CHAPTER TWO

Metadamping: Dissipation

Emergence in Elastic
Metamaterials

Clémence L. Bacquet*, Hasan Al Ba’ba’a’, Michael J. Frazier®,

Mostafa Nouh’, Mahmoud I. Hussein*"’

*Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder,

Boulder, CO, United States

1Ll)cpartmcnt of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo,

NY, United States

*Department of Mechanical and Acrospace Engincering, University of California San Diego, San Diego,

CA, United States
'Corresponding author: e-mail address: mih@colorado.edu

Contents
1. Phononic Materials: Dynamical Design at the Material Level 116
1.1 Material Dynamics 116
1.2 Consideration of Material Damping 119
2. Metadamping: Damping Emergence 125
2.1 Locally Resonant Metamaterials 125
2.2 Metadamping in Locally Resonant Metamaterials 125
3. Unconventional Metamaterial Designs 130
3.1 Nonlocal Metamaterial Design 131
3.2 Dispersion Characteristics and Transitions 132
4. Static Equivalence at the Long-Wave Speed Limit 137
5. Metadamping in Nonlocal Metamaterials 139
6. Parametric Study of Metadamping 143
7. Effect of Core Damping Model 147
7.1 Viscoelasticity: Background and Modeling 147
7.2 Metadamping in Viscoelastic Phononic Materials 150
8. Experimental Validation of Metadamping 153
8.1 Pillared Beam: One-Dimensional Metamaterial 154
8.2 Evidence of Metadamping 156
8.3 Effect of Added Mass on Dissipation 159
9. Conclusions 160
Acknowledgments 161
References 161
Advances in Applied Mechanics, Volume 51 © 2018 Elsevier Inc. 115

ISSN 0065-2156
https://doi.org/10.1016/bs.aams.2018.09.001

All rights reserved.


https://doi.org/10.1016/bs.aams.2018.09.001

116 Clémence L. Bacquet et al.

Abstract

Resonant elastic metamaterials are artificial material systems that exhibit unique dynam-
ical properties shaped by the intrinsic interaction between resonances and traveling
dispersive waves. In this chapter, we provide a technical review of the recently proposed
concept of dissipation emergence in elastic metamaterials. This concept is termed
“metadamping.” Unlike conventional materials used to dampen vibrations where
the damping capacity is affected by the atomic configuration, defects, and/or rheological
properties, here the level of dissipation is controlled via the dynamics of the
metamaterial’s resonant substructures. In this manner, it is possible to create a net material
system that is both stiff and highly damped, to absorb vehicle vibrations for example. The
chapter starts with a motivation and introduction of metadamping, and then presents an
in-depth analysis and parametric study of metadamping in the context of both locally and
nonlocally resonant elastic metamaterials modeled as mass-spring-dashpot systems. The
effect of the core damping model (e.g, viscous vs nonviscous) is also examined. Finally, a
review is given of metadamping in a pillared beam that has recently been investigated by
experiments, simulations, and theory.

1. PHONONIC MATERIALS: DYNAMICAL DESIGN AT THE
MATERIAL LEVEL

1.1 Material Dynamics

The observed properties of materials—acoustic, mechanical, etc.—are the
cumulative result of many small-scale processes and interactions occurring
within the material microstructure. Many technological applications require
extraordinary materials that satisfy exceptional demands. Thus, the ability to
tailor the microstructure and, consequently, the material behavior for appli-
cations is desirable. Chemistry represents a conventional avenue for manip-
ulating the microstructure at the atomic/molecular/grain-boundary scale to
achieve the desired material performance. Alternatively, especially with the
advent of additive manufacturing technology, the internal structure may be
designed and implemented at the macroscopic level to elicit unique, even
counterintuitive, performance from the resulting architected material—
with the possibility of extending the frontier of material behavior. Here,
we focus on the dynamical aspects of such materials, termed phononic
materials, which include phononic crystals (PC) and acoustic/elastic meta-
materials (Kushwaha, Halevi, Dobrzynski, & Djafari-Rouhani, 1993; Liu
et al., 2000; Sigalas & Economou, 1992). And in particular, we focus on
the recently proposed concept of metadamping which allows us to design
the material architecture in a way that renders it more dissipative than the
nominal case without such architecture (Hussein & Frazier, 2013b).
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To confine the discussion to within a manageable scope, we examine here
only a sample of their physics and potential utility.

Phononic materials, generally, emerge from the periodic arrangement of
small-scale building blocks—reminiscent of molecules in natural crystals—
which, through scattering/interference and/or resonance phenomena, act
to control the propagation of acoustic/elastic plane waves. Fundamentally,
over specific frequency ranges, i.e., the pass bands, a phononic material is
transparent to vibrational plane waves, which propagate at different speeds
in contrast to the constant sonic speeds of many nondispersive conven-
tional materials. Outside these frequency bands, i.e., within the sfop bands
or band gaps, the material internal structure scatters and/or localizes the
wave energy, prohibiting transmission in all or specific directions. Wave-
guides and acoustic filters are two basic applications of this behavior. How-
ever, through careful design of building blocks forming the material’s internal
structure, the unique dynamics of phononic materials may be exploited in a
myriad of original applications [e.g., flat acoustic lenses (Yang et al., 2004;
Zhang & Liu, 2004), acoustic/elastic cloaks (Brun, Guenneau, & Movchan,
2009; Cummer & Schurig, 2007), phononic subsurfaces for flow control
(Hussein, Biringen, Bilal, & Kucala, 2015), to name a few]| (Deymier, 2013;
Hussein, Leamy, & Ruzzene, 2014; Khelif & Adibi, 2015; Laude, 2015;
Phani & Hussein, 2017).

One of the earliest and simplest examples of a phononic material is the
one-dimensional medium composed of periodically alternating layers of dif-
fering composition—mass-density and elasticity—such as shown in Fig. 1A
(Kohn, Krumhansl, & Lee, 1972; Lee & Yang, 1973; Sun, Achenbach, &
Herrmann, 1968). Within a homogeneous medium, a vibrational wave of
arbitrary frequency o, and wavenumber (i.e., spatial frequency) k, propa-
gates at a constant speed, ¢y = w/K. As can be seen in Fig. 1A, within a
phononic material, waves of different frequencies travel at different
speeds—a phenomenon referred to as dispersion—indicative of a nonlinear
relationship between @ and k. For the layered medium, this is accommo-
dated by the superposition of waves transmitted and reflected at the layer
interfaces. Moreover, over specific frequency ranges, the scattering/inter-
ference is sufficient to prevent the associated waves from propagating
within the material. Fig. 1C illustrates each of these scenarios where the
displacement profiles are plotted over several unit cells, the fundamental
repeating structure. Within the pass band, the wave propagates through
the phononic material such that the displacement profile encompasses
the entire—theoretically infinite—domain. In contrast, within the band
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Fig. 1 (A) Dispersion diagram of a layered medium (continuous model) as determined
from numerical and analytical treatments. (B) Dispersion diagram of a mass-spring sys-
tem (discrete model) determined analytically. (C) Displacement profile in corresponding
finite layered medium at different frequencies illustrating the contrast in response
between the pass band (top) and band gap (bottom) cases.

gap, the wave amplitude decays with distance and the displacement nodes
remain fixed in space for all time.

In Fig. 1A, we present the results of simulation and analytics. For the sim-
ulation, a layered medium composed of 100 cells is disturbed by an impulse
at the mid-span, producing a wide spectrum of waves that propagate away
from the site of initial disturbance. Prior to reaching either end of the
medium, the waves interact only with each other and the underlying mate-
rial periodicity of the system, mimicking an infinite medium. Under these
conditions, a Fourier transform of the displacement in space (with ¢’¥) and
time (with e ") produces the density plot shown, where the narrow, darker

regions identify waves with spectral characteristics (i.e., @ and k) suitable for
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transmission through the layered medium and the brighter regions represent
incompatible characteristics. The color map in Fig. 1A and similar diagrams
produced via simulation are instructive in revealing the dispersion properties
of the relevant phononic material design but are computationally expensive,
especially for two- and three-dimensional systems with complex unit-cell
designs. Alternatively, the periodic arrangement of the material constituents,
reminiscent of molecules in natural crystals, opens phononic materials
to theoretical analysis via Floquet—Bloch theorem (henceforth simplified
to Bloch) from solid-state physics. For one-dimensional elastodynamic
problem, this is expressed as (Bloch, 1929; Floquet, 1883):

u(x, 1) = i) e =) (1)

where u(x, #) is the displacement. The amplitude function #(x) has the same
periodicity at the underlying medium, x € [0, =a] where a s the lattice spac-
ing or unit-cell length. As a consequence, u(x % na, f) = u(x, e *"* for any
arbitrary integer n, which permits the solution for x € (—o0, 00) to be deter-
mined from the analysis of a finite segment of material of dimension a—the
unit cell. This modeling concept applies to two- and three-dimensional sys-
tems as well. By considering only a single unit cell rather than the potential
myriad of cells, Bloch’s theorem greatly reduces computation demands and
yields a compact, theoretical representation of the wave propagation char-
acteristics. Fig. 1A illustrates excellent agreement between numerical (den-
sity plot) and analytical (smooth curves) results for the layered medium.

As mentioned previously, the layered medium is one of the most ele-
mentary practical representations of a phononic material which could serve
as a simple demonstration. However, in what follows, we utilize simple
lumped-parameter models that capture all the essential physics and make
the connection between unit-cell configuration and performance more acces-
sible. Indeed, in regard to the ability to capture the essential physics of a prob-
lem, as shown in Fig. 1B, the dispersion diagram of the corresponding
lumped-parameter model closely resembles that of its continuum counterpart
shown in Fig. 1A. This model uses masses and springs to represent each layer
of the unit cell, with each mass and spring defined as m = pAL and k = EA/L,
respectively, where p is the density, E is the Young’s modulus, and A and L
denote the rod cross-sectional area and length, respectively.

