
Music-Defined Networking

Mary Hogan*

Princeton University

mh43@cs.princeton.edu

Flavio Esposito
Saint Louis University

flavio.esposito@slu.edu

ABSTRACT

For several years researchers have used the term “network

orchestration” as a metaphor. In this paper, we make the

metaphor reality; we describe a novel approach to network

orchestration that leverages sounds to augment or replace

various network management operations. We test our Music-

Defined Networking approach with both a real and a virtual

network testbed, on several mechanisms and applications:

from datacenter server fan failure detection to authentication,

from load balancing to explicit congestion notification and de-

tection of heavy hitter flows. Our approach can be used with

and without a Software-Defined Network controller. Despite

its limitations, we believe that sound-based network manage-

ment has potential to be further explored as an effective and

inexpensive out-of-band orchestration technique.

1 INTRODUCTION

Delivering management traffic is essential to operate and

orchestrate network services. In existing datacenters, for

example, thousands of servers, storage units or switches run

a vast plethora of operations and management tasks: from

simple device booting, restart or configuration, to complex

and computationally expensive anomaly detection, intrusion

detection systems, monitoring and diagnostics.

To tame such complexity, many Software Defined Network

(SDN) solutions, as well as creative network and traffic en-

gineering designs, have been proposed; see e .д., [7, 17, 23].

Despite those advances, management traffic is still carried

in-band with data plane traffic both inside and out of data-

centers. It is common for operators to isolate management

traffic with VLANs or other forms of slicing. However, even

with such logical separation, sharing the infrastructure for

data and management traffic is risky [10, 41], since data

plane or hardware failures could cut off network management

traffic as well, aborting important management tasks such

as diagnostics, intrusion detection systems, congestion no-

tification or recovery signals. Previously, researchers have

*Work done while at Saint Louis University.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotNets-XVII, Redmond, WA, USA

© 2018 ACM. 978-1-4503-6120-0/18/11. . . $15.00

DOI: 10.1145/3286062.3286085

shown how an out-of-band management network could be

desirable to reduce the growing complexity of datacenter op-

erations [10, 14, 16, 18, 40, 41]. Some of these approaches

have been criticized, however, as deploying them may result

in significant costs or changes to the datacenter infrastruc-

ture. For example, they may require construction of a parallel

network, which must support a prohibitively large port count

to reach all data and control devices [10]; other obstructions

include the installation of reflective surfaces [14, 16, 18, 40]

or a raise of the ceiling level [18, 40]. In addition to these

concerns, WiFi management networks are limited by coor-

dination between transmitters and interference [41]. Other

solutions that reduce out of band costs by using the exist-

ing infrastructure require installing expensive equipment per

server rack [41].

In the past, requirements for out-of-band management net-

works have focused, at best, on three main design criteria: (i)

reliable, i .e ., the management network should survive (data-

center) failures and faults, so that recovery and diagnostics

can always be performed; (ii) scalable, so that all devices in a

datacenter can be reached, and (iii) deployable, that is, a prac-

tical out-of-band network should be compatible with existing

equipment [10]. Aside from these wise requirements, we be-

lieve a management network should also be (iv) simple, i .e .

able to run without major interventions to the existing (dat-

acenter) infrastructure, such as inserting complex logic to a

switch, and (v) inexpensive. To our knowledge, none of these

five design principles have been simultaneously considered

for an out-of-band management network.

To this aim, in this paper we propose Music-Defined Net-

working, a paradigm where several network mechanisms can

be programmed in response to specific sound sequences, i .e .,

music, coming from real or virtual devices. We explore both

active applications, in which we program network devices

to emit a certain sound, and passive applications, where we

monitor sounds produced by devices to identify when they

(may) have failed. Using low-cost speakers, microphones

and Raspberry Pis, we augment with sound capabilities data-

center components, such as real and virtual switches, hosts,

SDN controllers. With a local testbed and with sound mea-

surements in a real datacenter, we demonstrate how Music-

Defined Networking can provide a low-cost out-of-band man-

agement network. Such a network is able to replace existing

management operations, hence limiting management traffic,

or to provide additional information, e .д., detecting hardware

failures.

