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Abstract—Test adequacy criteria are widely used to guide test creation. However, many of these criteria are sensitive to statement
structure or the choice of test oracle. This is because such criteria ensure that execution reaches the element of interest, but impose
no constraints on the execution path after this point. We are not guaranteed to observe a failure just because a fault is triggered. To
address this issue, we have proposed the concept of observability—an extension to coverage criteria based on Boolean expressions
that combines the obligations of a host criterion with an additional path condition that increases the likelihood that a fault encountered
will propagate to a monitored variable.
Our study, conducted over five industrial systems and an additional forty open-source systems, has revealed that adding observability
tends to improve efficacy over satisfaction of the traditional criteria, with average improvements of 125.98% in mutation detection with
the common output-only test oracle and per-model improvements of up to 1760.52%. Ultimately, there is merit to our hypothesis—
observability reduces sensitivity to the choice of oracle and to the program structure.
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1 INTRODUCTION

Test adequacy criteria defined over program structures—
such as statement, branches, or atomic conditions—are
widely used as measures to assess the efficacy of test
suites. Such criteria are essential in offering guidance
in the testing process, as they offer clear checklists of
goals—called test obligations—to testers and the means
to automate the creation of test suites. However, many
of these criteria are highly sensitive to how statements
are structured [1], [2] or the choice of test oracle—the
artifact used to judge program correctness [3]–[5].

Consider the Modified Condition/Decision Coverage
(MC/DC) coverage criterion [6]. MC/DC is used as an
exit criterion when testing software in the avionics do-
main. For certification, a vendor must demonstrate that
the test suite provides MC/DC coverage of the source
code [7]. However, the efficacy of test suites created to
satisfy MC/DC—particularly when test suite creation
is automated—is highly dependent on the syntactic
structure of the code under test. A complex Boolean
expression, for example, could be written as a series
of simple expressions, or as a single inlined expression.
This simple transformation can dramatically improve the
efficacy of MC/DC-satisfying test suites, increasing fault
detection efficacy by orders of magnitude [1].

Such results are worrying, particularly given the im-
portance of coverage criteria in safety certification, and
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the improvements made in terms of automated gener-
ation. When examining the discrepancy in efficacy be-
tween test suites for non-inlined and inlined programs,
we often found that the test case encountered a fault
in the code—such as an erroneous Boolean operator—
leading to a corrupted internal state. However, this cor-
ruption was masked out in a subsequent expression, and
did not propagate to an output. This effect was prevalent
in programs containing large numbers of simple Boolean
expressions stored in local variables. Even in cases where
a non-masking path could theoretically be found, it was
common for a test case to not allow sufficient execution
time for corrupted state to propagate.

This sensitivity to structure and choice of oracle is
caused by the fact that the obligations of structural
coverage criteria are only posed over specific syntactic
elements—statements, branches, conditions. Such obliga-
tions ensure that execution reaches the element of interest,
and exercises it in the prescribed manner. However, no
constraints are imposed on the execution path after this
point. We are not guaranteed to observe a failure just
because a fault is triggered.

To address this issue, we have proposed the concept of
observability—an extension to coverage criteria based on
Boolean expressions that has the potential to eliminate
masking. Observable coverage criteria combine the test
obligations of their host criterion with an additional
path condition that increases the likelihood that a fault
encountered when executing the element of interest
will propagate to a variable monitored and checked for
correctness by the test oracle. Unlike many extensions
to coverage criteria [8], this path condition does not
increase the number of test obligations over its host
criterion. Instead, it makes the existing obligations more
stringent to satisfy, as the possibility of propagating a
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fault revealed by the original obligation must also be
demonstrated. We hypothesize that observability will
improve the effectiveness of the host criterion—no mat-
ter which criterion is chosen—particularly when used as
a test generation target, paired with test oracles that only
examine the values of output variables.

Focusing on safety-critical applications, we have im-
plemented observable versions of Branch, Condition,
Decision, and MC/DC Coverage as part of model-based
test generation for the Lustre dataflow language [9].
While our implementation is for dataflow languages,
the concept of observability is not restricted to any one
language, generation paradigm, or product domain, and
our semantic model should be valid for imperative
languages such as C or Java.

This work is an extension of our prior work defining
and exploring the concept of observability [10]–[12].
We first proposed the concept of observability as an
extension of the MC/DC coverage criterion [10]. An ex-
tended study found that OMC/DC was more effective—
and overcame many of the weaknesses of—traditional
coverage criteria for a small set of studied systems [11].
We extend previous efforts by decoupling the notion of
observability from MC/DC and exploring its application
as a generic addition to any coverage criterion. This
decoupling allows us to explore the impact of the choice
of host criterion, and to explore the efficacy of observ-
ability as a general extension to adequacy criteria. Our
new experimental studies also consider a wider range
of programs than previously explored in order to better
understand the efficacy of observability-based coverage
criteria as the target of automated generation.

Our study, conducted over five industrial systems
from Rockwell Collins and an additional forty open-
source systems, has revealed the following insights:

• Test suites satisfying Observable MC/DC are gen-
erally the most effective, killing 95.61% of mu-
tants on average (maximum oracle strategy)/87.03%
(output-only oracle strategy) for the inlined Rock-
well models, 98.85% (maximum)/85.88% (output-
only) for the non-inlined Rockwell models, and
89.62% (maximum)/65.14% (output-only) for the
Benchmarks models.

• Adding observability tends to improve efficacy over
satisfaction of traditional criteria, with average im-
provements of up to 392.44% in mutation detection
and per-model improvements of up to 1654.38%.

• Factors that can harm efficacy—generally result-
ing in a reduction in the number of fulfilled
obligations—include expression complexity, the
length of the combinatorial path from expression
to output, and the length of the delayed path from
expression to output.

• The addition of observability requires a longer test
generation process, with average increases rang-
ing from 129.39%-2422.91%. However, this increase
tends to be relatively small—seconds to minutes.

• The addition of observability results in an increase
in the size of test suites. The magnitude of that
increase depends on the length of the paths from
each expression to the output.

• The addition of observability results in an decrease
in the number of fulfilled obligations. This loss
is due to either the discovery of dead code that
cannot influence the output or obligations that are
too complex for the test generator to solve.

• The choice of host criterion influences efficacy, but
the largest increase in complexity comes from the
addition of observability. Varying both criterion and
observability may allow testers to find an optimal
level of efficacy and complexity.

• Observability reduces sensitivity to the choice of
oracle, by ensuring a masking-free path from expres-
sion to the variables monitored by the test oracle.

• Observability reduces sensitivity to the program
structure by capturing the complexity benefits of
inlining in the path from expression to output.

Based on our results, observability is a valuable
extension—regardless of the chosen host criterion—to
coverage criteria for dataflow languages. Requiring ob-
servability increases test efficacy and produces suites
that are robust to changes in the structure of program
or the variables being monitored by the test oracle.

The remainder of this article is structured as follows.
Section 2 introduces important background material.
Section 3 presents the concept of observability and offers
formal definitions and implementation details. Section 4
presents the details of our experiments, and Section 5
discusses our observations. Section 6 discusses threats
to validity. Section 7 presents related work. Finally, Sec-
tion 8 summarizes and concludes the manuscript.

2 BACKGROUND

In this research, we are interested in improvements to the
criteria used to judge the adequacy of testing efforts—
and to automatically generate test suites. In particular,
we are focused on the safety-critical reactive systems
that power our society. In this section, we will discuss
background material on both topics.

2.1 Adequacy Criteria

The concept of adequacy is important in providing de-
velopers with the guidance needed to test effectively.
As we cannot know what faults exist without verifi-
cation, and as testing cannot—except in simple cases—
conclusively prove the absence of faults, a suitable ap-
proximation must be used to measure the adequacy of
our testing efforts. If existing tests have not surfaced any
faults, is the software correct, or are the tests inadequate?

The most common methods of measuring adequacy
involve coverage of structural elements of code, such
as branches of control, and Boolean expressions [13]–
[15]. Each adequacy criterion prescribes a series of test
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obligations (or requirements) that tests must fulfill. For
example, branch coverage requires that all outcomes of
expressions that can result in different code segments be-
ing executed—such as if-then-else and loop conditions—
be executed. The idea of measuring adequacy through
coverage is simple, but compelling: unless code is ex-
ecuted, many faults are unlikely to be found. If tests
execute elements as prescribed by the criterion, then
testing is deemed “adequate” with respect to faults that
manifest through such structures.

Adequacy criteria have seen widespread use, as
they offer objective, measurable checklists [16] and—
importantly—stopping criteria for the testing process.
For that same reason, they are ideal as test generation
targets [17]–[19], as coverage can be straightforwardly
measured and optimized for [20].

2.2 Structural Coverage

Structural coverage criteria serve as a means to de-
termine that the structure of system under test—the
various elements making up the source code—have been
thoroughly exercised by test cases. Many structural cov-
erage criteria, defined with respect to specific syntactic
elements of a program, have been proposed and studied
over the past decades [11], [21]. These have been used
to measure suite adequacy—as a means to assess the
quality of existing test suites, and whether developers
can stop adding tests. They are also commonly used as
as targets for automated test generation.

In this study, we are primarily concerned with re-
active systems—safety-critical embedded systems that
interact with the physical world. Such systems often
have sophisticated logical structures in the code. There-
fore, in this work, we are primarily concerned with
structural coverage criteria defined over Boolean expres-
sions. In particular, we are focused on Condition Cover-
age, Branch Coverage, Decision Coverage, and Modified
Condition/Decision Coverage (MC/DC).

Decision Coverage: A decision is a Boolean expression.
Decisions are composed of one or more conditions—
atomic Boolean subexpressions—connected by operators
(and, or, xor, not). Decision Coverage requires that
all decisions in the system under test evaluate to both
the true and false. Given the expression ((a and
b) and (not c or d)), tests would need to be pro-
duced where the expression evaluates to true and the
expression evaluated to false. In this case, the test input
(TTTT),(TTTF) would satisfy Decision Coverage.

Branch Coverage: A branch is a particular type of
decision that can cause program execution to diverge
down a particular control flow path, such as that in
if or case statements. Branch Coverage is defined in
the same manner as Decision Coverage, but is restricted
to branches, rather than all decision statements. Branch
Coverage is arguably the most commonly used coverage

criterion, with ample tool support1 and industrial adop-
tion. Improving Branch Coverage is a common goal in
automated test generation [18], [22].
Condition Coverage: A condition is an atomic Boolean
subexpression within the broader decision. Condition
Coverage requires that each condition evaluate to true
and false. Given the expression ((a and b) and
(not c or d)), achieving Condition Coverage re-
quires tests where the individual atomic Boolean con-
ditions a, b, c, and d evaluate to true and false. For
this decision, test input (TTTF),(FFFT) would satisfy
the obligations of Condition Coverage.

Note that satisfying the obligations of one form of
coverage does not always imply that the obligations of
others are fulfilled as well. The test input given above
would satisfy Condition Coverage, but not Decision
Coverage, as both test inputs result in the decision eval-
uating to false. Similarly, the input provided earlier
for Decision Coverage—(TTTT),(TTTF)—would not
satisfy Condition Coverage, as only d evaluates to both
outcomes. Therefore, stronger criteria—such as Modified
Condition/Decision Coverage—require that the obliga-
tions of both Decision and Condition Coverage be met.
Modified Condition/Decision Coverage (MC/DC): The
MC/DC criterion is used as an exit criterion when
testing software for critical software in the avionics
domain, and is required for safety certification in that
domain [23]. MC/DC further strengthens Condition and
Decision Coverage by requiring that each decision eval-
uate to all possible outcomes, each condition take on all
possible outcomes, and that each condition be shown to
independently impact the outcome of the decision.

Independent effect is defined in terms of masking—
a masked condition has no effect on the value of the
decision; for example, given a decision of the form x
and y, the truth value of x is irrelevant if y is false, so
we state that x is masked out. A condition that is not
masked out has independent effect for the decision.

Consider again the expression ((a and b) and
(not c or d)). Suppose we examine the independent
affect of d in the example; if (a and b) evaluates to
false, than the entire decision will evaluate to false,
masking the effect of d; Similarly, if c evaluates to false,
then (not c or d) evaluates to true regardless of the
value of d. Only if we assign a, b, and c the value
of true does the value of d affect the outcome of the
decision. Showing independent impact requires a pair of
test cases where all other conditions hold fixed values
and our condition of interest flips values. If changing
the value of the condition of interest changes the value
of the decision as a whole, then the independent im-
pact has been shown. In this example, the test inputs
(TTTT), (TTTF), (FTTT), (TFTT), and (TTFF)
satisfies MC/DC. Tests inputs 1 and 3 show the effect of
a, 1 and 4 show b, 2 and 5 show c, and 1 and 2 show d.

1. Such as the Cobertura and EMMA IDE plug-ins—see http://
cobertura.github.io/cobertura/ and http://www.eclemma.org/

http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://www.eclemma.org/
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MC/DC can be satisfied in (number of conditions + 1)
test cases if care is taken in selecting test input.

Because both decisions and conditions are covered,
we state that MC/DC subsumes the previously-defined
forms of coverage. Satisfying the obligations of MC/DC
also satisfies the obligations of Decision and Condition
Coverage. This comes at a cost—satisfying MC/DC re-
quires more test cases and more effort than satisfying
any of the above criteria. Therefore, if no benefit is
perceived from the additional requirements of MC/DC,
testers often elect to satisfy a simpler criterion instead.

Several variations of MC/DC exist—for this study, we
use Masking MC/DC, as it is a common criterion within
the avionics community [24].

2.3 Mutations and Mutation Coverage
Mutation [25] is a technique in which a user generates
many faulty implementations through small modifica-
tions of the original implementation, either through
automated code transformation or by hand [26], [27].
Usually a single modification is made to each mutant
implementation, such as changing a single expression
(substituting addition for subtraction , e.g.), permuting
the order of two statements, or many other possible
changes. The mutations introduced generally match one
or more models of the types of mistakes that real de-
velopers make when building code. Generally, mutants
are introduced with the intent that they not be trivially
detected—they are both syntactically and semantically
valid [15]. That is, the mutants will compile, and no
mutant will crash the system.

