
Phragmoplast expansion: the four-stroke engine that
powers plant cytokinesis
Andrei Smertenko

Available online at www.sciencedirect.com

ScienceDirect
The phragmoplast is a plant-specific secretory module that

partitions daughter cells during cytokinesis by constructing a

cell plate from membranes and oligosaccharides. The cell plate

is typically a long structure, which requires the phragmoplast to

expand to complete cytokinesis. The phragmoplast expands

by coordinating microtubule dynamics with membrane

trafficking. Each step in phragmoplast expansion involves the

establishment of anti-parallel microtubule overlaps that are

enriched with the protein MAP65, which recruits cytokinetic

vesicles through interaction with the tethering factor, TRAPPII.

Cell plate assembly triggers dissolution of the anti-parallel

overlaps and stabilization of microtubule plus ends through

association with the cell plate assembly machinery. This

opinion article discusses processes that drive phragmoplast

expansion as well as highlights key questions that remain for

better understanding its role in plant cell division.
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Introduction: phragmoplast expansion
The colonization of land by plants towards the end of

Silurian period (444–420 mya) launched a new era in the

natural history of Earth, which changed the face of our

planet and ultimately resulted in the evolution of

humans. The transition of plants from the marine envi-

ronment to the terrestrial one would be impossible with-

out vascular tissues, which are remarkable in that they are

produced through uncommonly long cell divisions (up to

1 mm) from cambium meristem cells. What is more, these

cells divide across their longest axis [1–3]. This phenom-

enon contrasts divisions that occur in apical meristems,

which span the shortest cell axis, and breaks the rule
Current Opinion in Plant Biology 2018, 46:130–137 
postulated in the 19th century by Hofmeister and Léo

Errera (reviewed in [4]). In addition to the vasculature,

long divisions also take place during the transition from

8 to 16 cells in the embryonic stages of Arabidopsis [5].

These long divisions, as well as many other divisions

throughout plant development, are only possible because

plant-specific cytokinetic machinery, termed the phrag-
moplast, is capable of directional expansion (Figure 1).

The backbone of the phragmoplast is made of microtubules

[6], which function together with microfilaments, mem-

branes, and numerous associated proteins in cell plate assem-

bly [7,8]. The phragmoplast is initially positioned between

the daughter nuclei during the first round of cell plate

construction (Figure 1a). Once the cell plate begins to mature,

the microtubules depolymerize. At this point, cell plate

appears as a tubular network of membrane compartments

enriched with callose [8,9]. Depolymerization of the micro-

tubules is accompanied by the loss of other phragmoplast

components. New microtubules are then polymerized at the

edge of the cell plate, which makes phragmoplast appear ring-

like [10,11]. Subsequent recruitment of other phragmoplast

components initiates the next round of cell plate assembly.

Microtubules polymerize at the cell plate edge (phragmo-

plast leading zone) and depolymerize at the sites where cell

plate assembly has advanced to the stage of developing the

tubular network (lagging zone; reviewed in [12]). Along the

longitudinal axis, the phragmoplast comprises all succes-

sive stages of the nascent cell plate assembly including

vesicles delivery, fusion, oligosaccharide deposition, and

membrane remodelling [8]. Observationally, it is clear that

the coordination of microtubule dynamics with assembly of

the cell plate is a driving force for phragmoplast expansion,

though the mechanism(s) behind this coordination remain

unknown. Solving complexity of the phragmoplast expan-

sion requires mathematical modelling and computer simu-

lations, however progress toward this goal is slow due to:

firstly, lack of coherent theoretical model for the phragmo-

plast expansion; secondly, incomplete list of phragmoplast

proteins and gaps in understanding functions of known

phragmoplast proteins; and finally, limited number of

quantification tools and thus numerical parameters of the

phragmoplast expansion. This opinion piece summarizes

the available data on this topic and addresses the gaps in

knowledge with speculations on the events in the midzone

that comprise the ‘engine’ for phragmoplast expansion.