The rest of the paper is organized as follows. Related work

is discussed in the next section. In Section 3 we discuss the

details of both our real and virtual network testbeds that we

use to demonstrate several active music-defined operations

in which a device emits sounds to in response to an event.

In particular, in Section 4 we show how sounds, if played

in the right sequence, can be used as an (additional) out-of-

band authentication mechanism, or to implement any finite

state machine for network state processing. In Section 5 we

show how sounds can be an effective measurement tool by

implementing two use cases, (i) a heavy hitter detection and

(ii) a port scan detection. In Section 6 we show how we

can perform music-defined traffic engineering by mapping

specific sounds to different queue sizes in different switches.

In Section 7 we show an example of passive sound-based

network management in which we listen to a hardware com-

ponent to detect its (imminent) failure. Sounds coming from

a server cooling fan can be encoded and decoded using the

Fast-Fourier Transform (FFT) [32], and their absence due to a

hardware failure can be easily detected despite the datacenter

background noise from other fans. We then conclude our

work in Section 8 discussing limitations and a few Music-

Defined Networking research directions.

2 RELATED WORK

Acoustic data transmission. The idea of using sound waves

to transfer information has been floated before [19, 20, 27, 31,

33, 34]. With the aim of transferring data messages, audio-

based networking has been presented as an alternative form of

communication. In [27], for example, audio networking was

utilized for both short- and long-range data transfer. Acoustic

waves have been used for underwater communication [33, 34].

The same principles used underwater have also been adapted

to the air medium [15, 15, 19, 25, 31]. However, given the low

throughput capability (it can take up to six seconds to send

a 20 bytes packet over a single hop [19]), effective acoustic

transmission has been limited to replacement of magnetic

induction in Near Field Communication [31]. Differently

from all these sound approaches, our focus in this paper is

instead on the control and management plane, not on the data

plane.

Acoustic insecurity. As sounds are often overlooked when

securing systems, researchers have developed several forms

of acoustic attacks. For example, audio signals can facilitate

covert communication with ultrasound frequencies [19], or

they can be leveraged to exploit security vulnerabilities, both

by listening to sounds produced by devices and by generating

sounds to gain control over devices [15, 25]. These attacks de-

tect the different acoustic emanations generated by processors

based on the operations being performed. By eavesdropping

on these sounds, researchers have been able to manipulate

emanations to transmit data [25], to attack cryptographic

schemas [15], and to reconstruct user information [3, 4]. In

addition to gaining information from a system, audio signals

can also be used to trigger unexpected and unwanted behav-

ior in mobile devices [20] and in popular speech recognition

systems such as Apple Siri and Amazon Alexa [39].

We also consider sound signals to actively or passively

control devices for security applications, for example, to open

Figure 1: Music-Defined Networking testbed: We extend the

firmware of the Zodiac FX switches so they could send our Music Pro-

tocol messages, which trigger signals to be played by a connected host.

An application listening for sounds then interprets the sound sequence

(music) and launches the appropriate action, e .д ., send an OpenFlow

Flow-MOD message (§ 6) or open a previously closed port on a given

switch (§ 4).

(a) FFT of audio from 5 switches (b) CDF of FFT processing time

Figure 2: We use the Fast Fourier Transform to process multiple

sounds captured by the listening device and to identify the frequencies

played by a switch.

a previously closed switch port (§ 4) or to detect a denial of

service or a (naive) port scanning attack (§ 5). Differently

from these papers though, this work is the first attempt, to

our knowledge, to use sound signals, with single-tone alerts

or in a well-defined sequence (music), to trigger or execute a

wide range of network management operations, such as active

queue management and load balancing (§ 6), access control

(§ 4) or hardware failure detection (§ 7).

3 TESTBED

To establish the practicality of our approach, we built two

testbeds, one using real switches and one using virtual switches.

Since switches today do not have built-in speakers, we

connected a Raspberry Pi to each switch in order to generate

sounds. In particular, we connected 7 Zodiac FX switches

(whose cost is currently under 80 USD) to 7 Raspberry Pis.

We attach the Pi to a port on the FX switch; each Pi is con-

nected to an inexpensive speaker (Figure 1).