Mutations can be used to assess the effectiveness of
a test suite by examining how many mutants are killed
(that is, detected) by the tests within the test suite.
Detection of mutants has also been the basis of multiple
adequacy criteria [28], [29]. In theory, if a suite detects
more mutants, it will also be more adequate at fault
detection. To kill a mutant using strong mutation, the
following conditions must be met [30]:

• (R) the test must reach the mutation.
• (I) the test must infect program state by causing it to

differ between the original and mutated program.
• (P) incorrect state must propagate to program output.
• (R) the test oracle must reveal the difference.
In strong mutation coverage, the resulting corruption

must influence an output variable. Weak mutation only
requires the (R,I) steps. In weak mutation coverage, a
mutant is considered detected if the mutated statement is
reached, and the value of that expression is corrupted [31].
Firm mutation requires propagation to some point of
observation in the system, but not necessarily an out-
put [32]. For each of the metrics, a mutation coverage score
can be determined by dividing the number of killed
mutants by the number of all mutants.

2.4 Reactive Systems and Dataflow Languages
Increasingly, our society is powered by sophisticated
software systems—such systems manage factories and

power plants, coordinate the many systems driving
automobiles and airplanes, and even make life-saving
decisions as part of medical devices implanted in human
bodies. Many of these systems are what we refer to as
reactive systems—-embedded systems that interact with
physical processes. Reactive systems operate in cycles—
receiving new input from their environment, to which
they react by issuing output.

Such systems are commonly designed using model-
ing languages, which are translated into C code that
can be directly flashed to hardware. Models can be
developed using visual notations, such as Simulink [33],
Stateflow [34] and SCADE [35]. They can also be directly
expressed using dataflow languages, such as Lustre.

Lustre is a synchronous dataflow language used in
a number of domains to model or directly implement
embedded systems [9]. It is a declarative programming
language for manipulating data flows—infinite streams of
variable values. These variables correspond to traditional
data types, such as integers, booleans, and floating point
numbers. Lustre offers an intermediate representation
between behavioral model and traditional source code
that is useful for specification, design, and analysis pur-
poses. Because of the simplicity and declarative nature
of Lustre, it is well-suited to model checking and veri-
fication, in particular with regards to its safety proper-
ties [36]. Lustre programs can be automatically generated
from visual notations such as Simulink, and can be auto-
matically compiled to target languages such as C/C++,
VHDL, as well as to input models for verification tools
such as model checkers.

A Lustre program is structured into a network of
control modules (nodes) that specify relations between
inputs and outputs of a system. A node specifies a
stream transformer, mapping streams of input variables
to streams of internal and output variables using a set of
defined expressions. Lustre nodes have cyclic behavior—
at execution cycle i, the node takes in the values of the
input streams at instant i, manipulates those values, and
issues new values for the internal and output variables.
Nodes have a limited form of memory, and can access
input, internal, and output values from previous instants
(up to a statically-determined finite limit). To update
program state within one computational step, combina-
torial variables are used; to store current program state
for the reference by later cycle or cycles, delay variables
are used (i.e., 1

z blocks in Simulink). During a cycle, all
variables are calculated according to their definitions:
combinatorial variables are computed combinatorially
using values at the current computational step, and de-
lay variables are computed combinatorially using values
from previous step or steps.

The body of a Lustre node consists of a set of equations
of the form x = expr where x is a variable identifier, and
expr is the expression defining the value of x at instant
i. Like in most programming languages, expression t
can make use of any of the other input, internal, or
output variables in defining x—as long as that variable
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v1 = (0 -> (pre in1));
v2 = (v1 > 1);
v3 = (false -> (pre v2));
out = (if in2 then v2 else v3);

Fig. 1: Sample Lustre code fragment

has already been assigned a value during the current
cycle of computation. The order of equations does not
matter in Lustre, except for data dependencies. That is,
within a computational step, as long as all the variables
involved in an equation have already been computed,
the equation can be evaluated.

Lustre supports many of the traditional numerical and
boolean operators, including +, −, ∗, /, <, >, %, etc.
Lustre also supports two important temporal operators:
pre(x) and →. The pre(x) operator, or ”previous”, eval-
uates to the value of x at instant (i−1). The → operator,
or ”followed by”, allows initialization of variables in the
first instant of execution. For example, the expression
x = 0 → pre(x) + 1 defines the value of x to be 0 in
instant 0, then defines it as 1 at instant 1—or, the value
at instant 0 plus one—and so forth.

For example, consider the code fragment in Figure 1,
in which in1 and in2 are input variables, v1, v2, and
v3 are internal variables, and out is an output variable.
Variables in1 and v1 are type of int and all the rests are
type of boolean. Variables in1 and v2 are delay variables,
values stored in them will be used by v1 and v3 in the
next cycle, respectively. Variable v1 is initially assigned
to 0 followed by (represented by operator arrow) in1’s
value from the previous cycle, at each subsequent cycle.
Similarly, values of variable v3 is a stream of boolean
values, which starts with a false followed by v2’s value
from the previous computational step.

2.4.1 Test Case Structure for Reactive Systems

There are two key artifacts necessary to construct a
test case, the test inputs, or test data—inputs given to
the system under test—and the test oracle—a judge on
the resulting execution [37], [38]. A test oracle can be
defined as a predicate on a sequence of stimuli to and
reactions from the SUT that judges the resulting behavior
according to some specification of correctness [39].

As reactive systems compute in cycles, multiple test
inputs must generally be provided. Therefore, tests are
divided into a series of test steps, where input and
expected output is provided for each step. In each step,
specific values are given for each input variable, then the
internal and output variables are computed accordingly.
The output at each step is compared to the expected
output provided as part of the test oracle. Table 1 shows
example test input that contains four steps together with
corresponding evaluations of all internal and output
variables. From this example, we can see how the values
of delay variables impact other variables.

TABLE 1: Sample Lustre Program Evaluation

step inputs
(in1, in2)

internals
(v1, v2, v3)

outputs
(out)

1 (1, T) (0, F, F) (F)
2 (2, T) (1, F, F) (F)
3 (3, F) (2, T, F) (F)
4 (4, F) (3, T, T) (T)

3 OBSERVABILITY-BASED TEST CREATION

In this chapter, we will illustrate the common issue
impacting the efficacy of test suites generated to sat-
isfy structural coverage criteria—masking—and formally
define our solution—observability [10]. We then will de-
scribe how extending common structural coverage cri-
teria to require observability can overcome masking,
and consequently, sensitivity to program structure and
oracle. Finally, we will describe how we implemented
our tool to generate test obligations for observability-
based coverage criteria.

3.1 Masking
Previous research has shown that the efficacy of test
suites satisfying structural coverage criteria—defined
over specific program elements such as control-flow
branches, conditions, or decisions—can be highly sensi-
tive to how expressions are written [1], [2], [11] and the
selection of variables monitored by the test oracle [3]–
[5]. This is due to masking, when the value of a variable
or subexpression is prevented from influencing the out-
come of another expression. In other words, masking
prevents the propagation of this effect, in the sense of
mutation, to a program output.

In this work, we are primarily concerned with mask-
ing in terms of Boolean expressions. Masking occurs
when the value of a condition (an atomic variable or
subexpression) in a Boolean decision hides the effects
of other conditions. We state a condition is masked if
the outcome of a Boolean decision cannot be changed
by varying the value of the condition while holding the
rest of the conditions fixed (i.e., no matter what value
the condition is, the final outcome of syntactic element of
interest does not change). For example, input a = true
masks b in the decision (a or b). As the decision’s
outcome is always true, regardless of the value of b, a
is masked. Similarly, a = false masks b in decision (a
and b), as the decision will always evaluate to false.

By requiring that each condition demonstrate an inde-
pendent influence on its decision’s outcome, MC/DC is
designed to prevent masking within an expression. Test
cases must exist where, if we flip the value of a single
condition while the others are held constant, the outcome
of that decision must be changed. Branch, Decision, and
Condition Coverage lack any such guarantee. This is one
reason MC/DC is often required for testing of avionics
and other safety critical systems—its requirements are
more strenuous, but the additional assurances of the
independent impact requirement theoretically increase
the probability that logic faults will be detected.
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1. v1 = in1 or in2;
2. out = v1 and in3;

Fig. 2: Non-inlined sample code
1. out = ((in1 or in2) and in3);

Fig. 3: Inlined sample code

However, how the code is structured has a major
impact on the formulation of the test obligations—the
prescribed goals—for a criterion and the efficacy of the
suites satisfying such obligations. Consider the code
fragments in Figures 2 and 3. The two code fragments
are semantically identical—they offer the same outcome—
but are written in two different styles. The fragment in
Figure 2 is split over two separate, simple equations (a
non-inlined style). The fragment in Figure 3 is inlined—
written as a single, complex expression.

As the obligations for criteria such as MC/DC are
posed over individual program elements, the MC/DC
obligations for the non-inlined version will be much
simpler—and more trivially satisfied—than obligations
for the inlined version. In the non-inlined version, for
example, in1 must be shown to overcome any masking
from the value of in2. However, in the inlined version,
in1 must overcome masking from both in2 and in3.
As a result, MC/DC is much harder to satisfy over
inlined implementations, and requires a larger number
of test cases. The produced test suites tend to be far more
effective [1], [2]. Therefore, we can see that traditional
coverage criteria are sensitive to program structure.

Further, just because a condition is shown to influence
the outcome of the decision it resides within, there is no
assurance that the condition will influence the program
output. Consider again the sample code fragment in Fig-
ure 2. Based on the definition of MC/DC, TestSuite1
in Table 2 provides MC/DC over the program frag-
ment in Figure 2; the test cases with in3 = false (bold
faced) contribute towards MC/DC of in1 or in2 in v1.
Nevertheless, if we monitor the output variable out,
the effect of in1 and in2 cannot be observed in the
output since it will be masked out by in3 = false. Thus,
TestSuite1 gives us MC/DC coverage of the non-
inlined program fragment, but a fault on the first line
will never propagate to the output. On the other hand,
TestSuite2 will also give MC/DC coverage of the
program, but since in3 = true in the first two test cases,
faults in the first statement can propagate to an output.

Because coverage obligations are posed over individ-
ual program elements, and make no demands on what
happens after that element is executed, masking can
prevent triggered faults from being observed. Masking
can prevent an infection from propagating, hindering the
oracle’s ability to reveal a fault.

Masking can be partially mitigated through selection
of the correct oracle strategy. For instance, by monitoring
all internal state variables as well as all the outputs,

TABLE 2: Sample test suites satisfying MC/DC for the
code in Figures 2-3

TestSuite1 = {(T, F, F), (F, T, F), (F, F, T), (T, T, T)}
TestSuite2 = {(T, F, T), (F, T, T), (F, F, T), (T, F, F)}

masking between statements is not an issue [3], [5], [40].
In the case of Figure 2, if we monitor the value of v1
during testing, failures introduced by in1 or in2 can be
detected without changing test suites. However, moni-
toring and specifying expected values for all variables is
generally prohibitively expensive (or outright infeasible).
A subset of variables could be used, if carefully chosen,
but this selection is also non-trivial to make.

An alternative approach is to strengthen the coverage
criteria with conditions on execution along the path from
the program element of interest to the output (or other
chosen oracle variables). Such path conditions can ensure
the observability of such elements when we test.

3.2 Observability
The observability of a program is the degree to which it
is possible to infer the internal state of a system given
the information that we can monitor from the program—
generally through program output [5]. We say an expres-
sion in a program is observable in a test case if we can
change only the expression’s value—keeping the rest of
the program fixed—and see the influence of this change
in the result of the test case. Otherwise, if this update
has no visible influence, we say the expression is not
observable in that test case. As we will see, observability
is closely related to strong mutation.

For example, consider the program fragment in Fig-
ure 2. We could replace the expression defining variable
v1 with a fixed value of false. Normally, execution
of the first test case in TestSuite1 in Table 2 would
cause v1 to evaluate to true. However, as the effect of
executing v1 is masked by in3 in expression out, we
would not notice the substitution—we lack observability
when executing this test case. On the other hand, if we
executed the first test case from TestSuite2 instead,
we would detect the substitution. In that case, we can
establish observability.

In theory, masking can be overcome by requiring ob-
servability from a test suite—in addition to the existing
test obligations of a host coverage criterion. Informally,
we can obtain observability of test obligations by re-
quiring that the variable whose assignment contains a
particular element of interest remains unmasked through
a path to a variable monitored by the test oracle.

Although this notion of observability was previously
defined as an explicit extension to MC/DC [10], such
requirements can be imposed on any existing criterion
over Boolean expressions. The path conditions of observ-
ability establish a masking-clear path from an expression
containing a program element of interest—one with
obligations defined over it—to a monitored variable. In
this study, we apply observability to Branch, Condition,
Decision, and MC/DC Coverage.
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To formally define how observability is established,
we can view a deterministic program P containing ex-
pression e as a transformer from inputs I to outputs
O : P : I → O. We write P [v/en] for program P where
the computed value for the nth instance of expression e
is replaced by value v. Note that this is not a substitution.
Rather, we replace a single instance of expression e rather
than all instances, which is more akin to mutation. We
state e is observable in test t if ∃v.P (t) ̸= P [v/en](t).

This formulation is a generalization of the semantic
idea behind masking MC/DC [24], lifted from decisions
to programs. In masking MC/DC, the main obligation is
that, for each condition c in given decision D, there are
a pair of test cases ti and tj ensuring that c is observable
in D’s outcome for both outcomes (true and false):
((D(ti) ̸= D[true/c](ti)) ∧ ((D(tj) ̸= D[false/c](tj))).

One can directly lift MC/DC obligations to observable
MC/DC obligations by moving the observability obliga-
tion from the decision to the program output. Given test
suite T, the OMC/DC obligations are:

(1)
(∀c ∈ Cond(P )).

((∃t ∈ T. (P (t) ̸= P [true/c](t)))

∧ (∃t ∈ T. (P (t) ̸= P [false/c](t))))

where Cond(P) is the set of all conditions in program
P . This formula can be straightforwardly generalized
from conditions to several different program structures:
decisions to perform Observable Decision Coverage,
branches for Observable Branch Coverage, or Boolean
variable assignments if we wish to pair Observability
with Condition Coverage.