The stages that precede the expansion phase, including

phragmoplast establishment, are reviewed elsewhere

[7,11,13].
www.sciencedirect.com
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Figure 1
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Phragmoplast expansion. (a) Completion of cell plate synthesis in the disk phragmoplast triggers depolymerization of microtubules and re-

polymerization at the phragmoplast outer edge. Ring phragmoplast continues expansion until it reaches parental cell wall. (b) Phragmoplast

expansion in cells expressing GFP-tubulin imaged in the single optical plane using confocal microscope. Phragmoplast vanishes after attachment

to the parental cell wall. Midzone remains dark as GFP is excluded from this region. (c) Expanding phragmoplast stained with anti-tubulin (green)

and DNA dye DAPI (blue). Phragmoplast midzone lacks staining and appears dark.
Stroke 1: establishment of anti-parallel
microtubule overlaps
The majority of microtubules polymerize inward from the

phragmoplast distal zones towards the midzone. Conse-

quently, microtubules originating from opposing distal

zones have reversed polarity: that is, their minus ends

orient toward the distal zone, whereas their plus-ends

orient toward the midzone. The establishment of such

orientation is supported by both electron microscopy

analysis, live-cell imaging, and in silico modelling [14–

17]. In vitro experiments have determined that a
www.sciencedirect.com 
microtubule-associated protein, MAP65, preferably binds

anti-parallel microtubules that have come into contact

with one-another in the midzone (Figure 2; [18,19]). This

finding is complemented by work in vivo, which has

shown that several members of the MAP65 gene family

accumulate in the phragmoplast midzone [20–23], and

can stabilize microtubules (MAP65-3; [22]) in addition to

governing their spatial organization.

In animal systems, the anti-parallel microtubule overlaps

can be also recognized by Group 4 kinesins, which can
Current Opinion in Plant Biology 2018, 46:130–137
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Figure 2
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Four stages (strokes) of the phragmoplast expansion. Anti-parallel microtubules from the opposite distal zone are cross-linked by MAP65 in the

midzone during Stroke 1. In Stroke 2 MAP65 recruits cytokinetic vesicles to the midzone through interaction with vesicle-tethering factors. Cell

plate biogenesis is accompanied by formation of cell plate assembly matrix around nascent cell plate in Stroke 3. At this stage the anti-parallel

overlaps disappear and microtubules form attachments to the cell plate assembly matrix. Microtubules depolymerize during Stroke 4 and

monomeric tubulin becomes recycled for polymerization of new microtubule in the leading zone.
reduce the length of MAP65/PRC1 microtubule overlap

in vitro by inhibiting microtubule polymerization [24].

Knockout of MAP65 abrogates cell plate assembly result-

ing in multi-nucleated cells and incomplete cell pates in

Arabidopsis (cell wall stubs; [25–27]). Conversely, deletion

of two Group 4 kinesins in Physcomitrella patens results in

longer anti-parallel microtubule overlap in the phragmo-

plast midzone and in thicker cell plates [28��]. In addition

to Group 4, kinesins from Groups 4, 5, 7, 8, 12, 14 as well

as ungrouped kinesins localized to the phragmoplast

midzone (reviewed in [12]). Given ability of some kine-

sins to slide anti-parallel microtubules, the size of the

anti-parallel microtubules overlap could also be regulated

through the tug-of-war between the affinity of MAP65 for

microtubules and sliding force of the kinesins. Hence,

cooperation between MAP65 and kinesins establishes the

position and width of the phragmoplast midzone during

the ‘first stroke’.

Stroke 2: recruitment of vesicles to the anti-
parallel microtubule overlap region
Recent discoveries provide novel insight into the process

of recruiting cytokinetic vesicles to the phragmoplast

midzone. One mechanism involves the vesicle-tethering

factor TRAPPII (reviewed in [29�,30]). Yeast TRAPPII

mediates intra-Golgi and post-Golgi trafficking by acting

as a guanine nucleotide exchange factor (GEF) for the

Rab GTPase Ypt31P. Arabidopsis TRAPPII is predicted

to consist of ten subunits [31], whose function is seem-

ingly conserved from yeast [30]. Knock out of individual

TRAPPII subunits results in high embryonic lethality
Current Opinion in Plant Biology 2018, 46:130–137 
[31,32]; however, it is unclear if this phenotype is the

consequence of the cytokinetic function of TRAPPII, or

its additional role in establishing cell polarity [32]. Sur-

viving TRAPPII mutant plants exhibit fragmented

‘beads-on-the-string’ cell plates in their root apical meri-

stem [31]. Two subunits of the TRAPPII complex

(TRS130/CLUB and TRS120) were shown to interact

with MAP65 (isotypes MAP65-1 and MAP65-3) in immu-

noprecipitation and bi-molecular fluorescence comple-

mentation assays; yeast two-hybrid assay confirmed the

interaction between TRS130 and MAP65-3 [33��].
Hence, binding of TRAPPII to MAP65 constitutes one

mechanism for targeting cell plate vesicles to the

midzone.

