To Call, or Not to Call: Contrasting Direct and
Indirect Branch Coverage in Test Generation

Gregory Gay

Abstract—While adequacy criteria offer an end-point for testing, they do not mandate how targets are covered. Branch Coverage may
be attained through direct calls to methods, or through indirect calls between methods. Automated generation is biased towards the
rapid gains offered by indirect coverage. Therefore, even with the same end-goal, humans and automation produce very different tests.
Direct coverage may yield tests that are more understandable, and that detect faults missed by traditional approaches. However, the
added burden for the generation framework may result in lower coverage and faults that emerge through method interactions may be
missed.

To compare the two approaches, we have generated test suites for both, judging efficacy against real faults. We have found that
requiring direct coverage results in lower achieved coverage and likelihood of fault detection. However, both forms of Branch Coverage
cover code and detect faults that the other does not. By isolating methods, Direct Branch Coverage is less constrained in the choice of
input. However, traditional Branch Coverage is able to leverage method interactions to discover faults. Ultimately, both are situationally

applicable within the context of a broader testing strategy.

Index Terms—Adequacy Criteria, Automated Test Generation, Branch Coverage

public int[] add(int[] wvalues, int valueToAdd) {
for(int 1 = 0; 1 < values.size(); 1i++){
if (valueToAdd >= 0) {
values[i] = faultyAdd(values[i], valueToAdd);
}
}
return values;

}

public int faultyAdd(int value, int valueToAdd) {
if (valueToAdd <= 0){ // FAULT, should be ==
return value;

}

return value + valueToAdd;

}

Fig. 1. Sample code where coverage can be attained directly or indirectly
over method faultyAdd.

1 INTRODUCTION

As we cannot know what faults exist in software, dozens of
criteria—ranging from the measurement of structural coverage to
the detection of synthetic faults [9], [LO]—have been proposed to
judge the adequacy of software testing efforts. Such adequacy cri-
teria provide advice to developers, and can be used as optimization
targets for automated test generation [§]].

Regardless of the process used to create test cases—automated
or manual—adequacy criteria offer a measurable goal, a point
at which test creation can stop. Consider Branch Coverage—
arguably the most common criterion used in research and prac-
tice [5]. At various points in a class, the decision of which
block of statements to execute depends on the outcome of a
branch predicate. Such branching points—contained within if
and switch statements and loop conditions—determine the flow
of control. Branch Coverage mandates that each predicate evaluate

G. Gay is with the Department of Computer Science & Engineering, University
of South Carolina. E-Mail: greg@greggay.com
This work has been partially supported by NSF grant CCF-1657299.

to all possible outcomes, ensuring that the correct statements are
executed.

No conditions are placed on how coverage is achieved. As
a result, even though they may have the same end-goal, humans
and automation produce very different test cases. Consider the
two methods in Figure [l Method add iterates over an array
of integers. If the value to add to each is > 0, then method
faultyAdd is called to add that amount. Method faultyAdd
has a fault in it, where—if the value to add is < 0—we return the
original value. The expression should state == 0, which means
that negative numbers are incorrectly handled. Because the two
methods are linked through the call from add to faultyAdd,
Branch Coverage of faultyAdd can be attained indirectly by
providing test input to add. Automated test generation algorithms,
designed to reward efficient attainment of coverage, may never call
add directly as its branches can be covered indirectly.

The use of adequacy criteria in automated generation contrasts
how such criteria are used by humans. For a human, a criterion
such as Branch Coverage typically serves an advisory role—as a
way to point out gaps in existing efforts. Yet, in automated gen-
eration, coverage is typically the goal, and generators will single-
mindedly climb towards that goal. A human tester would not stop
after testing add, just because Branch Coverage has been attained.
They would still write unit tests for faultyAdd to ensure that it
works in isolation. By stopping after attaining indirect coverage,
automated test suites cannot discover the fault in Figure [T[}—the
indirect call can only cover the faulty code with a value of 0, but
a negative value is needed to trigger a failure. This is impossible
without a direct call. While a human may not discover this fault
either, they are more likely to attempt such input. Although this
is a simple example, more complex representations of the same
situation are common during development (we cover real-world
examples in Section {4.3).

Indirect coverage of branches also carries a cognitive cost
for human developers. In a user study, Fraser et.al found that

developers dislike tests that cover branches indirectly, because
they are harder to understand and extend with assertions [3]]. This
imposes a high human oracle cost that may outweigh the benefits
of automated generation [1]. The understandability benefits of
direct coverage may help alleviate the concerns of developers with
the readability of generated unit tests [2].

Recent updates to the EvoSuite test generation framework
allow the use of both traditional Branch Coverage, where indi-
rect attainment is allowed, and Direct Branch Coverage, where
branches must be covered through direct method calls [10]. Direct
Branch Coverage should carry a lower human oracle cost, and may
detect faults that require direct calls. However, because indirect
coverage does not contribute to the total Branch Coverage, the
generator must make additional method calls to cover branches
that traditional Branch Coverage could handle indirectly. This will
likely result in a dip in coverage unless additional time is offered to
the generation process. If there is enough of a coverage loss, then
generated suites may have lower fault-detection potential as well.
Additionally, while direct coverage is required to detect the exam-
ple in Figure[T] other faults may only—or more easily—emerge by
focusing on the interactions between methods. Therefore, it is not
clear whether the benefits of direct coverage outweigh the costs of
ignoring indirect coverage.