There are strong connections between MC/DC, ob-
servability, and mutation testing. From the definition
above, it is clear that masking MC/DC corresponds
to weak or firm mutation (depending on whether or
not a decision is observable) for mutations that replace
each condition with constant true and false. Similarly,
Observable MC/DC corresponds to strong mutation for
these mutants. Observability offers the means to ensure a
path from an expression to the program output, ensuring
that the effect of a fault is detected. By explicitly defining
a path constraint, Observable criteria offer feedback to
the test generation process. In fact, one could use the
same path constraints along with Boolean-based muta-
tion operators to satisfy a subset of strong mutation.

This relationship shows a connection between equiv-
alent mutants and “dead code”. If an MC/DC (resp.
Observable MC/DC) obligation cannot be satisfied, it
means that the expression can be simplified in such a
way that the program behaves equivalently, as has been
examined in the literature on vacuity [41].

3.3 Tagged Semantics
The semantic definition for observability, defined above,
is unwieldy for test generation and test measurement.
The analysis would require two versions of the program
running in parallel to check that the results match. Then,

for test measurement, the test suite must be executed
separately for each pair of modified programs.

In order to define an observability constraint that
efficiently supports monitoring and test generation, we
can approximate semantic observability using a tagged
semantics approach [42]. Each variable corresponding to
a Boolean expression or atomic value in the program
is assigned a tag, the observability of which is tracked
through the execution of the a program. If a tag is
propagated to the output—or any “monitored” internal
variable—the corresponding path condition is consid-
ered to be fulfilled. More precisely, we track pairings of
tag and concrete outcome. If a tagged variable appears
more than once in a decision, a tag is assigned to each
occurrence uniquely. We then examine the number of all
possible pairs that have reached as output in some test
in order to evaluate the coverage level for a test suite.

Formal tagging semantics have been defined for a set
of expressions, an imperative command language, as
well as a simple dataflow language (shown in Table 3). A
reduction semantics with evaluation contexts (RSEC) [43]
is used for presentation, and the K tool suite [44] is
used to check for consistency. The rules, which run over
configurations containing K (the syntax being evaluated)
and a set of configuration parameters being labeled,
operate by applying rewrites at positions in syntax
where the evaluation context allow. A context can be a
program or program fragment with a hole (represented
by □)—a placeholder where a rewrite can occur. In
their definition, maps are assumed to have operations—
lookup (σ x) and update σ[x ← ν], the empty map ∅,
and lists with concatenation x.y and cons elem :: x, and
operators. Additional syntax, which will be formatted as
gray background to distinguish from user-level syntax,
may be introduced during rewriting.

In Table 3, expressions yield (V al, TS) pairs, where
TS is a set of tags, and are evaluated in a context
containing environment ε of type Env = (id →
(V al x TS)). The expressions are standard, except the
tag(E, T ) which adds a tag to the set of tags associated
with the expression e. For any structural coverage, it is
assumed that each Boolean variable is wrapped in a tag
expression. Masking is defined by operators: 1) and—
given (a and b), for a is not masked out, b has to be
true, so the tag assigned to a propagates only when b
is true (and vice-versa); 2) or—given (a or b), for a is
not masked out, b has to be false, so the tag assigned to
a propagates only if b is false (and vice-versa); 3) ite—
given (if a then b else c), for b is not masked out, a
must be true, therefore b’s tag propagates when a is true;
similarly, c’s tag propagates when a is false; 4) relation
expressions such as a > b, a and b are never masked out
by each other; these will not be shown in Table 3.

The imperative language semantics define the way
tags broadcast through commands: tags need to prop-
agate through all variables assigned in either branch in
conditional statements, for the value of a variable can
be influenced by not being assigned by the condition.
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TABLE 3: Syntax and tagging semantics for imperative
and dataflow programs

Expression syntax, context, and semantics:
E ::= V al | Id | E op E | not E |

E ? E : E | tag(E, T ) | (Val, TS) | addTags(E, TS)
Context ::= □ | Context op E | E op Context | not Context |

Context ? E : E | addTags(Context , TS) |
⟨κ : Context , ϵ : Env , ...⟩

lit n⇒ (n, ∅)
var ⟨ϵ : σ⟩ [x]⇒ ⟨ϵ : σ⟩ [(σx)] if x ∈ dom(σ)
op (n0, l0)⊕ (n1, l1)⇒ (n0 ⊕ n1, l0 ∪ l1)

and1 (tt, l0) and (tt, l1)⇒ (tt, l0 ∪ l1)
and2 (tt, l0) and (ff, l1)⇒ (ff, l1)
and3 (ff, l0) and ⇒ (ff, l0)
or1 (ff, l0) and (ff, l1)⇒ (ff, l0 ∪ l1)
or2 (ff, l0) and (tt, l1)⇒ (tt, l1)
or3 (tt, l0) and ⇒ (tt, l0)
ite1 (tt, l0) ? et : ee ⇒ addTags(et, l0)
ite2 (ff, l0) ? et : ee ⇒ addTags(ee, l0)

tag tag(t, (v, l))⇒ (v, l ∪ {(t, v)})
adt addTags((v, l0), l1)⇒ (v, l0 ∪ l1)

Imperative command syntax, context, and semantics:
S ::= skip | S; S | if E then S else S |

Id := E | while E do S | end(List Id, TS)
Context ::= · · · | Id := Context | if Context then S else S |

Context; S | ⟨κ : Context , ϵ : Env , C : TS⟩
asgn ⟨ϵ : σ > [x := (n, l)]⇒< ϵ : σ [x← (n, l)]⟩ [skip]

seq skip; s2 ⇒ s2
cond1 ⟨C : c⟩ [if (tt, l) then s1 else s2]⇒

⟨C : c ∪ l⟩ [s2; end (V, c)]

where V = (Assigned s1) . (Assigned s2)
cond2 ⟨C : c⟩ [if (ff, l) then s1 else s2]⇒

⟨C : c ∪ l⟩ [s1; end (V, c)]

where V = (Assigned s1) . (Assigned s2)
while while (e) s⇒ if (e) then (s; while (e) s) else skip

endcond1 ⟨C : c′⟩ [end (nil, c)]⇒ ⟨C : c⟩ [skip]
endcond2 ⟨ϵ : σ, C : c′⟩ [end (x :: V, c)]⇒ ⟨ϵ : σ′, C : c′⟩

[end (V, c)]where (σ x) = (n, l) and

σ′ = σ
[
x⇐

(
n, l ∪ c′

)]
prog s⇒ ⟨κ : s, ϵ : ∅, C : ∅⟩

Dataflow program syntax, context, and semantics:
EQ ::= Id = E | id = pre (E)

Prog ::= (I, Env, List EQ)
Context ::= · · · | Context; List EQ | Context :: List EQ |

EQ :: Context | Id = Context |
Id = pre(Context) | ⟨κ : Context , τ :

List Env, O : List Env, ϵ : Env, S : Env⟩
comb ⟨ϵ : σ⟩ eqs0. ((x = (n, l)) :: eqs1)⇒

⟨ϵ : σ [x← (n, l)]⟩ eqs0.eqs1
state ⟨S : σ⟩ eqs0. ((x = (n, l)) :: eqs1)⇒

⟨S : σ [x⇐ (n, l)]⟩ eqs0.eqs1
write ⟨O : κ, ϵ : c⟩ nil; eqs⇒ ⟨O : κ. [c] , ϵ : c⟩ eqs
cycle ⟨τ : σi :: l, ϵ : , S : σl⟩ eqs⇒

⟨τ : i, ϵ : (σi ∪ σl) , S : ∅⟩ eqs; eqs
prog (i, s, eqs)⇒ ⟨τ : i, O : nil, S : s, ϵ : ∅, κ : eqs⟩

C : TS is introduced into the expression configura-
tion to store the set of variable tags. Once a statement
has been executed, the tags added to C by conditional
statements will be removed. An end statement is intro-
duced to implement that—it is appended to clear C and
propagate the conditional tags to all variables assigned
in the conditional body. A helper function (Assigned s)
will then return the list of variables assigned in s. Given

a program (or program fragment) containing inputs, the
rules defined in table 3 will determine the set of tags
propagating to output.

Dataflow languages, such as Simulink and SCADE,
are popular for model-based development, and assign
values to a set of equations in response to periodic
inputs. To store system state, state variables ( 1z blocks
in Simulink) are used. Our dataflow language consists
of assignments to combinatorial and state variables, and
the semantics are defined over lists (traces) of input vari-
able values. The expression configuration is extended
to contain an input trace I , output trace O, and state
environments S. Evaluation proceeds by cycles: at the
beginning of a cycle, the cycle rule constructs the initial
evaluation environment.

During a cycle, variable values are recorded using the
comb and state rules. Note that the context does not
force an ordering on evaluation of equations; instead, an
equation can evaluate as soon as all variables it uses have
been stored in the environment. When all equations have
been computed, the write rule appends the environment
to the output list. The prog rule, given an input list,
an initial state environment, and a list of equations,
initializes the configuration for the cycle rule. Coverage
can be determined by examining the tags stored in the
output environment list.

Note that both the tagging semantics are optimistically
inaccurate with respect to observability; that is, they may
report that certain conditions are observable when they
are not. This is easily demonstrated by a code fragment:

if (c) then out := 0 else out := 0 ;

The semantic model of observability will correctly report
that c is not observable; it cannot affect the outcome
of this code fragment. However, the tagging model
propagates the tags of c to the assignments in the then
and else branches.

We have implemented observable versions of Branch,
Condition, Decision, and MC/DC Coverage as part of
model-based test generation for the Lustre dataflow
language. However, the concept of observability is not
restricted to any one language, generation paradigm, or
product domain. The semantic model described in this
section should be valid for any imperative language,
such as C or Java. Ongoing research efforts are in
progress to extend these ideas to Java and to assembly
language. In addition, Colaco et al. have implemented
observability through an extended tag semantics that
takes into account certain non-Boolean faults as part of
the Scade 6 language [45].

3.4 Implementation: Model-Based Test Generation

In model-based test generation, models are annotated
with trap properties. A property of interest is negated,
then the model checker returns a counterexample—a test
input sequence demonstrating that the property can be
met. In order to generate tests that meet the conditions
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of observability, we need to be able to annotate the pro-
gram with trap properties that track the tags described
above. This is accomplished by conjoining the coverage
obligations of the host criterion with a path condition
representing the variable in which the test obligation’s
target resides. Observability can be attained either im-
mediately—within the current computational cycle—or
after a delay. Path conditions must reflect either case. In
this section, we describe this annotation for the Lustre
dataflow language [9].

3.4.1 Immediate Non-Masking Paths
A variable x is observable if a computational path can
be found from x to a monitored variable z in which x
is not masked. If such a path can be taken entirely
within one computational step, we call it an immediate
non-masking path, and variable x is immediately observable.
Such paths can be defined inductively by examining the
variables that use x in their definition. If x is used in the
definition of variable y, and x is not masked by other
variables within that definition, then x is immediately
observable at y. We then consider the variables that use
y in their definitions, and apply the same criteria.

We track such notions by introducing additional
variables. First, combinatorial usage expressions—
x_COMB_USED_BY_y—determine whether a variable
is masked within a definition. The variable is
true if x is not masked by other elements of y’s
definition. Second, immediate observability expressions—
x_COMB_OBSERVED—which offer a way to check the
status of the non-masking path. For each Boolean
variable in the program, there could exist one or more
immediate non-masking paths.

Consider the code fragment in Figure 4, where out
is an output variable, in1, in2, and in3 are input
variables, and v1, v2, and v3 are internal variables.

v1 = in1 and in2;
v2 = if (in3) then v3 else v1;
v3 = not in2;
out = v1 or v2;

Fig. 4: Sample Lustre code

We can generate additional definitions to track the
observability of variables as in Figure 5. Variable v1
is used by two variables—v2 and out—in their defi-
nitions and therefore has two potential immediate non-
masking paths: directly through the output variable out
or through v2. Variable in2 also has two potential im-
mediate non-masking paths through its use in defining
v1 and v3. All the other variables are each used once,
so each has only one immediate non-masking path.

3.4.2 Delayed Non-Masking Paths
Reactive systems compute in cycles, and variable val-
ues from the previous cycle can be referred to. As a
result, the effect of a variable on output may not be

in1_COMB_USED_BY_v1 = in2;
in2_COMB_USED_BY_v1 = in1;
in3_COMB_USED_BY_v2 = true;
v3_COMB_USED_BY_v2 = in3;
v1_COMB_USED_BY_v2 = (not in3);
in2_COMB_USED_BY_v3 = true;
v1_COMB_USED_BY_out = (not v2);
v2_COMB_USED_BY_out = (not v1);

out_COMB_OBSERVED = true;
in1_COMB_OBSERVED = (in1_COMB_USED_BY_v1

and v1_COMB_OBSERVED);
in2_COMB_OBSERVED = ((in2_COMB_USED_BY_v1

and v1_COMB_OBSERVED) or
(in2_COMB_USED_BY_v3 and
v3_COMB_OBSERVED));

in3_COMB_OBSERVED = (in3_COMB_USED_BY_v2
and v2_COMB_OBSERVED);

v3_COMB_OBSERVED = (v3_COMB_USED_BY_v2 and
v2_COMB_OBSERVED);

v1_COMB_OBSERVED = ((v1_COMB_USED_BY_v2
and v2_COMB_OBSERVED) or
(v1_COMB_USED_BY_out and
out_COMB_OBSERVED));

v2_COMB_OBSERVED = (v2_COMB_USED_BY_out
and out_COMB_OBSERVED);

Fig. 5: Introduced variables to track immediate non-
masking paths

observed until several computation cycles after a value is
computed. In each of these intermediate computational
steps, the system state is stored in a delay variable, until
it propagates to an output eventually. We call such a
path—propagating influence through a delay variable to
an output—a delayed non-masking path and the variable
is delay observable. A delayed non-masking path can be
built over multiple immediate non-masking paths: from
a variable to a latch—a delay variable—then from the
latch to another latch until an output is reached.