Genetic analyses indicate that TRAPPII is not required

for the establishment of anti-parallel microtubule over-

laps and for targeting of MAP65 to the midzone. This

conclusion stems from findings that TRS120 or TRS130
knockout did not affect the localization of MAP65 to the

phragmoplast [33��]. Furthermore, knockout of TRS120
did not prevent accumulation of RabA1c-vesicles at the

midzone [32]. Together, this work suggests that

TRAPPII is also dispensable for the targeting of cytoki-

netic vesicles. In contrast, a recessive MAP65-3 allele,

ple4, was found to reduce the accumulation of TRS120 in

the midzone [33��]. ple4 has a single amino-acid substitu-

tion (A421V) in a conserved residue of central microtu-

bule-binding domain [21]. As a consequence, the affinity

of the interaction between MAP63-3 and the microtubule

diminishes. Considering the lack of information regarding
www.sciencedirect.com
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which domain of MAP65-3 interacts with TRS130/CLUB

and whether/if the PLE4 protein localizes to the mid-

zone, three scenarios could explain the reduced localiza-

tion of TRS120 in the phragmoplast midzone of the ple4
mutant. First, PLE4 fails to bind the midzone and other

members of MAP65 family target TRAPPII to this region,

but with lower affinity [22]. Second, PLE4 binds the

midzone, but has reduced affinity for TRS130. Third,

the microtubule-binding domain of MAP65-3 is not

involved in the interaction with TRAPPII and PLE4

does not bind microtubules but instead titrates out

TRAPPII. In whichever case, MAP65 appears to be

involved in targeting or retention of TRAPPII to the

phragmoplast midzone. An alternative model was

recently proposed by Ravikumar and co-authors that

the interaction between TRAPPII and MAP65 regulates

the completion of cytokinesis by providing a link to cues

that signal cell cycle progression instead of cell plate

initiation [29�]. More detailed characterization of this

partnership is required to determine the functions of

the MAP65–TRAPPII complex in cytokinesis.

If the MAP65–TRAPPII complex functions in cell plate

initiation, then double knockout of MAP65-3 and TRAP-

PII would display the same phenotype as what has been

observed with single mutants alone. However, a double

mutant between ple2 (another MAP65-3 allele) and

trs120-4 exhibits a profound increase in the frequency

of cytokinetic failure, with respect to single mutations

alone, indicating that the interaction is synergistic [33��].
The underlying mechanisms for the behaviour are

unknown, but it is possible that TRAPPII stabilizes

the microtubule overlap by increasing the affinity of

MAP65-3 for microtubules or by recruiting microtu-

bule-regulators XMAP215/MOR1, CLASP, and TOR1/

SPR2 [33��] to the midzone.

It is notable that disassembly of the phragmoplast in the

lagging zone is accompanied by a loss of MAP65 [33��],
however subunits of the TRAPPII complex remain asso-

ciated with the cell plate [33��,34]. This finding indicates

that TRAPPII also functions in the cell plate maturation

after microtubule depolymerization. This role could be

related to maintaining the identity of the cell plate

compartment because the syntaxin KNOLLE dissociates

from the cell plate after phragmoplast disassembly in

trs120, but not in the wild type [31].

In addition to TRAPPII, targeting vesicles to the mid-

zone can be facilitated by the tethering factor, exocyst.

During interphase, exocyst subunits Sec10 and Sec15b

co-sediment with microtubules [35], and EXO70A

(another exocyst subunit) binds microtubules through

interaction with coiled-coil proteins — vesicle tethering

1 (VETH1) and VETH2 — and the conserved oligomeric

Golgi complex 2 protein (COG2; [36]). Furthermore,

electron tomography identified exocyst-like L-shaped
www.sciencedirect.com 
and Y-shaped structures on cytokinetic vesicles [9], and

several subunits of exocyst EXO84b, SEC6, SEC8,

EXO70A1, Sec15b were shown to localize to the midzone

of the disk phragmoplast [37]. In the ring phragmoplast,

EXO70A1 and EXO84b localize to both the midzone and

the cell plate [34,37]. Knockout of EXO84b causes the

appearance of cell wall stubs in some cells and wavy cross-

walls in others [37]. This relatively mild cytokinetic

phenotype indicates a functional redundancy for exocyst

as a tethering factor for cytokinetic vesicles [37]. A key

challenge that lies ahead is the identification of the factors

that lead to targeting the exocyst to the midzone before

we can further appreciate its cytokinetic role.