1.2 Consideration of Material Damping

Inherent to every material, damping mechanisms (e.g., friction) dissipate the
wave energy, affecting the propagation and spatial attenuation characteristics
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Unit cell

Fig. 2 Discrete model of a phononic material constructed from a unit cell of two inter-
acting masses which repeats infinitely along one dimension.

(Crandall, 1970). However, damping is often unaccounted for in theoretical
analysis, removing a practical aspect of material performance and a mean to
control that performance. In the following, we discuss the physics and utility
of damping in phononic materials [for further reading, see, e.g., Hussein
(2009b), Hussein and Frazier (2010), Frazier and Hussein (2016), Al
Ba’ba’a and Nouh (2017)]. To this end, we primarily use the mass-spring-
damper model shown in Fig. 2, which forms the basis of one-dimensional
phononic material similar to the discrete example discussed previously.

The set of equations that describe the motion of each degree of freedom
in the unit cell are collected in matrix form as [see Hussein and Frazier
(2013a) and Frazier and Hussein (2016) for the derivations]

Mii + Ca +Ku=f )

where the mass M, viscous damping C, and stiffness K matrices are, respec-
tively, given by

1/r, 00
M=m| 0 10 (3a)
0 00
. —=1/r. 0
C=o|—1/r 1/r+1 —1 (3b)
0 —1 1
1/ —1/n, 0
K=k |—1/n 1/n+1 —1 (3¢)
0 —1 1

consistent with the displacement degrees of freedom u' = [11 1z 1g]. The
superposed dot represents differentiation with respect to time. The forces
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applied by neighboring cells are organized in f* = [f; 5 fi]. Here, we intro-
duce the material property relations r,, = my/my, 1. = 2/ ¢y, 1, = ka/ky. Note,
Eq. (2) represents the equation of motion of a single unit cell viewed as a
finite entity. To model the dynamics of the corresponding infinite, periodic
medium, we apply Bloch boundary conditions which establish a relationship
(perpetuating in space ad infinitum) between the unit-cell boundary states
and those of its neighbors. We define a condensed displacement vector
containing only the essential degrees of freedom, that is, the internal and
essential boundary displacement, 4T = [ up]. From Bloch’s theorem,
o = ure ¥ Thus, the condensed and full set of displacement degrees of
freedom are related via the transformation, T, as follows

1 0
~ uy
u=Ta=| 0 1 [ ] (4)
. Uz
e ika ()

When applied to the equation of motion, the transformation yields
Mu +Ca +Kia=0 (5)

with M =THMT, C =TYCT, and K = TVKT, where the superscript
“H” represents the complex transpose operation. Given that Bloch analysis
is concerned with free wave motion, we set THf = 0.

From a theoretical perspective, the wave frequency is often assumed to be
strictly real-valued regardless of the damping condition (Castanier & Pierre,
1993; Collet, Ouisse, Ruzzene, & Ichchou, 2011; Farzbod & Leamy, 2011;
Langley, 1994a; Mead, 1973; Merheb et al., 2008; Moiseyenko & Laude,
2011). Consequently, according to Eq. (1), wave attenuation (due to inter-
ference and/or damping) may only occur over the propagation distance as the
wavenumber is free to be complex-valued, k = kx_+ ix;. This may be con-
sidered the controlled laboratory perspective, that is, the material response is
what may be expected when exciting an extended, but finite, structure at the
boundary at a prescribed frequency; hence supplying continuous injection of
wave energy. However, if we are interested in the inherent material response
following an initial input of energy, our analysis of wave propagation in
damped phononic materials allows the temporal frequency to be complex.
In this context, waves attenuate in space (due to scattering/interference
and resonance) and time (due to material damping). This may be considered
the free-motion perspective as the dynamics stem purely from the response of
the material to an initial disturbance, as opposed to a sustained external
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stimulation. In the absence of damping, the two approaches are equivalent.
Damping reveals the unique dynamics of each operation condition, and in
principle it is possible to solve for an all-complex band structure where both
the frequencies and wavenumbers are complex (Frazier & Hussein, 2016;
Hussein, Frazier, & Abedinnassab, 2013). For real-valued frequencies, the
band-gap effect is unadulterated only in the complete absence of damping
(not seen in practice), otherwise, the band gap closes with the slightest level
of damping. Conversely, for complex-valued frequencies, the impact of wave
interferences is more intact and the band gap remains complete except under
extreme conditions (Frazier & Hussein, 2016; Phani & Hussein, 2013).

For general free wave motion, the displacement solution varies
according to ¢ where A is the complex frequency whose real and imaginary
components are to be determined. Modifying Bloch’s theorem accordingly
and subsequently applying the derivatives in Eq. (2) yields the following
quadratic eigenvalue problem in A

(M +AC+K)a=0 (6)

Here we can utilize the state-space transformation from structural dynamics
(Wagner & Adhikari, 2003) to formulate an eigenvalue problem with twice
the degrees of freedom but linear in construction (Frazier & Hussein, 2015;
Hussein & Frazier, 2010, 2013a). We define the state vector, §'T = [ﬁ ul,
enabling the state-space transformation

[;’4 “ﬂw[ . I‘ﬂ&:o )

Assuming the time-dependence of the state vector is also of the form M we
formulate the following generalized linear eigenvalue problem in A

e[ o

In general, the complex eigenvalues take the form
(k) = =§ (k)@ (k) +iwa(x) )

Inserting Eq. (9) into ¢, it is apparent that wg4(k), the damped wave fre-
quency, leads to temporal oscillations and &(k)w.(k) is responsible for the
decay of the wave amplitude over time. Specifically, the quantity &(k) is
the dimensionless damping ratio (loss factor) and @.(x) is termed the



Metadamping: Dissipation Emergence 123

“resonant frequency.” The wavenumber-dependent damping ratio relation
is extracted from the complex eigenvalues as follows

L0
W)=~ (10)

Naturally, in the absence of damping, £(k) = 0 and m4(x) is identical to the
undamped solution w(k). In addition, due to the method of extraction, the
maximum value that £(k) may attain over a range of wavenumbers is unity,
which requires that @y(x) = 0 over the corresponding x range.

Fig. 3A and B shows the damped frequency and damping ratio disper-
sion diagrams for specific normalized damping intensities /@, including
the undamped scenario /@, = 0 for reference. The ratio ff = ¢o/m5 is a
measure of the damping intensity and @7 = kp/m; is the natural frequency
of the oscillator m,. The specific material property ratios selected for this
example are r,, = 3, r. = 1/2, 1, = 1, and @y = 65.32 rad/s. Notice that
viscous damping compacts the frequency band structure, affecting higher
frequencies more acutely than lower ones. This is corroborated by the
corresponding damping ratios in Fig. 3B which expand as the damping
intensity increases, most rapidly for wavenumbers corresponding to
higher frequencies. In the extreme, we can observe two intriguing phe-
nomena not encountered in real-frequency analysis: band overtaking and
band cut-off (Hussein, 2009b; Hussein & Frazier, 2010; Phani & Hussein,
2013). Band overtaking occurs when frequency bands cross; band cut-off
describes the scenario in which frequency bands do not span the full range
of wavenumbers. In Fig. 3A, we observe a case of band overtaking at
B/ @y = 0.45. In particular, we observe that the upper band (dashed) drops
at a much faster rate than the lower band (solid) as the corresponding
damping ratio is greater, enabling the overtake. This is quantitatively illus-
trated by tracking the band-gap width as a function of damping intensity,
as illustrated in Fig. 3C. In some cases, if the overtake takes place on an
upper band, a band gap can decrease in width more abruptly (Hussein,
2009b).

In Fig. 3A, we observe that when the level of damping exceeds a certain
value, the lower band gets cut-off in the wavenumber domain, i.e., it does
not span the entire first irreducible Brillouin zone (IBZ), xa € [0,£x].
Moreover, since the upper band eventually disappears we get a wavenumber
band gap, i.e., a wavenumber range where waves are prohibited from prop-
agation. This phenomenon is analogous to the well-known concept of a
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Fig. 3 (A) Dispersion diagram for the phononic crystal shown in Fig. 2 illustrating the
dynamic response of the material to various damping levels: undamped, g = 0 (black)
and damped, > 0 (red). In particular, the descent of frequency bands with increased
damping is highlighted, ultimately resulting in branch overtaking and band cut-off.
(B) The corresponding damping ratio diagram which is unique to complex frequencies
and is a measure of how rapidly the wave amplitude decays—no propagation is pos-
sible for £(x) > 1. (C) As damping increases, the frequency bands collapse with higher
frequencies outpacing lower ones, narrowing and ultimately closing the band gap and
initiating band overtaking. Subsequently, beginning with higher frequency bands, a gap
in the wavenumber spectrum opens, resulting in band cut-off.

frequency band gap. The damping-induced band-overtaking and band cut-
off phenomena clearly present opportunities for design, building on already
existing methodologies at the unit-cell level and/or a combination of the
unit-cell and structural levels. However, both phenomena require substan-
tial levels of prescribed damping.
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2. METADAMPING: DAMPING EMERGENCE
2.1 Locally Resonant Metamaterials

In the previous section, we investigated the dynamics of phononic materials
with and without the influence of damping; however, the continuous and
discrete examples studied thus far have been of the phononic crystal type.
The unit-cell structure of a PC interacts with traveling elastic waves to pro-
mote interferences, opening up band gaps. As a result, there is a dependency
on unit-cell size to open band gaps.