We modified the firmware of the Zodiac FX switches 1,

so that when we want the switch to play a sound, a Music

Protocol (MP) message is sent to the Pi. The MP payload

1https://northboundnetworks.com/products/zodiac-fx

contains the frequency at which we want to play the sound,

its duration and intensity (volume). To support MP message

marshaling on the Zodiac FX switches, we had to disable

OpenFlow on the switch Ethernet port connected to the Pi.

Two major limitations of the Zodiac FX switches forced

us to implement some of our use cases on a virtual network

testbed using Mininet [24]: (i) the RAM is limited to 120KB

and (ii) multi-packet queues are not supported (only a single

packet can be sent at once). The limited memory also forced

us to use the raw API of the Lightweight IP stack 2 to send

messages.

Sound length, duration and intensity can be treated as a

policy to allow programmability of the music-defined mecha-

nism to be deployed. Ranges for these policies are dictated

by the hardware capabilities of speakers and microphones.

In our Music-Defined Networking testbed, we empirically

found that a distance of approximately 20 Hz between fre-

quencies is needed to accurately differentiate them. Each

switch in our testbed was assigned a unique set of frequencies,

so that we can identify sounds played by different switches

at the same time (Figure 2a). Although we only tested one

application at a time, it is possible to support multiple MDN

applications simultaneously, as long as each task uses a dif-

ferent set of frequencies and the listening application knows

the frequency mappings. The minimum intensity to detect a

sound clearly depends on the distance from speaker to micro-

phone, but in our experiments we played sounds of at least

30dB. Normal conversation is on the order of 50 dB [30].

We also found that, although sound duration varied be-

tween devices, the shortest possible length generated in our

testbed was approximately 30ms. The length of the sound

dictates how long it takes the Music-Defined controller (or

the listening application) to process the sound; smaller sounds

means we can listen for shorter durations, and smaller sam-

ples take less time to process. Figure 2b shows the distribution

of FFT processing time for audio samples of approximately

50ms; as we can see, approximately 90% of our samples were

processed in 0.35ms or less.

We tested our applications with and without background

noise. In both cases, we could accurately distinguish the

sounds from switches. The level of noise may, however, grow

significantly based on other applications, as well as on full-

duplex sound communications (that we did not implement).

Scaling an MDN application to even a medium size datacenter

may result in environments that are even more uncomfortable

for operators, who must already wear noise canceling head-

phones. We believe that accurately tuning sound parameters

to manage sound interference, mitigate operator discomfort

and support multiple MDN applications is an interesting re-

search direction.

4 STATE PROCESSING

By design, Software-Defined Networking focuses on a cen-

tralized controller governing stateless switches [29]. Other

2https://github.com/dreamcat4/lwip.

(a) Bytes sent/recvd (b) Mel-scaled spectrogram

Figure 3: Port knocking: the controller receives 3 sounds in a correct

sequence, each corresponding to a port number (as a form of authenti-

cation), and allows TCP traffic on a specific previously closed port.

work, e .д., [9] proposed inserting data plane state machines

on switches, so they could run some of the functionalities

achieved today through middleboxes. Data plane states are

probably impossible to maintain (today) with sounds, since

playing a sound every packet received seems unfeasible with

current hardware and datacenter traffic rates. Management

plane states instead have larger timescales, so sounds can be

processed inside routers, switches or other middleboxes, or

within the application process running the logically central-

ized SDN controller. It simply depends on where we attach

speakers and microphones.

As a state processing example, we implemented a port

knocking finite state machine, similar to the one presented

in OpenState [9]. In our implementation, however, states

are stored in a Music-Defined Network (MDN) controller

attached to the Zodiac FX switches, not in the switches them-

selves. In particular, the controller keeps track of what sounds

it has heard thus far from the switch; each sound is then

mapped to the destination port number received by the switch.

In the controller, we know what frequencies are associated

with each port for a switch, so we know which frequencies

to listen for. Once we hear the frequencies in the correct

sequence, we allow traffic to be forwarded by adding a flow

table entry at the switch. The match that specifies the port

opening event depends not only on the sound (and so on

packet header information), but also on the current state of

the finite state machine; an incoming packet with port x is

associated to a forwarding action when the port is open, but

to a drop action when the system is in any other state.