In order to study the costs and benefits of each approach, we
have used EvoSuite to generate test suites using both variants
of Branch Coverage, with efficacy judged against the Defects4]
fault database [7]. By examining the attained coverage and fault-
detection capabilities of both variants, we can determine the
impact of the choice of fitness function on the generated test suites
and explore situations where one form of Branch Coverage may
be more appropriate than the other. To summarize our findings:

e Given a two-minute search budget, traditional Branch
Coverage discovers 10.40% more faults and has a 13.59%
higher average likelihood of fault detection than Direct
Branch Coverage. With a ten-minute budget, traditional
Branch Coverage discovers 4.32% more faults and has a
7.61% higher average likelihood of fault detection.

e Similarly, traditional Branch Coverage attains an average
7.94-9.00% higher Line Coverage and 9.09-10.20% higher
Branch Coverage over the code, as well as 8.06-9.46%
higher coverage over the faulty lines of code.

o However, each method covers portions of the code and de-
tects faults that the other does not. By examining methods
in isolation, Direct Branch Coverage is less constrained
in the input it uses to cover each method. Traditional
Branch Coverage is able to leverage the context in which
methods interact to detect faults that emerge from those
interactions.

We have found that requiring direct coverage imposes a cost
in terms of coverage and likelihood of fault detection. As long as
the human oracle benefits of Direct Branch Coverage outweigh
the need to offer additional time for generation, practitioners may
find value in requiring direct coverage. Ultimately, there are clear
situations where each form of coverage is more suited to detecting
a particular fault than the other. Importantly, both also have
important limitations not possessed by the other. This indicates
that both variants have value as part of a broader testing strategy,
and that future approaches to test generation could leverage the
strengths of each approach.

2 BACKGROUND

Test case creation can naturally be seen as a search problem [8]]. Of
the thousands of test cases that could be generated for any SUT, we
want to select—systematically and at a reasonable cost—those that
meet our goals [8]. Given a well-defined testing goal, and a scoring
function denoting closeness to the attainment of that goal—called
a fitness function—optimization algorithms can sample from a
large and complex set of options as guided by a chosen strategy
(the metaheuristic). Metaheuristics are often inspired by natural
phenomena, such as swarm behavior or evolution.

While the particular details vary between algorithms, the
general process employed by a metaheuristic is as follows: (1)
One or more solutions are generated, (2), The solutions are scored
according to the fitness function, and (3), this score is used to
reformulate the solutions for the next round of evolution. This
process continues over multiple generations, ultimately returning
the best-seen solutions. By determining how solutions change over
time, the choice of metaheuristic impacts the quality and efficiency
of the search.

As we cannot know what faults exist without verification, and
as testing cannot—except in simple cases—conclusively prove
the absence of faults, a suitable approximation must be used
to measure the adequacy of tests. The most common methods
of measuring adequacy involve coverage of structural elements
of the software, such as individual statements, branches of the
software’s control flow, and complex boolean conditional state-
ments [9]]. Each adequacy criterion embodies a set of lessons about
effective testing—requirements tests must fulfill to be considered
adequate. If tests execute elements in the manner prescribed by the
criterion, than testing is deemed “adequate” with respect to faults
that manifest through such structures. Adequacy criteria have
seen widespread use in software development, and is routinely
measured as part of automated build processes [5ﬂ

Adequacy criteria offer clear checklists of testing goals that
can be objectively evaluated and automatically measured [9].
These very same qualities make adequacy criteria ideal for use
as automated test generation targets. In search-based testing, the
fitness function needs to capture the testing objective and guide
the search. Through this guidance, the fitness function has a major
impact on the quality of the solutions generated. Adequacy criteria
can be straightforwardly transformed into distance functions that
effectively guide to the search to better solutions [8].

3 STUDY

While coverage criteria mandate an end-goal for testing, they im-
pose no restrictions on how that goal is attained. Most test genera-
tion approaches count indirect coverage of the code in called meth-
ods towards the total. However, we could restrict counted coverage
to that attained through direct calls to methods [[10]. Direct Branch
Coverage may offer benefits in terms of the understandability of
test cases, and may contribute to fault discovery. However, it is
not clear whether those benefits outweigh the potential loss in
coverage—and potentially fault-detection capability—that would
result from the additional demands imposed on the generation
framework.

In order to study the costs and benefits of both forms of
Branch Coverage, we have used EvoSuite to generate test suites
using both variants, with efficacy judged against the Defects4]

1. For example, see https://codecov.io/.

https://codecov.io/

fault database [7]]. By examining the coverage and fault-detection
capabilities of suites generated using both forms of coverage,
we can determine the impact of this choice on the automated
test generation process and explore situations where one form
of Branch Coverage may be more appropriate than the other. In
particular, we wish to address the following research questions:

1) Given a fixed time budget, which form of Branch Cov-
erage detects the most faults, and which has the highest
likelihood of fault detection?

2) Given a fixed time budget, does the additional difficulty
of attaining Direct Branch Coverage result in a lower final
level of attained coverage?

3) How does an increased search budget impact the perfor-
mance gap between the two forms of Branch Coverage?

4) Are there particular types of faults that certain forms of
Branch Coverage are better suited to detect?

We have performed the following experiment:

1) Collected Case Examples: We have used 353 real faults,
from five Java projects, as test generation targets (Sec-
tion [3.1)).

2) Generated Test Cases: For each class, we generated
10 suites satisfying each form of Branch Coverage. We
performed this task using a two-minute and a ten-minute
search budget per CUT (Section [3.2).

3) Assessed Fault-finding Effectiveness (Section [3.3).

