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Abstract

Understanding complexity in physical, biological, social and information systems is predi-
cated on describing interactions amongst different components. Advances in genomics are
facilitating the high-throughput identification of molecular interactions, and graphs are
emerging as indispensable tools in explaining how the connections in the network drive
organismal phenotypic plasticity. Here, we describe the architectural organization and asso-
ciated emergent topological properties of gene regulatory networks (GRNs) that describe
protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectiv-
ity, our results show that the anticipated scale-free network architectures are characterized
by organism-specific power law scaling exponents. These exponents are independent of
the fraction of the GRN experimentally sampled, enabling prediction of properties of the
complete GRN for an organism.We further demonstrate that the exponents describe
inequalities in transcription factor (TF)-target gene recognition across GRNs. These obser-
vations have the important biological implication that they predict the existence of an intrinsic
organism-specific trans and/or cis regulatory landscape that constrains GRN topologies.
Consequently, architectural GRN organization drives not only phenotypic plasticity within a
species, but is also likely implicated in species-specific phenotype.

Author summary
The translation of genotype to phenotype is a tightly regulated process that is mediated by
specific interactions between a variety of cellular components. Central to this is the tran-
scription of genes, a process regulated by proteins that bind DNA, including the transcrip-
tion factors (TFs). Gene regulatory networks (GRNs) describe the web of protein-DNA
interactions essential for the regulation of biological pathways and developmental pro-
cesses. Here, we describe fundamental properties of the architectural organization of
eukaryotic GRNs. Using protein-DNA interaction data derived from the budding yeast,
the fruit fly, Caenorhabditis elegans, and Arabidopsis, we determine that GRNs are scale-
free, wherein a majority of TFs bind comparatively fewer target genes, while a small
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number of TFs bind a large number of genes. Further, we show that the scale-free connec-
tivity power-law coefficient is organism-specific, suggesting differential wiring patterns
across GRNs. We then capitalize on the organism-specific connectivity to develop a math-
ematical framework to predict the number of total interactions in the complete GRNs,
important for understanding how the expression of all genes in an organism is regulated,
and for experimental design purposes. Finally, we demonstrate numerically and by simu-
lations that subnetworks sampled from scale-free GRNs are scale-free, as long as edges are
sampled. This finding has important real-life implications to infer properties of a network
with limited experimental data.

Introduction
Complex systems are formed by large numbers of components organized into networks, and
modelled by graphs in which nodes are connected by edges. Network architecture is estab-
lished by topological and statistical analyses, ultimately leading to inference of functional roles
played by the nodes in the network, and prescribed by the observed architecture. Efforts to
infer information flow, which ultimately leads to functional outputs, have been applied to dif-
ferent types of networks, including social communication, electrical power [1], and biological
[2±10]. A general characteristic of many real-world networks is their scale-free topologies,
which exhibit a node degree distribution that can be described with a power law function:

PðkÞ ¼ Ck� a ð1Þ

where P(k) is the probability of a randomly selected node having degree k (that is k connec-
tions), and α is the power law scaling exponent (hereafter referred to as the exponent). The
constant C is a Riemann's zeta function that normalizes the power law probability distribution,
such that:

P1

k¼1
PðkÞ ¼ 1 ð2Þ

In scale-free networks, most nodes have comparatively few interactions manifested as a
lower degree, while a small number of nodes, the `hubs',have a higher degree [11, 12]. This
scale-free connectivity distribution is observed at different levels of biological organization
ranging from the cellular and molecular, to the ecological level. Gene regulatory networks
(GRNs), characterized by the interaction of a specific type of proteins, the transcription factors
(TFs) with the regulatory DNA regions in the genes that the TFs control, provide excellent
examples of molecular-level scale-free networks [2, 6, 10, 13±15]. GRNs can be represented by
directed graphs in which the edges have a polarity, because a TF can bind to the regulatory
region of a gene (which may encode for another TF) and modulate its expression, but not vice
versa. Thus, GRNs can be visualized from the perspective of incoming connectivity (i.e., how
many TFs bind to a specific gene regulatory region), or from the outgoing connectivity per-
spective (i.e., how many regulatory regions does a TF recognize). The molecular tools available
to identify incoming and outgoing connectivity are different. Incoming connectivity is usually
mapped using gene-centered approaches such as yeast one-hybrid (Y1H) assays [16], and out-
going connectivity is evaluated by TF-centered approaches such as chromatin immunoprecipi-
tation (ChIP)-based (e.g., ChIP-Seq and ChIP-chip) [17] or DNA affinity purification
sequencing (DAP-Seq) methods [18]. While the integration of results derived from gene- and
TF-centered procedures should ultimately converge into the same GRN, much of the unbiased
data available today derives from TF-centered approaches, providing a much clearer
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perspective of outgoing connectivity. We anticipate that the advent of new experimental
approaches to map PDIs and place them in a biological context will permit to explore the con-
vergence of incoming and outgoing connectivity in many organisms.

