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Abstract Explaining why an answer is (or is not) re-

turned by a query is important for many applications

including auditing, debugging data and queries, and

answering hypothetical questions about data. In this

work, we present the first practical approach for an-

swering such questions for queries with negation (first-

order queries). Specifically, we introduce a graph-based

provenance model that, while syntactic in nature, sup-

ports reverse reasoning and is proven to encode a wide

range of provenance models from the literature. The

implementation of this model in our PUG (Provenance

Unification through Graphs) system takes a provenance

question and Datalog query as an input and generates

a Datalog program that computes an explanation, i.e.,
the part of the provenance that is relevant to answer

the question. Furthermore, we demonstrate how a de-
sirable factorization of provenance can be achieved by
rewriting an input query. We experimentally evaluate
our approach demonstrating its efficiency.

1 Introduction

Provenance for relational queries records how results of

a query depend on the query’s inputs. This type of in-

formation can be used to explain why (and how) a result

is derived by a query over a given database. Recently,

provenance-like techniques have been used to explain

why a tuple (or a set of tuples described declaratively
by a pattern) is missing from the query result (see [19]
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Fig. 1: Example train connection database and query

for a survey covering both provenance and missing an-
swer techniques). However, the two problems have been
treated mostly in isolation. Consider the following ob-

servation from [24]: asking why a tuple t is absent from

the result of a query Q is equivalent to asking why t is

present in ¬Q (i.e., the complement of the result of Q

wrt. the active domain). Thus, a unification of why and

why-not provenance is naturally achieved by develop-
ing a provenance model for queries with negation. The

approach for provenance and missing answers from [43]

is based on the same observation.

In this paper, we introduce a graph model for pro-

venance of first-order (FO) queries expressed as non-

recursive Datalog queries with negation1 (or Datalog for

short) and an efficient method for explaining a (miss-

ing) answer using SQL. Our approach is based on the

observation that typically only a part of the provenance,

which we call explanation in this work, is actually rele-
vant for answering the user’s provenance question about

the existence or absence of a result.

1 or, equivalently, queries in full relational algebra (without ag-
gregation), formulas in FO logic under the closed world assump-
tion, and SPJUD-queries (select, project, join, union, difference).
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Fig. 2: Provenance graph explaining Why Q(n, s)
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Fig. 3: Provenance graph explaning Whynot Q(s, n)

Example 1. Consider the relation Train in Fig. 1 that

stores train connections. Datalog rule r1 in Fig. 1 com-

putes which cities can be reached with exactly one trans-

fer, but not directly. We use the following abbreviations

in provenance graphs: T = Train; n = New York; s =

Seattle; w = Washington DC and c = Chicago. Given

the result of this query, the user may be interested to

know why he/she is able to reach Seattle from New York

(Why Q(n, s)) with one intermediate stop but not di-

rectly or why it is not possible to reach New York from

Seattle in the same fashion (Whynot Q(s, n)).

An explanation for either type of question should

justify the existence (absence) of a result as the success

(failure) to derive the result through the rules of the

query. Furthermore, it should explain how the existence
(absence) of tuples in the database caused the deriva-
tion to succeed (fail). Provenance graphs providing this

type of justification for Why Q(n, s) and Whynot Q(s, n)

are shown in Fig. 2 and Fig. 3, respectively. These graphs

contain three types of nodes: rule nodes (boxes labeled

with a rule identifier and the constant arguments of

a rule derivation), goal nodes (rounded boxes labeled
with a rule identifier and the goal’s position in the

rule’s body), and tuple nodes (ovals). In these prove-

nance graphs, nodes are either colored in light green

(successful/existing) or dark red (failed/missing).

Example 2. Consider the explanation (provenance graph

in Fig. 2) for question Why Q(n, s). Seattle can be reached

from New York by stopping in Washington DC or Chicago

and there is no direct connection between these two

cities. These options correspond to two successful deriva-
tions using rule r1 with X=n, Y=s, and Z=w (or Z=c,

respectively). In the provenance graph, there are two

rule nodes representing these derivations of Q(n, s) based

on rule r1. A derivation is successful if all goals in the

body evaluate to true, i.e., a successful rule node is con-

nected to successful goal nodes (e.g., r1 is connected to

g11, the 1st goal in the rule’s body). A positive (negated)

goal is successful if the corresponding tuple is (is not)

in the database. Thus, a successful goal node is con-
nected to the node corresponding to the existing (green)
or missing (red) tuple justifying the goal, respectively.

Supporting negation and missing answers is chal-

lenging, because we need to enumerate all potential
ways of deriving a missing answer (or intermediate re-

sult corresponding to a negated subgoal) and explain
why each of these derivations has failed. For that, we
have to decide how to bound the set of missing answers

to be considered. Using the closed world assumption,

only values that exist in the database or are postulated

by the query are used to construct missing tuples. As

is customary, we refer to this set of values as the active

domain adom(I) of a database instance I.

Example 3. Fig. 3 shows the explanation for Whynot

Q(s, n), i.e., why it is not true that New York is reach-

able from Seattle with exactly one transfer, but not di-

rectly. The tuple Q(s, n) is missing from the result be-
cause all potential ways of deriving this tuple through

rule r1 have failed. In this example, adom(I)={c, n,
s, w} and, thus, there exist four failed derivations of

Q(s, n) choosing either of these cities as the intermedi-

ate stop between Seattle and New York. A rule deriva-

tion fails if at least one goal in the body evaluates to

false. Failed positive goals in the body of a failed rule

are explained by missing tuples (red tuple nodes). For
instance, we cannot reach New York from Seattle with

an intermediate stop in Washington DC (the first failed

rule derivation from the left in Fig. 3) because there

exists no connection from Seattle to Washington DC

( tuple node T(s, w) in red), and Washington DC to
New York ( tuple node T(w, n) in red). The successful

goal ¬ T(s, n) (there is no direct connection from Seattle
to New York) does not contribute to the failure of this

derivation and, thus, is not part of the explanation.

Observe that nodes for missing tuples and successful

rule derivations are conjunctive in nature (they depend

on all their children) while existing tuples and failed

rule derivations are disjunctive (they only require at
least one of their children to be present).

Provenance Model. By recording which rule deriva-

tions justify the existence or absence of a query re-
sult, our model is suited well for debugging both data

and queries. However, simpler provenance types, e.g.,
only tracking data dependencies, are sufficient for some
applications. For example, assume that we record for
each train connection from which webpage we retrieved

information about this train connection. A user may

be interested in knowing based on which webpages a

query answer was computed. This question can be an-

swered using a simpler provenance type called Lineage
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(semiring Which(X) [18]) which records the set of in-

put tuples a result depends on. For such applications,
we prefer simpler provenance types, because they are
easier to interpret and more efficient to compute. Im-

portantly, only minor modifications to our framework

were required to support such provenance types.

Relationship to Other Provenance Models. In

comparison to other provenance models, our model is

more syntax-driven. We argue that this is actually a

feature (not a bug). An important question is what is

the semantic justification of our model, i.e., how do we
know whether it correctly models Datalog query evalua-
tion semantics and whether all (and only) relevant pro-
venance is captured. First, we observe that our model

encodes Datalog query semantics by construction. We

justify that all relevant provenance is captured indi-

rectly by demonstrating that our model captures suf-

ficient information to derive provenance according to

well-established models. Specifically, we demonstrate

that our model is equivalent to provenance games [24]

which also support FO queries. It was proven in [24]

that provenance polynomials, the most general form of

provenance in the semiring model [18,22], for a result

of a positive query can be “read out” from a prove-

nance game. By being equivalent to provenance games,

our provenance model also enjoys this property. We ex-

tend this result to queries with negation by relating

our model to semiring provenance for FO model check-

ing [13,39,43]. We prove that, for any FO formula ϕ,
we can generate a query Qϕ such that the semiring pro-

venance annotation of the formula π(ϕ) according to a

K-interpretation π (annotation of positive and negated

literals [13]) can be extracted efficiently from our pro-

venance graph for Qϕ . Note that non-recursive Datalog

queries with negation and FO formulas under the closed

world assumption have the same expressive power and,

thus, we use these languages interchangeably.