Recruitment of cytokinetic vesicles to the phragmoplast

midzone through interaction between microtubules and

tethering factors during this second ‘stroke’ primes the

cell plate formation.

Stroke 3: dissolution of the anti-parallel
microtubule overlaps and attachment of
microtubules to CPAM
Fusion of cytokinetic vesicles is accompanied by the

formation of the Cell Plate Assembly Matrix (CPAM),

which appears on electron micrographs as a ribosome-free

zone around the forming cell plate [9,38]. The average

thickness of the CPAM reaches 156 nm during active

vesicle delivery and then decreases to the average

56 nm after phragmoplast disassembly [9]. This correla-

tion between CPAM thickness and vesicle delivery sug-

gests that at least some components of the CPAM are

trafficked on the vesicles. Despite the fact that ribosomes

are excluded from CPAM, much larger vesicles get inside

CPAM where they fuse with each other and with the

nascent cell plate [7,9]. In this way CPAM forms a unique

chemical environment around the cell plate. Entering this

environment by the cytokinetic vesicles may require

force of the kinesins. Cytokinetic vesicle fusion is

described in detail in several recent reviews [13,39,40].

Therefore, this section will focus only on the impact of

cell plate assembly on microtubule organization.

Cytokinetic vesicles are thought to contain pectin, which

helps to shape the cell plate during initial fusion events

[9]. However, the main structural component of the cell

plate appears to be callose — as chemical or genetic

inhibition of callose synthesis results in cytokinetic failure

[41–45]. Immuno-electron microscopy shows deposition

of callose to the cell plate lumen during formation of the

tubulo-vesicular network [8]. At this stage, the anti-par-

allel microtubule overlaps mostly disappear [46], how-

ever, the reason behind this phenomenon is poorly under-

stood. Presumably, fortification of cell plate with callose

makes structural role of the overlaps obsolete. Instead,

microtubules terminate proximally to the CPAM and only

0.8% of them penetrate inside [9,38]. The majority of

microtubules that are proximal to the CPAM appear to be
Current Opinion in Plant Biology 2018, 46:130–137
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blunt-ended [46], a configuration that was predicted to

correlate with microtubule stability [47]. The existence of

a population of microtubules in the phragmoplast that is

recalcitrant to the action of the microtubule-destabilizing

drug propyzamide also indirectly suggests the ability of

CPAM to stabilize microtubules [10].

Microtubule-stabilizing factors could be recruited by

CPAM as it appears to be selective not just for organelles,

but for proteins as well. For example, visualization of the

phragmoplast with anti-tubulin antibody or with fluores-

cent protein tags produces a marked line in the midzone

where tubulin is excluded from CPAM (Figure 1b,c;

[48,49]). Microtubule binding proteins CLASP [50],

TANGLED [51], TOR1/SPR2 [52,53] and AIR9 [54]

are also excluded from the midzone. However, CPAM

accumulates some regulators of membrane trafficking,

enzymes for oligosaccharide synthesis and remodelling

[13,39,40], as well as microtubule-binding proteins.

Several microtubule-binding proteins localize to the mid-

zone including XMAP215/MOR1 [55,56], EB1 [23,57],

and kinesins (reviewed in [12]). Systematic analysis of

kinesin localization in P. patens revealed that 18 of 43 kine-

sins localized to the phragmoplast midzone, including

members of Groups 4, 7, 8 and 12 as well as the orphan

kinesins KINID1a and KINID1b [58,59]. A number of

angiosperm kinesins also localize to the phragmoplast

midzone [12] including a Group 7 member Kin7.3 that

promotes microtubule polymerization/stabilization [60].

Furthermore, microtubule-binding protein XMAP215/

MOR1 can also promote microtubule polymerization

[61]. These and other yet uncharacterized midzone pro-

teins could stabilize microtubule plus ends proximally to

CPAM.