Organismal phenotypic plasticity is driven in part by the underlying GRNs [19±21]. There-
fore, the reconstruction and topological analysis of GRNs provides an excellent opportunity
for elucidating molecular mechanisms that drive phenotypic plasticity. However, despite sig-
nificant research in this area, little is known with regards to whether GRNs from different
organisms have similar emerging properties that only depend on node number, or whether
properties such as network connectivity, manifested for example in the exponent of the power
law, are unique to each organism. Experimentally, most studies will be able to provide at best
an observed network, which corresponds to a subset of the complete true network (Fig 1). It is
unclear to what extent properties of the observed network can be used to infer properties of
the complete network (Fig 1). Conversely, several studies have investigated the properties of
subnetworks, starting from synthetic or natural networks. The conclusions derived from these
studies depend on the sampling method used [22±24]. For example, it was argued that ran-
domly selected subnets of scale-free networks are not scale-free themselves, and that therefore
inferences about the complete network had to be treated with caution [25]. However, the node
sampling methodology used in that study results in a loss of degrees because, by targeting
nodes rather than edges, all the edges associated with a node are lost, resulting in the enhanced
decrease in degrees. In addition, that study did not model the stochasticity inherent in the
sampling process, thereby not capturing the possible range of degree exponents that a subnet-
work can take. As described here, sampling edges while accounting for stochasticity gives a
very different result.

In our study, we take four representative model organisms that represent major eukaryotic
evolutionary groups (the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the
fruit flyDrosophila melanogaster and the flowering plant Arabidopsis thaliana) and for which a
wealth of PDI data is publicly available, to reconstruct GRNs followed by network connectivity

Fig 1. Framework for sampling and predicting properties of complete GRNs. The subnetwork on the left depicts a reduced GRN sampled from the observed GRN
(center) whose properties can be used to infer the properties of complete GRN depicted on the right. Black and grey nodes denote TFs and non-TF-coding genes,
respectively. Dashed lines represent possible PDIs in complete GRNs that are yet to be identified, but are predicted based on the scale-free property of observed GRNs.

https://doi.org/10.1371/journal.pcbi.1006098.g001
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analysis. Following simulations and rigorous statistical analyses, we demonstrate that GRNs
exhibit organism-specific scale-free connectivity, revealed by distinct exponents of the out-
degree. Further, we show that the observed coefficients are unbiased estimates of exponents
derived from the degree distribution of the inferred complete GRNs. As a result, we apply a
Monte-Carlo simulation approach for the estimation of the number of PDIs in complete
GRNs. To provide an interpretation of the out-degree exponent, we employ `inequality'analy-
ses using Lorenz curves. We show that the exponents describe the relationship between the
proportions of TFs binding to the corresponding fraction of the target genes. The resulting
GRN topologies can therefore be classified as either `capitalistic', exemplified by the presence
of a handful of hub TFs that bind a significant and disproportionate number of target genes, or
`socialistic', in which TFs bind a near corresponding proportion of targets. Collectively, these
observations demonstrate the utility of the observed GRNs in predicting properties of com-
plete GRNs, with important implications for understanding the complex regulatory repertoire
of eukaryotic organisms.

Results
GRNs exhibit scale-free, organism-specific connectivity
We constructed GRNs using all available experimentally determined PDIs derived from
ChIP-Seq, ChIP-chip, and yeast one-hybrid assays (Table 1). To determine the connectivity of
these observed GRN, we enumerated the target genes bound by each TF (out-degree, Fig 2),
and the number of TFs binding each target gene (in-degree, S1 Fig). We observed that, in all
four organisms investigated, a majority of TFs bind comparatively to few target genes (low
degree TFs), while a small number of TFs bind to a large proportion of target genes (high
degree TFs). A linear relationship of the probability density function on a log-log scale was
observed (Fig 2, inset), indicative of the scale-free property of the interaction distribution. To
unequivocally confirm the scale-free properties of the resulting observed GRNs, we imple-
mented a formal statistical analysis framework consisting of the following steps: (i) Fitting
node-degree distribution to a power law function and estimating the power law function expo-
nent parameter (α) using the maximum likelihood approach; (ii) testing goodness-of-fit by
comparing the fitted power law distribution and the empirical node degree distribution using
the Kolmogorov-Smirnov (KS) D statistic; and (iii) performing pairwise model selection by
comparing the fitted power law distributions to Poisson and exponential functions. A non-
nested model selection approach that uses the Kullback-Leibler information criterion (Vuong's
closeness test) was employed for the pairwise model comparisons (see Methods for details).
We observed a significant fit of power law functions on the out-degree distribution (Table 2),

Table 1. Metrics from the observed GRNs.