Suppose we have a sample code fragment in Figure 6,
where delay1 and delay2 are delay expressions.

delay1 = (0 -> pre(in1));
v1 = (if (delay1 > 0) then true else in2);
delay2 = (false -> pre(v1));

Fig. 6: Sample Lustre code

As with immediate non-masking paths, we can in-
ductively build paths involving delay expressions. An
example can be seen in Figure 7. Variable v1, which uses
delay1 and in2 in its definition, is used in the defini-
tion of delay expression delay2. Therefore, a delayed
non-masking path from delay1 to delay2 is composed
of the immediate non-masking path from delay1 to v1,
then a delayed non-masking path from v1 to delay2.

This annotation gives us the means to track imme-
diate paths to latches. However, it is still necessary to
establish the means to knit these paths together to form
the sequential path over one or more delays passed
on the path to output. To do so, we introduce a to-
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delay1_COMB_USED_BY_v1 = true;
in2_COMB_USED_BY_v1 = (not (delay1 > 0));

in1_SEQ_USED_BY_delay1 = true;
v1_SEQ_USED_BY_delay2 = true;
delay1_SEQ_USED_BY_delay2 =

(delay1_COMB_USED_BY_v1 and
v1_SEQ_USED_BY_delay2);

in2_SEQ_USED_BY_delay2 =
(in2_COMB_USED_BY_v1 and
v1_SEQ_USED_BY_delay2);

Fig. 7: Introduced variables to track delayed non-
masking paths

ken mechanism—a special variable to mark the current
delay location. Once the token is initialized to a delay
variable x, it can non-deterministically move to any
other delay location—as long as x can be sequentially
used by that location. It can also move to a special
TOKEN OUTPUT STATE, is a monitored variable is
reached or TOKEN ERROR STATE is the token can
no longer possible be observed through a monitored
variable or another delay.

v1 = (false -> (not (pre v2)));
v2 = (false -> (pre v1));
v3 = (0 -> (if ((pre v3) = 3)

then 0
else ((pre v3) + 1)));

out = (((v1 and v2) and (v3 = 2)) or
((not (v1 and v2)) and (not (v3 =

2))));

Fig. 8: Sample Lustre code

We generate token equations to track the path taken
through delay variables. Consider the code fragment
in Figure 8. We can then generate the token equations
shown in Figure 9. In this case, if we are currently at
TOKEN_D1, and v1 is immediately observable, then we
reach the output. Otherwise, if v1 can be delay observed
through v2, then the token moves to TOKEN_D3.

3.4.3 Test Obligations
Test obligations are the goals prescribed by an ade-
quacy criterion, establishing properties deemed impor-
tant to thorough testing. Consider the expression: v1
= ((v2 and in1) and delay2). If we wanted to
satisfy MC/DC coverage, we would need to establish
a set of test cases where each condition (v2, in1, and
delay2) is true and false, where the entire decision
v1 evaluates to true and false, and where each
condition is not masked within that decision. These
obligations can be established as Boolean properties over
the conditions. For example, we could achieve both
outcomes for condition v2 and show non-masking with
these two properties: v2_AT_v1_TRUE = ((v2 and
in1) and delay2) and v2_AT_v1_TRUE = (((not
v2) and in1) and delay2). If we can show that

token_next = (if ((pre token) =
TOKEN_INIT_STATE) then token_first
else (if ((pre token) =

TOKEN_ERROR_STATE) then
TOKEN_ERROR_STATE

else (if ((pre token) =
TOKEN_OUTPUT_STATE) then
TOKEN_OUTPUT_STATE

else (if ((pre token) = TOKEN_D1) then
(if v1_COMB_OBSERVED then

TOKEN_OUTPUT_STATE
else (if ((token_nondet = TOKEN_D3)

and v1_SEQ_USED_BY_v2)
then TOKEN_D3 else TOKEN_ERROR_STATE))

else (if ((pre token) = TOKEN_D2) then
(if v3_COMB_OBSERVED then

TOKEN_OUTPUT_STATE
else (if ((token_nondet = TOKEN_D2)

and v3_SEQ_USED_BY_v3)
then TOKEN_D2 else TOKEN_ERROR_STATE))

else (if ((pre token) = TOKEN_D3) then
(if v2_COMB_OBSERVED then

TOKEN_OUTPUT_STATE
else (if ((token_nondet = TOKEN_D1)

and v2_SEQ_USED_BY_v1)
then TOKEN_D1 else TOKEN_ERROR_STATE))

else TOKEN_ERROR_STATE))))));

Fig. 9: Example token equations.

each obligation—each property—is satisfied by at least
one test case, we can show that the criterion is satisfied.

Observability-based test obligations conjoin the base
obligations of the host criterion (e.g., MC/DC) with the
path conditions required to establish either an immediate
non-masking path or a delayed non-masking path from
the expression where the base obligation is established
to a monitored variable. An extension of MC/DC obli-
gation v2_AT_v1_TRUE to the equivalent Observable
MC/DC obligation is shown in Figure 10.

v2_AT_v1_TRUE = ((v2 and in1) and delay2);
v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE =

v2_AT_v1_TRUE and (v1_SEQ_USED_BY_delay1
and token=delay1);

v2_AT_v1_TRUE_CAPTURED =
v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE ->
(v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE or
pre(v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE));

obligation_0 = ((v2_AT_v1_TRUE and
v1_COMB_OBSERVED) or
(v2_AT_v1_TRUE_CAPTURED and token =
TOKEN_OUTPUT_STATE));

Fig. 10: Sample test obligations

Expression v2_AT_v1_TRUE is a base obligation
from the host criteria, defining an MC/DC obliga-
tion in expression v1. For delayed non-masking paths,
we have to define the instant in which the ex-
pression would be immediately observable at a de-
lay (the moment of capture). We then must latch
this fact for the remainder of execution, in case
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the execution path hits a monitored variable. Expres-
sions v2_AT_v1_TRUE_AFFECTING_AT_CAPTURE and
v2_AT_v1_TRUE_CAPTURED define this concept of cap-
ture for delayed non-masking paths. Finally, the full
obligation is defined in expression obligation_0. In
the obligation, the subexpression before the or operator
defines immediate observability, and the second subex-
pression defines delayed observability. If either path is
observed, then the obligation is met.

4 CASE STUDY

We wish to assess the quality—in terms of fault finding—
of test suites generated to satisfy both observable and
traditional versions of the studied coverage criteria. We
also want to evaluate the effect of observability on
the effectiveness of test suites. Thus, we address the
following questions:

1) Which criterion has the highest average likelihood
of fault detection?

2) Are test suites generated to satisfy observable vari-
ants of coverage criteria more effective than the test
suites generated to satisfy the original criterion?

The first question allows us to establish a baseline for
discussion, and a general ranking of criteria. Which
criterion—whether observable or traditional—returns
the best results, on average? In the second case, we wish
to understand whether observability generally offers a
beneficial effect—does it consistently improve the likeli-
hood of fault detection?

Additionally, we are interested in the nature of the
tests generated to satisfy observable and traditional
coverage criteria, and the effect of adding observability
constraints to a coverage criterion:

3) What impact does observability have on the gen-
eration cost, the average size of the generated
test suites, and the average percentage of satisfied
obligations for each criterion?

4) Across studied criteria, does observability have a
consistent effect on factors such as likelihood of
fault detection, oracle and structure sensitivity, and
satisfiability of obligations?

Question 3 allows us to examine how the addition
of observability impacts generation cost, suite size, and
the ability of the test case generation process to satisfy
the imposed test obligations. Question 4 allows us to
examine the impact of the choice of criterion. Does it matter
whether we start with MC/DC or Branch Coverage?
Does observability consistently impact test suites?

In order to answer these questions, we have performed
the following experiment:

1) Gathered case examples: We have assembled two
sets of software models, written in the Lustre lan-
guage (Section 4.1).

2) Generated mutants: We generated up to 500 mu-
tants, each containing a single fault. (Section 4.2)

3) Generated structural tests: We generated test suites
intended to satisfy Branch, Condition, Decision,

TABLE 4: Rockwell (non-inlined) example information

Model # Inputs # Internal Variables # Outputs
DWM1 11 569 7
DWM2 31 115 9
Latctl Batch 23 128 1
Microwave 13 162 4
Vertmax 40 30 2

TABLE 5: Rockwell (inlined) example information
Model # Inputs # Internal Variables # Outputs Average Complexity
DWM1 11 21 7 95.89285714
DWM2 31 10 9 21.36842105
Latctl Batch 23 19 1 5.714285714
Microwave 13 99 4 9.15
Vertmax 40 30 2 720.5

and MC/DC Coverage—as well as observable
variants of each—using counterexample-based test
generation. (Section 4.3)

4) Reduced test suites: We generated 50 reduced test
suites using the full test suite generated in the
previous step. (Section 4.4)

5) Computed effectiveness: We computed the fault
finding effectiveness of each test suite using both
an output-only oracle and an oracle considering
all program variables (a maximally powerful oracle)
against the set of mutants. (Section 4.5)

4.1 Case Examples

In this study, we have made use of two pools of systems.
The studied systems were originally modeled using the
Simulink and Stateflow notations [33], [34]. Then, each
was translated to the Lustre synchronous programming
language [46] to take advantage of existing automation.
In practice, Lustre would be automatically translated to
C code. This is a syntactic transformation, and if applied
to C, the results of this study would be identical.

Note that Lustre systems, and the original Simulink
and Stateflow systems from which they were translated,
operate in a sequence of computational steps. In each
step, input is received, internal computations are per-
formed sequentially, and output is produced. Within a
step, no iteration or recursion is done—each internal
variable is defined, and the value for it computed,
exactly once. The system itself operates as an large loop.

4.1.1 Rockwell Collins Dataset

The first set of systems consists of four industrial systems
developed by Rockwell Collins engineers. Two of these
systems, DWM 1 and DWM 2, represent portions of
a Display Window Manager for a commercial cockpit
display system. The other two systems—Vertmax Batch
and Latctl Batch—represent the vertical and lateral mode
logic for a Flight Guidance System (FGS). In addition, we
have used a Microwave System—control software for a
generic microwave oven developed as a non-proprietary
teaching aid at Rockwell Collins. This set of benchmarks
has been used in previous model-based test generation
research [1], [3], [5], [11], [40], [47], [48], including pre-
vious work studying Observable MC/DC [10].
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TABLE 6: Benchmark example information
Model # Inputs # Internal Variables # Outputs Average Complexity
6counter 1 4 1 3.5
AlarmFunctionalR2012 44 182 5 9.086666667
CarAll 2 8 1 4.125
cd 1 6 1 3.833333333
DockingApproach 13 1410 11 1.853754941
DragonAll 13 22 1 19.47619048
DragonAll2 13 27 1 20.77272727
durationThm1 5 7 1 3.333333333
ex3 2 5 1 3.6
ex8 2 5 1 3.4
fast 1 14 19 1 4.166666667
fast 2 14 30 1 4.37037037
FireFly 9 17 1 9.125
Gas 2 8 1 2.444444444
HysteresisAll 2 5 1 5.4
IllinoisAll 10 16 1 11.85714286
Infusion 20 861 5 2.745823389
MesiAll 4 10 1 5.545454545
Metros1 3 16 1 3.533333333
Microwave01 13 126 1 6.417647059
MoesiAll 5 12 1 4.071428571
PetersonAll 12 28 1 14.65517241
ProducerConsumerAll 4 12 1 3.153846154
ProductionCell 3 15 1 3.214285714
Readwrit 9 24 1 12.04
RtpAll 12 24 1 15.96
Speed2 2 5 1 3.6
Stalmark 1 3 1 21
SteamBoilerNoArr1 33 99 1 14.85
SteamBoilerNoArr2 19 3 1 30.66666667
Swimmingpool1 8 21 1 8.1875
Switch 3 2 1 3.333333333
Switch2 3 2 1 3.333333333
SynapseAll 4 10 1 4.555555556
Ticket3iAll 13 20 1 11.45454545
Traffic 1 3 1 5.666666667
Tramway 4 23 1 2.727272727
TwistedCounters 1 4 1 5
Two Counters 1 3 1 2
UMS 5 39 1 2.837837838

Previous work has found that, due to masking, the
structure of the model can have a significant impact
on the resulting efficacy of generated test suites for
MC/DC [1], [2]. In theory, observability can assist in
overcoming masking. To study this, we have generated
two variants of each of the Rockwell Collins systems:

• Maximally Non-Inlined: Each expression is as sim-
ple as it can possibly be, with sub-expressions split
into independent intermediate variable calculations.

• Maximally Inlined: Each expression is as complex
as it can possibly be, with no intermediate sub-
expressions used.

We repeat the entire experiment with both variants, in
order to more thoroughly study the interaction between
program structure and observability.

Information related to the non-inlined version of each
system is provided in Table 4, and information related to
the inlined versions is provided in Table 5. In both cases,
we list the number of input variables, number of internal
variables, and number of output variables. The latter two
numbers give an indication of the size of the model,
as each internal and output variable corresponds to an
expression that must be calculated each computational
cycle. For the inlined versions, we also list the average
complexity of the inlined expressions—that is, the average
number of boolean operations in each expression.

4.1.2 Benchmarks Dataset
While the Rockwell Collins systems allow us to take
a detailed look at the effect of program structure, the
number of systems is relatively low. In order to more
thoroughly analyze the effects of observability, we have
also chosen an additional 40 systems from the open-

source Benchmarks dataset. Several of these models have
been used in previous work, including a NASA ex-
ample, Docking Approach, which describes the behavior
of a space shuttle as it docks with the International
Space Station [11]. Two other systems, Infusion Mgr
and Alarms—which represent the prescription manage-
ment and alarm-induced behavior of an infusion pump
device—were also used in previous work [3], [11], [49].

The Benchmark Lustre models are available from
https://github.com/Greg4cr/

Reworked-Benchmarks/tree/SingleNode.

Information related to each system is provided in Ta-
ble 6, where we again list the number of input variables,
number of internal variables, and number of output
variables. In this case, we lack the original models, and
cannot control the level of inlining. Therefore, we also list
the average complexity of expressions to give an idea of
how inlined each model is.

4.2 Mutant Generation
The following mutation operators were used in this
study:

• Arithmetic: Changes an arithmetic operator (+, -, /,
*, mod, exp).

• Relational: Changes a relational operator (=, ̸=, <
,>,≤,≥)2.