Over the past two decades, metamaterials, whose extraordinary dynamic
and mechanical properties originate from a uniquely tailored internal architec-
ture, have spurred research in the acoustics (Liu et al., 2000), electromagnetics
(Pendry, Holden, Robbins, & Stewart, 1999; Smith, Padilla, Vier, Nemat-
Nasser, & Schultz, 2000), and, more recently, mechanics (Christensen,
Kadic, Kraft, & Wegener, 2015) fields. Among the most intriguing applica-
tions is the possibility ofa perfect lens (Pendry, 2000). R eturning to our inter-
est in the dynamical aspects of phononic materials, much of the remarkable
properties of metamaterials, such as negative eftective mass/density, elastic/
bulk modulus, refractive index, etc.—are often the homogenized manifesta-
tion of subwavelength resonances engineered into each unit cell. These res-
onating bodies act to localize (rather than scatter/reflect) the wave energy to
open band gaps and may take the form of heavy, elastically coated spheresinan
epoxy matrix (Liu et al., 2000), pillars (Bilal & Hussein, 2013; Pennec, Djafari-
Rouhani, Larabi, Vasseur, & Ladky-Hennion, 2008; Wu, Huang, Tsai, & Wu,
2008), voids in an epoxy matrix (Wang, Wen, Wen, Shao, & Liu, 2004),
localized oscillators distributed along a rod (Al Ba’ba’a & Nouh, 2017,
Khajehtourian & Hussein, 2014), among other possibilities. In the following,
we investigate the utility of locally resonant metamaterials in addressing a
long-standing materials challenge involving damping.

2.2 Metadamping in Locally Resonant Metamaterials

A variety of applications demand materials with simultaneously high
damping (i.e., vibration/shock suppression) and mechanical stiffness (i.e.,
load-bearing capability); however, for traditional materials, a gain in one
is often at the expense of the other. Consider the load-bearing and damping
properties of steel and rubber as one of many such material comparisons
(see Fig. 4). Following a “best-of-both-worlds” approach, even composites
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Fig. 4 Ashby chart of stiffness vs damping of common materials illustrating the
stiffness-damping trade-off.

composed of stift and damped constituents are compelled by inherent prop-
erties and filling fraction trade-off to sacrifice one property to promote
the other.

In addition to their previously mentioned attributes and applications in
the absence of material damping, metamaterials may exhibit a greater capac-
ity for wave attenuation than traditional, nonarchitected materials and PCs
when damping is taken into account. This gives metamaterials the potential
to enable very high levels of dissipation with sustained load-bearing capacity.
This emergent damping capacity, termed metadamping (Hussein & Frazier,
2013Db), applies across a broad spectrum rather than a narrow set of frequen-
cies and has been demonstrated in metamaterials supporting monopolar
(Frazier & Hussein, 2015) and dipolar (Frazier & Hussein, 2015; Hussein
& Frazier, 2013b) resonances, and resonances in more complex configura-
tions (Antoniadis, Chronopoulos, Spitas, & Koulocheris, 2015; DePauw, Al
Ba’ba’a, & Nouh, 2018). In the following, we illustrate the metadamping
phenomenon, beginning with metamaterials based on local resonance and
then through other architectures.

Fig. 5 shows the initial three material architectures to be considered.
Fig. 5A is a representative phononic crystal which relies exclusively on scat-
tering and interference between forward and backward propagating waves
for its dispersive properties, notably, the band gap. Fig. 5B and C are two
prototypical metamaterial designs whose dynamics are affected by local



Metadamping: Dissipation Emergence 127

Unit cell

Unit cell

Unit cell

Phononic crystal Metamaterial (dipolar) Metamaterial (monopolar)

Fig. 5 Discrete models of (A) a phononic crystal (utilizing scattering and wave interfer-
ences), and (B) dipolar and (C) monopolar metamaterials (utilizing local resonance).
These lumped-parameter models are simple, yet retain the essential physics of their lab-
oratory counterparts.

resonances, particularly dipolar and monopolar, in addition to wave inter-
ference due to the periodicity. In acoustics, a monopole radiates vibrational
waves equally well in all directions; thus, the truss structure in the monopole
metamaterial design in Fig. 5C, which equally applies the influence of the
resonator to both ends of the unit cell. A dipole consists of two monopoles
of equal magnitude but opposite phase and separated by a subwavelength
distance so that vibrational waves of opposite phase radiate well in two direc-
tions. This is modeled by the metamaterial unit cell in Fig. 5B. The reader is
referred to the article by Russell, Titlow, and Bemmen (1999) for more
information on monopoles and dipoles.

For each metamaterial model, the equation of motion in Eq. (2) is struc-
turally the same; however, consistent with the unique interaction among the
degrees of freedom of each model, the damping and stiffness matrices are
defined differently from the phononic crystal matrices introduced earlier
(the mass matrix is the same). For the metamaterial with dipolar resonance,
the damping and stiffness matrices become

1/ +1 =1 —1/r,
C=q| -1 1 0 (11a)
| —1/r. 0 1/r

[1/n+1 =1 —1/n,
K=k| -1 1 0 (11b)
B —1/1’;e 0 1/I’k
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For the metamaterial with monopolar resonance, they are defined as

1/r.+68/16  /6/4 —(1/r.+6/16)
C=c V5/4 1 —\/5/4 (12a)
| —(1/r.+8/16) —V/5/4 1/r.+6/16

1/n+68/16  /6/4 —(1/n+5/16)
K=k |  V5/4 1 —\/5/4 (12b)
| —(1/n.+5/16) —v/8/4  1/n+65/16

where 8 = (a/D)? is an additional control parameter for the monopolar res-

onance (a denotes the lattice spacing).

With the above construction, the three models share the same transfor-
mation matrix T as the phononic crystal, which, when applied to the equa-
tion of motion, Eq. (2), gives its reduced form in terms of the essential
degrees of freedom, Eq. (5).

To facilitate a proper comparison of material performance, notice that
each model contains the same damping elements and number of degrees
of freedom, i.e., an advantage in the form of more effective damping mech-
anisms and/or more interactions is not held by either model. In addition, the
three models are statically equivalent, that is, they are of equal mass and
effective static stiffness, keg :cg(im +my)/a, where ¢ is extracted from
the linear portion of the undamped dispersion diagram where ¢ ~ @/k
(see Section 4 for an in-depth analysis of static equivalence). This requires
ki > to differ between the models, however, r, is held constant. Specifi-
cally, for the dipolar metamaterial, @, = 46.19 rad/s; for the monopolar
metamaterial with 6 = 1, @y = 23.09 rad/s. For the present set of material
parameters, ¢, = 40.

In Fig. 6, we compare the response of each model to a common damping
intensity, /@y = 0.1. The results show that there are shifts in the frequency
band diagrams of all three models due to damping which are consistent with
what was seen in Fig. 3 A—greater shifts at higher frequencies corresponding
to higher damping ratios. However, despite the static equivalence and
equally prescribed viscous damping, we observe that, compared to the rep-
resentative PC, the metamaterials exhibit higher damping ratio values (i.e.,
higher dissipation) across much of the wavenumber domain. This is an indi-
cation of a considerable amplification, or emergence, of dissipation in locally
resonant metamaterials compared to their phononic crystal counterparts and



Metadamping: Dissipation Emergence 129

Phononic crystal Metamaterial (dipolar) Metamaterial (monopolar)
3 T T T T T T T T T T T T T T T T T T
s
\Sv 2 - - —
=
Q o - - -
5 =140
=
g 1 =4+ =4+ , .
2 ¢ =40
= =40
0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
0.4 T T T T T T T T T
s 03 4+ 4+ -
e 02 ——m— 1 e 4 —
]
£ | |
g
<
A 0.1F =
0 f 1 1 1 1 1
0 1 2 3
Wavenumber, Ka Wavenumber, Ka ‘Wavenumber, Ka

Fig. 6 Frequency and damping ratio dispersion of statically equivalent [equal mass and
long-wavelength stiffness (equivalent speed of sound)] phononic crystal and
metamaterial models.

showecases the effect of the internal structure design. For a more comprehen-
sive indicator of the damping capacity of each material model, we determine
the average damping ratio over the whole of the wavenumber domain and
across all modes:

1 ya
=3 [ (ko) + Exolce 13
Jo
The results— fv(é = 0.13 for the phononic crystal, é"?\,}; = 0.20 for the dipolar

metamaterial, and f%g = 0.39 for the monopolar metamaterial—reveal the

superior dissipation performance of metamaterials, particularly those
possessing monopolar resonances. This enhanced dissipation in meta-
materials defines the metadamping phenomenon.

Fig. 7 illustrates the robustness of the metadamping phenomenon by plot-
ting &, for various ¢, values. In addition, the impact of the parameter &
unique to the monopolar model is demonstrated. For the case ¢o = 40, even
as 0 — 0, monopolar metadamping still outperforms the dipolar case.



130 Clémence L. Bacquet et al.

Metadamping map
0.8 T T T T T T 0 g T

Cavg
T
.

Metadamping

W04

0.2

0
10 20 30 40 50 60 70 80 90 100
Sonic speed, ¢,

Fig. 7 Metadamping map characterizing the sonic speed dependency of the emergent
increase in damping capacity in resonance-based metamaterials.

In this section, we have demonstrated the concept of metadamping the-
oretically due to the presence of local resonance in the internal structure of
the phononic material. This finding has far reaching implications on the
design of materials for numerous applications that require the reduction,
mitigation, or absorption of vibrations, shock, and/or sound. While the
analysis has been presented in the context of simple mass-spring-dashpot
periodic chains, it can be readily extended to practical realizations of locally
resonant acoustic metamaterials. Examples include material structures that
utilize: heavy inclusions with compliant coatings, soft inclusions, split-
resonators, inertial amplifiers, pillars, holey cylinders, and suspended masses.
Other concepts for enhancing damping while retaining stiffness may be
applied in conjunction with the inclusion of local resonators leading to an
additive eftect. While this discussion has presented metadamping as a desir-
able effect, an awareness and understanding of the phenomenon will aid in
mitigation where it is not advantageous. Finally, while the concept of met-
adamping has been presented in the context of a mechanical problem, in
principle it is also applicable to other disciplines in materials physics that
involve both resonance and dissipation.