4) Recorded Generation Statistics: For each suite, fault,
and budget, we measure factors that allow us to compare
suites, related to coverage, suite size, and suite fitness

(Section [323).

3.1 Case Examples

Defects4] is an extensible database of real faults extracted from
Java projects [7 Currently, the “stable” dataset consists of 357
faults from five projects: Chart (26 faults), Closure (133), Lang
(65), Math (106), and Time (27). Four faults from the Math
project were omitted due to complications encountered during
suite generation, leaving 353 that we used in our study.

Each fault is required to meet three properties. First, a pair of
code versions must exist that differ only by the minimum changes
required to address the fault. The “fixed” version must be explicitly
labeled as a fix to an issue, and changes imposed by the fix must
be to source code, not to other project artifacts such as the build
system. Second, the fault must be reproducible—at least one test
must pass on the fixed version and fail on the faulty version.
Third, the fix must be isolated from unrelated code changes such
as refactorings. For each fault, Defects4] provides access to the
faulty and fixed versions of the code and developer-written test
cases that expose the fault.

3.2 Test Suite Generation

The EvoSuite framework uses a genetic algorithm to evolve test
suites over a series of generations, forming a new population by
retaining, mutating, and combining the strongest solutions. It is
actively maintained and has been successfully applied to a variety
of projects [[L1], [4]. In this study, we used EvoSuite version 1.0.3
and its implementations of Branch Coverage and Direct Branch
Coverage.

2. Available from http://defects4j.org

3

A test suite satisfies Branch Coverage if all control-flow
branches are taken by at least one test case—the test suite contains
at least one test whose execution evaluates the branch predicate to
true, and at least one whose execution evaluates the predicate
to false. To guide the search, the fitness function calculates the
branch distance from the point where the execution path diverged
from the targeted branch. If an undesired branch is taken, the
function describes how “close” the targeted predicate is to being
true. The fitness value of a test suite is measured by executing
all of its tests while tracking the branch distances d(b, Suite) for
each branch.

Fpo(Suite) = > v(d(b, Suite)) (1)
beB
Note that v(...) is a normalization of the distance d(b, Suite)
between 0-1. The value of d(b, Suite), then, is calculated as
follows:

0 if the branch is covered,
V(dpmin (b, Suite)) if the predicate has been
executed at least twice,

1 otherwise.

d(b, Suite) =

(@)

The cost function used to attain the distance value follows a
standard formulation based on the branch predicate [8]].

The fitness function for Direct Branch Coverage is the same
as that used for Branch Coverage [10f], but only methods directly
invoked by the test cases are considered for the fitness and cover-
age computation of branches in public methods. Private methods
may be covered indirectly (as they cannot be called directly).

Test suites are generated that target the classes reported as
relevant to the fault by Defects4]. Tests are generated using the
fixed version of the CUT and applied to the faulty version in
order to eliminate the oracle problem. In practice, this translates
to a regression testing scenario, where tests guard against future
issues.

Two search budgets were used—two minutes and ten minutes
per class. This allows us to examine whether an increased search
budget benefits each fitness function, and is comparable to similar
testing experiments [11]. To control experiment cost, we deac-
tivated assertion filtering—all possible regression assertions are
included. All other settings were kept at their default values. As
results may vary, we performed 10 trials for each fault and search
budget.

Generation tools may generate flaky (unstable) tests [11]. For
example, a test case that makes assertions about the system time
will only pass during generation. We automatically remove flaky
and non-compiling tests. On average, less than one percent of the
tests are removed from each suite [4].

3.3 Data Collection

To evaluate the fault-finding effectiveness of the generated test
suites, we execute each test suite against the faulty version of each
CUT. The effectiveness of each fitness function, for each fault,
is the proportion of suites that successfully detect the fault to the
total number of suites generated for that fault. We also collected
the following for each test suite:

Achieved Branch and Line Coverage: Using the Cobertura tool,

we have measured the Line and Branch Coverage achieved by
each suite over each CUT.

http://defects4j.org

Budget | Chart | Closure | Lang | Math | Time | Overall
BC 120 17 16 36 53 16 138
600 20 19 35 54 17 145
Total 21 21 41 57 18 158
120 14 16 32 48 15 125
DBC —m 19 19 % | 47 it 139
Total 19 22 40 52 18 151
TABLE 1

Number of faults detected by each Branch Coverage variant. Totals are
out of 26 faults (Chart), 133 (Closure), 65 (Lang), 102 (Math), 27

(Tirne) and-352 (Overal
Chart" |“Closurd TV Lang™ “'ﬁ/]ath

4

two-minute search budget and 25.61% given a ten-minute budget.
Direct Branch Coverage follow with a 19.92% chance of detection
given a two-minute budget and a 22.78% chance given a ten-
minute budget. Again, traditional Branch Coverage outperforms
direct coverage, with a 13.59% higher overall chance of detection
with two minutes and 7.61% given ten minutes.

Budget Time | Overall Given a fixed time budget, traditional Branch Coverage
BC 120 45.00% | 4.66% | 34.00% | 27.94% | 34.82% | 22.01% . .
600 4846% | 5.79% | 40.15% | 32.75% | 39.26% | 25.61% outperforms Direct Branch Coverage, detecting
% Change | 7.69% | 24.19% | 18.10% | 17.19% | 12.77% | 16.05% 10.40%/4.32% more faults with a 13.59%/7.61% higher
DEC 120 3423% | 5.11% | 30.00% | 24.51% | 31.11% | 19.43% T . .
600 0.77% 6.09% 38.77% | 28.63% | 40.37% | 23.80% average likelihood of detection (two/ten—mmute budget).
% Change | 19.10% | 19.12% | 29.23% | 16.80% | 29.76% | 22.45%
TABLE 2

Average likelihood of fault detection (proportion of suites that detect the
fault to those generated), broken down by coverage type, budget, and
system. “% Change” indicates how results change when moving to a

larger search budget.