Reverse Reasoning (How-to Queries). For some
applications, a user may not be interested in how a

result was derived, but wants to understand how a re-

sult of interest can be achieved through updates to the

database (see e.g., [30,39,31]). We extend our approach

to support such “reverse reasoning” by introducing a

third possible state of nodes in a provenance graph re-

served for facts and derivations whose truth is unde-
termined. The provenance graph generated over an in-
stance with undetermined facts represents a set of pro-

venance graphs - one for each instance that is derived

by assigning a truth value to each undetermined fact.

We demonstrate that these graphs can be used to com-

pute the semiring provenance of an FO formula under

a provenance tracking interpretation as defined in [39].

Computing Explanations. We utilize Datalog to gen-

erate provenance graphs that explain a (missing) query
result. Specifically, we instrument the input Datalog
program to compute provenance bottom-up. Evaluated

over an instance I, the instrumented program returns

the edge relation of an explanation (provenance graph).

The main driver of our approach is a rewriting of

Datalog rules (so-called firing rules) that captures suc-
cessful and failed rule derivations. Firing rules for pos-

itive queries were first introduced in [23]. We have gen-

eralized this concept to negation and failed rule deriva-

tions. Firing rules provide sufficient information for con-

structing any of the provenance graph types we sup-

port. To make provenance capture efficient, we avoid
capturing derivations that will not contribute to an
explanation. We achieve this by propagating informa-

tion from a user’s provenance question throughout the

query to prune derivations that 1) do not agree with

the constants of the question or 2) cannot be part of

the explanation based on their success/failure status.

For instance, in the running example, Q(n, s) is only
connected to derivations of rule r1 with X=n and Y=s.

We implemented our approach in PUG [26] (Prove-
nance Unification through Graphs), an extension of our

GProM [1] system. Using PUG, we compile rewritten

Datalog programs into relational algebra, and translate

such algebra expressions into SQL code that can be ex-

ecuted by a standard relational database backend.

Factorizing Provenance. Nodes in our provenance
graphs are uniquely identified by their label. Thus, com-

mon subexpressions are shared leading to more compact
graphs. For instance, observe that g31(n, s) in Fig. 2 is

shared by two rule nodes. We exploit this fact by rewrit-

ing the input program to generate more concise, but

equivalent, provenance. This is akin to factorization of

provenance polynomials in the semiring model and uti-

lizes factorized databases techniques [33,34].

Contributions. This paper extends our previous work

[26] in the following ways: we extend our model to

support less informative, but more concise, provenance

types; we extend our provenance model to support re-

verse reasoning [13] where the truth of some facts in the

database is left undetermined; we demonstrate that our

provenance graphs (explanations) are equivalent to pro-

venance games [24] and how semiring provenance and
its FO extension as presented in [39] can be extracted
from our provenance model; we demonstrate how to
rewrite an input program to generate a desirable (con-

cise) factorization of provenance and evaluate the per-

formance impact of this technique; finally, we present an

experimental comparison with the language-integrated

provenance techniques implemented in Links [9].
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The remainder of this paper is organized as follows.

We discuss related work in Sec. 2 and review Datalog
in Sec. 3. We define our model in Sec. 4 and prove it to
be equivalent to provenance games [24] in Sec. 5. We,

then, show how our approach relates to semiring pro-

venance for positive queries and FO model checking in

Sec. 6 and 7, respectively. We present our approach for

computing explanations in Sec. 8, and factorization in
Sec. 9. Sec. 10 covers our implementation in PUG which

we evaluate in Sec. 11. We conclude in Sec. 12.

2 Related Work

Our provenance graphs have strong connections to other

provenance models for relational queries and to ap-
proaches for explaining missing answers.

Provenance Games. Provenance games [24] model

the evaluation of a given query (input program) P over
an instance I as a 2-player game in a way that resembles

SLD(NF) resolution. By virtue of supporting negation,
provenance games can uniformly answer why and why-
not questions. We prove our approach to be equivalent

to provenance games in Sec. 5. Köhler et al. [24] present

an algorithm that computes the provenance game for a

program P and database I. However, this approach re-
quires instantiation of the full game graph (which enu-

merates all existing and missing tuples) and evaluation
of a recursive Datalog¬ program over this graph us-

ing the well-founded semantics [10]. In constrast, our

approach directly computes succinct explanations that

contain only relevant provenance.

Database Provenance. Several provenance models
for database queries have been introduced in related

work, e.g., see [5,22]. The semiring annotation frame-

work generalizes these models for positive relational al-

gebra (and, thus, positive non-recursive Datalog). An

essential property of the K-relational model is that the

semiring of provenance polynomials N[X] generalizes all
other semirings. It has been shown in [24] that prove-

nance games generalize N[X] for positive queries. Since

our graphs are equivalent to provenance games in the

sense that there exist lossless transformations between

both models (see Sec. 5), our graphs also encode N[X]
and, thus, all other provenance models expressible as

semirings (see Sec. 6.2). Provenance graphs which are
similar to our graphs restricted to positive queries have
been used as graph representations of semiring pro-

venance (e.g., see [7,8,22]). Both our graphs and the

boolean circuits representation of semiring provenance [8]

explicitly share common subexpressions in the prove-

nance. While these circuits support recursive queries,

they do not support negation. Recently, extension of

circuits for semirings with monus (supporting set differ-

ence) have been discussed [38]. The semiring model has
also been applied to record provenance of model check-
ing for first-order (FO) logic formulas [39,13,43]. This

work also supports missing answers using the observa-

tion made earlier in [24]. Support for negation relies

on 1) translating formulas into negation normal form

(nnf ), i.e., pushing all negations down to literals, and

2) annotating both positive and negative literals using

a separate set X and X̄ of indeterminates in prove-

nance expressions where variables from X are reserved

for positive literals and variables from X̄ for negated

literals. This idea of using dual (positive and negative)

indeterminates is an independent rediscovery of the ap-

proach from [6] which applied this idea for FO queries.

The main differences between these approaches are 1)

that the results from [6] where only shown for one par-

ticular semiring (Bool(X ∪ X̄), the semiring of boolean

expressions over dual indeterminates) and 2) that [6]

supports recursion in the form of well-founded Datalog

and answer set programming (disjunctive Datalog). We

prove that our model encompasses the model from [13].

The notion of causality is also closely related to prove-

nance. Meliou et al. [29] compute causes for answers and

non-answers. However, the approach requires the user

to specify which missing inputs are considered as causes
for a missing output. Roy et al. [36,37] employ causal-
ity to compute explanations for high or low outcomes of

aggregation queries as sets of input tuples which have a

large impact on the result. Such sets of tuples are rep-

resented compactly through selection queries. A similar

method was developed independently by Wu et al. [41].

Why-not and Missing Answers. Approaches for ex-
plaining missing answers are either based on the query [2,

3,4,40] (i.e., which operators filter out tuples that would

have contributed to the missing answer) or based on the

instance [20,21] (i.e., what tuples need to be inserted
into the database to turn the missing answer into an
answer). The missing answer problem was first stated

for query-based explanations in the seminal paper by

Chapman et al. [4]. Huang et al. [21] first introduced an

instance-based approach. Since then, several techniques

have been developed to exclude spurious explanations,

to support larger classes of queries [20], and to support

distributed Datalog systems in Y! [42]. The approaches

for instance-based explanations (with the exception of

Y!) have in common that they treat the missing answer

problem as a view update problem: the missing answer

is a tuple that should be inserted into a view corre-

sponding to the query and this insertion has to be trans-

lated as an insertion into the database instance. An ex-

planation is then one particular solution to this view

update problem. In contrast to these previous works,
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our provenance graphs explain missing answers by enu-

merating all failed rule derivations that justify why the

answer is not in the result. Thus, they are arguably a

better fit for use cases such as debugging queries, where

in addition to determining which missing inputs justify

a missing answer, the user also needs to understand

why derivations have failed. Furthermore, we do sup-

port queries with negation. Importantly, solutions for
view update missing answer problems can be extracted
from our provenance graphs. Thus, in a sense, prove-

nance graphs with our approach generalize some of the

previous approaches (for the class of queries supported,

e.g., we do not support aggregation yet). Interestingly,

recent work has shown that it may be possible to gen-

erate more concise summaries of provenance games [11,
35] and provenance graphs [28] that are particularly
useful for negation and missing answers to deal with

the potentially large size of the resulting provenance.