• Boolean: Changes a boolean operator (∨,∧, XOR).
• Negation: Introduces the boolean ¬ operator.
• Delay: Introduces the delay operator on a variable

reference (that is, use the stored value of the variable
from the previous computational cycle rather than
the newly computed value).

• Constant: Changes a constant expression by adding
or subtracting 1 from int and real constants, or by
negating boolean constants.

• Variable Replacement: Substitutes a variable occur-
ring in an equation with another variable of the
same type.

The mutation operators used in this study are discussed
at length in [50]. This method is designed such that all
mutants produced are both syntactically and semanti-
cally valid. That is, the mutants will compile, and no
mutant will crash the system under test.

Note that the type of mutants used in the evaluation
in this report are similar to those used by Andrews
et al., where the authors found that generated mutants
are a reasonable substitute for actual failures in testing
experiments [27]. Additionally, recent work from Just
et al. suggests a significant correlation between mutant
detection and real fault detection [26].

In order to control experiment costs, we do not use
all possible mutants for each model. Instead, we employ

2. Some definitions of this operator also replace the entire expression
with true or false. We do not do this in this experiment.

https://github.com/Greg4cr/Reworked-Benchmarks/tree/SingleNode
https://github.com/Greg4cr/Reworked-Benchmarks/tree/SingleNode
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the following rule-of-thumb—if a model has fewer than
500 possible mutations, we use all possible mutations. If
over 500 mutations are possible, we choose 500 of them
for use in the experiment. In order to select mutants, we
first gather a list of all possible mutations. Then, we use
the proportions of each mutation type in the full set to
select the number of mutants for the reduced set of 500,
or a little bit greater than 500 due to some calculating
error. Mutants of each type are then chosen randomly
until the determined number are chosen for that type.
This process prevents biasing towards particular types
of mutations. Instead, the proportion of each fault type
is maintained, despite not using the full set of mutations.

4.3 Test Data Generation

In this research, we explore four structural cover-
age criteria: Condition Coverage, Decision Coverage,
Branch Coverage, and Modified Condition/Decision
Coverage (MC/DC) [6], [19]. These criteria are defined
in Section 2.2. For each criterion, we generate tests
for both the traditional criterion as well as a ver-
sion requiring observability. We refer to the observ-
able versions of each criterion as Observable Condition
Coverage (OCondition), Observable Decision Coverage
(ODecision), Observable Branch Coverage (OBranch),
and Observable MC/DC (OMC/DC).

For our directed test generation approach, we used
counterexample-based test generation to generate tests
satisfying the four coverage criteria and their observ-
able variants [17], [51]. In this approach, each coverage
obligation is encoded as a temporal logic formula in
the model, and a model checker is used to produce a
counterexample illustrating how the coverage obligation
can be covered. This counterexample offers test input—a
series of values for each input variable for one or more
test steps. By repeating this process for each coverage
obligation for the system, we can use the model checker
to derive test sequences intended to achieve the maxi-
mum possible coverage of the model.

We have extended our model-based test generation
framework3 to also generate test cases for observable
criteria. This framework makes use of the JKind model
checker [36], [52] as the underlying generation engine
because we have found that it is efficient and produces
tests that are easy to understand [53].

The test generation framework is available from
https://github.com/MENG2010/lustre.

4.4 Test Suite Reduction

Counterexample-based test generation results in a sep-
arate test for each coverage obligation. This leads to a
large amount of redundancy in the tests generated, as

3. Used in past projects, such as [1], [3], [11].

each test likely covers several obligations. Consequently,
the test suite generated for each coverage criterion is gen-
erally much larger than is required to provide coverage.
Given the correlation between test suite size and fault
finding effectiveness [54], this has the potential to yield
misleading results—an unnecessarily large test suite may
lead us to conclude that a coverage criterion has led us
to select effective tests, when in reality it is the size of
the test suite that is responsible for its effectiveness. To
avoid this, we reduce each naı̈vely generated test suite
while maintaining the coverage achieved. To prevent us
from selecting a test suite that happens to be exception-
ally good or exceptionally poor relative to the possible
reduced test suites, we produce 50 different reduced test
suites for each case example.

Reduction is performed using a simple greedy algo-
rithm. We determine the coverage obligations satisfied
by each test generated, and initialize an empty test set
reduced. We then randomly select a test from the full set
of tests; if it satisfies obligations not satisfied by any test
input in reduced, we add it to reduced. We continue until
all tests have been examined in the full set of tests.

4.5 Computing Effectiveness

In order to compute effectiveness of the generated test
suites, we produce traces of execution by executing each
test case against the original program and each mutant—
recording the value of all variables at each step.

In our study, we use what are known as expected value
oracles as our test oracles [3]. Consider the following
testing process for a software system: (1) the tester
selects inputs using some criterion—structural coverage,
random testing, or engineering judgment; (2) the tester
then defines concrete, anticipated values for these in-
puts for one or more variables (internal variables or
output variables) in the program. Past experience with
industrial practitioners indicates that such oracles are
commonly used in testing critical systems, such as those
in the avionics or medical device fields.

We explore the use of two formulations of expected
value oracle: an output-only (OO) oracle strategy defines
expected values for all outputs, and a maximum (MX)
oracle strategy that defines expected values for all outputs
and all internal state variables. The OO oracle strategy
represents the oracle most likely to be used in practice.
Both oracle strategies have been used in previous work,
and we use both to allow for comparison [1], [3].

To give an example, consider the model defined in
Figure 1. This model has a single output variable, out1.
Therefore, the output-only oracle strategy would define
an expected value for out1. The model also has three
internal state variables—v1, v2, and v3. The maximum
oracle strategy would define expected values for all three
of those variables and the output variable out1.

To produce an oracle, we use the values of the mon-
itored variables from the traces gathered by executing
test cases on the original program, and we compare

https://github.com/MENG2010/lustre
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TABLE 7: Average percent of mutants killed for each
pairing of criterion and oracle.

Rockwell (I) Rockwell (NI) Benchmarks
MX OO MX OO MX OO

OMC/DC 95.61% 87.03% 98.85% 85.88% 89.62% 65.14%
MC/DC 94.85% 84.94% 94.87% 53.89% 88.36% 57.13%
OCondition 88.38% 68.50% 98.95% 85.61% 86.22% 62.93%
Condition 71.00% 55.71% 93.38% 47.64% 79.37% 50.50%
ODecision 83.38% 60.33% 98.37% 83.44% 86.21% 64.70%
Decision 85.03% 53.48% 93.32% 45.73% 78.81% 49.26%
OBranch 81.92% 57.10% 96.84% 70.19% 85.47% 62.70%
Branch 84.20% 47.91% 87.17% 32.05% 73.19% 46.50%

those values to those recorded for each mutant. The
fault finding effectiveness of the test suite and oracle
pair is computed as the number of mutants detected
(or “killed”). For all studied systems, we assess the
fault-finding effectiveness of each test suite and oracle
combination by calculating the ratio of mutants killed to
total number of mutants.

5 RESULTS AND DISCUSSION

In this section, we will address our research questions
and discuss the implications of the results. As a re-
minder, we are interested in the following:

1) Which criterion has the highest average likelihood
of fault detection? (Section 5.1)

2) Are test suites generated to satisfy observable vari-
ants of coverage criteria more effective than the test
suites generated to satisfy the original criterion?
(Section 5.2)

3) What impact does observability have on the gen-
eration cost, the average size of the generated test
suites, the average percentage of satisfied obliga-
tions for each criterion? (Section 5.4)

4) Across the studied criteria, does observability have
a consistent effect on test suites in terms of factors
such as likelihood of fault detection, oracle and
structure sensitivity, and satisfiability of obliga-
tions? (Section 5.5)

5.1 Overall Efficacy

Table 7 lists the average percentage of faults detected
by test suites generated for each of the eight coverage
criteria, separated by oracle strategy, for the Rockwell
and Benchmarks datasets. From these results, we can
see that—on average—test suites generated to satisfy
OMC/DC tend to kill a larger percent of mutants than
test suites satisfying all other coverage criteria. For
both variants of the Rockwell systems—with any oracle
strategy—test suites generated to satisfy OMC/DC kill
the most mutants. The sole exception is for the non-
inlined variant—with the maximum oracle strategy—
where OCondition suites outperform OMC/DC by 0.1%.
For the Benchmark models—with any oracle strategy—
OMC/DC-satisfying suites have the highest average
possibility of revealing faults.

Test suites satisfying Observable MC/DC are
generally the most effective, killing 95.61% of
mutants on average (MX oracle strategy) and

87.03% (OO oracle strategy) for the inlined
Rockwell models, 98.85% (MX)/85.88% (OO) for

the non-inlined Rockwell models, and 89.62%
(MX)/65.14% (OO) for the Benchmarks models.

We can examine this question further through statis-
tical analysis. To address this, we first formulate our
hypothesis as follow:

H1: For each system in our study—with any oracle
strategy—the OMC/DC criterion produces test suites
with the highest likelihood of fault detection.

The paired null hypothesis is,
Hθ: For each system in our study—with any oracle

strategy—the OMC/DC criterion produces test suites
with a likelihood of fault detection drawn from the same
distribution as another criterion’s suites.

We have performed a one-sided (strictly greater)
Mann-Whiteney-Wilconxon rank-sum test [55], a non-
parametric hypothesis test used to determine whether
two independent samples were selected from popula-
tions having the same distribution, to verify our hypoth-
esis. Since we cannot generalize across non-randomly
selected case examples, we apply the statistical test over
pairs of coverage criteria (i.e., any of the coverage crite-
ria versus the rest of the coverage criteria respectively,
therefore, we have 56 pairs of metrics in total), for each
pairing of model and oracle type, with α = 0.05.

The statistical results are presented in Table 8. In this
table, we list the percentage of cases for each dataset
where we can reject Hθ—that is, where we can confirm
that OMC/DC outperforms the compared criterion. We
also list the percentage of cases where the reverse is
true—where we can state that the other criterion out-
performs OMC/DC with significance. For example, for
the Rockwell (Non-inlined) models, with an output-only
oracle strategy, OMC/DC outperforms all criteria except
OCondition in 100% of cases, with statistical significance.

For Benchmarks, with any oracle strategy, the percent-
age of cases where OMC/DC suites outperform suites
satisfying other coverage criteria is always higher than
the percentage of suites satisfying other criteria outper-
forming OMC/DC suites. That is, OMC/DC always has
a highest average likelihood of fault detection. This is
also true in all situations for both variants of the Rock-
well models with an output-only oracle strategy. Results
are a little less clear-cut for the Rockwell models when
paired with a maximum oracle strategy, where other
criteria occasionally tie or outperform OMC/DC. For
instance, for the inlined variants, ODecision, OBranch,
and Branch suites outperform OMC/DC suites as often
as OMC/DC suites outperform their counterparts.

Intuitively, these results makes sense. There is a clear
boost in performance from the addition of observability.
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TABLE 8: Percent of cases where OMC/DC suites outperform suites satisfying other criteria with significance, and
where suites satisfying other criteria outperform OMC/DC suites.

MX Oracle OO Oracle
More Effective Less Effective More Effective Less Effective

Benchmarks

ODecision 45.00% 10.00% 45.00% 15.00%
OCondition 52.50% 15.00% 47.50% 15.00%
OBranch 37.84% 28.95% 45.95% 21.05%
MC/DC 45.00% 15.00% 55.00% 5.00%
Decision 57.50% 2.50% 67.50% 2.50%
Condition 65.00% 5.00% 72.50% 2.50%
Branch 65.79% 7.69% 71.05% 7.69%

Rockwell (Inlined)

ODecision 40.00% 40.00% 80.00% 20.00%
OCondition 60.00% 0.00% 100.00% 0.00%
OBranch 20.00% 20.00% 80.00% 20.00%
MC/DC 40.00% 20.00% 80.00% 20.00%
Decision 40.00% 20.00% 80.00% 20.00%
Condition 80.00% 20.00% 80.00% 0.00%
Branch 20.00% 20.00% 80.00% 20.00%

Rockwell (Non-inlined)

ODecision 80.00% 20.00% 100.00% 0.00%
OCondition 20.00% 20.00% 40.00% 20.00%
OBranch 40.00% 60.00% 100.00% 0.00%
MC/DC 80.00% 0.00% 100.00% 0.00%
Decision 100.00% 0.00% 100.00% 0.00%
Condition 100.00% 0.00% 100.00% 0.00%
Branch 60.00% 40.00% 100.00% 0.00%

As Table 7 shows, the observable versions of criteria
almost always outperform both their non-observable
counterpart and all other non-observable criteria, except the
original MC/DC. MC/DC suites outperform all of the
other non-observable versions of the studied criteria, and
is the only non-observable criterion to produce suites
that occasionally outperform the observable counter-
parts. The addition of observability boosts the efficacy of
the generated test suites, generally with the end result
that Observable MC/DC produces the most effective
test suites. OMC/DC does not always produce the best
suites, but it is the safest choice of the studied criteria.

Across the board, efficacy tends to be higher for the
maximum oracle strategy, and the gap between observ-
able and non-observable criteria tends to be less. This
can be explained by examining the concept of masking.
With an output-only oracle strategy, input must trigger
a fault, and the effect of a fault must not be masked by
expressions on the path to the output. Observability is
intended to overcome masking, and clearly does assist—
given the results for output-only oracles. However, with
a maximum oracle strategy, we already have expression-
level observability. Masking along the path to the output
does not need to be overcome. The observable criteria
generally produce more effective suites even in these
cases, but the possibility for improvement is smaller.

In general, however, maximum oracles are pro-
hibitively expensive to employ [3]. A tester would need
to specify expected values for all variables, for each test
step. This is not usually a realistic goal. Output-only
oracles are the most common, and OMC/DC appears
to be the most effective criterion when paired with this
common oracle strategy.

