work, proper-
ties are not specified formally, but implied by test cases. FootPatch
instead considers a logic-encoding and semantic implications of
using a program fragment for satisfying repair specification. We
argue that our focus on explicitly codifying semantic effects offers
additional protection against patch overfitting.

Verification-based approaches, using formal specifications, have
used LTL specifications [26, 56], SAT approaches [23], deductive
synthesis [30], contracts [35], and model checking for Boolean pro-
grams [24, 52] to perform repair. At a high level, our approach
relates to the approach by Logozzo et al. [35] which uses auto-
matically inferred assertions over abstract domains, and relies on
an abstract interpretation-based static analyzer to discover faults;
however, they do not consider automatically applying patches. In
contrast, our approach is new in reasoning over an abstract domain
based in Separation Logic (repairing pointer safety violations) and
formalizes a mechanism for automatic patch application. Overall,
verification-based program repair lack application to common bugs
in real-world programs.

6 CONCLUSION

We presented a new static APR technique using Separation Logic
to reason about semantic effects of program fragments, including
a novel application of local reasoning and the frame rule to find
bug-fixing patches from existing code. Our technique overcomes
significant challenges compared to test-based repair techniques,
including the ability to repair previously undiscovered bugs, bugs
that are difficult to expose via testing, and repeated semantic er-
rors. We implemented our approach in a tool called FootPatch
that builds on top of a Separation Logic-based analysis to target
bug repair for heap-related properties; we demonstrate on resource
leaks, memory leaks, and null dereferences, and anticipate that
the approach is extendable. FootPatch correctly fixes 55 bugs, in-
cluding 11 undiscovered bugs in 11 projects. Moreover, FootPatch
achieves significant speedup over test-based repair, works on large
codebases, and targets multiple source languages. Unlike other for-
mal approaches for program repair, FootPatch works end-to-end
on existing code bases and does not require formal annotation or
special coding practices. Its reliance on principled semantic reason-
ing provides additional evidence of generated patch correctness.
FootPatch thus represents an important step in bridging the gap
between grounded verification techniques and trustworthy auto-
matic program repair for real-world software, opening potentially
promising avenues in automatic program improvement.

7 ACKNOWLEDGMENTS

This work is partially supported under NSF grant number CCF-
1563797. All statements are those of the authors, and do not neces-
sarily reflect the views of the funding agency.

Static Automated Program Repair for Heap Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES

[1] 2017. FindBugs Static Analyzer. https://github.com/findbugsproject/findbugs.
(2017). Online; accessed 26 August 2017.

[2] 2017. Google Error-prone bug-fixing commit. https://github.com/google/
error-prone/commit/3709338. (2017). Online; accessed 16 January 2017.

[3] 2017. Infer bug types. http://fbinfer.com/docs/infer-bug-types.html. (2017).
Online; accessed 11 May 2017.

[4] 2017. Infer experimental checkers. http://fbinfer.com/docs/
experimental-checkers.html. (2017). Online; accessed 11 May 2017.

[5] 2017. Infer Static Analyzer. http://fbinfer.com/. (2017). Online; accessed 11 May
2017.

[6] 2017. Resource Leak in C. http://fbinfer.com/docs/infer-bug-types.html#
RESOURCE_LEAK. (2017). Online; accessed 16 January 2017.

[7] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference

Practice and Research Techniques - MUTATION (TAICPART-MUTATION ’07). 89–
98.

[8] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(2008), 22–29.

[9] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson R. Murphy-Hill. 2016.
From Quick Fixes to Slow Fixes: Reimagining Static Analysis Resolutions to
Enable Design Space Exploration. In IEEE International Conference on Software

Maintenance and Evolution (ICSME ’16). IEEE Computer Society, 211–221.
[10] J Berdine, C Calcagno, and PeterWO’Hearn. 2005. Smallfoot: Modular Automatic

Assertion Checking with Separation Logic. In Formal Methods for Components

and Objects (FMCO ’05). 115–137.
[11] Josh Berdine, Cristiano Calcagno, and PeterWO’hearn. 2005. Symbolic Execution

with Separation Logic. In Asian Symposium on Programming Languages and

Systems (APLAS ’05). 52–68.
[12] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2012. Verification

Condition Generation and Variable Conditions in Smallfoot. CoRR abs/1204.4804
(2012).