In Figure 3a we show how the sender is attempting to send

packets on the port to be opened for about 34 seconds (blue

continuous line). After the third sound has been interpreted in

the correct combination by the state machine, (see Figure 3b)

the port is opened and all traffic sent by host 1 is received by

host 2 (red dashed line in Figure 3a).

5 MUSIC-DEFINED TELEMETRY

Operators continuously monitor traffic to track events ranging

from performance limitations to attacks. This monitoring

requires continuous, real-time measurement and analysis — a

process commonly referred to as network telemetry [37]. The

introduction of SDN has permitted the deployment of new

(a) Heavy hitter detection (b) Noisy heavy hitter detection (c) Port scanning detection (d) Noisy port scanning detection

Figure 4: Music-Defined Telemetry: (a-b) Heavy hitter detection. (a) switches are programmed to play a sound based on the hash of the flow. (b)

Same as (a) but while playing Sia’s Cheap Thrills, a popular song, as random background noise. (c-d) Port scanning detection: real switches are

programmed to play a sound based on the destination port number. The MDN controller is programmed to listen to a set of available port numbers.

(d) Same as (c) but with Sia’s Cheap Thrills, a popular song, as random background noise.

centralized network solutions that have improved many net-

work operations. The majority of these solutions rely on the

assumption that a centralized controller collects and merges

measurements from different monitoring points to obtain a

network-wide view. This task is challenging when the same

packet may pass through several monitoring points, as packets

can be double-counted [5]. Existing measurement solutions

either assume that each packet is measured at a single mon-

itoring point or that the routing of each packet is known by

the controller. Another active measurement approach is to

mark the sampled packet so that other measurement points do

not process it, as they are aware that the packet was already

considered.

In this section we demonstrate with two use cases that

our Music-Defined Networking approach can be an effective

strategy for several network monitoring tasks and even for

detecting traffic anomalies, such as misconfigurations and

(some naive) attacks. By assigning each network component

to a different set of sound frequencies, we can accurately

perform, with a fairly fine-grained granularity, measurements

that are (i) passive, i .e ., do not require traffic modification

in any way, (ii) routing oblivious, (iii) have very flexible

placement of the measurement point (the set of microphones

and speakers), and (iv) are network topology oblivious.

We focus on demonstrating two Music-Defined Telemetry

use cases: one for monitoring purposes (heavy hitter detec-

tion) and one for security (port scanning attack detection).

Both are shown in Figure 4. By heavy hitter detection we

mean the identification of a flow that consumes more than a

fraction of the link capacity during a given time interval.

Heavy-hitter detection. To detect a heavy hitter flow, we

hash a flow tuple defined by source port, destination port,

source IP, destination IP and protocol type [22] and map it

to a given frequency. We then demonstrate how our Music-

Defined Network controller, or any application process capa-

ble of listening and processing sounds, can recognize when a

sound with a similar frequency is played more than a thresh-

old in a given time interval (Figure 4a-b), with (b) and without

(a) random background noise.

Heavy hitter detection may be a far more complex task

than detecting sound frequencies, and could require complex

algorithms [35], sampling or sketching techniques [26, 38],

that may operate in the data plane [35] or in the control

plane [26, 38].

We remark that scalability is also a concern: there may be

thousands of active flows per minute on an ISP backbone link

or a datacenter top-of-rack switch [6]. Despite the number

of distinct feasible frequency-flow mappings that we can per-

form with today’s microphones, even including ultrasounds

we would probably not be able to detect every single flow. To

this end, we do not claim that Music-Defined Telemetry is a

scalable replacement for all these complex solutions, but we

believe that it could be suitable for smaller sized networks, or

to offload some of the measurement tasks within a datacenter,

reducing their input size or increasing their processing speed.

Moreover, Music-Defined Networking could be a viable solu-

tion for other telemetry applications that do not need single-

level flow scalability. With our inexpensive testbed hardware

alone, we could distinguish up to 1000 distinct frequencies

played simultaneously only considering the human-hearable

frequency range. An average size Internet Service Provider

controls several Autonomous Systems; counting the distinct

number of source addresses who send traffic to a set of desti-

nations, merely using sounds, seems conceivable if we merely

map AS source-destination identifiers to frequencies.