3. UNCONVENTIONAL METAMATERIAL DESIGNS

In pursuit of novel functionalities, unconventional metamaterial
configurations have recently emerged that exhibit broader tunability of wave
dispersion features and, at times, offer a pathway for physical realization of
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locally resonant mechanisms (Chen, Hu, & Huang, 2017; Liu, Chan, &
Sheng, 2005). The overarching theme of these novel metamaterials is the
combination of phononic features and intrinsic resonators placed in unique
and unprecedented configurations. Among these is the notion of resonator-
to-resonator interaction with examples that range from spring-mass meta-
materials with discretely coupled resonators (Hu, Tang, Das, Gao, &
Liu, 2017) to elastic metamaterial beams with interconnected resonators
(Beli, Arruda, & Ruzzene, 2018). In addition, other configurations feature
the presence of nonlocal resonances which, rather than being confined inside
an outer mass, directly interact with the preceding and following masses in a
periodic chain (DePauw et al., 2018).

3.1 Nonlocal Metamaterial Design

In this section, we investigate a new class of metamaterials which comprises a
nonlocal resonator and combines hybrid attributes from dipolar metamaterials
(DP) and PC (DePauw et al., 2018). The new configuration—henceforth
referred to as nonlocal metamaterial (NL)—consists of two masses mq and m,.
Each two consecutive masses 114 are connected via a spring ky, while each mass
my is sandwiched between two neighboring masses m; and connected to each
of them via a spring k,, as depicted in Fig. 8. It is noted that the PC and DP
configurations may be realized from the NL metamaterial configuration by
setting k; or one of the k, springs equal to zero, respectively. The dashpots
¢ and ¢ are added in parallel to the respective springs in the damped case
to characterize the energy dissipation in the NL metamaterial, which is capable
(as will be shown later) of exercising considerably greater metadamping eftects
than both the PC and the DP cases with the suitable choice of parameters.

Unit cell

Fig. 8 Discrete model of a nonlocal metamaterial (NL) cell which repeats infinitely along
one dimension.
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3.2 Dispersion Characteristics and Transitions

We start by highlighting the dispersion characteristics of the undamped NL
metamaterial under both free wave and driven wave conditions. In the most
general form, the undamped dispersion relations are given by

ot —a0*+ayp=0 (14)

where a = mymy and the coefficients a; and a for the different phononic
materials are listed in Table 1.

The general dispersion relation provided in Eq. (14) depicts the free
wave formulation and, for the NL case, reads

ot — <2(1 +1,) + @a> o} + wir,(1+2/n)a=0 (15)
e

where the acoustical @_ and optical @, branches are given in closed form by

2 2
W :% <2(1 1) + V—a) + (2(1 +1,)+ V—”‘a) — 4, (14+2/n)a
e

s

(16)

For the free wave formulation, the dispersion curves are obtained by
computing the roots of Eq. (16) over a range of xka € [0,7] corresponding
to the IBZ. Upon inspecting the results, it can be observed that the optical
dispersion branch can be manipulated to exhibit a negative or positive group
velocity depending on the choice of parameters, thus resembling either a PC
or a resonant material, respectively. Such a feature implies the presence of a
turning point where the optical branch becomes flat (i.e., ‘?)—'l‘: = 0); a phe-
nomenon that has been observed in systems with parametric amplification
(Cassedy, 1967). A similar behavior has also been captured in inertially
amplified locally resonant metamaterials (Al Ba’ba’a, DePauw, Singh, &
Nouh, 2018). The turning point can be analytically extracted by using

Table 1 Expressions for oy and a; for Different Phononic Material (@ =2(1 — coska))
PC DP MP NL

oy kika kikra kikoa ky(2ky + k)

ay (R ko) (my + o) ko(my + mo) + kymoa myky + mo (kg + %kz)a 2hky(my + mo) + kymoa
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the derivative of the dispersion relation in Eq. (15) with respect to « (Liu &
Hussein, 2012)

3 aw 2 T aw T . 2
4 ——wj|2| 2(1 +1,) + —a Jo— +2a| —sinka |@
ok Tk oK e
+ 2aw;r, (1+2/n,)sinka=0 (17)
Given that a flat branch dictates that %—‘;’ =0, Eq. (17) simplifies to
(@3(1+2/1) —@? /1) sinka=0 (18)

which indicates that a zero group velocity exists when sinka =0 at ka = ¢,
where £=0,1,2,..., as well as for the following condition

O =wo\/2+ 1, (19)

Substituting Eq. (19) into Eq. (15), it can be shown that the relationship
between the stiffness and mass ratios which governs the turning point of the

optical branch is given by
e =21y, (20)

Alternatively, the same condition associated with the turning point can
be found by equating the roots of the optical branch w in Eq. (16) at ka=0
and ka = 7 (l.e., @ = 0 and a = 4, respectively); which results in

W+ =W 2(1 + I’m) (213.)
w4+ = W 21’m(1 +2/I’k) (21b)

By equating Egs. (21a) and (21b), the same condition to that given by
Eq. (20) is found. If 2r,, > r,, the NL optical branch behaves in a manner
consistent with resonant metamaterials while for 2r,, < r, it resembles the
optical branch of a PC. As a consequence, the lower and upper bounds of
the resultant band gap, @, and @,,, depend on whether the NL metamaterial
mimics a PC or a resonant metamaterial. While @; can always be extracted
from the dispersion solution at ka = 7, the value of @, will obviously depend
on the shape of the optical branch and can correspond to the solution at either
ka = 0 or ka = &. The following two equations summarize all the possible
scenarios and provide comprehensive expressions for @; and o,

W = min (\/m, \/5) Wy (22a)
, = min (m, max(M,ﬁ))wo (22b)
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It is critical to note that when @ = 4 in Eq. (16), the acoustical

branch solution can be shown to be w_ =/2w,. It is also evident from
Eqgs. (22a) and (22b) that when an NL behaves like a PC, it is possible for

\/2r,(1+2/r,) to be either greater or less than v/2. In the rare occasion
where /2r,,(1+2/1) < /2, this dispersion solution appears in the acous-

tical branch and is otherwise located in the optical branch. In cases where the

upper limit o, = V2w, this requires that r,,(1 + 2/r,) < 1, which generates
the following condition

(23)

which is a subset of the 2r,, < r, case with r,, being less than unity. Interest-
ingly, at the critical point r,, :2';—"&, the band gap of the NL metamaterial

vanishes and the dispersion relation has the repeated solutions @ = v/2wy,
at ka = 7 (i.e., the discriminant of Eq. (16) becomes equal to zero). In such
a case, the NL dispersion resembles that of'a homogenous monatomic lattice.
To summarize the previous discussion, it is concluded that one of the band-
gap limits in the NL metamaterial has to be located at @ = V2w,. The dif-
ferent scenarios accompanying the NL dispersion relation discussed here are
graphically summarized in Fig. 9.

For completeness, we also investigate the driven wave formulation
which generates the wavenumber ka as an output to a prescribed fre-
quency, i.e., ka(w). By recasting Eq. (15) in the form: ka= cos ' ®(w),
the explicit form of the function ®(w) for NL metamaterials can be written as

ONL 1+ nw> (aﬂ —2w2(1+ r,,l)> 04)

21,2 \ @(2+ 1) —w?

Transition Special cases
o/, ol w, /o,
"k "k
. T < ) "y
Increasing 7 21, > s s
V 2yt <|> 2ru=ry
2r,<n
No band gap
Ka } Ka } Ka
0 T 0 T 0 T

Fig. 9 Dispersion transitions in an NL metamaterial with different mass and stiffness
ratios.
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By inspecting Eq. (24), the presence of an antiresonance in the system
can be determined from the discontinuities in the ®™" function, specifically
the roots of its denominator. The NL metamaterial has an antiresonance fre-
quency wg which is given by

Wr =wo\/2t 1, (25)

which, as can be seen, is a function of the stiffness ratio r, for a given @,. In

addition, the driven wave problem facilitates the process of extracting the
NL

extreme points of the dispersion from the roots of
)

acDN L

R (o' =202+ )0 + 2w (1 +1,)(2+nr)) =0  (26)
w

where nonzero solutions for @ in Eq. (26) are found as

i =0/ 2+ 1) £/ EF ) (n—21) 27

It is worth noting that g = @wyv/2 + k is a point of maximum attenua-
tion which corresponds to the discriminant of Eq. (27) being zero in the
case where 2r,, = r,. The structure of ®™" ensures that the value of
®NE (@) > 1, which in turn provides information regarding extrema of
the imaginary component of the wavenumber kia, leading to points where
the gradient is zero. The analysis presented here for driven waves can be sim-
ilarly extended to the different types of phononic materials. For conve-
nience, expressions for ®(w), @g, and @ are given in Table 2.

A comparison between the PC, DP, and NL systems is presented in
Fig. 10. The four rows in the figure represent the different dispersion

Table 2 Expressions for @ for the Phononic Crystal and DP and MP Metamaterials
D(w) N @

PC L@ 2 —
L (1) a)o\/%(l +r)(1+1/n)
2r,w5 \ 0f
DPp 1+ nw* [ @*— a)%(l + 1) Wy No valid solution
21,3 ] — @?
MP 4 1 No valid solution
10> (0* —a7) 04/ T6+3n,
1+ 5
2"/110)6 2

1)
wl—(1+ Erk)w
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transitions that are unique to the NL design. The mass and stiffness ratio
combinations [r,,, r] are [3, 1], [%,3], [1, 3], and [%, 1] for Fig. 10A-D, respec-
tively. In each case, the corresponding dispersion diagrams for the PC and
DP systems are shown for comparison. In the latter, while the location of the
branches (as well as the local resonance wg) changes from one row to the
next, the overall dispersion shapes are preserved. With a focus on the rightmost
column corresponding to the NL metamaterial, and starting with the 2r,, > r,
case (Fig. 10A), the dispersion behavior of the NL resembles that of a conven-

tional DP metamaterial and the resonance wp = @wov/2 + k is located inside the

band gap. At the turning point (Fig. 10B), g = @wyV/2 + k coincides with the
upper limit of the band gap; canceling out the optical branch as a consequence.

