Multifaceted Test Suite Generation Using
Primary and Supporting Fitness Functions

Gregory Gay

Abstract—Dozens of criteria have been proposed to judge testing adequacy. Such criteria are important, as they guide automated
generation efforts. Yet, the current use of such criteria in automated generation contrasts how such criteria are used by humans. For a
human, coverage is part of a multifaceted combination of testing strategies. In automated generation, coverage is typically the goal, and
a single fitness function is applied at one time. We propose that the key to improving the fault detection efficacy of search-based test
generation approaches lies in a targeted, multifaceted approach pairing primary fitness functions that effectively explore the structure
of the class under test with lightweight supporting fitness functions that target particular scenarios likely to trigger an observable failure.
This report summarizes our findings to date, details the hypothesis of primary and supporting fitness functions, and identifies
outstanding research challenges related to multifaceted test suite generation. We hope to inspire new advances in search-based

test generation that could benefit our software-powered society.

Index Terms—Automated Test Generation, Search-Based Test Generation, Adequacy Criteria

1 INTRODUCTION

With exponential growth in the cost of software testing, we
must find means of reducing costs while maintaining quality.
Automation of tasks such as unit test creation has a critical
role to play in reducing testing costs [2]. Yet, despite advances
in automated test generation technology, the efficacy of the
produced test suites at detecting faults has yet to match human-
produced tests [6]], [10], [8].

As we cannot know what faults exist a priori, dozens of
criteria—ranging from the measurement of structural coverage
to the detection of synthetic faults [9]—have been proposed
to judge testing adequacy. In theory, if the goals set forth by
such criteria are fulfilled, tests should be adequate at detecting
faults related to the focus of that criterion. Adequacy criteria
are important for search-based generation, as they are the most
common basis for the fitness functions that judge solutions and
guide the search.

Yet, the current use of adequacy criteria in automated gener-
ation sharply contrasts how such criteria are used by humans.
For a human, coverage typically serves an advisory role—as a
way to point out gaps in existing efforts. Human testers build
suites in which adequacy criteria contribute to a multifaceted
combination of testing strategies. Yet, in automated generation,
coverage is typically the goal, and a single fitness function is
applied at one time. Yet, search-based techniques need not be
restricted to one criterion—one fitness function—at a time.
The test obligations of multiple criteria can be combined into
a single score or simultaneously satisfied by multi-objective
optimization algorithms. Such multifaceted suites have the
potential to be more effective than those generated using a
single fitness function, as they trade a laser-focus on that
one criterion for reasonably high coverage of a varied set of

G. Gay is with the Department of Computer Science & Engineering, Univer-
sity of South Carolina. E-Mail: greg@greggay.com
This work has been partially supported by NSF grant CCF-1657299.

goals [9].

In previous work, we have explored the efficacy of both
individual fitness functions [6] and combinations of func-
tions [7] at detecting real faults, given a fixed search budget.
Our observations have revealed that, while certain fitness
functions are more effective than others, almost all functions
are situationally adept at detecting certain types of faults.
Further, we have found that both high coverage of class
structure and high satisfaction of the goals of the chosen
fitness function are both needed to detect faults. Combin-
ing situationally-adept functions like Exception or Output
Coverage—particularly functions that lack their own means to
increase structural coverage—with a strong structure-focused
function such as Branch Coverage—which is unable on its
own to favor targeted fault types—yields significant improve-
ments in the likelihood of fault detection. Well-chosen fitness
functions, when used in combination, are able to guide the
test generation framework towards test suites that combine
the strengths of each function, overcome their weaknesses,
and produce a testing strategy that is more effective than any
single function—even without an increase in search budget.

Therefore, we propose that the key to improving the fault
detection efficacy of search-based test generation approaches
lies in a human-like approach to test creation—the application
of a targeted, multifaceted approach to generation where multi-
ple testing strategies are selected and simultaneously explored.
We hypothesize that effective test generation strategies will
pair primary fitness functions that effectively exploit the
structure of the class under test with lightweight supporting
fitness functions that target particular aspects of the class under
test likely to trigger an observable failure.