Port Scanning. As another telemetry example, this time with

focus on security, we implemented a port scanning attack

detection (Figure 4c-d.) In particular, we generated a port

scanning attack on a host, forcing traffic to pass through the

same real switch. When hit by a packet, the switch plays a

sound whose frequency is based on the destination port num-

ber. As we can see in Figure 4c, the port scan can be identified

by a clear logarithmic line on the Mel-scaled spectrogram.

The log is merely given by the Mel-scale on the y-axis. Even

in this case we repeated the experiment adding random noise

(Figure 4d).

Similar to the discussion above for heavy hitters, we ad-

mit that detecting a port scanning attack may be a far more

complex operation. Its detection may require network-wide

knowledge [38] and more in-depth analysis [8]; although we

believe that it is possible to detect naive port scan attacks,

sound analysis alone is surely insufficient. Other applica-

tions, however, may be more feasible and may alert network

(a) Queue length (b) Mel-scaled spectrogram (c) Queue length (d) Mel-scaled spectrogram

Figure 5: (a-b) Load balancing application: when the MDN controller hears a sound associated with an overloaded queue, it installs a new Flow-

MOD rule to split traffic across two ports. (a) shows the queue length evolution, (b) shows when we play the sound that tells us the queue is congested

(marked with the vertical blue line). (c-d) Queue size monitoring application: ¡25 pkts in queue play 500Hz, 25¡pkts¡75 play 600Hz, ¿75 pkts play

700Hz. Frequency values in the spectrogram are normalized by the mel-scale.

operators to events that call for further investigation. For ex-

ample, detection of Distributed Denial of Service (DDoS) via

k-superspreaders: a k-superspreader is a host that contacts

more than k unique destinations during a time interval. A

DDoS victim is a host that is contacted by more than k unique

sources. By mapping destination addresses to frequencies, we

can presumably detect k-superspreaders and hence a DDoS.

We leave that as an open problem.

6 TRAFFIC ENGINEERING

Traffic engineering solutions can be classified according to

two main design dimensions: one that focuses on the choice

of forwarding paths [11, 12], and another in which sending

rates are dynamically adjusted to balance incoming traffic

flows [21, 28]. Some recent solutions even use a combina-

tion of the two [23]. In this section we show how sound can

be used as an effective signal to trigger any traffic engineer-

ing approach, whether for traffic steering or to respond to

congestion events.

Load balancing. In particular, as a proof of concept, we

implemented a music-defined load balancing application on

a virtual network testbed. We attach to an MDN controller

four switches connected in a rhomboid topology, with the two

hosts attached to two opposite vertices of the rhombus. The

source host continuously sends traffic with a progressively

increasing rate to the destination, initially using a single path.

Every 300ms, each switch is programmed to send a sound

whose frequency depends on the number of packets currently

in the switch’s queue. Switches whose queues have less than

25 packets play a sound at the lowest frequency; a higher

sound is played if the queue has a number of packets between

a low threshold (which in our implementation was set at

25 packets) and a high threshold (set at 75 packets) and the

highest sound is played when the switch is (getting) congested

i .e . the queue has more than 75 packets (Figure 5b).

When the MDN controller application hears a sound asso-

ciated with an overloaded switch (in our experiment, at time

3.7s), it sends an OpenFlow flow-MOD message so that the

source traffic gets split across two ports, balancing the traffic

load across the two different available routes (Figure 5a).

Switch Congestion Monitoring. As another use case appli-

cation, we show how MDN can be used to detect thresholds on

queue size. This in turn can be used to drive in-network flow

or congestion control decisions, without waiting for source

reactions, without having to modify the transport protocol, as

in DataCenter TCP (DCTCP) [1], and without using the less

efficient Explicit Congestion Notification (ECN) mechanism

of TCP. DCTCP has been shown to have greater performance

but fairness and convergence drawbacks [2].

In Figure 5c-d, we show a simple use case in which we

have a virtual switch notify the MDN controller with a sound

at progressively higher frequencies, depending on how many

packets are in its queue.