[13] Josh Berdine, Arlen Cox, Samin Ishtiaq, and Christoph M. Wintersteiger. 2012.
Diagnosing Abstraction Failure for Separation Logic-Based Analyses. InComputer

Aided Verification (CAV ’12). 155–173.
[14] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75.

[15] Tom Britton, Lisa Jeng, GrahamCarver, Paul Cheak, and Tomer Katzenellenbogen.
2013. Reversible Debugging Software. Technical Report. University of Cambridge,
Judge Business School.

[16] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program
Verifier for Memory Safety of C Programs. In NASA Formal Methods (NFM ’11).
459–465.

[17] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In
NASA Formal Methods (NFM ’15). 3–11.

[18] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011.
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58, 6 (2011),
26:1–26:66.

[19] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification (CAV ’16).
383–401.

[20] Dino Distefano and Ivana Filipovic. 2010. Memory Leaks Detection in Java by Bi-
abductive Inference. In Fundamental Approaches to Software Engineering (FASE).
278–292.

[21] Dino Distefano, Peter W O’Hearn, and Hongseok Yang. 2006. A Local Shape
Analysis Based on Separation Logic. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. 287–302.
[22] Dino Distefano and Matthew J Parkinson J. 2008. jStar: Towards Practical Verifi-

cation for Java. ACM Sigplan Notices 43, 10 (2008), 213–226.
[23] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.

Specification-Based Program Repair Using SAT. In Tools and Algorithms for

the Construction and Analysis of Systems (TACAS ’11). 173–188.
[24] Andreas Griesmayer, Roderick Bloem, and Byron Cook. 2006. Repair of Boolean

Programs with an Application to C. Computer Aided Verification (2006), 358–371.
[25] Ciera Jaspan, I-Chin Chen, and Anoop Sharma. 2007. Understanding the Value of

ProgramAnalysis Tools. InObject-oriented Programming Systems and Applications

(OOPSLA ’07). 963–970.
[26] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program

Repair as a Game. In Computer Aided Verification (CAV ’05). 226–238.
[27] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In International Conference on Software Engineering (ICSE ’13). 672–681.

[28] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
International Symposium on Software Testing and Analysis (ISSTA ’14). 437–440.

[29] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2016. Repairing
Programs with Semantic Code Search. In International Conference on Automated

Software Engineering (ASE ’15). 295–306.
[30] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive Program

Repair. In Computer Aided Verification (CAV ’15). 217–233.
[31] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program

Repair. In Software Analysis, Evolution, and Reengineering (SANER ’16). 213–224.
[32] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program

Repair. In Software Analysis, Evolution, and Reengineering (SANER ’16). 213–224.
[33] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In International Conference on Software Engineering (ICSE ’12).
3–13.

[34] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto.
Commun. ACM 58, 2 (2015), 44–46.

[35] Francesco Logozzo and Thomas Ball. 2012. Modular and Verified Automatic Pro-
gram Repair. In Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA ’12). 133–146.
[36] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. In Principles of Programming Languages (POPL ’16). 298–31.
[37] Fan Long and Martin C. Rinard. 2016. An Analysis of the Search Spaces for

Generate and Validate Patch Generation Systems. In International Conference on

Software Engineering (ICSE ’16). 702–713.
[38] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking

for Simple Program Repairs. In International Conference on Software Engineering

(ICSE ’15). 448–458.
[39] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scal-

able Multiline Program Patch Synthesis via Symbolic Analysis. In International

Conference on Software Engineering (ICSE ’16). 691–701.
[40] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program Supervision

Framework. Electronic notes in Theoretical Computer Science 89, 2 (2003), 44–66.
[41] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: ProgramRepair via Semantic Analysis. International Conference
on Software Engineering, 772–781.