We propose that the hypothesis of effective multifaceted
generation based on primary and supporting fitness functions
should be explored by the search-based software testing com-
munity, and that numerous research challenges connected to
this hypothesis remain to be solved. Advances are needed in

terms of how criteria are optimized, the identification of new
supporting fitness functions tied towards particular types of
software faults, selection of a multifaceted function portfolio
for new classes and systems, and approaches that reduce the
difficulty of generation under a limited budget.

This report summarizes our findings to date, details the
hypothesis of primary and supporting fitness functions, and
identifies outstanding research challenges related to the topic
of multifaceted test suite generation. We hope to inspire new
advances in search-based test generation that have the potential
to impact industrial practices and benefit our software-powered
society.

2 PRELIMINARY RESULTS

We have previously performed empirical studies on the ability
of individual criteria to produce test suites that detect real
faults [6 After assessing such suites on 593 faults from 15
open-source Java projects, we have found that:

« Branch Coverage| detects more faults and demonstrates a
higher likelihood of detection than other functions, given
a fixed search budget.

« Regardless of overall performance—most functions have
situational applicability, where suites detect faults no
other function can detect. Exceptio Outpu and Weak
Mutation Coverageﬂ show situational applicability, even
if their average efficacy is lower than Branch Coverage.

« Factors that indicate a high level of efficacy include high
structural coverage over the code and high coverage of
the chosen function’s test obligations. In situations where
achieved structural coverage is low, the fault does not tend
to be found.

o The factor that differentiates occasionally detection and
consistent detection of a fault is satisfaction of the chosen
function’s test obligations. The best suites are ones that
both explore the code and fulfill their own testing goals,
which may be—in cases such as Exception Coverage—
orthogonal to structural coverage.

We have also performed exploratory studies of the fault-
detection capabilities of combinations of criteria [7]. We have
observed:

o A combination of all eight studied functions performs
well, but the difficulty of simultaneously satisfying all
functions prevents it from outperforming every individ-
ual function under a fixed search budget. However, for
all systems, at least one targeted combination is more
effective than every individual function.

o The most effective combinations vary by system, but
all pair a structure-focused function—such as Branch
Coverage—with supplemental strategies targeted at the
class under test.

1. Due to space constraints, we do not fully define each fitness function
here. Full definitions can be found in: [6]

2. Branch Coverage requires that each control-altering decision outcome be
exercised.

3. Exception Coverage rewards suites that cause more exceptions to be
thrown.

4. Output Coverage rewards coverage of type-specific abstract output values

5. Weak Mutation Coverage rewards coverage of synthetic faults.

— Across the board, effective combinations include
Exception Coverage. Method Coverageﬂ also gen-
erally offers an efficacy boost. Both can be added
to a combination with minimal effect on generation
complexity.

— Additional targeted criteria—such as Output Cov-
erage for code that manipulates numeric values or
Weak Mutation Coverage for code with complex
logical expressions—offer further efficacy improve-
ments.

3 PRIMARY AND SUPPORTING FITNESS

FUNCTIONS

Fitness functions represent strategies that can be used to
manipulate the search. In single-objective generation, the
chosen fitness function will determine the focus, strengths,
and weaknesses of the resulting suite. If multiple fitness
functions are simultaneously applied—whether combined into
a single score or simultaneously optimized by a multi-objective
algorithm—the resulting test suite will be the product of the
interaction of the chosen strategies. In theory, the simultaneous
use of a portfolio of fitness functions during generation could
produce test suites that are able to detect a variety of faults—
trading precise focus on one fitness function for reasonable
coverage of multiple functions [9]].

In practice, selecting this portfolo of fitness functions re-
quires careful consideration. Given a limited fixed time limit
for generation, the framework will more easily achieve high
coverage of a single function than high coverage of multiple
functions, as the combination will require that more goals
be met—and, at times, that conflicting goals be met. This
explains why the eight-way combination of functions used by
the EvoSuite framework is often outperformed by individual
functions [6]], [7]. The difficulty of optimizing for so many
functions in the same time window alloted to one function
led to weaker results. Given a sufficiently-long generation
period, that eight-function combination may produce stronger
test suites. However, our observations also indicate that careful
selection of a fitness function portfolio can yield superior
results without increasing the search budget. We hypothesize
that effective automated generation may be performed through
targeted selection of this portfolio.