Stabilization of microtubules on the surface of CPAM is

accompanied by the loss of overlapping anti-parallel

microtubules. It is, therefore, likely that destabilization

of anti-parallel microtubules depends on the deactivation

of MAP65. The affinity of MAP65 for microtubules is

modulated by its divergent C-terminal domain [22]. Sev-

eral midzone-localized kinases including MAPK, CDK,

and Aurora A can reduce the affinity of MAP65 for

microtubules by phosphorylating this domain

[12,62,63,64�]. Whether the MAP65 proteins released

from overlapping microtubules contribute to microtubule

stabilization by CPAM through the interaction with

TRAPPII or other mechanisms remains unknown.

By the end of the third ‘stroke,’ CPAM takes over the role

of anti-parallel microtubule overlaps in stabilizing

microtubules.

Stroke 4: depolymerization of microtubules
When cell plate assembly reaches the tubular-network

stage, the phragmoplast vanishes together with the
Current Opinion in Plant Biology 2018, 46:130–137 
majority of its associated proteins (reviewed in [7]).

Microtubule polymerization behind the phragmoplast

lagging zone has never been reported in somatic cells.

This fact suggests that microtubule depolymerization in

this zone is irreversible. Hence, there should be a quality

control mechanism, which prevents microtubule depo-

lymerization before the cell plate reaches a pre-deter-

mined stage of maturity.

What governs this stage-specific microtubule depolymer-

ization remains the biggest unknown phenomenon in

phragmoplast biology. As inhibition of cell plate assembly

by caffeine or Brefeldin A prevents microtubule depo-

lymerization in the lagging zone [65,66], microtubule

depolymerization must be regulated by chemical and

(or) mechanical gradients in the cell plate. Some insights

as to the events in the phragmoplast lagging zone are

provided in the recent review [12]. Developing tools for

measuring mechanical properties of the cell plate would

help to solve this riddle. Most certainly though, ‘stroke 4’

releases proteins, which are reused in the subsequent

stages of phragmoplast expansion.

Conclusions: still much to learn
Anti-parallel microtubules play a key role in cell division

in yeasts, animals, and plants. However, contrary to other

systems where the overlaps are relatively static, plants can

dissolve and reform them multiple times at the phragmo-

plast leading edge. Such dynamicity enables phragmo-

plast expansion, which in turn allows construction of cell

plates of any size and shape in response to developmental

or environmental cues. Several recent discoveries have

provided key insights to early stages of the cell plate

assembly. Fitting this information into the existing

knowledge of microtubule organization and dynamics

has enabled reconstruction of major events in phragmo-

plast expansion. Taking our knowledge of the phragmo-

plast expansion to the next level would require exploring

the following areas:

1 Better understanding the TRAPPII–MAP65 complex

would provide further insights into the relationship

between anti-parallel microtubule overlaps and cell

plate initiation. In particular, more detail is needed

regarding firstly, the domains that mediate interaction

between TRAPPII and MAP65 dimers; secondly, the

impact of this interaction on the activity of each com-

plex; and finally regulation of this interaction.

2 It remains unclear why anti-parallel microtubules dis-

appear at a time when fenestrae are still abundant in

the cell plate. Perhaps microtubules in the midzone

interfere with the signalling processes instead of

obstructing cell plate assembly.

3 Phragmoplast microtubules appear to be separated by

distances that are greater than the size of known micro-

tubule-associated proteins [9,46].Thisobservationraises
www.sciencedirect.com
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thequestion ofwhether stabilization of thephragmoplast

during expansion requires bridging of microtubules, or if

association with the cell plate itself is sufficient to main-

tain phragmoplast integrity.

4 If overlapping anti-parallel microtubules define the

thickness of the cell plate [28��], then what defines

the cell plate dimensions after dissolution of these

overlaps?

5 What defines selectivity of the CPAM for proteins and

organelles?

6 Developing tools for quantification of microtubule

dynamics in the phragmoplast.

Understanding phragmoplast expansion is an important

keystone for answering fundamental questions of plant

cytokinesis [67��]. Furthermore, considering the pivotal

role of the coordination between vesicles trafficking, the

cytoskeleton and cell wall synthesis for cellular architec-

ture, research on phragmoplast expansion will undoubt-

edly uncover novel insights into the rules of plant

development.
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