5.2 Efficacy Impact of the Addition of Observability
In Table 9, we present the average improvement in effi-
cacy when moving from a traditional criterion—such as
MC/DC—to its observable counterpart over all models
for each dataset. Choosing the test input that would

TABLE 9: Average improvement in the likelihood of fault
detection, after adding observability constraints

MX Oracle OO Oracle

Benchmarks

MC/DC 1.79% 53.38%
Decision 12.78% 88.03%
Condition 11.12% 132.79%
Branch 26.44% 163.10%

Rockwell (Inlined)

MC/DC 0.80% 2.77%
Decision -1.80% 14.81%
Condition 42.92% 32.18%
Branch -3.08% 22.13%

Rockwell (Non-inlined)

MC/DC 4.58% 351.12%
Decision 5.95% 392.44%
Condition 6.46% 384.93%
Branch 12.81% 389.99%

reveal a fault for a given test oracle is an undecidable
task. However, the intent of observability is to increase
the likelihood of detection by overcoming masking. The
results show the merit of this idea—there is generally
an increase in efficacy. Regardless of the underlying
coverage criterion, observability seems to have a positive
impact on the likelihood of detecting faults.

This is especially true when an output-only oracle—
the most common oracle strategy [3]—is used. When
using an output-only oracle, masking is a major prob-
lem. Our results show that observability can overcome
masking. This can be clearly seen in the Rockwell (non-
inlined) models, where the addition of observability im-
proves efficacy up to 392.44%. Results are more subdued
for the inlined variants—up to a 32.18% improvement.

We can see from these results that the structure of the
system—how code is written—has some impact on the
impact of adding observability. The Rockwell examples
offer two extremes—either entirely inlined or with the
simplest possible expressions. At the later end, there is
tremendous improvement from adding observability. If
there are a large number of simple expressions, then
masking along the path to the output is far more likely
than if there are a smaller number of expressions. As
a result, observability has a major impact, propagating
the effect of a fault to the output variables. On the other
hand, if there are a small number of expressions, then the
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path to output will be shorter. Therefore, observability
will have a smaller impact.

In addition, past work has shown that the test cases
generated for heavily inlined systems may be more
effective from the start [1], [2]. Criteria such as MC/DC
require that an independent impact be shown for each
condition within a decision. That is, if MC/DC is ful-
filled, then a condition will not be masked within the
expression that it appears in. Its impact can be masked
on the path to output, but will affect the outcome of the
decision that it falls within. If a model is more heavily
inlined, then the requirements of standard MC/DC are
more strenuous—independent impact must be shown
for more complex expressions. At the same time, the path
to output is shorter, limiting further opportunities for
masking. Therefore, the test cases may be more effective
from the start, and the further impact of observability
may be more limited.

We can see some evidence from this that observ-
ability helps bridge the gap from output-only oracle
to maximum oracle—without adding additional human
oracle cost [56], and the gap from non-inlined to inlined
program structure. The Benchmarks examples are varied
in terms of structure. As a result, the impact of adding
observability falls between the two extremes of the Rock-
well models—with improvements of up to 163.10% for
the output-only oracle strategy.

As noted earlier, improvements tend to be smaller
when employing a maximum oracle strategy. For non-
inlined implementation of Rockwell models, we see
average improvements of up to 12.81%. For the inlined
variants, we see up to a 42.92% average improvement,
and even see small performance downgrades of up
to 3.08%. For the Benchmarks dataset, we see average
improvements of up to 26.44%.

Adding observability improves efficacy over
satisfaction of traditional criteria, with average

improvements of 11.94% with a maximum oracle
and 125.98% with the output-only oracle (with
per-model improvements of up to 1760.52%).

We can establish evidence by performing statistical
analysis, employing the same test used previously. We
formulate our hypotheses as follow:

H2: For each system and oracle, the observable version
of a criterion produces test suites with a higher likeli-
hood of fault detection than the traditional variant.

The paired null hypothesis is:
Hθ2: For each system in our study—with any oracle

strategy—the observable version of a criterion produces
test suites with a likelihood of fault detection drawn
from the same distribution as the traditional variant.

The statistical results are presented in Table 10, where
we list the percent of cases where we can reject Hθ2—
we can provide evidence that the observable criterion
produces more effective test suites—along with the per-

centage of cases where we can state with significance that
the reverse is true—that the traditional criterion is more
effective. For example, for the Benchmark models—with
a maximum oracle strategy—suites satisfying the OM-
C/DC criterion outperform MC/DC-satisfying suites
with significance in 45% of cases, while the reverse is
true for only 15% of cases. For the remaining 40% of the
models, neither outperforms the other with significance.

Almost universally, the observable variant outper-
forms the traditional variant—with significance—in
more cases. The only two situations where this is re-
versed are for Decision Coverage and Branch Coverage
on the inlined Rockwell models, paired with a maximum
oracle strategy. As highlighted above, this is the exact
situation where we would expect the least benefit from
the addition of observability. However, with the more
realistic output-only oracle strategy, the observable vari-
ant of the criterion produces more effective suites in the
vast majority of cases.

5.3 Factors That Influence Efficacy

Observability tends to improve the efficacy of test suites.
However, it does not do so in all cases, and the gains in
efficacy are not consistent across all models. Therefore,
it is worth examining the factors that influence the
efficacy of observability. We can illustrate some of these
factors by looking at situations when observability had
a minimal—or, worse, a negative—impact on efficacy
(listed in Table 11).

As the percentage of fulfilled obligations decreases, the
efficacy of the resulting suite decreases as well. The ob-
servable versions of criteria impose much more difficult
obligations to satisfy, so some drop is not surprising—
either from provably infeasible obligations or obligations
that the test generator is unable to address. However,
if the loss in obligation satisfaction is major, then we
will observe some loss in performance. The worst case
of this is the Docking Approach example, where—for
OCondition Coverage—we lose 89% satisfaction of the
obligations. This resulted in a 31% loss in efficacy.

At first glance, the structure of the model—the level
of inlining—appears to have some impact. With the
Rockwell models, we never see a downgrade in perfor-
mance for the non-inlined variants. We do see occasional
efficacy losses for inlined models (including some of the
“worst” examples from the Benchmarks set). However,
we do not believe that this is due to inlining alone—for
instance, Docking Approach is not inlined—but because
inlining is a factor informative of model complexity.

Inlined models tend to see less improvement from
observability because they have more complex expres-
sions. Regardless of the length of the path to output,
complex expressions suffer more from masking, making
it harder to guarantee a clear path to output. In turn,
this potentially leads to lower levels of overall satisfac-
tion for the observable variants. However, even though
Docking Approach is not inlined, it does have a deep
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TABLE 10: Cases where observable criterion produces suites outperforming non-observable variant with signifi-
cance, and when the non-observable variant is more effective.

MX Oracle OO Oracle
Observable Traditional Observable Traditional

Benchmarks

MC/DC 45.00% 15.00% 55.00% 5.00%
Decision 57.50% 5.00% 67.50% 2.50%
Condition 65.00% 7.50% 67.50% 7.50%
Branch 60.53% 5.26% 71.05% 2.63%

Rockwell (Inlined) MC/DC 40.00% 20.00% 80.00% 20.00%
Decision 20.00% 40.00% 60.00% 20.00%
Condition 60.00% 20.00% 80.00% 20.00%
Branch 0.00% 40.00% 80.00% 20.00%

Rockwell (Non-inlined)

MC/DC 80.00% 0.00% 100.00% 0.00%
Decision 100.00% 0.00% 100.00% 0.00%
Condition 100.00% 0.00% 100.00% 0.00%
Branch 60.00% 0.00% 100.00% 0.00%

TABLE 11: Downgrade or lowest upgrade in efficacy when transitioning from traditional to observable criteria.
MX Oracle OO Oracle

Benchmarks

MC/DC -11.7%, PetersonAll -47.41%, Car All

Decision -9.35%, MoesiAll
0.00%, 6counter/Metros1/ProductionCell/
Stalmark/Switch/Switch2/Ticket3iAll/
Tramway/TwistedCounters/UMS

Condition -31.62%, DockingApproach -22.75%, DockingApproach
Branch -3.64%, Rtp All -8.17%, Rtp All

Rockwell (Inlined)

MC/DC -1.42%, DWM1 -0.91%, DWM1
Decision -6.43%, DWM1 -0.71%, DWM2
Condition -7.67%, DWM1 -0.46%, DWM1
Branch -11.65%, DWM1 -6.53%, DWM2

Rockwell (Non-inlined)

MC/DC 0.04%, Latctl Batch 12.42%, DWM2
Decision 0.92%, DWM2 27.77%, DWM2
Condition 0.67%, DWM2 18.47%, DWM2
Branch 0.00%, Latctl Batch/Vertmax 40.69%, Latctl Batch

state space—a series of gated conditions—which results
in a longer path to establish to ensure observability.
Therefore, we get lower satisfaction of the obligations
for the observable variant than the original, which must
simply satisfy obligations on individual expressions.
The problem, then—inlined or not—is establishing a
masking-free path from the expression to the output.

Non-inlined models can offer complex observability
requirements because the path length is long—a failure
must propagate through a long series of expressions to
impact the output. Each individual expression is simple,
but there are a large number of them to pass through un-
masked. Therefore, the path length can be informative of
the difficulty of achieving observability—impacting both
obligation satisfaction and efficacy. In non-inlined mod-
els, the individual statements are simple. This results in
trivial satisfaction of traditional coverage criteria, and
weaker tests. Even if tests trigger a fault, they tend to be
masked on the path to output. As a result, there tends
to be a greater performance boost from observability.

Inlined models tend to have a shorter path-to-output,
but each expression is more complex. Therefore, at each
expression from activation to output, a failure could
be easily masked. Statement complexity—which can be
judged by the level of inlining—impacts obligation sat-
isfaction as well as the efficacy gap between observable
and traditional variants. Suites satisfying the traditional
criterion must satisfy much more difficult obligations,
and there are fewer opportunities for masking on the
path to output. Therefore, the efficacy of the suites
satisfying the traditional criterion tend to be relatively
effective even without observability. Observability can

boost efficacy, but the difficulty of finding a path through
the more complex expressions can also cause issues.

The above only discussed combinatorial paths—from
expression to output in a single computation cycle.
Complexity must also be considered over multiple com-
putation cycles, as observability can be established after
delays. One additional factor impacting the path to out-
put are the number of delay expressions. Failures can be
propagated across computation cycles. However, the use
of such expressions introduces an additional source of
complexity to a model, and test obligations that require
a delay observable path can be harder to satisfy.

In cases where the loss in performance—or gain—are
small, one factor that may contribute is the test suite
reduction process. Tests are chosen randomly for the
reduced suite, based on their ability to cover obliga-
tions. In general, efficacy may be essentially identical
between the observable and non-observable suites, and
poor test cases choices push the average slightly lower—
but not in a statistically significant manner. This would
explain most of the inlined Rockwell scenarios, as well
as Branch-satisfying suites on the Rtp All system from
the Benchmarks dataset. This is a case where Branch
and OBranch attain generally the same results—the if
statements in the model are easily observable—but the
average for OBranch is slightly lower due to poor test
selection during suite reduction.

Factors that can harm efficacy—generally resulting
in a reduction in the number of fulfilled

obligations—include expression complexity, the
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TABLE 12: Average change in generation cost, test suite
size, and percentage of satisfied obligations when mov-
ing from a criterion to the observable version.

Size of
Test Suites

Obligation
Satisfaction

Generation
Cost

Benchmark

MC/DC 23.59% -22.37% 346.75%
Decision 63.66% -12.38% 173.43%
Condition 52.61% -20.02% 247.35%
Branch 69.68% -8.02% 129.39%

Rockwell MC/DC 25.51% -4.20% 2422.91%

(Inlined) Decision 23.02% -5.72% 422.04%
Condition 49.97% -4.17% 251.08%
Branch 7.73% -3.29% 551.48%

Rockwell MC/DC 307.88% -6.49% 996.48%

(Non-inlined) Decision 392.46% -8.11% 1285.85%
Condition 376.25% -6.30% 1081.58%
Branch 343.54% -4.82% 116.99%

TABLE 13: Median time (in seconds) required to generate
test suites for each criterion and its observable version.

Observable Traditional

Benchmarks

MC/DC 24.81 5.55
Decision 8.16 2.98
Condition 13.78 3.97
Branch 5.55 2.42

Rockwell (Inlined) MC/DC 880.96 34.92
Decision 38.26 7.32
Condition 98.97 28.19
Branch 37.27 5.72

Rockwell (Non-inlined)

MC/DC 195.49 17.83
Decision 92.64 6.68
Condition 104.48 8.84
Branch 9.72 4.48

length of the combinatorial path from expression to
output, and the length of the delayed path from

expression to output.

5.4 Impact of Observability on Generation Cost, Test
Suite Size, and Obligation Satisfaction
Each test case can satisfy more than one test obliga-
tion, depending on the input applied and the execution
path taken by applying such input. Observable criteria
require the same number of test obligations as their
host criterion, but impose more difficult requirements for
fulfillment. Rather than simply examining the number of
test obligations required by a criterion, we can look at
the size of the minimal test suites required to satisfy such
criteria and the time cost to generate such test suites as
an indicator of the difficulty of meeting testing goals.

In Table 12, we present the average change in gen-
eration cost, size of test suites, and percentage of ful-
filled obligations when observability is required for each
coverage criterion. Table 13 presents the median time
required to generate test suites for each criterion. From
these two tables, we can see that an observable criterion
tends to require significantly more time to generate test
suites than when the corresponding host criterion is used
on its own. Such criteria yield more complex obligations,
resulting in a more complex generation process where
the model checker must spend more time identifying a
solution that yields a non-masking path.

However, from Table 13, we can also see that test gen-
eration can still be completed in a reasonable time frame

for observable criteria. For the Benchmarks dataset, the
median generation time still tops under thirty seconds.
The worst median—for Observable MC/DC over the
inlined Rockwell models—is still under fifteen minutes.
Compared to the cost of manual test case creation, the
addition of observability is minor.

The addition of observability requires a longer test
generation process, with average increases ranging

from 129.39%-2422.91%.

As we can see from Table 12, regardless of the un-
derlying coverage criterion, we see an increase in the
number of test cases required for the observable version
of the test suite. Fundamentally, observable criteria re-
quire more test cases to fulfill their obligations than the
traditional variants. Because of the highly specific path to
output required for each obligation, there is less overlap
between test cases in terms of the obligations satisfied.

