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EXPERIMENTAL PROCEDURES
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Conceptual model: 
Ball in cup

Mechanical model: 
Cart and pendulum
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Experimental Task and Instructions
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Task Performance and Kinematic Variables
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Cart and pendulum synchronization (Fig. 5C).
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Result Variables and Hypothesis Testing
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Hypothesis 1: interaction force.
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Hypothesis 2: predictability.
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SIMULATIONS AND ANALYSIS OF THE RESULT SPACE

hypothesis 2
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Coupled Model

Mechanical model and forward dynamics.
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Execution Variables
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Simulation of Result Variables and Hypothesis Testing
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Hypothesis 3: resonance.
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Assumptions of the Coupled Model

Invariance of input force.
Eq. 4

Invariance of hand impedance.

Predictability, Muscular Effort, and Antagonist
Cocontraction
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Predictability, Error Correction, and Computational Cost

Resonance/Antiresonance Structure, Effort, and
Predictability

A

B
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Eq. 4
Eq. 4

Task-Dynamic Approach, Internal Models, and Predictability
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APPENDIX A: LIMITATIONS OF A MODEL WITHOUT HAND
IMPEDANCE

Eq. 1
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APPENDIX B: ESTIMATION OF HAND IMPEDANCE IN THE
COUPLED MODEL
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