In our experiments, we send data traffic through the switch

and we measure the instantaneous queue length using the

traffic control Linux utility tc every 300ms. We then play a

different sound based on the number of packets in the switch

queue; the MDN controller is programmed to listen for those

specific frequencies, so if it hears a frequency it recognizes, it

knows the range for the number of packets in the queue (and

can then make a congestion decision based on that). After

all traffic has been sent to the destination, the queue size gets

again lower than 25 packets and the controller is notified with

another sound at a lower frequency (500 Hz).

7 SERVER FAN FAILURE DETECTION

Detection of malfunctioning hardware is a key element of

network management. In this section, we show how passively

listening to sounds can be an effective out-of-channel mecha-

nism that may avoid severe hardware failures. In datacenters

today, these failures are a major financial risk, and the ef-

ficiency of countermeasures is far from ideal [13, 36]. To

summarize a recent study by Wang et al. [36] that looked at

290,000 hardware failure reports collected over the past four

years, automatic hardware failure detection and handling have

potential to be very accurate, significantly reducing human

labor, “but we need to improve these systems, especially in

“bad spots” where the failure rate is higher.”

Fire alarms are a widely adopted disaster countermeasure in

today’s datacenters. Aside from reacting to problems when it

is already too late, fire alarms can cause side effects [13]. Per-

sonal communication with experienced IT operators exposed

us also to recent stories of ineffective emergency responses

in which servers that were powered off due to an emergency

(a) Datacenter: server ON (b) Datacenter: server OFF (b) Office: server ON (c) Office: server OFF

Figure 6: Sound waves of a single server are detectable despite the datacenter noise: mel-scaled noise spectrograms of a server with (a-c) and

without a functioning fan (b-d) in a datacenter (a-b), and in an office environment (c-d).

(a) Datacenter (b) Office

Figure 7: Fan noise is processed to detect a failure: after a difference

of amplitude is detected we launch an out-of-band signal alert.

were immediately restored by Uninterruptible Power Supply

(UPS) units.

In this section we show an inexpensive countermeasure

for datacenter failure detection that operates by monitoring

the sound of server fans and detecting when one has failed.

To this aim, we set up several sound-listening scenarios with

different types of microphones (from very cheap to fairly

expensive), and we test their ability to detect fan failure with

different background noise levels.3 The open question we

explore is: Can we detect the failure of a single server despite

the typical datacenter noise? 4 After capturing the noisy

signal, we were able to answer positively to this question with

a closely placed microphone (Figures 6 and 7).

To identify failures, we find the total amplitude of each

frequency in recorded sounds with a server fan both on and

off; we obtain such amplitudes by computing the FFT of each

given sound sample. We then use these amplitudes to classify

the state (health) of the fan. The difference in amplitude for

certain frequencies is considerably larger when comparing

two audio signals of the fan on and off (blue continuous line in

Figure 7) than when comparing two samples of a functioning

fan (red dashed line in Figure 7). This is reflected in the

spectrograms reported in Figure 6: when the fan is operating,

the specific frequencies it generates have noticeably greater

amplitudes than when the fan is off. Two interesting questions

that remain open are: (1) How many distinct server anomalies

3Note that some servers in modern datacenters may be equipped with temper-

ature (or other) sensors. Our datacenter today does not have those. Moreover,

some of these sensors emit sounds when they detect a problem, but they

often require a human to hear it; e .д ., while conducting our experiments, we

heard a misconfigured server beeping for weeks.
4Datacenter noise may exceed 85 dBA [30].

can we recognize and (2) what is the optimal microphone-

server distance to be able to correctly distinguish multiple

fan signals?

8 CONCLUSION

In this paper, we have shown that Music-Defined Networking

can be used to orchestrate network management functions

with a simple and inexpensive out-of-band channel whose

implementation requires minimal infrastructure changes. We

analyzed frequencies produced by datacenter server cooling

fans as an efficient disaster countermeasure.

We also leveraged sound to transmit control plane infor-

mation. In particular, we implemented several applications

in which a listening device performs management operations

after learning the state of a switch from audio signals, without

relying on traditional control messages.