Metric/ No. of C. elegans D.melanogaster S. cerevisiae A. thaliana

TFs in GRN (% TFs in the genome) 219 (23) 166 (16) 138 (46) 357 (15)
TFs in genomea ~ 934 ~ 1052 ~ 301 ~ 2451

Target genes in GRN (% coding genes in the genome) 20,220 (99) 15,293 (90) 4,263 (71) 10,304 (37)
Genes in the genome ~ 20,470 ~ 17,000 ~ 5,000 ~ 27,655

Nodes (TFs & target genes) in GRN 20,220 15,302 4,271 10,383
Interactions (PDIs) in GRN 464,258 229,615 26,091 17,038

aThe total number of TFs in the genome was obtained from Reece-Hoyes, 2005 for C. elegans; FlyTF.org for D.melanogaster; de Boer & Hughes, 2011 for S. cerevisiae;
and PlnTFDB for A. thaliana.

https://doi.org/10.1371/journal.pcbi.1006098.t001
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thereby confirming the scale-free nature of the observed GRNs. Further, model selection likeli-
hood ratio tests comparing fitted power law and Poisson distribution functions (a descriptor
of non-scale-free random networks) revealed that fitted power law distributions are signifi-
cantly favored (Table 2). As anticipated, given the biased nature and insufficient sampling of
most gene-centered PDI determination studies, in-degree distribution of the available experi-
mental data could not be described by a power law function. Unexpectedly, the out-degree
power law exponents were different for the observed GRNs obtained from the four organisms,
with values of 4.12 for C. elegans, 3.04 for the fruitfly, 2.0 for yeast and 1.73 for Arabidopsis
(Table 2, first row).

Fig 2. Out-degree connectivity of GRNs.Histograms depicting out-degree distribution corresponding to GRGs ofD.
melanogaster (a), C. elegans (b), S. cerevisiae (c), and A. thaliana (d). Inset: binned density plots of the respective degree
distributions on log-log scale.

https://doi.org/10.1371/journal.pcbi.1006098.g002

Table 2. GRNs are scale-free.

Parameter C. elegans D.melanogaster S. cerevisiae A. thaliana

Out-degree power law exponent (KS p-value) 4.12 (0.700) 3.04 (0.820) 2.0 (0.500) 1.73 (0.738)
Vuong's statistic with Poisson model (p-value) 3.30 (0.001) 5.00 (0.000) 3.50 (0.000) 2.68 (0.08)

Vuong's statistic with exponential model (p-value) 4.00 (0.000) 0.93 (0.350) -0.73 (0.465) 2.47(0.014)

Power law fit, row 2: Power law function parameter values and Kolmogorov-Smirnov (KS) D statistic P-values (in parenthesis) obtained from fitting out-degrees on
Power law function. Italicized values denote significant fit of out-degree at alpha greater than 0.1. Model selection, rows three and four: A pair-wise comparison between
fitted out-degree power law and Poisson distribution (third row) and exponential distribution (fourth row). Pair-wise comparisons were performed using a non-nested
likelihood ration test, the Vuong's test. A positive Vuong's statistic and P-value less than 0.05 indicate power law is favored over a competing model; negative statistic
with a non-significant P-value (at alpha 0.05) denote insufficient evidence in favor of one models over the other.

https://doi.org/10.1371/journal.pcbi.1006098.t002
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To determine the difference between the empirical distributions of out-degrees for pairs of
observed GRNs, the two-sample Kolmogorov-Smirnov (KS) test was employed, with the null
hypothesis testing whether two samples have been drawn from the same distribution. We
observed that pairs of out-degrees between organisms have distinct distributions, with the
exception of A. thaliana—S. cerevisiae and D.melanogaster—S. cerevisiae comparisons
(Table D in S1 Information).

To investigate the possible biological consequence of the different out-degrees in the scale-
free topology of GRNs for the four organisms, we investigated how `inequality' in TF-target
gene binding distributions is affected by the power law degree exponent in the different GRNs,
using Lorenz curves [26]. We ranked TFs based on increasing number of target genes and plot-
ted the cumulative proportion of target genes as a function of the corresponding cumulative
proportion of TFs. Interestingly, we observed an increase in degree `equality' for each increase
in the value of the exponent (Fig 3). This contrasts with a perfectly egalitarian distribution of
degrees where all TFs have approximately the same degree, and for which the associated
Lorenz curve becomes the diagonal of the plot, referred to as the line of equality. Thus, GRNs
with smaller exponents, such as the S. cerevisiaeGRN, have hub TFs that bind disproportion-
ately more target genes, compared to the same number of hub TFs in GRNs with higher expo-
nents (Fig 3). Indeed, we observed that the top 20% of TFs with the highest number of target
genes in S. cerevisiae bind about 50% of the target genes. In C. elegans, a similar proportion
(the top 20%) of TFs binds to 30% of target genes. In an egalitarian binding scenario, 20% of
the top TFs would bind 20% of the target genes. Note that our analyses here and henceforth
did not include Arabidopsis out-degrees due to the low number of target genes (37% of all cod-
ing genes) represented in the observed GRN (Table 1), corresponding to insufficient sampling
of out-degrees.