Similarly, some missing answer approaches [20] use c-

tables to compactly represent sets of missing answers.

These approaches are complementary to our work.

Computing Provenance Declaratively. The con-
cept of rewriting a Datalog program using firing rules

to capture provenance as variable bindings of deriva-

tions was introduced by Köhler et al. [23]. They ap-

ply this idea for provenance-based debugging of posi-

tive Datalog. Firing rules are also similar to relational

implementations of provenance capture in Perm [12],

LogicBlox [16], Orchestra [17], and GProM [1]. Zhou et

al. [44] leverage such rules for the distributed ExSPAN

system using either full propagation or reference based

provenance. The extension of firing rules for negation

is the main enabler of our approach.

3 Datalog

A Datalog program P consists of a finite set of rules
ri : R( ~X) :− R1( ~X1), . . . , Rn( ~Xn) where ~Xj denotes a tu-

ple of variables and/or constants. We assume that the
rules of a program are labeled r1 to rm. R( ~X) is the head

of the rule, denoted as head(ri), and R1( ~X1), . . . , Rn( ~Xn)

is the body (each Rj( ~Xj) is a goal). We use vars(ri) to

denote the set of variables in ri. In this paper, consider
non-recursive Datalog with negation (FO queries), so

goals Rj( ~Xj) in the body are literals, i.e., atoms L( ~Xj)

or their negation ¬L( ~Xj), and recursion is not allowed.

All rules r of a program have to be safe, i.e., every vari-

able in r must occur positively in r’s body (thus, head

variables and variables in negated goals must also occur

in a positive goal). For example, Fig. 1 shows a Datalog

query with a single rule r1. Here, head(r1) is Q(X,Y )

and vars(r1) is {X,Y, Z}. The rule is safe since the head

variables ({X,Y }) and the variables in the negated goal

({X,Y }) also occur positively in the body. The set of
relations in the schema over which P is defined is re-

ferred to as the extensional database (EDB), while re-

lations defined through rules in P form the intensional

database (IDB), i.e., the IDB relations are those de-
fined in the head of rules. We require that P has a dis-

tinguished IDB relation Q, called the answer relation.

Given P and instance I, we use P (I) to denote the re-

sult of P evaluated over I. Note that P (I) includes the

instance I, i.e., all EDB atoms that are true in I. For

an EDB or IDB predicate R, we use R(I) to denote

the instance of R computed by P and R(t) ∈ P (I) to
denote that t ∈ R(I) according to P .

We use adom(I) to denote the active domain of in-

stance I, i.e., the set of all constants that occur in I.
Similarly, we use adom(R.A) to denote the active do-

main of attribute A of relation R. In the following, we

make use of the concept of a rule derivation. A deriva-

tion of a rule r is an assignment of variables in r to

constants from adom(I). For a rule with n variables,

we use r(c1, . . . , cn) to denote the derivation that is the

result of binding Xi=ci. We call a derivation successful
wrt. an instance I if each atom in the body of the rule

is true in I and failed otherwise.

4 Provenance Model

We now introduce our provenance model and formalize

the problem addressed in this work: compute the sub-

graph of a provenance graph for a given query (input

program) P and instance I that explains existence/ab-

sence of a tuple in/from the result of P .

4.1 Negation and Domains

To be able to explain why a tuple is missing, we have

to enumerate all failed derivations of this tuple and,

for each such derivation, explain why it failed. As men-

tioned in Sec. 1, we have to decide how to bound the set
of missing answers. We propose a simple, yet general,
solution by assuming that each attribute of an IDB or

EDB relation has an associated domain.

Definition 1 (Domain Assignment). Let S = {R1, . . . , Rn}

be a database schema where each Ri(A1, . . . , Am) is a re-

lation. Given an instance I of S, a domain assignment

dom is a function that associates with each attribute R.A

a domain of values. We require dom(R.A) ⊇ adom(R.A).

In our approach, the user specifies each dom(R.A) as
a query domR.A that returns the set of admissible val-

ues for the domain of attribute R.A. These associated
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domains fulfill two purposes: 1) to reduce the size of

explanations and 2) to avoid semantically meaningless

answers. For instance, if there exists another attribute

Price in the relation Train in Fig. 1, then adom(I)

would also include all the values that appear in this at-

tribute. Thus, some failed rule derivations for r1 would
assign prices as intermediate stops. Different attributes

may represent the same type of entity (e.g., fromCity
and toCity in our example) and, thus, it would make

sense to use their combined domain values when con-

structing missing answers. For now, we leave it up to

the user to specify attribute domains.

When defining provenance graphs in the following,

we are only interested in rule derivations that use con-

stants from the associated domains of attributes ac-

cessed by the rule. Given a rule r and variable X used

in this rule, let attrs(r,X) denote the set of attributes
that variable X is bound to in the body of the rule. In

Fig. 1, attrs(r1, Z)={Train.fromCity, Train.toCity}.

We say a rule derivation r(c1, . . . , cn) is domain grounded

iff ci ∈
⋂
A∈attrs(r,Xi)

dom(A) for all i ∈ {1, . . . , n}. For

a relation R(A1, . . . , An), we use Tup(R) to denote the set

of all possible tuples for R, i.e., Tup(R) = dom(R.A1)×

. . .× dom(R.An).

4.2 Provenance Graphs

Provenance graphs justify the existence (or absence) of

a query result based on the success (or failure) to derive

it using a query’s rules. They also explain how the exis-

tence or absence of tuples in the database caused deriva-

tions to succeed or fail, respectively. Here, we present a

constructive definition of provenance graphs that pro-

vide this type of justification. Nodes in these graphs

carry two types of labels: 1) a label that determines
the node type (tuple, rule, or goal) and additional in-
formation, e.g., the arguments and rule identifier of a

derivation; 2) the success/failure status of nodes. Note

that the first type of labels uniquely identifies nodes.

Definition 2 (Provenance Graph). Let P be a Datalog
program, I a database instance, dom a domain assign-

ment for I, and L the domain of strings. The prove-
nance graph PG(P, I) is a graph (V,E,L,S) with nodes

V , edges E, and node labelling functions L : V → L and

S : V → {T , F} (T for true/success and F for false/-

failure). We require that ∀v, v′ ∈ V : L(v) = L(v′) →

v = v′. The graph PG(P, I) is defined as follows:

– Tuple nodes: For each n-ary EDB or IDB predi-

cate R and tuple (c1, . . . , cn) of constants from the

associated domains (ci ∈ dom(R.Ai)), there exists a

node v labeled R(c1, . . . , cn). S(v) = T iff R(c1, . . . , cn)

∈ P (I) and S(v) = F otherwise.

– Rule nodes: For every successful domain grounded

derivation ri(c1, . . . , cn), there exists a node v in V
labeled ri(c1, . . . , cn) with S(v) = T . For every failed

domain grounded derivation ri(c1, . . . , cn) where head

(ri (c1, . . . , cn)) 6∈ P (I), there exists a node v as

above but with S(v) = F . In both cases, v is con-
nected to the tuple node head(ri(c1, . . . , cn)).

– Goal nodes: Let v be the node corresponding to
a derivation ri(c1, . . . , cn) with m goals. If S(v) =

T , then for all j ∈ {1, . . . ,m}, v is connected to a

goal node vj labeled gji with S(vj) = T . If S(v) =

F , then for all j ∈ {1, . . . ,m}, v is connected to

a goal node vj with S(vj) = F if the jth goal is
failed in ri(c1, . . . , cn). Each goal is connected to the

corresponding tuple node.