Aside from the limitations that we have already discussed

throughout the paper, our Music-Defined Networking ap-

proach poses several challenges for practical implementations

that warrant further exploration. First, we limit our evalua-

tion to close-range applications, as we transmit sound signals

between devices over a single hop. Practical systems are lim-

ited to devices that are placed close enough to each other to

transmit sounds without significant signal degradation. Sound

waves can, and have been, however, relayed, although with

very low throughput and for data plane transfers [19].A more

efficient multi-hop sound transmission would allow greater

flexibility in device placement. We leave this as an open

question.

Furthermore, as discussed in Section 5, with our equipment,

we found that we could feasibly use approximately 1000

unique frequencies simultaneously. An interesting research

direction is to coordinate an array of microphones listening to

different groups of switches, as well as to allow cooperation of

classical and ultrasound speakers and microphones. Including

frequencies outside the spectrum of human hearing would

allow for an increase in the number of discernible sounds

and for more complex and scalable network management

operations.

9 ACKNOWLEDGEMENT

We thank A. Johnson and D. Thomas for their support, and

the anonymous reviewers and our shepherd for their valuable

feedback. Work supported by NSF CNS-1647084 and CNS-

1836906.

REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In

Proc. of ACM SIGCOMM 2010.

[2] M. Alizadeh, A. Javanmard, and B. Prabhakar. Analysis of DCTCP:

Stability, Convergence, and Fairness. In Proc. of the ACM SIGMET-

RICS, pages 73–84. ACM, 2011.

[3] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In IEEE

Symposium on Security and Privacy, 2004. Proceedings. 2004, pages

3–11, May 2004.

[4] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder.

Acoustic side-channel attacks on printers. In Proc. of the 19th USENIX

Conference on Security, pages 20–20, 2010.

[5] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz.

Network-wide routing-oblivious heavy hitters. In Proc. of the 2018

Symposium on Architectures for Networking and Communications Sys-

tems, ANCS ’18, pages 66–73, 2018.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics

of data centers in the wild. In Proc. of the 10th ACM SIGCOMM Conf.

on Internet Measurement, IMC ’10, pages 267–280, 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine Grained

Traffic Engineering for Data Centers. In Proc. of the 7th COnference

on Emerging Networking EXperiments and Technologies, CoNEXT

’11, pages 8:1–8:12, 2011.

[8] M. H. Bhuyan, D. Bhattacharyya, and J. Kalita. Surveying port scans

and their detection methodologies. Comput. J., 54(10):1565–1581, Oct.

2011.

[9] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. Openstate:

programming platform-independent stateful openflow applications in-

side the switch. ACM SIGCOMM Computer Communication Review,

44(2):44–51, 2014.

[10] L. Chen, J. Xia, B. Yi, and K. Chen. PowerMan: An Out-of-Band Man-

agement Network for Datacenters Using Power Line Communication.

In NSDI 18, pages 561–578, Renton, WA, 2018.

[11] M. Chiesa, G. Kindler, and M. Schapira. Traffic engineering with

equal-cost-multipath: An algorithmic perspective. IEEE/ACM Trans.

Netw., 25(2):779–792, Apr. 2017.

[12] M. Chiesa, G. Rétvári, and M. Schapira. Lying your way to better

traffic engineering. In Proc. of CoNEXT, pages 391–398, 2016.

[13] C. Cimpanu. Gas based fire suppression system shuts down NASDAQS

scandinavian datacenter https://goo.gl/VjqqHZ, 2018.

[14] Y. Cui, S. Xiao, X. Wang, Z. Yang, C. Zhu, X. Li, L. Yang, and N. Ge.

Diamond: Nesting the data center network with wireless rings in 3d

space. In 13th USENIX NSDI, pages 657–669, Santa Clara, CA, 2016.

[15] D. Genkin, A. Shamir, and E. Tromer. Acoustic cryptanalysis. J.

Cryptol., 30(2):392–443, Apr. 2017.

[16] Ghobadi, Monia et al. ProjecToR: Agile Reconfigurable Data Center

Interconnect. In Proc. of SIGCOMM 2016, pages 216–229.

[17] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian.

Drill: Micro load balancing for low-latency data center networks. In

Proceedings of SIGCOMM 2017. ACM.

[18] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,

H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center

fabric using free-space optics. In Proc. of SIGCOMM 2014.