In general, faults cannot be detected without executing the
affected lines of code. This is why structure-based criteria such
as Branch Coverage and Line Coverage dominated our ranking
of individual fitness functions. Yet, past research also indicates
that coverage alone is not enough [8]]. Merely executing a line
of code in any manner is not sufficient to detect a fault. How
that line of code is executed matters. In our experiments, a
consistently high likelihood of fault detection requires both
coverage of the code structure and coverage of a fitness
function’s goals. In the case of functions such as Branch or
Line Coverage, these two are the same. However, targeted
fitness functions such as Exception or Output Coverage lack
an in-built means to drive structural coverage. This may

6. Method Coverage requires that each method be called by test cases.

Fitness Function Portfolio

Primary Fitness Function(s) Supporting Fitness Functions
Structure-focused, may be more complex to calculate. |Scenario-focused, typically simple to calculate.
Use only a small number (1-2) at one time. Number to use based on complexity of overall portfolio.

Example Options:
o Weak/Strong Mutation Coverage
Exception Coverage
Output Coverage
Method Coverage
Readability
Input Diversity

Example Options:
e Branch Coverage
e Line/Statement Coverage
e Block Coverage
e Modified Condition/Decision Coverage
e Def-Use Coverage

Fig. 1. Example primary and secondary fitness functions.

limit the efficacy of such functions as the sole target of test
generation, but illustrates a potential advantage of multifaceted
generation. A structure-focused function could be used to
explore execution paths, while targeted fitness functions could
be simultaneously used to shape that exploration process—
tuning the resulting test suite.

Exception Coverage is effective because it rewards suites
that trigger more exceptions—which often are the observable
manifestation of a fault. However, it lacks any feedback
mechanism to drive generation towards exceptions. Branch
Coverage is effective at exploring the structure of a class, but
lacks the context needed to drive execution to an observable
failure. By uniting the two, Branch Coverage provides the
means to explore the class under test—leading to the dis-
covery of additional exceptions. Exception Coverage provides
a weighting mechanism to Branch Coverage—increasing the
odds of detecting a fault. We hypothesize then, that the key
to effective testing is the identification of the correct portfolio
of primary and supporting fitness functions for the class or
system under test.

Primary fitness functions are designed to explore the struc-
ture of the class under test. Common examples of such criteria
include Branch, Line, or MC/DC Coverage. As structural
coverage is a prerequisite to fault detection, primary functions
should be the focus of the generation portfolio—perhaps
even weighted more heavily than other fitness functions. As
such criteria tend to be more complex to compute, requiring
more execution time to calculate than other criteria, a limited
number of primary functions should appear in the portfolio—
typically only one. However, as we have observed scenarios
where Branch and Line Coverage were more effective com-
bined than in isolation, multiple primary functions may be
considered.

Supporting fitness functions are intended to control how
code is executed, and should be targeted towards scenarios or
faults of interest. For example, Exception Coverage rewards
suites that trigger more exceptions [9]. Output Coverage
rewards suites that produce particular defined value types for
output that belongs to particular data types [1]. Mutation
Coverage rewards suites that detect synthetic faults [5]. Such
fitness functions—on their own—do not necessarily have the
means to drive structural coverage. However, when paired
with primary criteria, they can manipulate the overall search
strategy, increasing the likelihood of detecting certain types of
faults. As such fitness functions must rely on complex primary
functions for code exploration, supporting criteria should be
lightweight. They should not unduly increase the time required

to calculate fitness. The number to be used should be based
on the complexity of the overall portfolio, and should remain
relatively low.

We hypothesize that a well-chosen portfolio of primary and
supporting functions will be able to shape test generation
in a more human-like manner—resulting in test suites tuned
towards particular types of systems, faults, or testing scenarios.
However, a number of research challenges related to the
selection and optimization of primary and supporting fitness
functions remain unsolved.