Our provenance graphs model query evaluation by

construction. A tuple nodeR(t) is successful in PG(P, I)
iff R(t) ∈ P (I). This is guaranteed, because each tu-

ple built from values of the associated domain exists

as a node v in the graph and its label S(v) is de-

cided based on R(t) ∈ P (I). Furthermore, there exists

a successful rule node r(~c) ∈ PG(P, I) iff the deriva-

tion r(~c) succeeds for I. Likewise, a failed rule node

r(~c) exists iff the derivation r(~c) is failed over I and
head(r(~c)) 6∈ P (I). Fig. 2 and 3 show subgraphs of

PG(P, I) for the query from Fig. 1. Since Q(n, s) ∈ P (I)

(Fig. 2), this tuple node is connected to all successful

derivations with Q(n, s) in the head which in turn are

connected to goal nodes for each of the three goals of

rule r1. Q(s, n) /∈ P (I) (Fig. 3) and, thus, its node is con-
nected to all failed derivations with Q(s, n) as a head.

Here, we have assumed that all cities can be considered

as start and end points of missing train connections, i.e.,

both dom(T.fromCity) and dom(T.toCity) are defined

as adom(T.fromCity)∪adom(T.toCity). Thus, we have

considered derivations r1(s, n, Z) for Z ∈ {c, n, s, w}.

4.3 Provenance Questions and Explanations

Recall that the problem we address in this work is how

to explain the existence or absence of (sets of) tuples us-

ing provenance graphs. Such a set of tuples specified as

a pattern and paired with a qualifier (Why /Whynot )
is called a provenance question (PQ) in this paper.

The two questions presented in Example 1 use constants

only, but we also support provenance questions with

variables, e.g., for a question Whynot Q(n,X) we re-

turn all explanations for missing tuples where the first

attribute is n, i.e., why it is not the case that a city X

can be reached from New York with one transfer, but

not directly. We say a tuple t′ of constants matches a

tuple t of variables and constants written as t′ 2 t if
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we can unify t′ with t, i.e., we can equate t′ with t by

applying a valuation that substitutes variables in t with
constants from t′.

Definition 3 (Provenance Question). Let P be a query,

I an instance, Q an IDB predicate, and dom a do-

main assignment for I. A provenance question ψ is
of the form WhyQ(t) or WhynotQ(t) where t =

(v1, . . . , vn) consists of variables and domain constants

(dom(Q.A) for each attribute Q.A). We define:

Pattern(ψ) = Q(t)

Match(WhyQ(t)) = {Q(t′)|t′ ∈ P (I) ∧ t′ 2 t}

Match(WhynotQ(t)) = {Q(t′)|t′ /∈ P (I) ∧ t′ 2 t ∧ t′ ∈ Tup(Q)}

In Example 2 and 3, we have presented subgraphs of
PG(P, I) as explanations for PQs, implicitly claiming

that these subgraphs are sufficient for explaining these
PQs. We now formally define this type of explanation.

Definition 4 (Explanation). The explanation Expl(P,
ψ, I, dom) for a PQ ψ according to P , I, and dom is

the subgraph of PG(P, I) containing only nodes that are
connected to at least one node in Match(ψ).

In the following we will drop dom from Expl(P,
ψ, I, dom) if it is clear from the context or irrelevant

for the discussion. Given this definition of explanation,
note that 1) all nodes connected to a tuple node match-
ing the PQ are relevant for computing this tuple and 2)

only nodes connected to this node are relevant for the
outcome. Consider Q(t′) ∈ Match(ψ) for a question

WhyQ(t). Since Q(t′) ∈ P (I), all successful deriva-

tions with head Q(t′) justify the existence of t′ and

these are precisely the rule nodes connected to Q(t′)
in PG(P, I). For WhynotQ(t) and matching Q(t′) we

have Q(t′) 6∈ P (I) which is the case if all derivations

with head Q(t′) have failed. In this case, all such deriva-

tions are connected to Q(t′) in the provenance graph.

Each such derivation is connected to all of its failed

goals which are responsible for the failure. Now, if a
rule body references IDB predicates, then the same ar-
gument can be applied to reason that all rules directly

connected to these tuples explain why they (do not)

exist. Thus, by induction, the explanation contains all

relevant tuple and rule nodes that explain the PQ.

5 Provenance Graphs and Provenance Games

We now prove that provenance graphs according to

Def. 2 are equivalent to provenance games. Thus, our

model inherits the semantic foundation of provenance

games. Specifically, provenance games were shown to

encode Datalog query evaluation. Furthermore, the in-

terpretation of provenance game graphs as 2-player games

provides a strong justification for why the nodes reach-

able from a tuple node justify the existence/absence
of the tuple. We show how to transform a provenance
game Γ(P, ψ, I) into an explanation Expl(P, ψ, I) and

vice versa to demonstrate that both are equivalent rep-
resentations of provenance. We define a function TrΓ→Expl

that maps provenance games to graphs and its inverse

TrExpl→Γ. Before that, we first give an overview of
provenance games (see [24] for more details).

Provenance Games. Similar to our provenance graphs,

provenance games are graphs that record successful and

failed rule derivations. Provenance games consist of four

types of nodes (e.g. Fig. 4d): rule nodes (boxes labeled

with a rule identifier and the constant arguments of a

rule derivation), goal nodes (boxes labeled with a rule

identifier and the goal’s position in the rule’s body),

tuple nodes (ovals), and EDB fact nodes (boxes labeled

with an EDB relation name and the constants of a tu-

ple). Every tuple node in a provenance game appears

both positively and negatively, i.e., for every tuple node

R(t), there exists a tuple node ¬R(t). Given a pro-

gram P and database instance I, a provenance game

is constructed by creating a positive and negative tuple

node R(c1, · · · , cn) for each n-ary predicate R and for

all combinations of constants ci from the active domain

adom(I). Similarly, nodes are created for rule deriva-

tions, i.e., a rule where variables have been replaced

with constants from adom(I) and each goal in the body

of a rule (similar to Def. 2). In the game, a derivation
of rule r for a vector of constants ~c is labeled as r(~c),

e.g., a derivation Q3hop(s, s) :− T(s, c), T(c, s), T(s, s) of

r2 in Fig. 4a is represented as a rule node labeled with

r2(s, s, c, s). Finally, EDB fact nodes are added for each

tuple in I, e.g., rT (s, s) for the tuple (seattle, seattle) in

the Train relation (Fig. 4a). Tuple nodes are connected

to the grounded rule nodes that derive them (have the
tuple in their head), rule nodes to goal nodes for the
grounded goals in their body, and goal nodes to negated

tuple nodes corresponding to the goal (positive goals)

or positive tuple nodes (negated goals). Such a game is

interpreted as a 2-player game where the players argue

for/against the existence of a tuple in the result of eval-
uating P over I. The existence of strategies for a player

in this game determines tuple existence and success of

rule derivations. A solved game is one where each node

in the game graph is labeled as either won W (there ex-

ists a strategy for the player starting in this position)
or lost L (no such strategy exists). A tuple node R(t) is

labeled as W iff the tuple R(t) exists. A corollary of this
is that a rule is labelled L if the corresponding deriva-

tion is successful andW otherwise.2 Given such a solved

2 This follows from the semantics of the type of 2-player game
used here. The details are beyond the scope of this paper.
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r2 : Q3hop(X,Y ) :− T(X,A), T(A,B), T(B, Y )

Relation Train

fromCity toCity N[X]

seattle seattle p
seattle chicago q
chicago seattle r

s c

r

q

p

Result of query Q3hop

X Y N[X]

seattle seattle p3 + 2pqr

(a) Example Train relation and query r2

Q3hop(s, s) (+)

· · ·

+ + + + + + +

T (s, s) (p) T (s, c) (q) T (c, s) (r)

p3 + 2 · (p · q · r)

[[p, p, p], [p, q, r], [p, q, r]]

(b) ExplN[X]

→

Q3hop(s, s) (+)

T (s, s) (p) T (s, c) (q) T (c, s) (r)

p+ q + r

{p, q, r}

(c) ExplWhich(X)