Next, we investigated potential biases in the estimation of the exponents that might be
driven by data sources. In this regard, we estimated exponents from subnetworks derived from
specific experimental data source (ChIP-Seq, ChIP-chip or Y1H) and tissues type, where data

Fig 3. Lorenz curves. Simulated Lorenz curves for exponents ranging from 2 to 4.5 (a). Lorenz curves for out-degrees of observed GRNs (b). TGs:
target genes.

https://doi.org/10.1371/journal.pcbi.1006098.g003
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is available. Investigating the influence of experimental data source in D.melanogaster GRN
revealed similar exponents for the data source-specific subnetworks (Table A in S1 Informa-
tion). For instance, with the exception of a slight increment of 0.32 for the ChIP-Seq-derived
subnetwork, the exponents of ChIP-derived subnetworks are similar (rows 2, 3, and 4 of
Table A). In the case of Y1H, it is evident that gene-centered approaches employed in building
GRNs can inadvertently introduce bias due to insufficient sampling of out-degrees. Y1H con-
tributed only 406 (~ 0.18% of total GRN) interactions to the D.melanogaster GRN and 136
TFs, indicating that on average one Y1H-derived TF binds 2 target genes (208/136)±an
unlikely in vivo phenomenon. Indeed, fewer out degrees are sampled in Y1H because the tech-
nique depends on cloning promoters of target genes. Difficulties in cloning promoters, as well
as the comparatively higher numbers of targets in a genome (unlike TFs), results in an under-
representation of out degrees in Y1H-derived GRNs. TF-based techniques (ChIP-Seq and
ChIP-chip) such are more attractive in construction of GRNs that capture the expected con-
nectivity because of the near complete sampling of out degrees (targets). TF-centered
approaches are however not immune from potential bias, primarily the inclusion of false-posi-
tives targets. The ChIP-Seq and ChIP-chip analysis pipelines attempt to account for the false
positive rates by determining the false discovery rates (FDRs) in cases where biological repli-
cates exist. It's important to note that in our analysis, inclusion of the Y1H data did not result
in a deviation of the power law exponent (compare rows 2 and 3 in Table A of S1 Information).
Minimal deviations were also observed in the data-specific subnetworks of C. elegans (Table B)
and S. cerevisiae (Table C).

Another potential bias in estimation of exponents is tissue- (or developmental) specific
sampling of targets. To address this, we sampled a subnetwork from the D.melanogaster GRN
PDIs derived from the embryo stage. The choice for D.melanogaster was largely due to avail-
ability of tissue-specific data. The analyses resulted in a subnetwork with 47 TFs, 178,224 PDIs,
and a total of 15,016 nodes. Fitting a power law function on the `embryonic' out-degrees
resulted in an exponent of 3.10 and KS P-value of 0.86 (row 7 of Table A). It is worth noting
that these deviations fall within the 95% prediction intervals of the expected range of expo-
nents for complete GRNs (see next subsection on inference of properties of complete GRNs).

Taken together, these findings demonstrate that, while GRNs are characterized by the uni-
fying scale-free network property as opposed to random degree distribution, the GRN connec-
tivity is quantitatively organism-specific, suggesting intrinsic organismal properties that define
TF binding landscapes.

Inferring complete network scale-free properties from observed networks
The `observed'GRNs described in the prior section correspond to a fraction of the `complete'
GRNs that remain to be experimentally determined. A fundamental question that this study
intends to address is to what extent can the observed GRNs be used to infer properties of com-
plete GRNs (Fig 1). The answer serves two main purposes: first, one goal of systems biology is
to describe all system components and their associated interactions. Since current GRNs are
incomplete, but are samples from complete yet unobserved GRNs, there is need to determine
whether properties of current GRNs sufficiently describe properties of the intended complete
GRNs. Second, decisions on whether additional experiments need to be performed will be
based on the ability of the current GRNs in describing properties of complete GRNs, an impor-
tant consideration in experimental design. Therefore, to determine whether complete GRNs
are scale-free with organism-specific degree scaling exponents, we evaluated the distribution
of degrees of nodes sampled from large populations of simulated node degrees whose power
law exponents are known. We describe the approach below.
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We implemented a Monte-Carlo (MC) simulation approach to generate large populations
of simulated nodes, each population exhibiting a distinct and known power law exponent of
the node degrees (see Note A in S1 Information for a detailed description on sampling). Briefly
stated, we first generated three sets of a large number of simulated nodes (n = 10,000), each
with population degree power law exponent, αpop, corresponding to the three observed expo-
nents of 4.12, 3.04 and 2.00. In the MC simulation, the number of computationally-generated
nodes significantly exceeded the number of TFs in any organism in order to model a theoreti-
cally large population of nodes, a condition required for the central limit theorem (CLT) to be
applicable (see Note A in S1 Information). Next, we randomly drew nodes from each popula-
tion (with replacement) to generate samples (r = 1,000) of different sizes, followed by estima-
tion of the scaling exponent of each sample using the maximum likelihood method. The
distribution of exponents for large sample sizes (e.g., n = 5,000) followed normality with their
average corresponding to the population exponent (S2A Fig). As anticipated, we observed a
marked deviation from normality coupled with increased variance whenever smaller samples
(n < 30) were drawn (S2B Fig). To predict the range of exponents for the complete GRNs, we
calculated prediction intervals (PIs) using standard deviation (SD) of their distribution derived
from the MC sampling procedure. We specifically used the MC-derived SDs corresponding to
the number of TFs in the genome to construct 95% PIs (Note A in S1 Information). We
observed 95% PIs falling in the {3.51±4.73}, {2.76±3.32}, and {1.87±2.13} intervals for the start-
ing degrees of 4.12, 3.04 and 2.00, respectively. Notably, the PIs for exponents of complete
GRNs do not overlap, thereby underscoring the organism-specific nature of power law scaling
exponents in GRNs of the organisms investigated here.