4 RESEARCH CHALLENGES
4.1

The portfolio of fitness functions can be optimized in multiple
ways. Some techniques, such as EvoSuite, combine multiple
fitness functions into a single score [9]. Individual fitness
functions can be weighted, but an improvement in any of the
chosen functions is considered to be an improvement in the
overall score. A loss of score for one function is acceptable if
balanced by enough improvement in another. Other techniques,
such as jMetal [4]], attempt to simultaneously optimize separate
fitness functions. Such approaches attempt to find an optimal
balance between each distinct fitness functions.

A portfolio of primary and supporting functions can be
explored using either approach. However, each will produce
distinct test suites. Merging each function into a single overall
score could result in a suite that heavily favors a particular
function. However, this may actually be desirable—for ex-
ample, we may prefer a suite that attains higher structural
coverage and lower coverage of a supporting function over a
suite that attains perfect balance of the primary and supporting
criteria. Different means of optimizing the portfolio should be
explored to better understand how to generate suites.

How to Optimize The Chosen Functions

4.2

The identification of the correct portfolio of fitness functions
for a system is not a trivial task. In our experience, the most
effective portfolio varies from system to system, and depends
on the purpose of the system and the type of mistakes that
developers tend to make on that project [7].

Because they add little difficulty to generation, we have
observed that Exception and Method Coverage have the most
consistent effect on suite efficacy. However, targeted support-
ing criteria often had beneficial effects as well. For example,
generation for the Apache Commons Math project typically
benefited from the inclusion of Output Coverage. This project
offers a variety of tools for numeric analysis, and Output
Coverage’s focus on different abstract types of numeric values
naturally led to an increased rate of fault detection.

One way to choose the criteria portfolio for a new class
could be through the use of reinforcement learning (RL) [[11]]
as part of the generation process. Each round of generation,
the RL algorithm could choose a new portfolio. After each
choice, the algorithm would receive a reward chosen from a
probability distribution dependent on the portfolio selected.
Over time, it would attempt to maximize the total expected

Identification of the Criteria Portfolio

reward, identifying the portfolio most adept at improving a
chosen “reward function.” Then, the chosen combination could
be used from the start of generation—without reinforcement
learning—when testing that class in the future.

If developers seek to maximize coverage of a particular
adequacy criterion—for instance, developers of avionics appli-
cations must satisfy MC/DC Coverage to attain safety certifi-
cation [8]—then coverage of that criterion could serve as the
reward function. The RL algorithm would suggest a portfolio
adept at quickly attaining MC/DC. If a particular criterion is
chosen as the reward function, then the RL algorithm could
suggest a portfolio that both meets a chosen testing goal
and is still able to detect a variety of faults. This process,
in particular, could be quite useful for maximizing criteria
that are too complex to serve as ideal fitness functions. For
example, Strong Mutation Coverage—which requires input
that reveals the presence of synthetic faults at the output
level—is difficult to optimize as a direct fitness function as it
offers little feedback to the search. However, the RL process
could suggest a portfolio adept at achieving high levels of
Strong Mutation Coverage—made up of individual fitness
functions that do offer feedback to the search.

4.3 Discovery of New Supporting Functions

If the structural coverage enabled by the use of a primary
fitness function enhances the efficacy of supporting functions,
then new fitness functions can be formulated and experimented
with without the need for an in-built coverage mechanism.
This opens the opportunity to craft new fitness functions
around particular testing scenarios, fault types, or other mea-
sures that could enhance the fault-detection capabilities of the
generated test suites.

For example, when generating test suites, a set of classes
must be chosen as targets. Often, generation is performed
solely on classes whose code was directly changed. How-
ever, the likelihood of fault detection could be increased by
also targeting classes that are coupled—dependent—on those
changed classes. This is particularly true during regression
or integration testing. A supporting fitness function could
reward test suites that cover connections between the current
generation target and particular classes of interest. By relying
on structural coverage from a primary criterion, this function
could be efficiently calculated as a count of dependencies
covered. This would do little to increase the difficulty or cost
of generation.

Similarly, many approaches to test generation reward input
diversity [3]. Such approaches ensure a wide spread of input
choices over the possible option space, theorizing that ensuring
diversity will improve the likelihood of fault detection. As a
supporting fitness function, a simple diversity measurement
could weight the selection of input chosen by the primary
fitness function. This would help ensure that a variety of input
choices are used while still ensuring a high level of code
coverage. This simple metric could be added to a portfolio
of other supporting functions as a low-cost means to further
increase the likelihood of detection.