[19] M. Hanspach and M. Goetz. On covert acoustical mesh networks in

air. CoRR, abs/1406.1213, 2014.

[20] R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D. Rinehart. Sensing-

enabled channels for hard-to-detect command and control of mobile

devices. In Proceedings of the 8th ACM SIGSAC Symposium on In-

formation, Computer and Communications Security, ASIA CCS ’13,

pages 469–480, New York, NY, USA, 2013. ACM.

[21] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A

buffer-based approach to rate adaptation: Evidence from a large video

streaming service. In Proc. of SIGCOMM 2014, pages 187–198, 2014.

[22] Internet Assigned Numbers Authority (IANA). Assigned internet

protocol numbers https://www.iana.org/assignments/protocol-numbers/

protocol-numbers.xhtml, 2018.

[23] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L.

Lim, and R. Soulé. Semi-oblivious traffic engineering: The road not

taken. In 15th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 18), pages 157–170, Renton, WA, 2018.

[24] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid

prototyping for software-defined networks. In Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,

pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[25] M. LeMay and J. Tan. Acoustic surveillance of physically unmodified

pcs. In Security and Management, 2006.

[26] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One

sketch to rule them all: Rethinking network flow monitoring with

univmon. In Proc. of the 2016 ACM SIGCOMM Conference.

[27] A. Madhavapeddy, R. Sharp, D. Scott, and A. Tse. Audio networking:

the forgotten wireless technology. IEEE Pervasive Computing, 4(3):55–

60, July 2005.

[28] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video stream-

ing with pensieve. In Proc. of ACM SIGCOMM 2017, SIGCOMM ’17,

pages 197–210, New York, NY, USA, 2017. ACM.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation

in campus networks. SIGCOMM CCR, 38(2):69–74, Mar. 2008.

[30] D. Miljkovic. Noise within a data center. In 39th International Con-

vention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO), pages 1145–1150, May 2016.

[31] R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and R. Venkate-

san. Dhwani: Secure Peer-to-peer Acoustic NFC. In Proc. of the ACM

SIGCOMM 2013, pages 63–74, 2013.

[32] K. R. Rao, D. N. Kim, and J.-J. Hwang. Fast Fourier Transform - Algo-

rithms and Applications. Springer Publishing Company, Incorporated,

1st edition, 2010.

[33] H. Riksfjord, O. T. Haug, and J. M. Hovem. Underwater acoustic

networks - survey on communication challenges with transmission

simulations. In 2009 Third International Conference on Sensor Tech-

nologies and Applications, pages 300–305, June 2009.

[34] M. Sharif-Yazd, M. Khosravi, and M. K. Moghimi. A Survey on Un-

derwater Acoustic Sensor Networks: Perspectives on Protocol Design

for Signaling, MAC and Routing. 05:12–23, 03 2017.

[35] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and

J. Rexford. Heavy-hitter detection entirely in the data plane. In Proceed-

ings of the Symposium on SDN Research, SOSR ’17, pages 164–176,

New York, NY, USA, 2017. ACM.

[36] G. Wang, L. Zhang, and W. Xu. What can we learn from four years

of data center hardware failures? In 2017 47th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),

pages 25–36, June 2017.

[37] Q. Wu, J. Strassner, A. Farrel, and L. Zhang. Network telemetry and

big data analysis (expired). Internet-Draft draft-wu-t2trg-network-

telemetry-00, IETF Secretariat, March 2016. http://www.ietf.org/

internet-drafts/draft-wu-t2trg-network-telemetry-00.txt.

[38] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement

with opensketch. In Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation, nsdi’13, pages 29–42,

Berkeley, CA, USA, 2013. USENIX Association.

[39] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. Dolphinattack:

Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’17,

pages 103–117, 2017.

[40] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,

and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for

data centers. SIGCOMM CCR, 42(4):443–454, Aug. 2012.

[41] Y. Zhu, X. Zhou, Z. Zhang, L. Zhou, A. Vahdat, B. Y. Zhao, and

H. Zheng. Cutting the cord: A robust wireless facilities network for

data centers. In Proc. of MobiCom ’14, MobiCom ’14, pages 581–592,

2014.