From this analysis, we conclude that, a scale-free observed GRN with exponent αobs is likely
derived from a complete true GRN, which is also scale free with exponent αobs ± c, where c is
the upper and lower bounds of the 95% PI. In the following section, we capitalize on the pre-
dicted exponents of complete GRNs to estimate the size of their corresponding complete
GRNs.

Estimating the number of PDIs in a complete GRN
There is a pressing need to infer properties of complete GRNs in order to capture the system-
wide regulatory landscape of a particular organism. However, experimental limitations (such
as challenges in generating TF-specific antibodies for ChIP, limitations in genome sequence
and annotation) and lab-specific research questions have resulted in incomplete and often
fragmented GRNs, whose properties may fail to adequately capture the intended entire regula-
tory repertoire. To address this challenge, we undertook a simulation approach to estimate the
expected number of PDIs in the complete GRNs. Our method is predicated on the finding that
the observed out-degree exponent of a GRN is an unbiased estimate of the respective complete
GRN exponent. As a consequence, out-degrees of an observed GRN can be described as a ran-
dom sample from a population of degrees corresponding to the number of TFs in the genome.
In the observed GRNs, the number of interactions (Iobs) is obtained by the summation of the
out-degrees in the network, as follows:

Iobs ¼
Pn

i¼1
kobs;i ð3Þ

where n is the total number of TFs (number of out-degree nodes) in the observed GRN, and
kobs,i is the ith observed out-degree value. We extend this framework to identify the number of
interactions for a complete GRN (Icomp), and posit that:

Icomp ¼
PN

i¼1
kcomp;i ð4Þ
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where N is the total number of TFs in the genome and kcomp,i is the ith out-degree value of the
complete GRN (see Note B in S1 Information for a detailed description on derivation of simu-
lated degrees). To test the feasibility and accuracy of the simulation approach, we estimated
the actual number of interactions (Iobs) for the observed GRNs. We determined that, on aver-
age, the number of PDIs estimated by the method was equal to the number of PDIs of the
observed GRNs (Table 3, column 3; refer to Note B in S1 Information for description on
hypothesis testing). We subsequently used this method to predict the number of interactions
of the complete GRNs (Icomp) based on the total number of TFs and genes that have been
described in the organisms (Table 1). The maximum possible number of PDIs (upper bound)
corresponds to the product of the total number of TFs and the total number of genes, as this
would imply that every TF binds to every gene in the genome (Table 3, column 5). When we
computed Icomp for the organisms we investigate here, we found that the budding yeast S. cere-
visiaewould have a total of ~60,000 PDIs, the fruitfly Drosophila has ~1.5M PDIs and the
worm C. elegans has ~2M PDIs (Table 3, column 4). These estimates suggest that the number
of observed PDIs represents ~45%, 14%, and 23% of the respective complete GRNs. When we
compare the predicted PDI number of the complete GRNs with the maximum possible, we
find that it is only 4% for yeast, 8% for Drosophila and 10% for C. elegans (Table 3, column 5),
indicating that combined, TFs are sampling only a fraction of all the possible TF-target gene
combinations. This observation contrasts the continuous network model that proposes in vivo
binding of each TF to essentially all target genes in an organism.

Subnetworks of scale-free networks are scale-free
Having demonstrated that complete GRNs are scale free, we set out to determine whether sub-
networks of observed scale-free GRNs are equally scale-free. By sampling edges from observed
GRNs, we mimic the experimental approach involved in constructing GRNs. Indeed, con-
struction of GRNs largely involves identifying interactions (edges) between known cellular
components (TFs and potential target genes). Below, we first show analytically followed by
sampling, that subnetworks of scale-free GRNs are scale-free. When drawing edges from a
GRN, the probability Pr(i) of a node i in the GRN becoming node i� in the subnetwork given
that its edge has been randomly selected is dependent on node i degree, ki. This relationship is
described by:

Pr i�ð Þ ¼
ki
kT

ð5Þ

where kT denotes the total number of out-degrees in a GRN. To sample subnetworks of differ-
ent sizes, edges are sampled with probabilities 0<p<1. Therefore, the probability of including

Table 3. Estimation of number of interactions for complete GRNs.