4.4 Improving Generation Efficiency

Fundamentally, it is more difficult to generate a suite that
optimizes multiple fitness functions than a suite that optimizes
a single function. At the least, the task presented to the
generation framework is more difficult. Improvements in the
efficiency of generation are needed. Such improvements will
benefit generation for both single functions and multifaceted
portfolios. In that case, more time could be allocated to multi-
faceted generation without unduly delaying the testing process.
In addition, improvements in the efficiency of calculating
fitness for individual criteria will also benefit the ability to
generate for multiple criteria.

Another potential avenue for improvement could be similar
in form to the archiving of test obligations performed by
EvoSuite. When obligations are fully satisfied for criteria such
as Branch Coverage in EvoSuite, they can be removed from
the overall fitness evaluation. This enables improvements in
efficiency, as fitness becomes progressively faster to calculate.
A similar process could be used to stagger the inclusion of ad-
ditional criteria. A small “core” portfolio could be considered
at the beginning of the generation process. As obligations are
covered, additional criteria could be incorporated. Over time,
this process would reshape the population of test suites to
steadily cover additional facets, and could reduce the com-
plexity of fitness calculation at any one step in that process.

5 CONCLUSIONS

We propose that the key to improving the fault detection
efficacy of search-based test generation approaches lies in
a human-like approach to test creation—the application of a
targeted, multifaceted approach to generation where multiple
testing strategies are selected and simultaneously explored.
We hypothesize that effective test generation strategies will
pair strong primary fitness functions—criteria that effectively
exploit the structure of the class under test—with lightweight
supporting fitness functions that target particular aspects of the
system under test likely to trigger an observable failure.

We hope to inspire new advances in mutifaceted test gen-
eration that could impact industrial practices and benefit our
software-powered society. In particular, advances are needed
in how we select a portfolio of fitness functions, new fitness
functions are needed that target a variety of testing scenarios,
and improvements must be discovered in regards to generation
difficulty and time requirements.

REFERENCES

[1] N. Alshahwan and M. Harman. Coverage and fault detection of the
output-uniqueness test selection criteria. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 181-192, New York, NY, USA, 2014. ACM.

[2] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn. An orchestrated survey
on automated software test case generation. Journal of Systems and
Software, 86(8):1978-2001, August 2013.

[3] T. Chen, H. Leung, and I. Mak. Adaptive random testing. In M. Mabher,
editor, Advances in Computer Science - ASIAN 2004. Higher-Level
Decision Making, volume 3321 of Lecture Notes in Computer Science,
pages 3156-3157. Springer Berlin / Heidelberg, 2005.

(4]

(3]

(6]

(71

(8]

[91

[10]

(11]

J. J. Durillo and A. J. Nebro. jmetal: A java framework for multi-
objective optimization. Advances in Engineering Software, 42(10):760
- 771, 2011.

G. Fraser and A. Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783-812,
2014.

G. Gay. The fitness function for the job: Search-based generation of
test suites that detect real faults. In Proceedings of the International
Conference on Software Testing, ICST 2017. IEEE, 2017.

G. Gay. Generating effective test suites by combining coverage criteria.
In Proceedings of the Symposium on Search-Based Software Engineer-
ing, SSBSE 2017. Springer Verlag, 2017.

G. Gay, M. Staats, M. Whalen, and M. Heimdahl. The risks of coverage-
directed test case generation. Software Engineering, IEEE Transactions
on, PP(99), 2015.

J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining
multiple coverage criteria in search-based unit test generation. In
M. Barros and Y. Labiche, editors, Search-Based Software Engineering,
volume 9275 of Lecture Notes in Computer Science, pages 93—108.
Springer International Publishing, 2015.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
ASE 2015, New York, NY, USA, 2015. ACM.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

	Introduction
	Preliminary Results
	Primary and Supporting Fitness Functions
	Research Challenges
	How to Optimize The Chosen Functions
	Identification of the Criteria Portfolio
	Discovery of New Supporting Functions
	Improving Generation Efficiency

	Conclusions
	References