Program structure seems to have an impact on the
magnitude of the size increase. Moving to an observable
criterion results in a massive increase in test suite size
for the non-inlined Rockwell models—307.87-392.46%—
while there is only a modest increase of 7.73-49.97%
for the inlined models. On a per-model basis for the
Benchmarks examples, many of the models with smaller
increases in suite size tend to also be heavily inlined.

This observation makes sense given the discussion
above. The obligations for non-observable criteria are
formed over individual expressions. If those expressions
are simple, the obligations too will be simple. As a result,
each test case may cover a variety of obligations with
ease. If the model is more heavily inlined, then each
obligation will be more complex, and more specialized.
There will be less overlap in coverage between test
cases [1]. The more heavily inlined the model, the larger
the test suite tends to be.

Therefore, model structure has a major impact on
the size of the test suite for suites satisfying the non-
observable criteria. Inlined models start with larger test
suites. Then, regardless of the model structure, the ad-
dition of observability, increases the size further.

The primary factor influencing the size increase from
observability is the length of the path. Each expression
encountered along the path imposes additional condi-
tions on maintaining a non-masking path. Therefore, the
longer the path length, the more complex the require-
ments are on the test case. As a result, we see a similar
effect to changing the program structure. The individual
test cases are more specialized, and there is less of a
chance of overlap in covered obligations. This further ex-
plains the larger increase in size for non-inlined models.
Non-inlined models have simpler expressions, but much
more of them. As a result, the satisfaction complexity is
in satisfying path constraints rather than in fulfilling the
original expression-level obligations.
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The addition of observability results in an increase
in the size of test suites. The magnitude of that
increase depends on the length of the path from

each expression to the output.

Previous work has shown that observability imposes
an additional complexity burden on the test case gen-
erator, generally resulting in some loss in obligation
satisfaction [10], [11]. The results of this study further
confirm this. Table 12 shows that—on average—there is
a loss in obligation satisfaction regardless of the crite-
rion. For the inlined Rockwell models, this average loss
ranges from 3.29-5.72%. For the non-inlined versions,
this ranges from 4.82-8.11%. Then, for the Benchmarks
dataset, the average loss ranges from 8.02-22.37%.

As discussed earlier, a loss in obligation satisfaction is
to be expected—the test obligations requires to ensure
observability are far more complex than the equivalent
obligations when observability is not required. This loss
can occur for two reasons. First, if there is no masking-
free path, then the obligation will be unfulfillable. This
means that observability cannot be established, and thus,
a fault in that statement cannot influence the output. Gen-
erally, this indicates dead code—code that, intentionally
or not, cannot affect program output. Occasionally, this
is a byproduct of either code reuse—where existing code
is reused wholesale—or defensive programming.

However, in some cases, obligations may be too com-
plex for the test generator to fulfill. In such cases, the
generator will eventually return an “unknown” verdict.
This is an indication that the generator was unable to
meet the obligation, and was unable to conclusively
determine that it could not be met (the case above). If
the obligations are too complex, then the test generator
can return weaker test suites because it eventually gives
up on finding solutions that fulfill these obligations.

To better understand the reasons we lose coverage,
we have listed the average percent of obligations ful-
filled and the percent of obligations that resulted in
“unknown” verdicts—where the test generator gave up
on finding a solution—for each dataset in Table 14. First,
we can see again that the observable variants see a lower
rate of obligation fulfillment than the traditional criteria.
Again, this is expected. In the case of the Rockwell
models, we see that there are no situations where the test
generator returned an unknown verdict. This means that
any loss in such situations is due to provably unfulfillable
obligations—dead code. This reduction in fulfillment is
acceptable, as such obligations can never be fulfilled.

However, for the complex Benchmarks models, we do
see some loss due to the test generator. On average,
4.11% (OBranch), 8.46% (OCondition), 3.90% (ODeci-
sion), and 7.41% (MC/DC) of obligations return “un-
known” verdicts during test generation. We wish to
avoid such situations, as they are situations where we
cannot prove that the obligation cannot be fulfilled—the

test generator just did not find a solution in time. Some
of these obligations may have test cases meeting them.
Many will not, but we lack proof in either case.

In the Benchmarks dataset, even the traditional crite-
ria have obligations that result in unknown verdicts—
on average, 0.09% (Branch), 0.33% (Condition), 0.09%
(Decision), and 0.66% (MC/DC) of the obligations time
out. However, these percentages are far lower than for
the observable variants. This speaks to the complexity
of establishing observability, which is often far beyond
that of covering the obligations of the host criterion.

The two driving factors in these unknown verdicts
are the length of the combinatorial path from expression
and output and the number of delay expressions—the
length of the delayed path—between the expression and
the output. Both increase the complexity of finding a
masking-free path between the expression that is the
source of the base obligation and an output variable.
If the path is more complex, the generator will have a
harder time satisfying the test obligations.

Although paths are shorter in inlined models, the
individual expressions are more complex than in non-
inlined models. Although expressions are simple in non-
inlined models, the paths are longer than in inlined
models. As a result, the level of inlining does not play a
major role in the loss in obligation satisfaction. The level
of correlation between inlining and loss in satisfaction is
relatively low. The length of the path—whether delayed
or immediate—is of far more importance.

The addition of observability results in an decrease
in the number of fulfilled obligations. This loss is

due to either the discovery of dead code that
cannot influence the output or obligations that are

too complex for the test generator to solve.

5.5 The Effect of Observability
For our final research question, we wish to take a
look at the effect of observability itself. Regardless of
the underlying host criterion, does observability have
a consistent impact on suite efficacy, oracle sensitivity,
structure sensitivity, and obligation fulfillment?

5.5.1 The Choice of Host Criterion
The choice of coverage criterion is often made based on
the perceived strength of that criterion. MC/DC is more
strenuous to fulfill than Branch Coverage, and therefore,
suites satisfying it should be more effective. While there
are exceptions, this generally bears out in practice. In our
study, MC/DC satisfaction results in stronger test suites
than Branch Coverage satisfaction.

However, one question we are curious about is—when
observability is required, does the choice of host criterion
matter? Does observability consistently improve results,
and is there still reasonable differentiation in the final
results to see an impact from the choice of host criterion.
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TABLE 14: Average % of obligations fulfilled, and the average % of the unfulfilled obligations that were due to an
“unknown” verdict being returned by the test generation for each dataset.

Branch OBranch Condition OCondition
% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown

Benchmark 94.77% 0.09% 87.88% 4.11% 96.22% 0.33% 75.78% 8.46%
Rockwell (inlined) 97.88% 0.00% 94.94% 0.00% 98.88% 0.00% 94.92% 0.00%

Rockwell (non-inlined) 100.00% 0.00% 95.18% 0.00% 99.83% 0.00% 93.58% 0.00%
Decision ODecision MC/DC OMC/DC

% Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown % Fulfilled % Unknown
Benchmark 94.60% 0.09% 81.17% 3.90% 86.84% 0.66% 67.08% 7.41%

Rockwell (inlined) 98.93% 0.00% 93.50% 0.00% 96.66% 0.00% 92.70% 0.00%
Rockwell (non-inlined) 99.95% 0.00% 91.85% 0.00% 99.48% 0.00% 93.07% 0.00%

From the results in Tables 7 and 9, we can still see that
the choice of criterion matters. Observability generally
results in better test suites, but there is no real consis-
tency in the magnitude of that impact across criteria,
oracles, and system structures. The choice of criteria does
impact the end result. OMC/DC satisfaction does tend to
result in better test suites than OBranch satisfaction. The
gap between criteria is often narrower for the observable
variants than their traditional variants, but there is still
a gap. Therefore, we can conclude that the choice of host
criterion still influences the final result.

With traditional coverage criteria, weaker criteria may
be used because they offer enough benefit, but are less
expensive to fulfill. This is particularly true when test
cases are written by human developers. Branch Coverage
is easier to understand and explain than MC/DC, and
proving that your test cases meet the more strenuous
requirements of MC/DC requires more time and effort.
If satisfaction of Branch Coverage can be achieved within
the time period alloted to testing and offers benefits to
the testing process, it may be better to make use of it
than to spend the same amount on time attaining partial
coverage of MC/DC. Even in the case of automated
generation, it may be reasonable to choose to maxi-
mize Branch Coverage over attaining partial coverage
of MC/DC. If the test generator is unable to satisfy the
requirements of MC/DC, then attaining a higher level
of Branch Coverage could lead to better efficacy.

However, this same trade-off does not necessarily
function in an equivalent manner once observability is
required. As we can see from the discussion in Sec-
tion 5.4, the added complexity of observability vastly
outweighs the complexity added by the use of a cri-
terion such as MC/DC over Branch Coverage. If the
test generation framework employed in this study can
satisfy Branch Coverage for a model, it can usually attain
similar levels of MC/DC. There is a far more perceptible
drop when moving to any of the observable criteria.
A gap still exists between Observable Branch and Ob-
servable MC/DC, but the leap from non-observable to
observable is much greater.

It follows then that—rather than asking which cri-
terion to employ—the more important questions is
whether to require observability. In the context of man-
ual test creation, employing observability without tool
support is likely to be too expensive to consider in any
situation except when safety is absolutely crucial. In
the case of automated generation, observability is—at

TABLE 15: Average improvement in mutation detection
when changing from OO to MX oracle strategy.

Benchmarks Rockwell Rockwell
(Inlined) (Non-inlined)

OMC/DC 96.77% 10.73% 16.31%
ODecision 93.33% 49.94% 19.38%
OCondition 96.81% 34.53% 16.83%
OBranch 102.69% 59.89% 40.63%
MC/DC 208.76% 13.03% 352.92%
Decision 233.13% 78.20% 384.62%
Condition 297.46% 31.45% 375.41%
Branch 278.98% 97.67% 412.78%

least for the studied programs—reasonable to require.
Although there are situations where the loss in coverage
due to unknown verdicts is unacceptably high, for most
of the studied programs there were clear benefits.

These results also show that—as long as the test
generator can handle the complexity of observability at
all—the additional loss from choosing a more complex
host criterion is minor. Therefore, we would recommend
the use of stronger criteria such as MC/DC over weaker
ones when observability can be handled by the test
generator. That said, if the combined complexity of
observability and criterion is too much for generation
to handle, then a tester could first change the host
criterion—then drop the observability requirement.

The choice of host criterion influences the final
efficacy, but the largest increase in complexity
comes from the addition of observability itself.

Varying both dimensions—criterion and
observability—may allow testers to find an optimal

level of efficacy and complexity.

5.5.2 Oracle Sensitivity

In normal situations, the results of testing are sensitive
to the choice of variables monitored as part of the
test oracle. We can see this in comparing the results
of the maximum and output-only oracle strategies for
suites satisfying the traditional non-observable criteria.
When results are checked with the maximum oracle
strategy, efficacy tends to be much high. This is because
masking can prevent program elements from influencing
other variables. With any oracle strategy other than the
maximum oracle strategy, suite efficacy depends on the
selection of variables monitored by the oracle [3]. This
complicates the testing process, as it is not obvious which
variables should be monitored, and coming up with
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expected values for any variables other than the output
variables can be very difficult.

In theory, observability should be a powerful tool in
overcoming oracle sensitivity. By requiring a masking-
free path from any targeted expression to the output,
we should be able to increase the efficacy of using
an output-only oracle strategy. In Table 15, we present
the average improvement in fault finding when moving
from an output-only oracle strategy to the maximum
oracle strategy for each coverage criterion, and for each
of the three datasets.

From these results, we can see that for the non-inlined
Rockwell systems, oracle sensitivity is greatly reduced
when we require observability—for instance, Branch-
satisfying suites improve by 412.78% when changing
oracle strategies, but OBranch-satisfying suites only im-
prove by 40.63%. As discussed earlier, non-inlined sys-
tems tend to have a large number of simple expressions
and long paths to output. These results make sense. The
maximum oracle strategy monitors every single expres-
sion in the program. Therefore, the size of the maximum
oracle is much larger than the output-only oracle, as it
is much easier to detect faults. When paired with an
output-only oracle strategy, suites satisfying traditional
criteria will suffer greatly from masking. Observability
overcomes this masking by requiring that each expres-
sion be able to influence the output.

We do not see the same magnitude of effect for the
aggressively inlined versions of the Rockwell models.
Except in the case of Condition Coverage, there is a
reduction in oracle sensitivity, but the impact is less.
Again, however, these results make intuitive sense. An
inlined implementation has fewer expressions. There-
fore, the maximum oracle is also smaller—with fewer
points of observation. The observable versions of criteria
still produce suites that are less sensitive to the choice
of oracle strategy, but there is also potentially less oracle
sensitivity to overcome in the first place.

The Benchmark models again fall between the two
extremes. The suites satisfying the observable criteria are
less sensitive to the choice of oracle strategy than suites
satisfying traditional counterparts. Suites satisfying tra-
ditional Branch Coverage improve by 273.10% from the
shift in oracle strategy, while suites satisfying OBranch
Coverage only improve by 102.51%.

Observability reduces sensitivity to the choice of
oracle strategy by ensuring a masking-free path

from expression to monitored variables.

5.5.3 Structural Sensitivity

Traditional coverage criteria—particularly MC/DC—are
known to be sensitive to program structure [1], [2]. With
an output-only oracle strategy, suites generated using
the inlined version of the program will be far more
effective at finding faults than suites generates using the

TABLE 16: Average change in efficacy when switching
from non-inlined to inlined versions of Rockwell models.

Max Oracle OO Oracle
OMC/DC -3.32% 1.50%
ODecision -15.23% -25.41%
OCondition -10.71% -18.56%
OBranch -16.70% -20.47%
MC/DC 0.18% 354.62%
Decision -7.83% 344.09%
Condition -22.54% 332.22%
Branch -5.83% 332.24%

non-inlined version of the program. Because individual
expressions are more complex in the inlined program,
their test obligations are more complex. There are also,
often, fewer opportunities for masking on the path to
output, as there are fewer expressions along that path.
Observability should help overcome that sensitivity to
structure. Although the individual expressions are sim-
pler, overcoming masking along the path should result
in a more robust test suite.

In our experiments, this seems to be the case. Table 16
lists the average change in efficacy when switching
from non-inlined to inlined version of the Rockwell
models. On average, we see that—for the traditional
suites—there is a major improvement in efficacy when
we change program structures. For suites satisfying the
observable variants, we actually see a slight downgrade
in performance.