Organism Observed # of
PDIs

Simulated observed # of
PDIs ± SD (Z-test P-value)

Estimated # of PDIs for complete GRNs (Range of
% of complete GRN observed thus far)

Maximum # of possible PDIs (Complete
GRN as % of max. possible PDIs)

D.
melanogaster

229,615 250,081.6 ± 15,638 (0.19) 1,585,528 ± 39,650 (14.1% - 14.9%) 17,884,000 (8.6% - 9.1%)

C. elegans 464,258 471,563.7 ± 14,376 (0.63) 2,010,004 ± 29,341 (22.8% - 23.4%) 19,118,980 (10.4% - 11.7%)
S. cerevisiae 26,091 30,070 ± 5,110 (0.44) 59,962 ± 7,131 (38.9% - 49.4%) 1,505,000 (3.5% - 4.5%)

The third column shows the accuracy of the simulation method in predicting the observed number of PDIs (hypothesis testing description in Note B in S1 Information);
fourth column shows the estimated number of PDIs for theoretically complete GRNs; fifth column depicts maximum number of possible PDIs when all TFs in a
genome bind all genes. SD: standard deviation.

https://doi.org/10.1371/journal.pcbi.1006098.t003
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node i� in the subnetwork when edges are sampled with a probability p is:

Pr i�p
� �

¼ p �
ki
kT

ð6Þ

When sampling subnetworks of specific sizes (e.g., half the observed GRN, where p = 0.5), p
and kT are constants in Eq 6, which can be rewritten as:

Pr i�p
� �

¼
p
kT

ki þ ε ð7Þ

where ε is an error term accounting for the pseudorandom number generator (PRNG) since
the PRNG algorithm is not strictly random but depends on an initial value, the seed. It is clear
from Eq 7 that the probability of a node being included in the subnetwork, when its edges are
sampled, is a linear function of the degree of the node being sampled. Thus, analytically, the
degree distributions of a GRN and its associated subnetworks are similar.

For computationally validating the aforementioned analytical procedure while accounting
for stochasticity, we randomly sampled subnetworks of varying sizes from the observed GRNs
and from one synthetic complete GRN, followed by a determination of their respective out-
degree exponents (note here that sampled subnetworks do not have random degree connectiv-
ity, but are rather randomly sampled from GRNs). We discovered that for the observed GRNs,
a majority of subnetworks exhibited exponents similar to the exponent of their respective
GRNs (Fig 4). However, there exists a subnetwork size below which there is an increased
uncertainty in the determination of the exponents. This is evident in the marked increase and
overlap in variation of the subnetwork exponents across organisms at lower subnetwork sizes
(Fig 4). To sample from synthetic networks, we first constructed in silico networks that capture
the expected connectivity of the complete yeast GRN as prescribed by the predicted exponents
and number of PDIs from the previous sections (see Methods for procedure on creating in sil-
ico GRNs). Expectedly, the out-degree distribution of the synthetic GRN was strikingly similar
to the observed GRN (Fig 5A). Fitting power law functions on the out-degrees of synthetic
GRN resulted in exponents ranging from 1.98 to 2.14, capturing the exponent (2.0) of the
observed GRN (Fig 5B). Further, the power law fit to the out-degrees of subnetworks drawn
from synthetic GRN was significant, as indicated by the large KS test P values (Fig 5C). In
sharp contrast with previous studies that investigated properties of subnetworks by sampling
nodes, rather than edges as done here, a majority of exponents of subnetworks were similar to
the exponent of the complete GRN (Fig 5D), a further indication of organism-specific GRN
connectivity. In addition, maintenance of the network connectivity in randomly sampled sub-
networks demonstrated an important network property that distinguishes random network
from scale-free networks: robustness. However, there is a subnetwork size threshold below
which the organism-specific connectivity deviates from the expected. Our analysis revealed
that whenever less than 10% of the complete C. elegans GRN; or 2% of the yeast and Drosophila
GRNs are sampled, the expected scale-free property no longer holds (Fig 4).

Collectively, these observations have an important implication that is likely general to other
scale-free GRNs: whenever subnetworks are randomly sampled from scale-free complete and
sufficiently large incomplete GRNs that are either experimentally-determined or synthetic, the
sampled subnetworks are scale-free, at least for a given subnetwork size threshold.