Patch Coverage: A high level of coverage does not necessarily
indicate that the lines relevant to the fault are covered. We also
record Line Coverage over the program statements modified by
the patch that fixes the fault—the lines of code that differ between
the faulty and fixed version.

Test Suite Size: Suites containing more tests are often thought
to be more effective [6]. Even if two suites achieve the same
coverage, the larger may be more effective simply because it
exercises more combinations of input.

Test Suite Length: Each test consists of one or more method
calls. Even if two suites have the same number of tests, one may
have longer tests—making more method calls. In assessing suite
size, we must also consider test length.

4 RESULTS & DISCUSSION
4.1 Comparing Fault Detection Capabilities

In Table [1} we list the number of faults detected by each variant
of Branch Coverage (BC is traditional Branch Coverage, DBC
denotes Direct Branch Coverage), broken down by system and
search budget. Due to the stochastic search, a higher budget
does not guarantee detection of the same faults found under a
lower search budget. Therefore, we also list the total number
of faults detected by each coverage type. In total, traditional
Branch Coverage detects 158 faults (44.76% of the examples),
while Direct Branch Coverage only detects 151 (42.78%). From
these results, we can see that our initial hypothesis—that Direct
Branch Coverage will be more difficult to satisfy due to the
requirement for direct coverage—has some truth to it. At the
two-minute budget, BC detects 10.40% more faults than DBC.
This gap narrows at the ten-minute budget, where BC only detects
4.32% more faults.

One suite generated by EvoSuite may not always detect a
fault detected by another suite—even if the same criterion is
used. To more clearly understand the effectiveness of each fitness
function, we must not track only whether a fault was detected, but
the likelihood of detection—the proportion of detecting suites to
the total number of suites generated for that fault. The average
likelihood of fault detection is listed for each coverage type,
by system and budget, in Table 2] We also list the change in
likelihood between budgets. We largely observe the same trends
as above. Given a fixed budget, traditional Branch Coverage has
an overall average likelihood of fault detection of 22.07% given a

We can perform statistical analysis to assess our observations.
We formulate hypothesis H and its null hypothesis, HO0:

e H: Given a fixed budget, suites generated to satisfy tra-
ditional Branch Coverage will have a higher likelihood
of fault detection than suites generated to satisfy Direct
Branch Coverage.

e HO: Observations of fault detection likelihood for both
criteria are drawn from the same distribution.

Our observations are drawn from an unknown distribution;
therefore, we cannot fit our data to a theoretical probability distri-
bution. To evaluate H(O without any assumptions on distribution,
we use a one-sided (strictly greater) Mann-Whitney-Wilcoxon
rank-sum test [12]]. Due to the limited number of faults for the
Chart and Time systems, we have analyzed results across the
combination of all systems (353 observations per budget, per
criterion). We apply the test for each pairing of fitness function
and search budget with o = 0.05.

The application of this test results in a p-value of 0.13 at the
two-minute budget, and 0.27 at the ten-minute budget. Therefore,
we fail to reject the null hypothesis in both cases. Although Branch
Coverage has a higher average performance:

Traditional Branch Coverage fails to outperform Direct
Branch Coverage with statistical significance.

Further, while traditional Branch Coverage is more effective
than DBC, the gap between the two narrows as the search
budget increases. The differences in the number of faults detected
(Table[T) and likelihood of detection (Table[2)) both decrease at the
ten-minute budget. We can also see this from the “% Change” rows
in Table [2] Direct Branch Coverage benefits far more from the
increase in search budget than traditional Branch Coverage does
for several systems—DBC sees an average overall improvement
of 22.45%, while Branch Coverage only improves by 16.05%.

These results confirm that the “direct” coverage requirement
of Direct Branch Coverage does impose additional burden on the
test generation framework. There is a dip in average performance
at both budget levels, but not a statistically significant difference
in either case. The performance gap is not enough of a deterrent to
recommend the use of traditional Branch Coverage in situations
where a testing practitioner could derive human oracle benefit
from the understandable test cases generated using Direct Branch
Coverage.

As the gap between traditional and Direct Branch Coverage
narrows at a higher search budget, we recommend its