For the traditional criteria, if we use a maximum oracle
strategy, we see a downgrade in performance when
changing program structure instead of the upgrade we
saw with an output-only oracle strategy. This is because,
with a non-inlined program, the size of the maximum
oracle is very large. Each of the many simple expressions
is monitored and checked. With an inlined program, the
maximum oracle is much smaller—there are fewer ex-
pressions. With a maximum oracle strategy, changing to
an inlined program structure is somewhat detrimental to
performance. With traditional criteria—as the maximum
oracle is generally prohibitively expensive—we would
recommend inlining code to improve the performance
of the output-only oracle strategy.

The above results make sense then as, with observ-
ability, we essentially see the same effect. There is no
benefit from changing program structure, as the in-
creased complexity of individual statements is replicated
in the masking-free path to output required to attain
observability. Instead, there is a slight downgrade in
performance because the individual statements are more
complex. When observability is required, a simpler pro-
gram structure may be slightly preferable.

Observability reduces sensitivity to the program
structure by capturing the complexity benefits of
inlining in the path from expression to output.
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6 THREATS TO VALIDITY

External Validity: Our study has focused on a small
number of systems but, nevertheless, we believe the
systems are representative of the critical systems domain,
and our results are generalizable to that domain.

We have used one method of test generation—
counterexample-based generation. There are many meth-
ods of generating tests and these methods may yield
different results. Counterexample-based testing is used
to produce coverage-directed test cases because it is a
method used widely in testing safety-critical systems.

For each model and criteria, we have built 50 reduced
test suites reduced using a simple greedy algorithm. It is
possible that larger sample sizes may yield different re-
sults. However, in previous studies, smaller numbers of
reduced test suites have produced consistent results [2].

Construct Validity: In our study, we primarily mea-
sure fault finding over seeded faults, rather than real
faults encountered during development. However, An-
drews et al. showed that seeded faults lead to similar
conclusions to those obtained using real faults [27] for
the purpose of measuring test effectiveness and Just et
al. found a positive correlation between mutant detec-
tion and fault detection [26]. We have assumed these
conclusions hold true in our domain/language, where
examples of real faults are rare.

To control experiment costs, we limited the number of
mutants used per model to 500. When more than 500
mutants exist, a random selection was used to avoid
bias in mutant selection. While the selection of specific
mutants is randomized, the distribution is matched to
the full distribution of possible mutants in the model. In
our experience, mutants sets greater than 100 result in
similar fault finding; we generated up to 500 to further
increase our confidence that no bias was introduced.

Lau and Yu [57] and Kaminski et al. [58] have defined
fault hierarchies for Boolean expressions, outlining cases
where detection of one fault could guarantee detection
of other, redundant faults. The mutation operators we
have employed could produce redundant mutations, but
we have not removed those in our experiments. We
do not know which faults are actually redundant in
our evaluation. However, we have performed a worst-
case analysis, and found that there is generally a low
correlation between the percent of redundant faults and
the percent of detected faults. Therefore, we do not
believe that redundancies have had a significant impact
on the results of our study.

Conclusion Validity: When using statistical analyses,
we have attempted to ensure the base assumptions
beyond these analyses are met, and have favored non-
parametric methods. In cases in which the base as-
sumptions are clearly not met, we have avoided using
statistical methods. Notably, we have avoided statistical
inference across case examples.

7 RELATED WORK

In this section, we will discuss our prior work on
observability, the role of adequacy criteria in test case
generation, other notions of observability, and other
topics related to this work.

7.1 Prior Work on Observability

This work is an extension of our prior work defining and
exploring the concept of observability [10]–[12]. We first
proposed the concept of observability as an extension
of the MC/DC coverage criterion [10]. An extended
study found that that OMC/DC was more effective—
and overcame many of the weaknesses of—traditional
coverage criteria [11].

In a recent study, we extended the original tagging
semantics of MC/DC in order to generate path condi-
tions as part of Dynamic Symbolic Execution [12]. This
work used OMC/DC purely as a test generation target
rather than a general adequacy measurement approach.
A source of optimistic inaccuracy in the original defi-
nition of OMC/DC was addressed by requiring value
inequality of expressions from two branches when prop-
agating if conditions. This approach was also able to
explicitly terminate when there is no feasible paths. In
the regular model-based test generation approach used
in this and the other past work, a timeout is usually
estimated and manually set in order to terminate the
generation process. The DSE-based approach, as a result,
could complete generation in a more efficient manner.

This work extends previous efforts by decoupling
the notion of observability from MC/DC and exploring
its application as a generic addition to any coverage
criterion. While we found that MC/DC was still the most
effective host criterion in many applications, this was not
a universal case. This decoupling allows us to explore
the impact of choosing a host criterion and to explore
the efficacy of observability as a general construct of
adequacy criteria. Our experimental work also considers
a far wider range of programs than previously explored
in order to better understand the general efficacy of
observability-based coverage criteria.

7.2 Adequacy Criteria Efficacy in Test Generation

Automated test generation relies on the selection of a
measurable test goal. Adequacy criteria, such as the
coverage criteria that are the focus of this study are
commonly used for this purpose. However, coverage is
merely an approximation of a harder to quantify goal—
“finding faults”. The need to rely on approximations
leads to two questions that researchers have examined
multiple times. First, do such proxies produce effective tests?
If so, which criteria should be used to generate tests?

Answers to these two questions are—to date—
inconclusive. Some studies have noted positive corre-
lation between coverage level and fault detection [21],
[54], [59], while other work paints a negative portrait



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TBD 23

of coverage [60]. Our prior work in search-based test
generation for Java programs has found that coverage
level is more strongly indicative of efficacy than factors
such as suite size [21]. However, in our prior studies of
model-based generation, tests generated specifically to
achieve coverage were often outperformed by randomly-
generated tests [11], [47], [48].

Results to date are promising, given the complexity
of some of the faults detected [21], [61]–[63]. However,
automated generation does not yet produce human com-
petitive results [64]. Ultimately, if automated genera-
tion is to have an impact on testing practice, it must
produce results that match—or, ideally, outperform—
manual testing efforts. The efficacy of suites generated
for many coverage criteria is limited by issues such as
masking. Choices about how code is written [1], [2]
and the selection of test oracle [3], [5], [40] impact the
efficacy of some criteria. The notion of observability was
designed to address both issues.

7.3 Coverage Criteria in Lustre and Function Block
Diagram
Researchers studying coverage criteria for Lustre [65]
and Function Block Diagrams (FBD) [66] implicitly in-
vestigated observability by examining variable propaga-
tion from the inputs to the outputs.

Some of the structural coverage criteria proposed
specifically for Lustre are based on activation conditions
that are defined as the condition upon which a data
flow is transferred from the input to the output of a
path. When the activation condition of a path is true,
any change in input causes modification of the output
within a finite number of steps [65]. Coverage metrics
for FBD are based on a d-path condition that is similar to
activation conditions in Lustre [66].

These coverage criteria in Lustre and FBD are different
from the notion of observability in several respects. First,
these metrics check if specific inputs affect the outputs
and measure the coverage of variable propagation on all
possible paths. Observability, on the other hand, checks
if each test obligation from the host criterion affects
the monitored variables, and determines if a path exists
which propagates the effect of the obligation. Second, ob-
servability requires a stronger notion of how a decision
must be exercised.

7.4 Observability in Hardware Testing
Observability has been studied in testing of hardware
logic circuits. Observability-based code coverage metric
(OCCOM) is a technique where tags are attached to
internal states in a circuit and the propagation of tags
is used to predict the actual propagation of errors (cor-
rupted state) [42], [67]. A variable is tagged when there
is a possible change in the value of the variable due
to an fault. The observability coverage can be used to
determine whether erroneous effects that are activated
by the inputs can be observed at the outputs.

The key differences between our notion of observabil-
ity and OCCOM are twofold: (1) our notion of observ-
ability investigates variable value propagation, while
OCCOM investigates fault propagation and (2) OCCOM
has pessimistic inaccuracy because of tag cancellation.
When both positive and negative tags exist in the same
assignment (e.g., different tags in an ADDER or the same
tags in a COMPARATOR cancel each other out), no tag
is assigned [67] or an unknown tag “?” [42] is used.
Variables without tags or with unknown tags are not
considered to carry an observable error.

Since we do not make a distinction between positive
and negative tags, we do not have tag cancellation or the
corresponding pessimistic inaccuracy. Extended work in
[68] may fix pessimistic inaccuracy by producing test
vectors with specific values, but is highly infeasible.

7.5 Mutation Coverage
As discussed in Section 3.2 there are close connec-
tions between observability and strong mutation cover-
age [25]. In the general case, strong mutation coverage is
very difficult to achieve and expensive to measure [28],
though recent efforts have made it somewhat more
efficient [69]. Therefore, weak mutation coverage is often
used instead, as a high level of weak mutation coverage
can be more easily reached. Observability, as proposed
in this work, offers a means to increase strong mutation
coverage of faults in Boolean decisions.

7.6 Dynamic Taint Analysis
Our ideas for examining observability via tag propa-
gation were derived from dynamic taint analysis (also
called dynamic information flow analysis). In this ap-
proach, data is marked and tracked in a program at
runtime, similar to our tagging semantics. This technique
has been used in security as well as software testing
and debugging [70], [71]. Taint propagation occurs in
both explicit information flow (i.e., data dependencies)
and implicit information flow (control dependencies).
Although the way in which markings are combined
varies based on the application, the default behavior is
to union them [71]. Thus, dynamic taint analysis is con-
servative and does not consider masking. More accurate
techniques for information flow modeling define path
conditions quite similar to those used in this paper to
prove non-interference, that is, the non-observability of a
variable or expression on a particular output [72].

7.7 Dynamic Program Slicing
Dynamic program slicing [73] computes a set of state-
ments that influence the variables used at a program
point for a particular execution. This can identify all
variables that contribute to a specific program point,
including output. However, similarly to dynamic taint
analysis, it does not consider masking. Checked coverage
uses dynamic slicing to assess oracle quality, where
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oracles are program assertions [74]. Given a test suite,
it yields a percentage of all statements that contribute
to the value of any assertion (i.e., are observable at that
assertion) vs. the total number of statements covered by
the test suite. This work is designed to assess the oracle,
not the test suite.

7.8 Checked Coverage
Recent work presents a stronger notion of coverage,
checked coverage, which counts only statements whose
execution contributes to an outcome checked by an ora-
cle [75], [76]. The ideas of checked coverage and observ-
ability are conceptually very similar. With observability,
one is trying to see whether a condition—or other code
structure—propagates to a point of observation. With
checked coverage, one restricts measured code coverage
to program statements that are found in a backwards dy-
namic slice. Thus, in observability, metrics markings are
forward propagated, while in checked coverage, markings
are back propagated. Checked coverage is computed over
program statements rather than conditions, so is not as
precise as our work on observability. Also, it assumes
a priori that one has a test from which to perform a
backwards dynamic slice, so it is not suitable in its
current form for test case generation.

8 CONCLUSION AND FUTURE WORK

Many test adequacy criteria are highly sensitive to how
statements are structured or the choice of test oracle.
This sensitivity is caused by the fact that the obliga-
tions for structural coverage criteria are only posed
over specific syntactic elements—statements, branches,
conditions. Such obligations ensure that execution reaches
the element of interest, and exercises it in the prescribed
manner. However, no constraints are imposed on the
execution path after this point. We are not guaranteed
to observe a failure just because a fault is triggered.
To address this issue, we have proposed the concept of
observability—an extension to coverage criteria based on
Boolean expressions that has the potential to eliminate
masking. Observable coverage criteria combine the test
obligations of their host criterion with an additional
path condition that increases the likelihood that a fault
encountered when executing the element of interest will
propagate to a variable monitored by the test oracle. We
hypothesize that this additional observability constraint
will improve the effectiveness of the host criterion—
no matter which criterion is chosen—particularly when
used as a test generation target, paired with a common
output-based test oracle strategy.

Our study has revealed that test suites satisfying Ob-
servable MC/DC are generally the most effective crite-
rion. Overall, we found that adding observability tends
to improve efficacy over satisfaction of the traditional
criteria, with average improvements of up to 392.44%
in mutation detection and per-model improvements of
up to 1654.38%. Some of the factors that can harm

efficacy include expression complexity, the length of the
combinatorial path from expression to output, and the
length of the delayed path from expression to output.
The addition of observability results in an increase in the
size of test suites and a decrease in the number of ful-
filled obligations. The choice of host criterion influences
the final efficacy, but the largest increase in complexity
comes from the addition of observability itself. Varying
both dimensions—criterion and observability—may al-
low testers to find an optimal level of efficacy and com-
plexity. Finally, our hypothesis has proven accurate—
observability reduces sensitivity to the choice of oracle
and to the program structure.

Based on our results, observability is a valuable
extension—regardless of the chosen host criterion. The
addition of observability increases test efficacy and pro-
duces test suites that are robust to changes in the struc-
ture of program or the variables under monitored by test
oracle. While our results are encouraging, there are areas
open for exploration in future research:

• Extension to other coverage criteria: A variety of
coverage criteria have been proposed for logical
expressions, some potentially more effective than
MC/DC [77]. We will explore the effect of extending
such criteria to offer observability.

• Oracle data selection: We used two types of ora-
cles representing different extremes. Maximum ora-
cles monitor all internal and output variables, and
output-only oracles monitor only the output vari-
ables. However, we have found that some level of
oracle sensitivity could be overcome with intelli-
gently constructed oracles [3]. We intend to further
consider whether such oracles could be more effec-
tive in situations where observability constraints are
too difficult for the test generator.

• Selection of solver used for test generation: While
conducting out study, we found that the model
checker had difficulties with satisfying the observ-
ability constraints for some models. Further, we
witnessed varying efficacy performance between the
underlying solvers powering out employed test gen-
eration approach. We will extend our work in the
future to quantify and further explore the choice of
solver and its effect on suite efficacy.

• Method of test generation: In this work, we have
used model-based test generation. In past work, we
also used Dynamic Symbolic Execution to generate
test suites satisfying Observable MC/DC [12]. In
the future, we would like to explore other methods
of generating tests for observable criteria, such as
search-based generation.
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