This also reaffirms the result obtained from Eq. (19) when the group velocity

%—‘;(’ =0. By revisiting Eq. (24) with 2r,, = r,, the numerator and denominator

of the far right term match and the equation reduces to ®N- =1 — Z)’—; which
0

explains the lack of an wp, in such case. Furthermore, a confined band gap ceases
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Fig. 10 Dispersion relations for PC (left), DP (middle), and NL (right) for different mass and
stiffness ratios: (A) 1, = 3,1k =1, (B) rmn =3, 1 =3; (O 1y = 1,1, =3;and (D) 1y =3, 1= 1.



Metadamping: Dissipation Emergence 137

to exist. Instead, an unbounded stop band starts immediately at @ = \/zw(). For
the case when 2r,, < r,, @ _ represents the Bragg band-gap maximum attenua-
tion frequency while @ ; reflects an inflection point in the unbounded stop band

region, as captured in Fig. 10C. In the final scenario, at r,, = @_ coincides

1
rn +2°
with @ = V2w, when the NL behaves akin to a homogenous monatomic
lattice, thus closing the band gap, whereas the inflection point exists at

@ + =wo+/2(1 + 1) as can be seen in Fig. 10D.

4. STATIC EQUIVALENCE AT THE LONG-WAVE
SPEED LIMIT

To enable a fair comparison between the dissipation performance of
different phononic materials, the systems should be statically equivalent, i.¢.,
exhibit an identical long-wave (sonic) speed ¢y. This condition has been
imposed in Section 2.2. In this section, we provide a formal derivation of
static equivalence. We start by analytically deriving expressions for ¢, corres-
ponding to the different phononic materials considered, from their respec-
tive dispersion relations.

The two solutions for Eq. (14) are given by

a £ /a7 — 4y 28)

2052

w4 =

Of interest here is the solution corresponding to the acoustical branch
w_, which can be rewritten as

(29)

To find ¢, the ratio % is obtained near ka = 0. As can be seen in Table 1,

Qo is a function of the wavenumber k and its value approaches zero as ka — 0,

resulting in % < 1. It is important to note that although a; may also be a
1

function of k, depending on the type of phononic material considered, it
always has a constant nonzero value when @ = 0. As a result, the assumption

%<<1 is not affected. Using the binomial approximation , /1 —%%
1

1

1 —%(%), Eq. (29) may be simplified to

ao
=,/— 30
o=1\/a (30)
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2kKa

>, and for small

Further, by utilizing the identity 1 — coska=2sin

2
. . Ka o . .
values of ka (i.c., sz%: (5> ), obtaining an expression for ¢, for the

PC case is straight forward and takes the form

klkZ PC PC T
= = —_— 1
@ "“\/ mrm)atk) 0 Ny OV

For the remaining types of phononic materials, a Taylor series approx-
imation around ka = 0 is needed to further reduce Eq. (30) since both a; and
a; are functions of ka. Now, let us rewrite o, and a; as ap= apa and
a1 = a1+ ay, respectively, where the corresponding values of the variables

@p, @1, and a; can be extracted from Table 1 by matching the coefficients.

2 kKa

Substituting a = 4sin“%, Eq. (30) now reads

The term under the square root in Eq. (32) can be expanded using a
Taylor series around ka = 0, which yields

1
Flca) = f(0) +£'(O)ka+ 5 f"(0) (ka)” (33)
where
200 sinka

f(ka)= Ka) > (34a)

51 +45{1 sinz—
2

a1(2coska+ cos2ka—3) + ay coska
ka0 (34b)
(4(11 sin? (E> + a1>

Upon evaluating the first and second derivatives of f{ka) at ka = 0, it can
be shown that

fl/(Ka) = 2&06211

w=Ka @ (35)
aq

and the explicit formulae for the long-wave speed ¢, of DP, MP, and NL
metamaterials can be given by

DP DP i
& = awg® [ ——— (362)
s (1 + 1’111)
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M = g [ (36b)
Tk
NL _ NL (2/”k + 1) (36¢)
0 O\ 2(1+1/r,)

The above equations may be rearranged with the long-wave speed ¢; as
an input to obtain the corresponding @, resulting in

CPC
wgcz%\/(l+rk)(l+l/rm) (37a)
e _ WS (37b)
wy 4 i /tm)
MP
a)g“’:% :—k (37¢)

NL
NL _ % 2(1+1/n) (37d)
0 a \l (2/n+1)

By setting ¢ of the PC as the benchmark for comparison, and
maintaining identical ¢, values for the rest of the designs, alternative expres-
sions for the frequency @ as a function of @ for the metamaterial coun-
terparts can be derived as

> , T
wp’ =wh© T+m (38a)
MP PC "k
w, = _— 38b
RV ETRICETS) (38b)
27’k
oy =y | (38¢)

(1+n)(2+n)

For instance, if we look specifically at ¢, = 40 (see Fig. 6), using Eq. (31) and
the parameters r,, = 3,7, = 1,and a = 1, results in cogC = 65.32. Finally, by mak-
ing use of Eqs. (382)—(38¢), the equivalent frequencies @, for each of the DP,
MP, and NL are a)z))l) =46.19, a)f\)/ﬂ) =23.09, and a)gIL =37.71, respectively.

5. METADAMPING IN NONLOCAL METAMATERIALS

In Section 3, the intriguing features associated with the dispersion
characteristics of undamped NL metamaterials were thoroughly discussed.
Now we examine and highlight the dissipative performance of the NL
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metamaterial in the presence of damping elements, and draw comparisons
with the PC and DP chains (a comparison with the MP system is omitted
for brevity). In the presence of the dashpots ¢; and ¢, the mass, damping
and stiftness matrices are given by

1/rm 0 0
M=m| 0 10 (39)
0 00
(1/r.+1/2) —=1/2  —1/r,
C=c| —1/2 1 —1/2 (39b)

1/ —=1/2 (1/r+1/2)

(1/rn+1) =1 —1/r
K=k | -1 2 -1 (39¢)
_1/’% —1 (1/}%4—1)

The dispersion characteristic of the dissipative NL metamaterial is obtained
by invoking the Bloch boundary condition via the transformation matrix T
as introduced earlier, and using the state-space formulation to obtain the com-
plex frequencies A. Similar to the example presented in Fig. 6, all the systems
undergoing comparisons are statically equivalent with a long-wave speed of
o = 40 and identical stiffness and mass ratios. Recall that the damping inten-
sity ratio is #/wp" = 0.1 from which the damping coefficients are computed as
o = Pm, and ¢ = /1. Since the NL metamaterial comprises an extra ¢
damper in each unit cell when compared to the PC and DP configurations,
the value of ¢ is halved to maintain a fair comparison, which is reflected in
the C matrix in Eq. (39b). While keeping the same damping coefficients,
we investigate the metadamping effects with a second set of parameters leaving
t,, unchanged and setting 1, = 3. The adjusted @, values for the second set of
parameters are wgc =92.38, a)ODP =80, and a)ONL =50.6.

Figs. 11 and 12 depict the dispersion curves and the damping ratios across
the optical and acoustical bands for the first and second set of parameters,
respectively. It is evident from both figures that the overall drop of the opti-
cal branch in response to increased damping is larger in the NL than it is in
the DP system. Furthermore, the change in the stiffness ratio generates a
larger increase in the damping ratio in the NL than in the DP. In both cases,
the damping ratios of the NL is either slightly or considerably higher than
that of the DP metamaterial, while both metamaterial designs exhibit larger
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Fig. 11 Dispersion curves and corresponding damping ratios for the damped PC, DP,
and NL systems with r,, = 3, r, = 1, and ¢y = 40.
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Fig. 12 Dispersion curves and corresponding damping ratios for the damped PC, DP,
and NL systems with r,, = 3, r, = 3, and ¢o = 40.
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damping ratios than the PC. Following the earlier analysis, the averaged
damping ratio &, is computed from the integration of (£; + &) over the
wavenumber ka ranging from 0 to 7z (as can be seen in Eq. (13)). The sonic
speed ¢ 1s swept over a range of values while keeping the same mass and
stiffness ratios as well as the damping amount, by adjusting the value of
@, for each system, respectively. The outcome of this process is graphically
presented in Figs. 13 and 14 which correspond to the cases discussed in
Figs. 11 and 12, respectively. It is evident that the NL outperforms the

Metadamping map
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Fig. 13 Metadamping regions in the NL and DP metamaterials (compared to the PCas a
datum) forr,, = 3, r, = 1.
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Fig. 14 Metadamping regions in the NL and DP metamaterials (compared to the PCas a
datum) for r,, = 3, r, = 3.
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PC and the DP systems in terms of total metadamping in both cases. The
amplified metadamping emergence in the NL is particularly observed with
the second set of parameters, validating the damping ratio diagrams pres-
ented in Fig. 12.