Budget Chart Closure Lang Math Time Overall Branch Cov. to Fault Detection Line Cov. to Fault Detection
BC 120 55.26% | 17.00% | 73.00% | 64.62% | 74.00% | 43.00% 120 600 120 600
600 70.28% | 23.00% | 79.00% | 67.19% | 85.00% | 54.00% BC 0.37 0.35 0.35 0.33
% Change | 27.18% | 35.29% 8.22% 3.98% 14.87% | 12.50% DBC 031 034 0.29 033
e [o Lo Lo o o o mmEs
% Change | 21.02% | 28.57% | 10.94% | 6.12% | 11.28% | 11.36% orrelation of coverage to likelihood of fault detection.
TABLE 3 Budget Chart | Closure | Lang Math Time | Overall
Average Branch Coverage attained by generated suites, broken down BC 120 62.76% | 19.72% | 73.03% | 63.88% | 84.60% | 50.31%
by coverage type, budget, and system. 600 70.80% | 25.36% | 75.22% | 65.80% | 91.60% | 54.04%
% Change | 12.81% | 28.60% | 3.00% | 3.00% | 821% | 741%
Budget | Chart | Closure | Lang | Math | Time | Overall DEC 120 5583% | 1628% | 63.99% | 61.24% | 81.50% | 45.96%
BC 120 05.19% | 27.00% | 79.00% | 70.77% | 83.00% | 56.44% 600 64.26% | 20.63% | 68.73% | 64.88% | 85.70% | 50.02%
600 75.37% | 34.00% | 82.00% | 72.39% | 89.00% | 61.16% % Change | 15.10% | 26.72% | 741% | 594% | 5.13% | 8.83%
% Change | 15.59% | 25.93% | 3.80% | 2.29% | 7.23% | 8.93% TABLE 6
120 56.67% | 24.00% | 71.00% | 68.88% | 81.00% | 52.29% :
DBC 50 S5 01% T 2500% 500 1T L1% | 8500% T S6.1% Average patch coverage (coverage over the patched lines of code), by
% Change | 14.11% | 1667% | 5.63% | 324% | 3.70% | 7.69% variant, budget, and system.
TABLE 4

Average Line Coverage attained by generated suites, by coverage type,
budget, and system.

use—while allocating a longer budget—in situations where
DBC may yield understandability benefits.

Additionally, although Branch Coverage detects more faults,
it does not necessarily detect the same faults. Branch Coverage
detects ten faults not detected by Direct Branch Coverage—again
maintaining a slight edge. However, Direct Branch Coverage is
able to uniquely detect three faults that are missed by traditional
Branch Coverage. There is some variation in the performance of
each technique between systems. For the Chart system, traditional
Branch Coverage earns far better results, with 18.86-31.46%
higher likelihood of detection. In general, indirect Branch Cover-
age maintains the edge, albeit with closer margins. However, there
are also a few cases where Direct Branch Coverage has a slightly
higher chance of fault detection—namely, for the Closure system
at both budget levels (5.18-9.66% improvement) and Time at the
ten-minute level (a modest 2.82% improvement). This indicates
that:

Both techniques, regardless of overall performance, have
some level of situational applicability.

4.2 Comparing Suite Characteristics

In Table 3] we list the average level of Branch Coverage attained
by the final generated suites for each system, budget, and coverage
variant. We do the same for Line Coverage in Table 4] Like
with fault detection, traditional Branch Coverage has an edge
over Direct Branch Coverage given a fixed budget. Overall,
traditional Branch Coverage attains an average of 7.94% higher
Line Coverage and 9.09% higher Branch Coverage than Direct
Branch Coverage given a two-minute budget. With a ten-minute
budget, traditional Branch Coverage attains 9.40% higher average
Line Coverage and 10.41% higher Branch Coverage. Again, this
effect can be explained by the additional work required to gain
coverage if indirect calls do not count towards the total.

A gap in the level of coverage does not always predict a gap
in terms of fault-detection capabilities. For Closure and Time,
the two systems where Direct Branch Coverage outperformed
traditional BC, the average attained Line and Branch Coverage
are still lower than that attained by traditional BC. To further
examine this effect, we have measured—for both metrics and
budgets—the correlation between attained Line Coverage and

attained Branch Coverage using the Kendall rank correlation. The
resulting 7 values are listed in Table El, where we can see that, at
most, attained coverage has a moderate-to-low correlation to the
likelihood of fault detection for both versions of Branch Coverage.
Lower coverage for Direct Branch Coverage does not entirely
explain lower fault-detection efficacy.

Not all coverage is relevant to detecting faults. We can also
analyze the “patch coverage”—the coverage attained over the
lines of code related to the fault [11]], [4]. The resulting patch
coverage is listed in Table [f] for each coverage type, budget, and
system. Overall, this table offers similar results, with traditional
BC attaining 9.46% higher average coverage over patched lines
with a two-minute budget and 8.06% with a ten-minute budget.

We can also see from Tables that—unlike with the like-
lihood of fault detection—Direct Branch Coverage often benefits
less than traditional BC from an increased search budget. In fact,
the gap in overall attained coverage actually increases with the
larger budget. However, the performance gap in attained patch
coverage drops slightly (9.46% to 8.06%) as the budget increases.
While this is not of the same significance as the improvement
in fault-detection from a higher budget, it does suggest that
increasing the budget tends to help Direct Branch Coverage cover
the fault.

Branch Coverage attains an average 7.94/9.40% higher Line
Coverage and 9.09/10.41% higher Branch Coverage than
Direct Branch Coverage (two/ten-minute budget), as well an
average 9.46/8.06% higher Patch Coverage.

Stating that traditional Branch Coverage outperforms Direct
Coverage in terms of total coverage does not offer the complete
picture—the two metrics also cover different targets. In Table
we list the average percent of the code that is covered by BC and
not DBC as well as the average percent of the code that is covered
by DBC and not BC. We can see that each metric covers targets
that the other does not. An average of 6.87-7.66% of the lines
covered by traditional Branch Coverage are not touched by DBC.
However, the reverse is also true. On average, 2.71% of the code
is covered by Direct Branch Coverage and remains untouched by
BC within the two-minute budget. At the ten-minute budget, DBC
covers 2.63% of the program that is never covered by BC.