[42] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. 2007.
Automated Verification of Shape and Size Properties via Separation Logic. In
InternationalWorkshop on Verification, Model Checking, and Abstract Interpretation

(VMCAI ’07). 251–266.
[43] National Institute of Standards and Technology. 2002. The Economic Impacts of

Inadequate Infrastructure for Software Testing. Technical Report NIST Planning
Report 02-3. NIST. http://www.nist.gov/director/prog-ofc/report02-3.pdf

[44] Peter O’Hearn. 2007. Resources, Concurrency, and Local Reasoning. Theoretical
Computer Science 375, 1-3 (2007), 271–307.

[45] Peter W. O’Hearn. 2015. From Categorical Logic to Facebook Engineering. In
Symposium on Logic in Computer Science. 17–20.

[46] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning
about Programs that Alter Data Structures. In InternationalWorkshop on Computer

Science Logic (CSL ’01). 1–19.
[47] Matthew J. Parkinson and Gavin M. Bierman. 2005. Separation Logic and Ab-

straction. In Symposium on Principles of Programming Languages (POPL ’05).
247–258.

[48] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas
Zeller. 2014. Automated Fixing of Programs with Contracts. IEEE Transactions

on Software Engineering 40, 5 (2014), 427–449.
[49] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan

Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. 2009. Automatically Patching Errors in Deployed Software.
In Symposium on Operating Systems Principles (SIGOPS ’09). 87–102.

[50] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The Strength of Random Search on Automated Program Repair. In International

Conference on Software Engineering (ICSE). 254–265.
[51] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of

Patch Plausibility and Correctness for Generate-and-validate Patch Generation
Systems. In International Symposium on Software Testing and Analysis (ISSTA ’15).
24–36.

[52] Roopsha Samanta, Oswaldo Olivo, and E Allen Emerson. 2014. Cost-Aware
Automatic Program Repair. In Static Analysis Symposium (SAS ’14). 268–284.

[53] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse than the Disease? Overfitting in Automated Program Repair. In Joint

Meeting on Foundations of Software Engineering (ESEC/FSE ’15). 532–543.
[54] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the

Cure Worse than the Disease? Overfitting in Automated Program Repair. In Joint

Meeting of the European Software Engineering Conference and the Symposium on

the Foundations of Software Engineering (ESEC/FSE ’15). 532–543.

https://github.com/findbugsproject/findbugs
https://github.com/google/error-prone/commit/3709338
https://github.com/google/error-prone/commit/3709338
http://fbinfer.com/docs/infer-bug-types.html
http://fbinfer.com/docs/experimental-checkers.html
http://fbinfer.com/docs/experimental-checkers.html
http://fbinfer.com/
http://fbinfer.com/docs/infer-bug-types.html#RESOURCE_LEAK
http://fbinfer.com/docs/infer-bug-types.html#RESOURCE_LEAK
http://www.nist.gov/director/prog-ofc/report02-3.pdf

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Rijnard van Tonder and Claire Le Goues

[55] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness
of Software. In Foundations of Software Engineering (FSE 2014). 269–280.

[56] Christian von Essen and Barbara Jobstmann. 2015. Program Repair without
Regret. Formal Methods in System Design 47, 1 (2015), 26–50.

[57] WestleyWeimer. 2006. Patches As Better Bug Reports. InGenerative Programming

and Component Engineering (GPCE ’06). 181–190.
[58] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging Program

Equivalence for Adaptive Program Repair: Models and First Results. InAutomated

Software Engineering (ASE ’13). 356–366.
[59] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications

for Error Detection. In Tools and Algorithms for the Construction and Analysis of

Systems (TACAS ’05). 461–476.
[60] WestleyWeimer and George C. Necula. 2008. Exceptional Situations and Program

Reliability. ACM Transactions on Programming Languages and Systems 30, 2,
Article 8 (March 2008), 51 pages.

[61] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34–55.

[62] Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning.
In International Conference on Foundations of Software Science and Computation

Structures (FoSSaCS). 402–416.

	Abstract
	Introduction
	Preliminaries
	Program Model and Assertion Language
	Frame Inference
	Finding bugs using Separation Logic

	Repair with Separation Logic
	Formulating Repair
	Searching for Repairs
	Applying repairs: from logic to programs

	Evaluation
	Setup
	Repair results
	Patch quality
	Fixing by semantic effects
	Limitations and discussion

	Related Work
	Conclusion
	Acknowledgments
	References