↑ ցQ3hop(s, s)

r2(s, s, s, s) r2(s, s, c, s) r2(s, s, s, c)

g2

2
(s, s) g3

2
(s, s) g1

2
(s, s) g1

2
(s, c) g2

2
(c, s) g2

2
(s, c) g3

2
(c, s)

¬T (s, s) ¬T (s, c) ¬T (c, s)

T (s, s) T (s, c) T (c, s)

rT (s, s) (p) rT (s, c) (q) rT (c, s) (r)

r2(g1(p) · g2(p) · g3(p)) + r2(g1(q) · g2(r) · g3(p)) + r2(g1(p) · g2(q) · g3(r))

[(p, p, p), (q, r, p), (p, q, r)]

(d) Provenance game for Q3hop(s, s)

↔

Q3hop(s, s)

r2(s, s, s, s) r2(s, s, c, s) r2(s, s, s, c)

g2

2
(s, s) g3

2
(s, s) g1

2
(s, s) g1

2
(s, c) g2

2
(c, s) g2

2
(s, c) g3

2
(c, s)

T (s, s) (p) T (s, c) (q) T (c, s) (r)

(e) Provenance graph (Expl) for Q3hop(s, s)

Notation

{ } set
[ ] bag
( ) list

Q3hop(s, s) (+)

·

T (s, s) (p)

p

{{p}}

(f) ExplPosBool(X)

Fig. 4: Transformations exemplified using the provenance graph for Q3hop(s, s). For each graph, we show the

structure of the provenance encoded by this graph and the corresponding semiring annotation where applicable.

game (denoted as Γ(P, I)), we can extract a subgraph

rooted at an IDB tuple Q(t) as the provenance of Q(t).

Similar to how we derive an explanation for a PQ with

Pattern(ψ) = Q(t) where t may contain variables as

the subgraph of the provenance graph PG(P, I) contain-

ing all IDB tuple nodes matching t and nodes reachable
from these nodes, we can derive the corresponding sub-

graph in the provenance game Γ(P, I) and denote it as

Γ(P, ψ, I) (we call such subgraphs game explanations).

Translating between Provenance Graphs and Pro-
venance Games. The translation TrExpl→Γ of a pro-

venance graph into the corresponding game and the

reverse transformation TrΓ→Expl are straightforward.
Thus, we only sketch TrExpl→Γ here. EDB tuple nodes

are expanded to subgraphs ¬R(t) → R(t) → rR(t) for
existing tuples and ¬R(t) → R(t) for missing tuples.

IDB tuple nodes are always expanded to subgraphs of

the later form. Rule and goal nodes and their inter-

connections are preserved. Goal nodes are connected to
negated tuple nodes (positive goals) and to positive tu-
ple nodes (negated goals). For positive tuple and goal

nodes, we translate T to W (won) and F to L (lost).

For negated tuple nodes and rule nodes, this mapping

is reversed, i.e., T to L and F to W .

Theorem 1. Let P be a program, I a database in-

stance, and ψ a PQ. We have:

TrΓ→Expl(Γ(P, ψ, I)) = Expl(P, ψ, I)

TrExpl→Γ(Expl(P, ψ, I)) = Γ(P, ψ, I)

Proof. See our accompanying technical report[27].

Example 4. Consider rule r2 in Fig. 4a computing

which cities can be reached from another city through a

path of length 3. The provenance game and provenance

graph for Q3hop(s, s) are shown in Fig. 4d and Fig. 4e,

respectively. In the provenance graph, goal nodes are

directly connected to tuple nodes. In the game, they are

represented as positive and negative tuple nodes and
EDB fact nodes (the lower three levels). That is, every
subgraph ¬T (X,Y ) → T (X,Y ) → rT (X,Y ) in Fig. 4d

is equivalently encoded as a single tuple node T (X,Y )

in Fig. 4e. Both graphs record the 3 paths of length 3
which start and end in Seattle: 1) s → s → s → s, 2)

s→ c→ s→ s, and 3) s→ s→ c→ s.

6 Semiring Provenance for Positive Queries

The semiring annotation model [22,15,18] is widely ac-

cepted as a provenance model for positive queries. An

interesting question is how our model compares to pro-

venance polynomials (semiring N[X]), the most general
form of annotation in the semiring model. It was shown

in [24] that, for positive queries, the result of a query

annotated with semiring N[X] can be extracted from

the provenance game by applying a graph transforma-

tion. The equivalence shown in Sec. 5 extends this result

to our provenance graph model. That being said, we de-

velop simplified versions of our graph model to directly
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support less informative provenance semirings such as

Lineage which only tracks data-dependencies between

input and output tuples. We now introduce the semi-

ring annotation framework for positive queries and its

use in provenance tracking and, then, explain our sim-

plified provenance graph types.

6.1 K-relations

In the semiring framework, relations are annotated with

elements from a commutative semiring. A commutative

semiring is a structure K = (K,+K, ·K, 0K, 1K) over a

set K where the addition and multiplication operations
are associative, commutative, and have a neutral ele-

ment (0K and 1K, respectively). Furthermore, multi-

plication with zero yields zero and multiplication dis-

tributes over addition. A relation annotated with the

elements of a semiring K is called a K-relation. Opera-

tors of positive relational algebra (RA+) for K-relations

compute annotations for tuples in their output by com-

bining annotations from their input using the opera-

tions of the semiring. Intuitively, multiplication repre-

sents conjunctive use of inputs (as in a join) whereas

addition represents alternative use of inputs (as in a

union or projection). We are interested in K-relations,

because it was shown that many provenance types can

be expressed as semiring annotations.

Semiring homomorphisms are important for our pur-

pose since they allow us to translate between different

provenance semirings and understand their relative in-

formativeness. A semiring homomorphism h : K1 → K2

is a function fromK1 toK2 that respects the operations

of semirings, e.g., h(k1 +K1
k2) = h(k1) +K2

h(k2). As

shown in [14], if there exists a surjective homomorphism

between one provenance semiring K1 and another semi-
ring K2, then K1 is more informative than K2 (see [18]

for the technical details justifying this argument). We

introduce several provenance semirings below and ex-

plain the homomorphisms that link the most informa-

tive semiring (N[X]) to less informative semirings.

(N[X],+, ·, 0, 1): The elements of semiring N[X] are poly-

nomials with natural number coefficients and exponents

over a set of variables X representing tuples. Any poly-

nomial can be written as a sum of products by apply-

ing the equational laws of semirings, e.g., the prove-

nance polynomial for query result Q3hop(s, s) is p3+2pqr

(Fig. 4a). An important property of N[X] is that there
exist homomorphisms from N[X] to any other semiring.

(PosBool(X),+, ·, 0, 1): The elements of PosBool(X) are

derived from N[X] by making both addition and multi-

plication idempotent and applying an additional equa-

tional law: x+ x · y = x. An element from PosBool(X)

can be encoded as a set of sets of variables with the

restriction that every inner set k is minimal, i.e., there
is no other inner set k′ that is a subset of k. For exam-

ple, the provenance polynomial p3 + 2pqr of Q3hop(s, s)

is simplified as follows: p3 + 2pqr = p+ pqr = p.

(Which(X),+, ·, 0, 1): In the Which(X) semiring, addi-
tion is equivalent to multiplication: x + y = x · y for

x, y 6∈ {0, 1}, and both addition and multiplication are

idempotent. This semiring has sometimes also be called

the Lineage semiring. Alternatively, the semiring can be

defined over the powerset of the set of variables X [5].

Other semirings of interest are (B[X],+, ·, 0, 1) which

is derived from N[X] by making addition idempotent

(x+x ≡ x), semiring (Trio(X),+, ·, 0, 1) where multipli-

cation is idempotent (x·x ≡ x), and (Why(X),+, ·, 0, 1)

where both addition and multiplication are idempotent.