It is clear that the requirement for direct coverage imposes ad-
ditional burdens on the test generator. Given a fixed budget, Direct
Branch Coverage will attain a lower final level of coverage. To a
certain extent, this can be alleviated by offering additional time for
generation. However, we can also see that the differences in the
final results are not due simply to this burden. The requirement

6

Budget Chart | Closure | Lang Math Time | Overall Budget Chart Closure Lang Math Time Overall
120 13.52% 5.78% 11.39% 4.26% 5.22% 6.87%

Covered by BC, not DBC | —120 | 13.52% | S78% | IL39% | 326% | 520% | 687% BC 120 32646 | 11358 | 56586 | 12791 | 22659 | 22533
% Change | 8.14% | 4135% | 6.85% | -1197% | 28.35% | 11.50% 600 505.14 | 22435 | 629.55 | 14635 | 32926 | 305.13
Covered by DBC. not BC 120 529% | 237% | 321% | 221% | 2.76% | 2.71% % Change | 54.73% | 97.53% | 11.26% | 14.42% | 4531% | 35.41%
¥ DBE 600 | 424% | 224% | 3.68% | 233% | L71% | 263% 120 36697 | 11996 | 53394 | 17840 | 291.18 | 24436
% Change | 1985% [S4% | Taoe | 545% | 3804% | -295%] | PBC 60050006 | 233.01 | 68033 | 209.08 | 385.12 | 347.13
TABLE 7 % Change | 63.49% | 9424% | 2742% | 17.20% | 31.58% | 42.06%

Average percent of code that one method covers and the other does TABLE 9

not—broken down by budget and system.

Budget Chart | Closure Lang Math Time Overall
BC 120 42.85 17.86 73.76 30.36 53.71 36.35
600 52.52 27.36 82.84 3274 61.99 43771

% Change | 22.57% | 53.19% | 12.31% | 7.84% | 1529% | 20.25%
DBC 120 48.12 17.69 76.13 29.47 59.77 37.31
600 65.11 27.12 90.89 34.36 70.87 47.10

% Change | 35.31% | 5331% | 19.39% | 16.59% | 18.57% | 26.24%

TABLE 8

Average suite size—in number of tests—broken down by coverage
type, budget, and system.

for direct coverage changes how the test generation framework
creates test cases, directing the search in different directions. Not
only is the total coverage different, but the targets covered differ
as well. In many cases, traditional Branch Coverage benefits from
the context offered by indirect method calls. There are also cases
where Direct Branch Coverage benefits from being forced to make
direct calls.

Traditional Branch Coverage and Direct Branch Coverage
each cover different targets, again suggesting that each
technique has situational applicability.

One other factor that can be used to analyze test suites is the
size of the resulting suites. Suite size has been a focus in recent
work, with Inozemtseva et al. finding that the size has a stronger
correlation to efficacy than coverage level [6] and Gay has found
the opposite [4]. In Table 8] we measure size in terms of average
number of unit tests per suite. In Table[9] we measure size in terms
of the length—the average number of method calls per suite.

Direct Branch Coverage results in suites that are 2.60% larger
at the two-minute budget and 7.80% larger at the ten-minute
budget. These suites also have somewhat longer tests, in terms
of number of calls—8.50% and 13.76% longer at the two and ten-
minute budgets. These results reflect the requirement for direct
coverage. As we cannot cover methods indirectly, test cases will
call methods and may need more test cases to achieve the same
results.

Although this is a natural result of requiring direct coverage,
it is also a potential source of concern. Each test added to a suite
carries a human oracle cost. Direct Branch Coverage should, in
theory, carry a lower fotal cost by producing more understandable
test cases [10]. However, this benefit may be reduced by also
requiring that more test cases be produced in the first place. In
most cases, the increase in suite size is relatively modest—and
unlikely to outweigh the potential benefits. However, we cannot
confirm this at this time. In the future, we would like to more
closely examine the human oracle costs and benefits of each
approach.

Direct Branch Coverage produces test suites with
2.60-7.80% more tests and 8.50-13.76% more method calls.

4.3 Comparing Situational Applicability

Our results indicate that each version of Branch Coverage was
able to detect faults that the other was not and covered code that

Average suite size—in number of method calls—broken down by
coverage type, budget, and system.

the other did not. There are clearly differences between the two
forms of coverage that are not merely a result of the search budget,
but come down to fundamental differences in how each variant is
driven to attain coverage. By examining these situations, we can
come to understand the situations where each technique excels and
each technique falls short.

Fundamentally, freely allowing a generation framework to
count indirect coverage in its total—as is the current stan-
dard practice—will bias the generator fowards indirect coverage.
Counting indirect coverage will rapidly accelerate the attainment
of coverage. Covering a method through indirect calls removes
the need to form input for that method directly. This will result
in tests that can differ greatly from those created by humans.
Coverage is attained through indirect calls, but these indirect calls
may constrain the range of input that is used to call a particular
method. In such cases, tests generated using traditional Branch
Coverage could miss a fault that a human—or tests generated
through Direct Branch Coverage—could detect, by not attempting
input that would be tried through direct coverage.

This is the same scenario alluded to in Section |1} Although
that example was relatively trivial, similar situations exist in
the case examples studied. For instance, we can see such a
situation in fault 106 for the Closure projecﬂ The faulty version
of this class lacks a check for a null object. This method,
canCollapseUnannotatedChild Names () is called in
several other places. It has no formal parameters. Rather, the
execution path depends on the current state of class attributes.
As a result, the probability of detecting the fault strongly depends
on the context that the method is called in. If the method is called
indirectly, the object being examined is unlikely to be null, as it
has been manipulated within another method first. As the code of
interest checks for | = null, this does mean that indirect coverage
will be attained. However, to detect the fault, we actually want the
object to be null. In tests that cover the same code, Direct Branch
Coverage will also try to make the object not null. However, the
need for a direct call also means that we see more test cases with
a null object. Traditional Branch Coverage calls the method fewer
times, with a smaller range of input values.