Discussion
The ultimate goal in the characterization of TF-target gene interactions is to describe the com-
plete genome-wide regulatory repertoire of an organism. However, current GRNs are
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incomplete. Two related challenges have impeded the understanding of an organism's com-
plete regulatory repertoire: Establishing the full range of PDIs that characterize complete
GRN, and anticipating the properties of complete GRNs given properties of experimentally-
determined but incomplete GRNs, We have addressed these challenges by a topological analy-
sis of current GRNs across a diversity of organisms, and discovered that observed GRNs, and
their respective complete GRNs, have organism-specific topologies. This finding has profound
biological implications: while GRNs are largely scale-free, there exists an organism-specific
GRN architecture that drives organism-specific developmental trajectories and phenotypic
uniqueness. Taking advantage of conservation of network topology between observed and
complete GRNs, we predicted the possible range of PDI numbers for complete GRNs. Indeed,
the forecasted complete GRN PDI numbers are just a fraction of the maximum number of
PDIs that result when each TF binds all target genes. This observation deviates from the previ-
ously proposed continuous network model, whose fundamental property is that TFs have the
potential to bind all genes in an organism [27]. For broader applications, our simulation
method employed in estimation of the expected number of PDIs can be applied to different
types of biological networks such as protein-protein interaction, protein phosphorylation,
metabolic interactions, and genetic interaction.

In contrast with previous work by Stumpf and colleagues [25], we demonstrate here that
subnetworks sampled from scale-free networks are scale-free. Several differences exist between
our approach and the one previously published [25]. First, sampling nodes leads to a loss of
out-degrees resulting in a deviation between out-degrees of the observed network and sampled

Fig 4. Sampling subnetworks.Distribution of exponents of subnetworks sampled from observed GRNs.

https://doi.org/10.1371/journal.pcbi.1006098.g004
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subnetworks. In addition, sampling nodes leads to the generation of singletons (nodes without
edges or targets) in the subnetworks. In contrast, we sampled edges (with their associated
nodes) from observed GRNs, thereby capturing both a TF and its potential targets. Indeed,
this approach mimics the expected experimental sampling. Second, stochasticity inherent to
sampling procedures was not previously accounted for [25]. Here, we account for stochasticity
in sampling procedure by repeated sampling of subnetwork and estimation of the variance of
the sampling distribution of subnetwork exponents at each subnetwork size. Third, estimation
of power law exponents using the graphical method of ordinary least squares (OLS, see Fig 2 of
reference [25]) might not be a robust approach for parameter estimation. The OLS method is
based on the following assumptions: (a) regression errors are identically and independently
distributed (iid) random variables with mean zero, and (b) the standard deviation of the error
is independent of the independent variable (out-degrees). The OLS method is expected to per-
form poorly in the estimation of the power law exponents because these assumptions are not
met in empirical data of power law distributions [28, 29]. In our analysis, we fit the data (out-
degrees of observed and sampled subnetworks) to the power law function using the maximum
likelihood estimation (MLE) method, since MLE has been shown to be asymptotically efficient
and can be applied to a wide range of data with skewed distributions [28].

Fig 5. In silicoGRNs. (a) Histogram of the out degree distribution of an in silico GRN and of an observed GRN corresponding to S. cerevisiae. (b) Distribution of the
exponents for each of 1000 in silico GRNs. (c) Distributions of KS P-values of sub-networks sampled from an in silico GRN. (d) Distribution of exponents of sub-
networks sampled from in silico GRN.

https://doi.org/10.1371/journal.pcbi.1006098.g005
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Our study also provides an interpretation of the organism-specific power law exponent by
use of Lorenz curves: GRNs with higher values of exponents are `egalitarian' in their TF-target
gene binding. Simply put, GRN architectures can either be `capitalistic',exhibited by a highly
skewed TF-target gene binding landscape described by low exponents; or `socialistic',
described by high exponents. Just like skewed distributions of incomes of individuals describe
less egalitarian capitalist societies, we envisage a more skewed TF-target gene binding land-
scape in GRNs with comparatively low exponents, wherein the number of target genes bound
by a TF is analogous to an individual's income. An increase in the exponent value denotes a
decrease in skewness of TF binding. Taken together, findings reported herein provide oppor-
tunity to understand complex regulatory mechanisms from a genome-wide perspective, while
paving way for construction and analyses of GRNs in non-model organisms whose complete
regulatory repertoire is yet to be deciphered.

Methods
Construction of observed GRNs
PDIs for C. elegans, D.melanogaster, S. cerevisiae and A. thaliana were extracted from regula-
tory databases and literature. In cases where regulatory interactions comprised of only DNA-
binding sites (such as in ChIP-Seq, DAP-Seq, and ChIP-chip binding `peak' location), the tar-
get genes associated with the binding sites were located within 2 kb of the `peak' location.
Transcriptional GRNs were subsequently modelled using directed graphs, Gn,v, with n nodes
and v vertices (edges, PDIs). Nodes in GRNs represent both target genes and their associated
protein products in cases where a target gene is a TF. A PDI is represented by a directed edge
emanating from the TF and ending in the target gene.