6.2 K-explanations

We now introduce simplified versions of our provenance
graphs that each corresponds to a certain provenance

semiring. Given a positive query P , PQ ψ, and database
I, we use ExplK(P, ψ, I) to denote a K-explanation for

ψ. A K-explanation is a provenance graph that encodes

the K-provenance of all query results from Match(ψ),

i.e., the set of answers the user is interested in. In the

following, we first show how to extract N[X] from our
provenance graph. Then, for each homomorphism im-

plementing the derivation of a less informative prove-

nance model from a more informative provenance model

in the semiring framework, there is a corresponding

graph transformation over our provenance graphs that

maps ExplN[X](P, ψ, I) to ExplK(P, ψ, I). The follow-
ing theorem shows that we can reuse the existing map-

ping from provenance games to provenance polynomials

by composing it with the mapping TrExpl→Γ.

Theorem 2. Let TrExpl→N[X] denote the function

TrΓ→N[X] ◦TrExpl→Γ. Given a positive input program

P , database instance I, and tuple t ∈ P (I), denote by
N[X](P, I, t) the N[X] annotation of t over an abstractly

tagged version of I (each tuple t is annotated with a
unique variable xt). Then,

TrExpl→N[X](Expl(P, I, t)) = N[X](P, I, t)

Proof. The proof is shown in [27].

Consider the explanation for Why Q3hop(s, s) shown

in Fig. 4e. Recall that there are three options for reach-

ing Seattle from Seattle with two intermediate stops

corresponding to three derivations of Q3hop using rule

r2. These three derivations are shown in the provenance

graph, e.g., r2(s, s, s, s) is the derivation that uses the
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local train connection inside Seattle three times. Anno-

tating the train connections with variables p, q, and r
as shown in Fig. 4a and ignoring rule information en-

coded in the graph, the provenance encoded by our

model is a bag (denoted as [ ]) of lists (denoted as (

)) of these variables. Each list corresponds to a rule
derivation where variables are ordered according to the

order of their occurrence in the body of the rule. For
instance, (q, r, p) corresponds to taking a train from

Seattle to Chicago (q), then from Chicago to Seattle

(r), and finally a local connection inside Seattle (p).

We now illustrate the graph transformations yielding
K-explanations from ExplN[X] based on this example.

Semiring N[X]. In Fig. 4e, we (1) replace rule nodes

with multiplication (i.e., r2(s, s, s, s) → ·) and (2) re-
place goal nodes with addition (e.g., g14(s, s) → +)

to generate a graph that encodes N[X] as shown in

Fig. 4b (denoted as ExplN[X]). Applying this transfor-

mation, the rule instantiation r2(s, s, c, s) deriving re-

sult tuple Q3hop(s, s) can no longer be distinguished from

r2(s, s, s, c), because they are connected to the same tu-
ple nodes. The only information retained is which argu-
ments are used how often by a rule (labelled with ·). To

extract N[X], we (1) replace labels of leaf nodes with

their annotations from Fig. 4a (e.g., T (s, s) is replaced

with p) and (2) replace IDB tuple nodes with addition.

Semiring PosBool(X). ExplPosBool(X) (Fig. 4f) is com-

puted from ExplN[X] by first collapsing rule nodes if

the subgraphs rooted at these rule nodes are isomor-
phic and dropping all the goal nodes. Then, “ ·” nodes

are removed if one or more subgraphs rooted at children
of such a node is isomorphic to the subgraphs rooted at

the children of another “ ·” node. Applying this process

to our example, after the first step, two “ ·” nodes (one
connects Q3hop(s, s) to p and the other for each p, q, and

r) exist in the graph corresponding to p and p · q · r. In
the second step, p · q · r is removed because it contains

p (T(s, s)) as a subgraph.

Semiring Which(X). The semiring Which(X) (aka Lin-

eage) is reached by collapsing all intermediate nodes

and directly connecting tuple nodes (e.g., Q3hop(s, s))

with other tuple nodes (e.g., T(s, s)) as shown in Fig. 4c.

ExplB[X] and ExplTrio(X) are derived from ExplN[X]

by collapsing isomorphic subgraphs rooted at rule nodes
and by dropping all the goal nodes, respectively. The
combination of these transformations achieves ExplWhy(X).

7 Semiring Provenance for FO Model Checking

The semiring framework was recently extended for cap-
turing provenance of first-order (FO) model checking [39,

13]. We now study the relationship of our model to

semiring provenance for FO queries. Based on the ob-

servation first stated in [24] (provenance for FO queries
and, thus, also FO logic, naturally supports missing an-
swers), the authors explain missing answers based on
FO provenance [43]. Another interesting aspect of [13] is

that it allows some facts to be left undetermined (their
truth is undecided). This enables how-to queries [31],
i.e., given an expected outcome, which possible world

compatible with the undecided facts would produce this

outcome. In this section, we first introduce the model

from [13], then demonstrate how our approach can be

extended to support undetermined truth values. Fi-

nally, we show how the annotation computed by the

approach presented in [13] for a FO formula ϕ can be

efficiently extracted from the provenance graph gener-

ated by our approach for a query Qϕ which is derived

from ϕ through a translation Tlϕ→Q.

7.1 K-Interpretations and Dual Polynomials

In [39,18], the authors define semiring provenance for

formulas in FO logic. Let A be a domain of values. We

use ν to denote an assignment of the free variables of ϕ
to values from A. Given a so-called K-interpretation π

which is a function mapping positive and negative liter-

als to annotations from K, the annotation of a formula

πJϕKν for a given valuation ν is derived using the rules

below. For sentences, i.e., formulas without free vari-

ables, we omit the valuation and write π(ϕ) to denote

πJϕKν for the empty valuation ν. Furthermore, op is
used to denote a comparison operator (either = or 6=).

πJR(x)Kν = π(R(ν(x))) πJ¬R(x)Kν = π(¬R(ν(x)))

πJxop yKν = if ν(x)op ν(y) then 1 else 0 πJ¬ϕKν = πJnnf(ϕ)Kν

πJϕ1 ∨ ϕ2Kν = πJϕ1Kν + πJϕ2Kν πJϕ1 ∧ ϕ2Kν = πJϕ1Kν · πJϕ2Kν

πJ∃xϕKν =
∑

a∈A

πJϕKν[x 7→a] πJ∀xϕKν =
∏

a∈A

πJϕKν[x 7→a]

Both conjunction and universal quantification cor-

respond to multiplication, and annotations of positive

and negative literals are read from π. This model deals

with negation as follows. A negated formula is first

translated into negation normal form (nnf ). A formula
in nnf does not contain negation except for negated

literals. Any formula can be translated into this form

using DeMorgan rules, e.g., ¬ (∀xϕ) ≡ (∃x¬ϕ). By

pushing negation to the literal level using nnf , and

annotating both positive and negative literals, the ap-

proach avoids extending the semiring structure with an

explicit negation operation.

Provenance tracking for FO formula has to take into

account the dual nature of the literals. The solution pre-

sented in [13,39] is to use polynomials over two sets of

variables: variables from X and X̄ are exclusively used
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to annotate positive and negative literals, respectively.

For any variable x ∈ X, there exists a corresponding
variable x̄ ∈ X̄ and vice versa. Furthermore, if x an-

notates R(a), then x̄ can only annotate ¬R(a) (and

vice versa). The semiring of dual indeterminate poly-

nomials is then defined as the structure generated by

applying the congruence x · x̄ = 0 to the polynomials

from N[X ∪ X̄]. The resulting structure is denoted by
N[X, X̄]. Intuitively, this congruence encodes the stan-

dard logic equivalence R(a) ∧ ¬R(a) ≡ false. Impor-

tantly, in a N[X, X̄]-interpretation π, we can decide

which facts are true/false and whether to track pro-

venance for these facts. Furthermore, we can leave the

truth of some literals undetermined. Below, we show all

feasible combinations for annotating R(a) and ¬R(a)
in π and their meaning. For instance, if we annotate

R(a) with 1 or 0, this corresponds to asserting the fact

R(a), but not tracking provenance for it. By setting

R(a) = x and ¬R(a) = x̄, we leave the truth of R(a)

undecided. Note that R(a) = 0 and ¬R(a) = 0 (as well
as R(a) = 1 and ¬R(a) = 1) are not considered here

since they lead to incompleteness (inconsistency).