A similar example can be seen in Math fault IOZEI The affected
method chiSquare (double[] expected, longl]
observed) is called elsewhere in the class, making indirect
coverage possible. Both Branch and Direct Branch Coverage attain
full coverage of the patched code in all cases. However, coverage
is less important than choosing the right input. Indirect coverage
results in a smaller range of input being passed to the affected
method, and a lower likelihood of fault detection. Direct Branch
Coverage calls the method in a wider variety of configurations.

3. https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/
106.src.patch

4. lhttps://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/
102.src.patch.

https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/106.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/106.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/102.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/102.src.patch

Indirect coverage can limit the range of input used to cover a
method, missing faults detected through direct calls.

Coverage is a prerequisite to fault detection, but it is not
enough to ensure that faults are detected [4], [S]. Context
matters—how a method is covered is more important than whether
it was covered. As calls come through another method, indirect
coverage limits the range of input passed to the affected method.
In addition to the potential understandability benefits, requiring
direct coverage gives the generator more freedom to choose how
each method is covered.

Direct Branch Coverage is still outperformed by traditional
Branch Coverage in many situations. This is because Direct
Branch Coverage entirely ignores the context offered by indirect
coverage. Even though the coverage attained through indirect calls
is not counted, those calls are still being made. Methods do not
exist in a vacuum, even if we pretend they do when measuring
coverage. As these methods work together to perform tasks, faults
may be caught by examining how the methods interact that are
missed by looking at each method in isolation.

Interaction context helps us find faults in two common situ-
ations. In the first case, indirect coverage of the faulty method
allows us to detect the fault while direct coverage does not.
An example of this can be seen in Chart fault SEl The affected
method addOrUpdate (XYDataltem item) is part of a se-
ries of add OrUpdate(...) methods that take in various
numeric primitives and, ultimately, cast them into an instance of
XYDataItem that is passed into the affected method. Due to
the difficulty of creating this non-standard data structure, neither
BC or DBC cover this method directly. DBC occasionally detects
this fault by accident—through an indirect call. However, because
traditional Branch Coverage can explore the affected method
indirectly, it is able to more reliably cover and trigger the fault.

Another example can be seen in Closure fault 5 ZEI The affected
method, 1sSimpleNumber (String s),is supposed to return
true if s has alength > 0 and has "0’ as the first character. In the
faulty version, the requirement of 0’ is missing from the check.
This is a case where both traditional and Direct Branch Coverage
should be on similar footing. However, the affected method
is indirectly called by method getSimpleNumber (String
s). Coverage of getSimpleNumber requires that the input
string be a simple number already, which also guarantees indirect
coverage of 1sSimpleNumber. This situation gives traditional
Branch Coverage an advantage. The context offered by tracking
indirect coverage allows EvoSuite to evolve tests that simulta-
neously consider both methods, rather than requiring each to be
covered in isolation. As a result, traditional Branch Coverage
reliably produces input that triggers the fault (that has a *0’ as
the first character).

The second type of situation where this context matters are
cases where the faulty method calls another method, and indirect
coverage of the second—non-faulty—method helps expose the
fault in the calling method. We can see an example of this
situation in Math fault 3ﬂ The faulty version of the constructor

5. lhttps://github.com/rjust/defects4j/blob/master/framework/projects/Chart/patches/S.
src.patch

6. https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/
52.src.patch

7. hhttps://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/35.
src.patch

7

for the class ElitisticListPopulation assigns values to
the attribute elitismRate, whereas the fixed version assigns
this value through the method setElitismRate (double
elitismRate). The setter method performs bounds-checking,
preventing the use of illegal rates—those below 0 or larger
than 1. Because traditional Branch Coverage is able to consider
indirect coverage of setElitismRate (.. .), it evolves input
that leads to fault detection. Direct Branch Coverage is able to
cover setElitismRate (...) in isolation, but the lack of
guidance when calling the faulty constructor prevents EvoSuite
from generating the right input.

By ignoring indirect coverage, Direct Branch Coverage
misses faults that emerge when covering method
interactions.

Our takeaway from these observations is that both meth-
ods of Branch Coverage are flawed. The intent behind Direct
Branch Coverage is reasonable, but ignoring the context offered
by indirect coverage hobbles its performance. Methods do not
exist in isolation, and the context offered by their interactions
can help expose faults. Even if direct coverage offers human
understandability benefits, we should not ignore indirect coverage
entirely. Similarly, traditional Branch Coverage is driven towards
indirect coverage to the point where the generated tests no longer
resemble the tests created by human developers—raising the hu-
man oracle cost associated with their use, and potentially missing
faults by constraining input choices. It is important to remember
that a human tester’s job is not done after indirect coverage is
attained, and that a generation algorithm could benefit from direct
examination of a method.

Fundamentally, coverage is not the true goal of testing. It is
a means to judge progress, and a means to automate the creation
of input, but what we really want are tests that detect faults. Fault
detection requires not just coverage, but the right context—the
input that will expose the fault. Both traditional and Direct Branch
Coverage hold pieces of that context.

We believe that the test generation frameworks of the future
should consider means of leveraging the benefits of each approach.
For example, a new form of Branch Coverage could require direct
calls to consider each branch to be covered, but—rather than
ignoring indirect coverage—the generator could use it as a means
of weighting the fitness score. This type of approach may lend
Direct Branch Coverage the context that it lacks on its own, and a
small increase in generation budget may allow it to overcome the
performance loss from the direct coverage requirement.