6. PARAMETRIC STUDY OF METADAMPING

As revealed in the previous section, the change in the stiftness ratio 7,
enhanced the metadamping emergence in the NL metamaterial for a pre-
scribed set of damping coeflicients and ratio . As such, it is imperative to
investigate this phenomenon further across a broader spectrum of properties
and material variations, while maintaining to the extent possible reasonable
constraints that render such comparisons just. We start by examining the
effect of increasing the damping amount (i.e., varying the values of ¢; and )
as well as the choice of the ratio 7, (reflecting the damping distribution
across the two materials). Fig. 15 combines the effect of the increasing
the damping intensity ratio f/w, with different choices of ¢, for the
three phononic materials under consideration: the PC, DP, and the NL.
Other parameters used in the comparison are identical to those selected
in Fig. 12: r, = r,, = 3 and ¢y = 40. In each subplot of Fig. 15, three sepa-
rate cases are considered: (1) co = 0 (i.e., r. = 0) and ¢; = fmy, (2) ¢t =0
(i.e., r, = 00) and ¢ = fmy, and (3) r.= 1 (with ¢; = ¢ = Pfm>/2). It is noted
that in the last case, the damping coefficients are reduced to half their
previous values to keep the total damping amount constant across the
board. It is first observed that the average damping ratio &,,, increases
linearly with an increase in the damping intensity ratio, irrespective of the
phononic material type, for all combinations of ¢; and . However, it can
be seen that the damping distribution within the same phononic material

Damping coefficient effect
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Fig. 15 Metadamping variation with the damping intensity ratio /@, between the PC,
DP, and NL systems for r, = r,,, = 3 and ¢, = 40.
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plays an influential role in the emergent metadamping. Between the two
extreme cases corresponding to 7, = 0 (i.e., » = 0) and r, = o0 (i.e., ¢ = 0),
the latter exhibits larger metadamping for the same amount of total damping
injected in the system. The metadamping in the case ¢ = ¢ lies halfway
between the two extreme damping distributions.

‘With both damping coefticients ¢; and ¢, kept constant, the implications
of changing other material properties in the phononic design are also inves-
tigated. Fig. 16 shows the variation of metadamping with increasing
damping intensities for the two stiffness ratios 7, = 1 and 1, = 3 examined
earlier. As an initial takeaway, it can be seen that the metadamping
corresponding to r, = 3 (and reflected by the metadamping metric &,,)
quantitatively exceeds that of the r, = 1 design for all three systems consid-
ered. The previous is also in line with Figs. 11 and 12. In addition, the linear
relationship between the damping intensity and the metric &,,, remains
intact. The relative enhancement of the metadamping across the different
phononic materials given a prescribed set of parameters may be computed
using the metric Z, illustrated in the rightmost panel of Fig. 16. For example,

Z5 = e — S (40)
defines the relative enhancement (or deterioration) of the emergent met-
adamping in the NL metamaterial as compared to a corresponding DP
metamaterial. Using the newly defined Z as a metric to assess relative met-
adamping improvements, or lack thereof, design charts that comprise vari-
ations in material properties such as mass, stiffness, and damping ratios, and
the interplay between them may be constructed. Investigating the damping
distributions across the different constituents of a phononic material allows
us to enhance the metadamping outcome. To do so, the stiffness ratio is
swept between the values of 0.01-100 and is varied against the ratio 7,
Contours of the relative metadamping metric Z as a function of both r,

Material variation effect Phononic type effect
02 PC ) DP 3
& & =
015t " I 1 ZENL;:?
w fNL ZPC
Wi 01 3 nvg\
0.05 1 b .
r=1 .
0 n o’ n o n 1
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1

Plo, Blew, Plo, Plo,
Fig. 16 Effect of material properties (left) and phononic material type (right) on met-
adamping for r. = 1.
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and r, are then generated. For a given (constant) amount of prescribed
damping #, the two damping coefficients ¢; and ¢; may be computed as

a Zﬁ (41a)
o
2= 1+1/r) (41b)

For 7 = 15 and maintaining w{© = 100 throughout, Fig. 17 displays
the relative metadamping differences ZE(‘;’, ZII;I(%, and ZNE, as well as the
corresponding sonic speed as computed from Eq. (31). Recall that the
adjusted }? and @)’ can be obtained from Egs. (38a) and (38c¢), respectively.
These charts show that the metadamping effectiveness is largely affected by the
distribution of damping among the different materials of the phononic material,
in addition to the material properties (represented by r,). For instance, in the
case of Zp¢, the metadamping enhancement is seen to increase as we move
further away from r, = 1. Furthermore, a large metadamping effect accom-
panies large values of r, almost consistently irrespective of r.. For small r,
however, the metadamping effect only becomes as significant with larger
r. values. Additionally, the maps also show unfavorable regions (shaded area
in Fig. 17) such as in the case of Zp, where the metadamping in the con-
ventional DP metamaterial outperforms its counterpart in the NL system.

In addition to confirming the metadamping emergence in resonant
metamaterials (e.g., the DP and NL systems) when compared to a common
benchmark in the form of a PC system, Fig. 17 also gives a physical insight into
how the metadamping in the NL system compares to that of a conventional DP
metamaterial. The ability of DP metamaterials to exhibit metadamping grad-
ually vanishes as the stiffness of the local resonator becomes very high to the
extent that constrains the internal vibrations and consequently renders the
internal resonance dynamics ineffective. This can be noticeably observed in
the leftmost plot of Fig. 17 where Zp(: goes to zero at high values of the stiffhess

Relative metadamping maps (damping variation) Sonic speed

10° 10'107! 10° 0 20 40 60 80 100
T,

-

10757
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Fig. 17 Contours of the relative metadamping differences Z5¢, ZN:, and ZNs with
variations in r, and r.. The corresponding sonic speed is provided for reference.
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ratio f;, signaling that the DP and PC systems basically become identical from
the standpoint of metadamping. NL metamaterials alleviate this situation by
providing a unit cell configuration where the resonator 1s not completely iso-
lated from the periodic chain and thus mitigates the eftect of a high resonator
stiffness, all while still maintaining some attributes of an elastic metamaterial as
evident by the dispersion diagrams in Fig. 10. As a result, the metadamping in
the NL system outperforms that in the DP system and Zp& exhibits values
greater than zero at higher values of #,. Once the resonator stiffness is reduced
again, the DP metamaterial recovers its metadamping advantage over the NL
design, as can be seen in the behavior of ZDp. The latter corresponds to the
region marked “Deterioration” in the rightmost plot of Figure 17.
Analogous to the variations in r,, the analysis may be extended to depict
changes in the metadamping performance with mass and stiftness ratios that
span a larger design space. This is shown in Fig. 18 for constant damping
coefficients. The damping ratio & corresponding to the optical branch at
ka = r is provided in Fig. 19 for reference. Fig. 19 is used as a precautionary
measure to ensure that none of the results displayed in Fig. 18 pertain to an
overdamped system (i.e., £ > 1) with a nonoscillatory response which is not
of'interest in the current analysis. It is also worth noting that some parameter

Relative metadamping maps (material variation) Sonic speed
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Fig. 18 Contours of the relative metadamping differences Z5¢, ZN, and ZNs for
identical damping coefficients (c; = ¢, = 2) and variations in r, and ry,. wgc is kept
at 100 for all the considered cases. The corresponding sonic speed is provided for
reference.
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Fig. 19 Damping ratio ¢ of the optical dispersion branch at xa = z corresponding to the
relative metadamping maps provided in Fig. 18.
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choices result in negative values for both Zbe and ZDp; an indication of a
performance deterioration from a metadamping standpoint. On the con-
trary, Zp show improvement for the entire design space considered. These
charts constitute a comprehensive framework and serve as design guidelines
for the type of phononic material, the material properties, as well as the dis-
tribution of damping within the same phononic material to yield optimal
metadamping levels.

7. EFFECT OF CORE DAMPING MODEL

In the previous sections, the concept of metadamping was presented in
the context of viscous damping, i.e., simple dashpot elements. However,
accurate and realistic prediction of material damping typically requires differ-
ent, and often more complex, models. A natural extension of this work is to
investigate to what degree the intriguing metadamping attributes established
earlier apply to slightly more involved damping models. Means of accounting
for damping in structural mechanics include the use of complex elastic moduli
(Castanier & Pierre, 1993; Sprik & Wegdam, 1998; Zhang, Liu, Mei, &
Liu, 2003) or inertial terms (Langley, 1994b), as well as stand-alone param-
eters which are functions of velocity (Hussein, 2009b; Hussein & Frazier,
2010). The choice of the damping model usually depends on the applica-
tion and is critical to minimize discrepancies at the experimental stages
(Adhikari & Phani, 2009; Phani & Woodhouse, 2007, 2009). Here, we
extend the previous discussion to the viscoelastic regime and specifically
the Maxwell element (see Fig. 20) to model the viscoelasticity (Frazier &
Hussein, 2015). The mathematical formulation developed in Section 1.2
is slightly modified to accommodate for the differences in the damping
mechanism as will be illustrated in the forthcoming section.

7.1 Viscoelasticity: Background and Modeling

Viscoelasticity is a property of a material that simultaneously exhibits viscous
and elastic behaviors. As a result, a coupling of the damping and the stiff-
ness properties within the material provides the damping element with

kM C
Fig. 20 A schematic of the Maxwell element where the stiffness (conservative) and
damping (nonconservative) elements are connected in series.
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an energy storage capability. Unlike viscous damping, which is primarily
observed in viscous fluids (Woodhouse, 1998), viscoelastic damping is a
hereditary model which takes into consideration the past and present history
of the dynamical motion whereby dissipation is attributed to a phase shift
between the displacement and stress fields (Bert, 1973; Nouh, Aldraihem, &
Baz, 2015). Owing to the nature of the viscoelasticity, the mathematical treat-
ment of the viscoelastic model includes internal states p; which are computed
using a convolution integral over an exponentially decaying kernel function
G(t) = py je 1" (where py ; and p j are the relaxation pairs) capturing the
entire motion up to and including the current state (Wagner & Adhikari,
2003). For an equal pair of relaxation parameters, i.e., 4; = py j = ji> j, the
Jj-th internal state is given by the following convolution integral (Frazier &
Hussein, 2015)

t
p,= / ,uje*”f('*r)ﬁ (7)dz (42)
: 0

and, hence, Eq. (5) is rewritten as

14
Maua + Zéjf)] +Ka=0 (43)
=

where £ is the total number of internal states. To attain the time derivative of
p;, the Leibniz integral rule is applied to Eq. (42) resulting in

t
b= [ we e i = fi-p) (44
0

following which, substituting back into Eq. (43) gives

¢
Mi + Y G
J=1

Eq. (45) in its current form cannot be readily used in the state-space rep-

+Ka=0 (45)

s 12
a——p;
K !

resentation presented earlier since it would result in nonsquare matrices.