Node degree and determination of scale-free property
Node degrees were determined by enumerating the number of TFs binding to each target gene
(out-degree) and the number of target genes bound by each TF (in degree). A formal statistical
framework that tests scale-free property in GRNs was developed involving the following steps:

(i) Fitting n node degrees to the power law function and estimating power law exponent
using maximum likelihood approach. For a given minimum degree, kmin, the scaling
exponent is estimated by numerically optimizing the log-likelihood using the following
maximum likelihood estimation function:

â ¼ 1 þ n
Pn

i¼1
log

ki
kmin � 0:5

� �� �� 1

ð8Þ

(ii) Determination of goodness-of-fit using the Kolmogorov-Smirnov (KS) distance metric,
D; a measure of distance between the empirical degree distribution and the power law
model fit defined by:

D ¼ maxk�kmax
jSðkÞ � PðkÞj ð9Þ

Here, S(k) denotes the empirical cumulative distribution function (CDF) and P(k) is the
power law model. The D statistic is determined for values of k where k�kmin. This
implies that the estimate kmin is the value of k that minimizes the distance D. This is fol-
lowed by the fit of each of the synthetic datasets on the power law model, and calculation
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of the KS D statistic between the empirical synthetic dataset and its corresponding
power law model fit. The p-value is simply the fraction of times or datasets the KS statis-
tic is larger than the KS statistic obtained from the observed data. Large p-values (typi-
cally greater than 0.1) suggest that the observed degrees are generated from a power law
distribution.

(iii) Model selection using the non-nested likelihood ratio test. The Kullback-Leibler infor-
mation criterion (Vuong's closeness test) was employed in performing pairwise compar-
isons between significant power law model fits and other competing distribution models
such as Poisson and Exponential distributions. The Vuong's statistic tests the null
hypothesis that models being tested are equally close to the true data generating process,
with the alternative hypothesis that one model is closer. In the pair-wise comparison, a
positive statistic and a p-value less than 0.05 denote that power law is closer to the data
generating process.

Note that implementations of the methods presented above can be found in the R statistical
packages `igraph'and `poweRlaw'.

Sampling subnetworks
Sampling subnetworks involved randomly selecting a number of PDIs from the observed
GRNs, followed by construction of the subnetworks from the sampled PDIs. The sizes of the
subnetworks correspond to the proportion of PDIs sampled. One thousand subnetworks were
sampled for each proportion. A degree distribution was determined for each sampled subnet-
work. Below is the pseudocode implemented for sampling and fitting power law function on
the sampled subnetworks, from each GRN:
For i in {0,..,1} // where i is a proportion (size) of the GRN

For j in {1,..,1000} // 1000 iterations
Select edges uniformly at random from edge-list of GRN
Construct subnet G�

i;j

Fit out-degree of subnet to Power law function
Estimate exponent αi,j of subnet out-degree

END For
END For

To sample from synthetically-generated out-degrees, the following pseudocode was
implemented:

Generate 10,000 degrees that follow a specified exponent (Note B in S1 Information)
For i in in {0,..,1} where i is a proportion of the number of TFs
(degrees) in the GRN of interest

For j in {1,. . .,1000} //1000 iterations
Select j � i random TFs from the population
Construct subnet G�

i;j

Fit G�
i;j out-degree to Power law function

Estimate exponent αi,j
END For

END For

Simulating in silicoGRNs
Estimation of the expected number of PDIs in complete GRNs, and the power law exponent
alpha for observed GRNs, enabled creation of in silico GRNs that recapitulate the expected
complete GRNs. Complete GRNs were built using the edited `igraph' function `static_power_
law_pl' which takes exponent and number of PDIs as inputs. In order to generate a biologically
comparative network, the number of TFs in the function `static_power_law_pl'was edited so
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that only 5% of genes can have out-going edges. The scale-free property, sampling of subnet-
works, and the determination of the clustering coefficients of the in silico GRNs were per-
formed using methods outlined above.

Evaluating the threshold/knee point of distribution parameter
The threshold where the exponents of samples start to deviate significantly is called the knee
point of exponential function. AMATLAB code written by Dimitry Kaplan called Knee Point
finds the knee point by fitting two lines (in each direction) at each bisection point and calculat-
ing the sum of errors of points along those lines. The knee is judged to be at the bisection point
which minimizes the sum of errors of the two fits.

Supporting information
S1 Information. Contains Note A, Note B, and Supporting Tables.
(DOCX)

S1 Fig. In-degree connectivity of gene regulatory networks.Histograms depicting in-degree
distribution corresponding to GRNs for D.melanogaster (a), C. elegans (b), and S. cerevisiae
(c). TG: target gene.
(EPS)

S2 Fig. Sampling distribution of power law exponents.Distribution of exponents derived
from large samples of synthetic degrees (n = 5000) is approximately normal (a), compared to
smaller samples (b).
(EPS)
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