π(R(a)) = 1 π(¬R(a)) = 0 (true, no provenance)

π(R(a)) = 0 π(¬R(a)) = 1 (false, no provenance)

π(R(a)) = x π(¬R(a)) = 0 (true, track provenance)

π(R(a)) = 0 π(¬R(a)) = x̄(false, track provenance)

π(R(a)) = x π(¬R(a)) = x̄ (undetermined)

Consider a sentence ϕ.3 The annotation π(ϕ) com-

puted for ϕ over π with undetermined facts represents

a set of possible models for ϕ. By choosing for each un-

determined fact R(a) in π(ϕ) whether it is true or not,

we “instantiate” one possible model for ϕ. By encoding
a set of possible models, π(ϕ) allows for reverse reason-

ing: we can find models that fulfill certain properties
from the set of models encoded by π(ϕ).

Example 5. Reconsider query r1 from Fig. 1. Assume

that we want to determine what effect building a di-
rect train connection from New York to Seattle would
have on the query result Q(n, s). Thus, we make the

assumption that the database instance is as in Fig. 1
with the exception that we keep T(n, s) undetermined.

In first-order logic, r1 is expressed as: only2hop(x, y) ≡

∃z(T(x, z) ∧ T(z, y) ∧ ¬T(x, y)) and fact Q(n, s) as: ϕ ≡

only2hop(n, s). The database when keeping T(n, s) un-

determined is encoded as a N[X, X̄]-interpretations π
which assigns variables to positive literals as shown in

Fig. 1 (the corresponding negated literals are annotated
with 0). π(T (n, s)) = v, π(¬T (n, s)) = v̄, and we anno-

tate all remaining positive literals with 0 and negative

3 We only restrict the discussion to sentences for simplicity.
The arguments here also hold for formulas with free variables.

Q(n, s)

r1(n, s, w)

g1

1
(n,w)

T (n,w)

(t)

g2

1
(w, s)

T (w, s)

(s)

g3

1
(n, s)

T (n, s)

(v) (v̄)

r1(n, s, c)

g1

1
(n, c)

T (n, c)

(u)

g2

1
(c, s)

T (c, s)

(r)

Fig. 5: Provenance graph for Why Q(n, s) when T (n, s)

is left undetermined

literals with 1. Computing π(ϕ) using the rules above,

we get (t · s · v̄) + (u · r · v̄). There are two ways of

deriving the query result Q(n, s) which both depend on

the absence of a direct train connection from New York

to Seattle (v̄). Now if we decide to introduce such a
connection, we can evaluate the effect of this choice by

setting v̄ = 0 in the provenance polynomial above (the
absence of this connection has been refuted), i.e., we get

(t·s·0)+(u·r ·0) = 0. Thus, if we were to introduce such

a connection, then Q(n, s) would no longer be a result.

7.2 Supporting Undeterminism in Provenance Graphs

Supporting undetermined facts in our provenance model
is surprisingly straightforward. We introduce a new la-

bel U which is used to label nodes whose success/fail-
ure (existence/absence) is undetermined. To account

for this new label, we amend the rules for determin-

ing connectivity and node labeling as follows:

– For a goal node vg (no matter whether positive or

negative) that is connected to a tuple node vt with

S(vt) = U , we set S(vg) = U (goals corresponding
to undetermined tuples are undetermined).

– A rule node is succesful (T ) if all its goals are suc-

cessful, a rule node is failed if some of its goals

are failed (F ), and finally a rule node is undeter-
mined (U) if at least one of its goals is undeter-

mined and none of its goals are failed. Successful rule
nodes are connected to all goals, failed rule nodes
to failed and undetermined goals (these may pro-

vide further justification for the failure), and unde-

termined rule nodes to all goals (successful and un-

determined goals will determine success of the rule

nodes under choices).

– An IDB tuple exists (T ) if at least one of its rule
derivation is successful. It is connected to all suc-

cessful and undetermined rule derivations (these may

provide additional justifications under certain choices

for undetermined facts). An IDB tuple is absent (F )

if all of its rule derivations fail. Finally, an IDB tu-

ple is undetermined (U) if at least one of its rule

derivations is undetermined and none is successful.
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ϕ := ∃x : ϕ1

Qϕ(free(ϕ)) :−Dom(x), Qϕ1(free(ϕ1))
(1)

ϕ :=¬R(x), free(ϕ) = {x1, . . . , xn}

Qϕ(free(ϕ)) :−Dom(x1), . . . , Dom(xn),¬R(x)
(2)

ϕ :=R(x)

Qϕ(free(ϕ)) :−R(x)
(3)

ϕ :=ϕ1 ∨ ϕ2, free(ϕ1) = {x1, . . . , xn, y1, . . . , ym}, free(ϕ2) = {x1, . . . , xn, z1, . . . , zl}

Qϕ(free(ϕ)) :−Dom(z1), . . . , Dom(zk), Qϕ1(free(ϕ1))
Qϕ(free(ϕ)) :−Dom(y1), . . . , Dom(ym), Qϕ2(free(ϕ2))

(4) ϕ :=xop y

Qϕ(x, y) :−Dom(x), Dom(y), xop y
(5)

ϕ := ∀x : ϕ1, free(ϕ) = {x1, . . . , xn}

Qϕ(free(ϕ)) :−Dom(x1), . . . , Dom(xk),¬Qϕ′ (free(ϕ))

Qϕ′ (free(ϕ)) :−Dom(x), Dom(x1), . . . , Dom(xn),¬Qϕ1(free(ϕ1))

(6) ϕ :=ϕ1 ∧ ϕ2

Qϕ(free(ϕ)) :−Qϕ1(free(ϕ1)), Qϕ2(free(ϕ2))
(7)

Fig. 6: Translating a first-order formula ϕ into a first-order query Qϕ

Undetermined tuple nodes are connected to all their

rule derivations (failed ones may be additional jus-

tifications for absence while undetermined ones may

justify either existence or absence).

Example 6. Consider Example 5 in our extended pro-

venance graph model. Let vn,s be the node corresponding

to T(n, s). If we set S(vn,s) = U to indicate that T(n, s)

should be considered as undetermined, then we get the

provenance graph in Fig. 5. Our approach correctly de-

termines that under this assumption the truth of Q(n, s)

is undetermined and that there are two potential deriva-

tions of this result which also are undetermined, because

they depend on existing tuples as well as the undeter-

mined tuple T(n, s). To evaluate the effect of choosing

T(n, s) to be true or false, we would set S(vn,s) = T

or S(vn,s) = F and propagate the effect of this change
bottom-up through-out the provenance graph.

Importantly, the provenance graph captured for an
instance with undetermined facts is sufficient for eval-

uating the effect of setting any of these undetermined

facts to false or true. That is, just like it is not necessary

to reevaluate the semiring annotation of a formula to

evaluate the impact of such a choice, it is also not nec-

essary to recapture provenance in our model to evaluate

a choice. For lack of space, we are not discussing the de-

tails of a corresponding extension for provenance games,

but still would like to remark that undetermined facts
correspond to draws in the game (neither player has a
winning strategy). In the type of two-player games em-
ployed in provenance games, draws are caused by cycles

in the game graph. To leave the existence of an EDB
tuple undetermined, we introduce an EDB fact node for
the tuple and add a self-edge to this node which causes

the tuple node to be a draw in the game.