Premultiplying Eq. (44) by /%éf and rearranging yields

1. 1. 1
—Cip;——Cip;——

Cui=0 16
K I w 1o
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Plugging Eq. (46) into Eq. (45), the state-space matrices A and B can
now be cast as

0 M 0 0 0
4
. A 1. 1. 14
M . ——C; ——C, ——Cy
jzl ! Hq Ho He
1. 1.
0 ——¢ 56 0 0
A= Hy My (47a)
1 4 1 .
0 ——GC, 0 —C> 0
Ho H>
1. 1.
0 ——C, 0 0 —C
i Hy He
DS T A 1 .
B=diag| -M K —C; —C; —Cy (47b)
My Mo Hy
where yT = [ﬁ up; p, - f)é] is the new state vector. While multiple

internal states p; more accurately describe the viscoelastic working mechanism,

the focus of the present analysis is to highlight the differences between the vis-
coelastic and viscous damping and, therefore, a single kernel function (i.e.,
£ = 1) is sufficient to describe the viscoelastic phenomenon; Eq. (8) now reads

0 M
M

C
A

X | O
|
=
o

C X
y=0. (48)

1. 1
0 —-C —
Hoou

Upon computing the eigenvalues of Eq. (48), the real nonoscillatory
modes corresponding to the internal states can be found. The remaining
modes are complex pairs which dictate wave propagation in the dissipative
structure, as long as that the prescribed damping intensity # does not render
the system overdamped (i.e., £ > 1). It is worth noting that in the extreme
cases where g — 0 and y — 00, Eq. (48) recovers the undamped and vis-
cously damped state matrices, respectively. With g — 0, and since kyOC 1,
the spring in Fig. 20 softens and eventually disengages. On the other hand,
for y — o0, the spring stiffens and effectively becomes a rigid connection. As

a consequence, most of the energy is dissipated in the damping element c.



150 Clémence L. Bacquet et al.

7.2 Metadamping in Viscoelastic Phononic Materials

7.2.1 Viscous-to-Viscoelastic Transition

In this section, we revisit the example in Fig. 11 and apply the viscoelastic
model for the same parameters to capture the transition between viscous to
viscoelastic damping. If the relaxation parameter g = 300 is used to generate
the viscoelastic counterpart of Fig. 11, the result will be as depicted in Fig. 21
where the undamped and viscously damped cases are also plotted for refer-
ence. In all the shown cases, the optical branches as expected demonstrate
higher tendency to deviate from the undamped case given the higher fre-
quency range. The acoustical branches remain nearly unchanged. The intro-
duction of viscoelastic damping tends to increase the damped frequency
since some of the energy in the Maxwell element is conserved (unlike
the viscous model which effectively decreases the damped frequency). This
increase in the damped frequency of the optical branch widens the band gap,
an effect that is more pronounced in the case of the PC. Since part of the
energy is stored in the viscoelastic model, we expect the damping ratios
of the viscoelastic systems to be lower than those of the viscous ones across
all the phononic materials considered. This can be noticeably observed in the
lower panel of Fig. 21.
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Fig. 21 Comparison of the dispersion curves and corresponding damping ratios for the
PC, DP, and NL systems under viscous and viscoelastic models.
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7.2.2 Band-Gap Limits

The evolution of the band-gap limits as well as the band-gap width Aw, for
all the different viscoelastic phononic materials is shown in Fig. 22 by the
solid curves. The dashed lines denote the viscous and undamped models
and are shown for comparison. The narrowest band gaps take place when
the phononic material has fully developed into the viscous damping regime.
During the transition, the band-gap width for the PC peaks in the vicinity of
41 =200, while for the NL and DP metamaterials, the largest band-gap width
occurs around g = 120. These peaks happen as the energy storage capability
in the Maxwell element reaches its maximum value thus overshadowing the
amount of dissipated energy (Frazier & Hussein, 2015).

Despite the increase in the band-gap width, we anticipate the metadamping
emergence in the viscoelastic phononic materials to deteriorate. This can also
be inferred from the damping ratio £ comparisons displayed in Fig. 21. Follow-
ing a similar procedure to that used to generate Fig. 13, and using 4 = 300, the
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Fig. 22 Evolution of band-gap limits for the PC, DP, and NL systems as a function of the
relaxation parameter u. The figure illustrates the transition lines between the
undamped, viscoelastic and viscous regimes. Black and blue dashed lines represent
the band-gap limits of the undamped and the viscous models, respectively.
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sonic speed ¢ is swept across a range of values and the corresponding met-
adamping &, for the viscoelastic phononic materials is evaluated. The relative
metadamping performances of the PC, DP, and NL systems are shown in
Fig. 23A. Further, a comparison of the emergent metadamping between the
viscoelastic and the viscous systems is presented in Fig. 23B—D. Examining
these patterns, it can be seen that the sensitivity of the metadamping to the
damping model decreases at lower sonic speeds where, for the given relaxation
parameter, the viscoelastic model becomes nearly viscous.

Finally, the evolution of metadamping with the change in the damping
regimes (i.e., the degree of the hereditary model) is computed as a function
of u for the different phononic materials in Fig. 24. The metadamping
increases as g increases for all the phononic materials up until a certain degree
of saturation as the systems completely transition into the viscous regime. In
contrast to the PC, the DP and NL metamaterials exhibit a £,,, peak in the
neighborhood of the transition line between the viscous and viscoelastic
models. Such unique traits which manifest themselves from the integration
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Fig. 23 (A) Metadamping emergence in NL and DP metamaterials with viscoelastic

damping (u = 300). (B)—(D) Quantitative comparisons between the viscoelastic and
the viscous metadamping curves for the PC, DP, and NL systems, respectively.
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Fig. 24 Metadamping in the PC, DP, and NL systems as a function of the relaxation
parameters p. Transition between the different regimes is illustrated by the dotted lines.

of the material damping with the difterent phononic materials open up new
avenues in material designs for optimal wave absorption as well as broadband
attenuation performances.

8. EXPERIMENTAL VALIDATION OF METADAMPING

In the previous sections, the concept of metadamping has been pres-
ented and analyzed in the context of lumped mass-spring-dashpot systems.
Although these simple models provide a clear demonstration of the concept,
with the added advantage of enabling closed-form analytical solutions, a
more elaborate model is needed to examine suitability for real-world appli-
cations and to enable proper experimental validation.

In this section, we examine metadamping in an experimental config-
uration, and a corresponding numerical model, in the form of an extended
all-aluminum beam with pillars periodically standing out—along the axial
axis—from one of the beam’s surfaces (see Figs. 25 and 26) (Bacquet &
Hussein, 2018). The pillars serve the role of the resonating substructures;
they are shaped by milling to ensure seamless connectivity. Our choice of a
medium with one-dimensional periodicity is only for ease of exposition as
the underlying dynamical behavior we are interested in takes place for any
dimension and is in fact independent of periodicity (Achaoui, Laude,
Benchabane, & Khelif, 2013). This investigation consists of two parts.
In the first part, we use experiments and corresponding finite-element
simulations applied to a four-celled finite-sized version of the pillared
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Fig. 25 Photograph of the two experimental structures: the unpillared beam (left) and
the pillared beam (right).

Fig. 26 Numerical models of the two experimental structures: the unpillared beam (/eft)
and the pillared beam (right).

beam to provide evidence of metadamping. In the second part, we provide
a correlation of the observed behavior with the dispersion and damping
ratio diagrams for the unit cell from which the pillared beam structure
is formed.

8.1 Pillared Beam: One-Dimensional Metamaterial

We consider the following two test structures composed entirely from alu-
minum: a regular beam (unpillared) and a metamaterial beam (pillared). The
unpillared beam’s dimensions are 32 X 1 X 1 inches. The pillared beam has
the same underlying beam base, but is augmented with four squares pillars
(0.5 x 0.5 x 2 inches) which are periodically arranged along the axial direc-
tion. These pillars act as the local resonators; there is one pillar per unit cell.
Fig. 25 shows a photograph of both structures in the laboratory, and Fig. 26
depicts the corresponding numerical models. Throughout this section, the
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color blue will represent the unpillared beam and the color red will represent
the pillared beam.

8.1.1 Experimental Setup

Each of the beam structures is suspended using nylon cords in order to sim-
ulate free-free boundary conditions. An accelerometer (PCB W]35C65) is
attached at the center point of the cross section on one of the ends of the beam.
Impulsive excitations are applied with an impact hammer (PCB 086C02) at a
point located at the center of the opposite cross section, such that only the
longitudinal modes are excited and measured. The measurements are collected
with a NI-DAQ 9234 data acquisition system (the frequency rate is set to
25.6 kHz and the sample time is 5 s). Five time series are recorded and averaged
for each beam. The inertance spectrum is obtained by postprocessing the time
data using a commercial software package (MATLAB®, The MathWorks Inc.,
Natick, MA, United States). Fig. 27A shows the experimental frequency
response functions (FRF) obtained by this process. The reader is referred to
the review article Hussein et al. (2014) and the recent article Al Ba’ba’a,
Attarzadeh, and Nouh (2017) for examples of other experimental setups for
phononic systems.