5 RELATED WORK

Advocates of adequacy criteria hypothesize that we should see a
correlation between higher attainment of a criterion and the chance
of fault detection for a test suite [S]. Researchers have attempted
to address whether such a correlation exists for almost as long
as such criteria have existed. Inozemtseva et al. provide a good
overview of work in this area [6]. Branch Coverage is a common
target for test generation [[10]], [8] and measurement [3].
Shamshiri et al. found that a combination of three state-of-
the-art tools could identify 55.7% of the faults in the Defects4]
database [11]. Their work identifies several reasons why faults
were not detected, including low levels of coverage, heavy use of

https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/patches/5.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/patches/5.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/52.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Closure/patches/52.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/35.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/35.src.patch

private methods and variables, and issues with simulation of the
execution environment. In their work, they only used traditional
Branch Coverage to generate suites. Recent experiments by Gay
compare a variety of fitness functions in terms of fault detection
efficacy—including both Branch and Direct Branch Coverage [4].
They found that Branch Coverage is the most effective fitness
function.

User studies conducted by Fraser et.al found that developers
dislike tests that cover branches indirectly, because they are harder
to understand and to extend with assertions [3]]. Similarly, Almasi
et al. and others have found that concern over the readability of
generated suites has slowed industrial adoption of automated test
generation [2]. Direct Branch Coverage is an attempt to address
such issues [10]. Our study is the first to directly compare and
contrast Direct and traditional Branch Coverage.

6 THREATS TO VALIDITY

External Validity: Our study has focused on a relatively small
number of systems. Nevertheless, we believe that such systems
are representative of—at minimum—other small to medium-sized
open-source Java systems. We have used a single test generation
framework, EvoSuite, as it is the only framework to implement
both direct and indirect Branch Coverage. While results may differ
between generation frameworks, we believe that the underlying
trends would remain the same. Several of the observed differences
between direct and indirect Branch Coverage are a natural result of
the requirements of each method, not how they were implemented
in EvoSuite. To control experiment cost, we have only generated
ten test suites for each combination of fault, budget, and coverage
variant. It is possible that larger sample sizes may yield different
results. However, we believe that the 14,120 test suites used in
analysis are sufficient to draw stable conclusions.

Conclusion Validity: When using statistical analyses, we have
attempted to ensure the base assumptions behind these analyses
are met. We have favored non-parametric methods, as distribution
characteristics are not generally known a priori.

7 CONCLUSIONS

While adequacy criteria offer an end-point for testing, they do
not mandate how targets are covered. Branch Coverage may be
attained through direct calls to methods, or through indirect calls
between methods. In order to study the costs and benefits of each
approach, we have judged the efficacy of test suites generated
using both variants of Branch Coverage against a set of real faults.

We have found that direct coverage imposes a cost in terms
of coverage and likelihood of fault detection. However, traditional
and Direct Branch Coverage cover portions of the code and detects
faults that the other does not. By examining methods in isolation,
Direct Branch Coverage is less constrained in the input it uses
to cover each method. However, traditional Branch Coverage is
able to leverage the context in which methods interact with each
other to detect faults that emerge from those interactions. There
are clear situations where each form of coverage is more suited
to detecting a particular fault than the other. Importantly, both
also have important limitations not possessed by the other. This
indicates that both variants have value as part of a broader testing
strategy, and that future approaches to test generation should
leverage the strengths of both.

REFERENCES

(1]

[2]

(3]

(4]

[3]

(6]

(71

(8]
(91
[10]

(11]

[12]

S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string
test inputs using a natural language model to reduce human oracle
cost. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 352-361, March 2013.

M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds.
An industrial evaluation of unit test generation: Finding real faults in a
financial application. In Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering (ICSE)—Software Engineering in
Practice Track (SEIP), ICSE 2017, New York, NY, USA, 2017. ACM.
G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does
automated unit test generation really help software testers? a controlled
empirical study. ACM Trans. Softw. Eng. Methodol., 24(4):23:1-23:49,
Sept. 2015.

G. Gay. The fitness function for the job: Search-based generation of
test suites that detect real faults. In Proceedings of the International
Conference on Software Testing, ICST 2017. IEEE, 2017.

A. Groce, M. A. Alipour, and R. Gopinath. Coverage and its discontents.
In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software,
Onward!’ 14, pages 255-268, New York, NY, USA, 2014. ACM.

L. Inozemtseva and R. Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 435-445, New
York, NY, USA, 2014. ACM.

R. Just, D. Jalali, and M. D. Ernst. Defects4]J: A database of exist-
ing faults to enable controlled testing studies for Java programs. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 437-440, New York, NY, USA, 2014.
ACM.

P. McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14:105-156, 2004.

M. Pezze and M. Young. Software Test and Analysis: Process, Principles,
and Techniques. John Wiley and Sons, October 2006.

J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining
multiple coverage criteria in search-based unit test generation. In
M. Barros and Y. Labiche, editors, Search-Based Software Engineering,
volume 9275 of Lecture Notes in Computer Science, pages 93-108.
Springer International Publishing, 2015.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
ASE 2015, New York, NY, USA, 2015. ACM.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):pp. 80-83, 1945.

	Introduction
	Background
	Study
	Case Examples
	Test Suite Generation
	Data Collection

	Results & Discussion
	Comparing Fault Detection Capabilities
	Comparing Suite Characteristics
	Comparing Situational Applicability

	Related Work
	Threats to Validity
	Conclusions
	References