8.1.2 Numerical Model

The two beam structures are numerically modeled with the following pre-
scribed material properties: density of p = 2700 kg/m>, Young’s modulus of
E =68.9 GPa, and Poisson’s ratio of v = 0.33. Using the finite-element (FE)
method for spatial discretization, we adopt a viscoelastic damping model of
the form (Frazier & Hussein, 2015; Hussein & Frazier, 2013a; Wagner &
Adhikari, 2003)

M (1) + /k _r1/,te”(rT)Cl'1(T)dT+Ku(t) —£(1), (49)

where, for simplicity, the FE damping matrix C is assumed to be propor-
tional to the FE mass M and stifftness K matrices, such that C = pM + ¢gK.
The FE model consists of three-dimensional 8-node brick FE (total number
of elements in the unit cell are 4096 for the unpillared beam and 4352 for the
pillared beam). The parameters p and g, as well as a relaxation parameter y, are
determined by a unique experimental material-structure curve-fitting proce-
dure described in Bacquet and Hussein (2018), which has provided us with the
values p = 22, ¢ = 2.2 x 10”7, and u = 10*. Information on the FE imple-
mentation is available in Hussein (2009 a); and information on the viscoelastic
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Fig. 27 (A) Experimental and (B) numerical frequency response functions for the
unpillared and for the pillared beams. (C) Experimental and (D) and numerical temporal
responses for the two beam structures. The green and yellow curves are the curve-fitted
exponential functions for the unpillared and pillared time signals, respectively, to deter-
mine their time decay rates. The form of impulse excitations are shown in the insets;
these are obtained by a hammer impact in the experimental case, and mathematically
synthesized in the numerical case.

model adopted, and the application of Bloch’s theorem to that model, are
found in Frazier and Hussein (2015) and Hussein and Frazier (2013a). The
numerical FRFs (Figs. 27B) are shown to agree very well with their experi-
mental counterparts (Fig. 27A).

8.2 Evidence of Metadamping

To determine the presence of metadamping, we seek to show that the pillared
beam exhibits stronger temporal attenuation than the unpillared beam. This
may be demonstrated for a finite beam by examining the temporal response
due to impulse excitation, and for an infinite beam by examining the damping
ratio diagram obtained from a Bloch analysis on the unit cell.
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8.2.1 Finite Structure

The experimental temporal response for the same test structures investigated
in Fig. 27A to a particular profile of impulse excitation is shown in
Fig. 27C. To identify the presence of metadamping and quantify its inten-
sity, we compare the rate of time decay of the pillared beam and compare it
to that of the unpillared beam. The procedure is as follows. First, the first
derivative of the displacement response is evaluated. Then, the maxima,
which are the points where the derivative changes sign, are extracted. Expo-

¢ " are then curve-fitted to these

nential functions of the form f{f) = a
extracted response peaks, where the exponential decay constant b provides
a direct measure of the degree of dissipation.

With this approach, a metric for metadamping is defined as the ratio r =
bpit/ bun, where “pil” and “un” denote pillared and unpillared, respectively.
A ratio greater than unity signifies positive metadamping, i.e., the time
response of the pillared beam decays faster than that of the unpillared beam.
Conversely, a ratio less than unity indicates negative metadamping [not cov-
ered here; see Frazier and Hussein (2015) and Bacquet and Hussein (2018)].
From the results of Fig. 27C, we report an experimental metadamping
ratio ey, = 1.49 which is indicative of nearly 50% positive metadamping, i.e.,
the pillared beam exhibits 50% higher dissipation than the unpillared beam for
this particular form of excitation.

A similar analysis is conducted using our FE beam models by implementing
a time-integration scheme particularly suited for exponentially damped systems
(Adhikari & Wagner, 2004). In order to accurately replicate the experimental
setup, the initial displacement is modeled as a Gaussian excitation whose param-
eters a and b are selected such that it matches the experimental impulse:

2

uo(t) = 67%, (50)
where a=0.01 and b =8 x 107°. The time response of the beams are com-
puted for t= 0.4 s with a time step of At=23 x 10" 5. The results, which are
shown in Fig. 27D, give us a numerical metadamping ratio of 7, = 1.09.
While the degree of the predicted metadamping is lower than the experi-
mental results, this confirms that the pillared beam exhibits higher dissipation
for the applied excitation profile.

8.2.2 Infinite Material
To elucidate the metadamping phenomenon, and what causes it in the finite
structure as we observed by brute-force simulations, we revisit the problem
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and examine it from the material point of view. This is done by performing a
dispersion analysis on the unit cells (both the unpillared and pillared) and com-
paring their damping ratio diagrams. The free equation of motion for each unit
cell is given by Eq. (49) with the force term on the right-hand side set to zero.
The dispersion band structure and corresponding damping ratio diagram are

obtained by assuming a Bloch solution of the form u(r) =U (k)e*>*M and
substituting it into Eq. (49). Upon transformation to state space, we obtain
the following matrix eigenvalue problem [details of the derivation are available
in Hussein and Frazier (2010, 2013a) and Frazier and Hussein (2015)]:

0 M 0
Moo tew| [0 kg o ||[*
K —— K
1 1 1/4 + 0 K(K) ' 0 wl| =0,
0 ——C(x) —C(K) 0 0 JCW]|Lp
H H
(51)

This problem is solved for prescribed and real wavenumbers k spanning the
first Brillouin zone (0 < ka < 7) which gives us wavenumber-dependent,
complex eigenvalues A,(k) in the form

A(6) = =& (K)wos(k) Liwy(k), s=1,...,n, (52)

where # is the total number of modes. The imaginary part @, represents the
damped frequency corresponding to the s-th Bloch mode, and the real part is
the product of the wavenumber-dependent damping ratio & and, in the case
of Rayleigh (proportional) damping, the undamped frequency w,. The dis-
persion diagram for both beam structures is shown in Fig. 28A and the
corresponding damping ratio diagram is plotted in Fig. 28B (we only show
the relevant portions of each diagram). The latter diagram provides us with
the level of dissipation that each Bloch mode exhibits.

We observe in the dispersion diagram (Fig. 28A) two curves cutting
through horizontally; these represent local resonances associated with pillar
motion. These curves couple with the underlying dispersion curves describ-
ing wave motion along the base beam structure and cause the hybridization
phenomenon that is characteristic of locally resonant metamaterials, as we
observed in the earlier sections dealing with lumped-parameter models.
The pillared beam dispersion curves clearly contrast with those of unpillared
beam as the latter curves do not exhibit any local resonances. Since our ear-
lier experimental focus has been in longitudinal displacements (and acceler-
ations), we specifically highlight the longitudinal modes and shade the other
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Fig. 28 (A) Dispersion and (B) damping ratio diagrams with a close-up view of the
hybridization region. The greens arrows illustrate the metadamping effect due to the
addition of the pillars. The color bar represents the degree of longitudinal polarization
in each mode. The frequency content of the impulse excitation is plotted and shaded in
green on the far end of (A) demonstrating overlap with metadamping region; most of
the excitation frequency content falls within the 2500 < f < 3250 Hz range.

modes in gray. To rigorously identify which modes are longitudinal in the
dispersion diagram, we first sort the Bloch modes using an algorithm that
checks continuation of group velocities [which is a measure of the degree
of orthogonality between two vectors (Allemang, 2003)], and then calculate
the degree of longitudinal polarization following the method described in
Achaoui, Khelif, Benchabane, and Laude (2010). Polarization values range
from O (pure shear) to 1 (pure longitudinal).

The key feature in Fig. 28 is the green arrows that illustrate the transition
of the dispersion curves and damping ratios due to the inclusion of the pillar
in the unit cell. In the damping ratio diagram in particular, these arrows indi-
cate an increase in the level of dissipation. And since this takes place in the
frequency range of the excitation, the finite structure formed from this con-
stituent cell experiences increased dissipation, or metadamping, as we
observed in Figs. 27C and D.

8.3 Effect of Added Mass on Dissipation

Finally, it is important to ensure that the added mass of the pillar is not a
factor in the generation of metadamping. The unpillared beam has a volume
of Vyn = 32 in” whereas the pillared beam has a volume of 1 = 34 in’.
Therefore, to show that the metadamping is due to the local resonance
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Fig. 29 Numerical time responses for the two unpillared beams, with volumes V =
32 in® (blue) and V* = 34 in® (gray), respectively. The light and dark green curves corre-
spond to exponential curves that were fitted to the unpillared and unpillared volume
time signals, respectively, to determine their time decays.

phenomena only and not due to the addition of extra mass that exhibits
material damping, we perform a similar analysis as that of Fig. 28D on an
unpillared beam that has the same volume as the pillared beam. The numer-
ical time responses and their curve-fitted exponential functions are shown
in Fig. 29. The metadamping ratio, here redefined as r = b, ,+/ by, is shown
to equal one; this confirms our hypothesis that metadamping emerges from
the presence of local resonance and not from the addition of more damped

material.

9. CONCLUSIONS

Metadamping is a resonance-enabled intrinsic damping emergence
phenomenon whereby the level of dissipation may be enhanced (or reduced)
in a metamaterial compared to a statically equivalent material with the same
long-wave speed and type and quantity of prescribed damping. While elastic
metamaterials are known to provide strong spatial attenuation inside band
gaps, metadamping enables the additional trait of strong temporal attenuation
across relatively broad frequency ranges. The phenomenon takes place at
regions in the wavenumber-dependent damping ratio diagram where the
dissipation is shown to increase due to the inclusions of the resonances.
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In this chapter, we have provided a technical review of the concept for
different types of resonances, namely local dipole, local monopole, and non-
local. It is shown that the quest for high metadamping in resonant
metamaterials becomes a trade-off between seeking the absolute highest met-
adamping (provided by DP metamaterials) or a considerable metadamping
effect across a wider choice of resonator stiftnesses (provided by NL
metamaterials). A parametric study and an examination of the effects of viscous
vs nonviscous damping are also provided. The chapter concludes with a real-
life experimental investigation of metadamping in a pillared beam, where we
show matching results with both simulations and band-structure theory.
Future research may take the phenomenon of metadamping to the microscale
and to waves driven at prescribed frequency.
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