7.3 From First-order Formulas to Datalog

We now present a translation Tlϕ→Q from FO formulas

ϕ to boolean Datalog queries Qϕ . The query generated

based on a formula ϕ is equivalent to the formula in the

following sense: if ϕ evaluates to true for a model, then

Qϕ(I) returns true. Here, I is the instance that con-

tains precisely the tuples corresponding to literals that

are true in the model. We assume that the free variables

of a formula (the variables not bound by any quantifier)

are distinct from variable names bound by quantifiers

and that no two quantifiers bind a variable of the same

name. This can be achieved by renaming variables in a

formula that does not fulfill this condition. For exam-

ple, (∀xR(x, y)) ∧ (∃y S(y)) does not fulfill this condi-

tion, but the equivalent formula (∀xR(x, y))∧(∃z S(z))
does. We also assume an arbitrary, but fixed, total or-

der <V ar over variables that appear in formulas. We

use free(ϕ) to denote the list of free variables of a for-

mula ϕ ordered increasingly by <V ar. For instance, for
ϕ : = ∀x : R(x, y) we have free(ϕ) = {y}. Our trans-

lation Tlϕ→Q takes as input a formula ϕ and outputs
a Datalog program with an answer predicate Qϕ . The

translation rules are shown in Fig. 6. Each rule trans-

lates one construct (e.g., a quantifier) and outputs one

or more Datalog rules. The Datalog program generated

by the translation for an input ϕ is the set of Datalog
rules generated by applying the rules from Fig. 6 to all

sub-formulas of ϕ. Here, we assume the existence of a
unary predicate Dom whose extension is the domain

A. Most translation rules are straightforward and stan-

dard. Logical operators are translated into their obvi-

ous counterpart in Datalog, e.g., a conjunction ϕ1 ∧ϕ2

is translated into a rule with two body atoms Qϕ1
and

Qϕ2 . The rules generated for a formula ϕ return the for-
mula’s free variables to make them available to formulas

that use ϕ. For instance, since Datalog does not support

universal quantification directly, we have to simulate it

using double negation (∀xϕ is rewritten as ¬∃x¬ϕ).

Disjunctions are turned into unions. The complexity of
the rule for disjunction stems from the fact that, in

ϕ1 ∨ ϕ2, the sets of free variables for ϕ1 and ϕ2 may
not be the same. To make them union compatible, use

free(ϕ) as the arguments of the heads of the rules for

both ϕ1 and ϕ2, and add additional goals Dom to en-

sure that these rules are safe.

Example 7. Consider a directed graph encoded as its

edge relation R. The formula ϕ : = ∀x ∃y R(x, y) checks
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Fig. 7: Provenance graph for query Qϕ based on ϕ : = ∀x ∃y R(x, y) when R(a, a) is true (π(R(a, a)) = x and

π(¬ R(a, a)) = 0) and R(b, a) is left undetermined (π(R(b, a)) = y and π(¬ R(b, a)) = ȳ). Note that ϕ1 : = ∃y R(x, y)

and ϕ2 : =R(x, y). The result of TrExpl→N[X,X̄] shown besides the nodes encodes the dual polynominal π(ϕ) = x·y.

whether all nodes in the graph have outgoing edges. Let

ϕ1 = ∃y R(x, y) and ϕ2 = R(x, y). Translating this for-

mula, we get:

Qϕ() :−¬Qϕ′ () Qϕ′ () :−Dom(x),¬Qϕ1
(x)

Qϕ1(x) :−Dom(y), Qϕ2(x, y) Qϕ2(x, y) :− R(x, y)

7.4 From Graphs to FO Semiring Provenance

Given a formula ϕ in negation normal form (nnf) and
a N[X, X̄]-interpretation π, we now demonstrate how

to extract πJϕKν from the subgraph of the provenance

graph generated based on π over Tlϕ→Q(ϕ) rooted at

the tuple nodeQϕ(ν(free(ϕ))). First, we apply Tlϕ→Q(ϕ)

to computeQϕ . Then, we generate an instance Iπ where
the existence of a tuple corresponding to a literal R(a)

is determined based on the truth value of this literal
encoded by its annotation π(R(a)). A tuple R(a) exists

in Iπ if π(R(a)) = x or π(R(a)) = 1 and π(¬ R(a)) = 0,

the tuple is missing if π(¬ R(a)) = x̄ or π(¬ R(a)) = 1

and π(R(a)) = 0, and the tuple’s existence is undeter-

mined if π(R(a)) = x and π(¬ R(a)) = x̄. Note that this

corresponds to the truth value according to the 5 cases
we have discerned in Sec. 7.1.

Next, we generate the provenance graph PG(Qϕ , Iπ).

If the formula has free variables, then the provenance
graph will contain multiple tuple nodesQϕ(ν(free(ϕ))),

one for each valuation ν of the free variables, and the
subgraph rooted at one such tuple node encodes πJϕKν .

By applying a function TrExpl→N[X,X̄] (defined in the

following), we translate the subgraph rooted at tuple
Qϕ(ν(free(ϕ))) in PG(Qϕ , Iπ) into πJϕKν .

The function TrExpl→N[X,X̄] replaces nodes in the
provenance graph with nodes labeled as “+”, “ ·”, and

annotations of literals. The polynomial πJϕKν can then

be read from the graph generated by TrExpl→N[X,X̄]

through a top-down traversal. Intuitively, the transla-
tion can be explained as follows. Datalog rules are a
conjunction of atoms and, thus, are replaced with mul-

tiplication. There may exist multiple ways that derive

an IDB tuple through the rules of query. That is, IDB

tuple nodes represent addition. The exception is IDB

tuples that are used in a negated fashion which are

replaced with multiplication, because, for the goal to

succeed, all derivations of the tuple have to fail. Note

that a tuple is used in a negated way if there is an odd
number of negated goals on the path between the root
of the provenance graph and IDB tuple node. In a pro-

gram produced by our translation rules, this can only

be the case for tuples that correspond to head predicate

of a rule computing the ¬∃ part of the translation of a
universal quantification.

TrExpl→N[X,X̄] consists of the following steps:

1. Replace tuple nodes Dom(x) with 1.

2. A goal node connected to an EDB tuple node rep-

resenting a literal R(a) is replaced by π(R(a)) if the

goal is positive and π(¬ R(a)) otherwise.

3. Next, all EDB tuple nodes are removed leaving the

goal nodes formerly connected to EDB tuple nodes

to be the new leaves of the graph.

4. Rule nodes are replaced with multiplication (·).
5. Next all remaining goal nodes are replaced with ad-

dition (+).

6. Finally, nodes vt corresponding to IDB tuples are

replaced with addition with the exception of IDB

tuples corresponding to the head predicate (Qϕ′ ) of

the second rule of a translated universal quantifica-

tion which are replaced with multiplication (·).

Example 8. Consider the formula and query from Ex-

ample 7. Assume that A = {a, b} and consider that in-

terpretation π which tracks provenance for edge (a, a),
keeps R(b, a) undetermined, and sets all other positive

literals to false without provenance tracking, i.e., π(R(a, a))
= x, π(¬ R(a, a)) = 0, π(R(b, a)) = y, π(¬ R(b, a)) =

ȳ, and for all other R(a) we have π(R(a)) = 0 and

π(¬R(a)) = 1. That is, in Iπ, tuple R(a, a) exists, tu-

ple R(b, a)’s existence is undetermined, and all other

tuples are missing. Fig. 7 shows the provenance graph
PG(Qϕ , Iπ). The truth of the universal quantification in

ϕ is undetermined, because while there exists no a ∈ A
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such that ¬ϕ1 for ν : =(x = a) is true (there is an out-

going edge starting at a), the truth of ¬ϕ1 is undeter-
mined for ν : =(x = b) (the existence of edge R(b, a) is

undetermined). The truth of ∃y R(a, y) and ∃y R(b, y)

is justified by the existing tuples R(a, a) and R(b, a), re-

spectively. Applying the translation TrExpl→N[X,X̄], we
get graph with node labels shown in Fig. 7 which corre-

sponds to the polynomial 1 · x · 1 · 1 · y = x · y = π(ϕ).

We are now ready to state the main result of this
section: our provenance graphs extended for undeter-

mined facts can encode semiring provenance for first-

order (FO) model checking. For simplicity, we only con-

sider sentences, i.e., formulas ϕ without free variables,

but the result also holds for formulas with free vari-

ables by only translating a subgraph of the provenance

rooted at the IDB tuple node Qϕ(ν(free(ϕ))) which

corresponds to the formula ν(ϕ).

Theorem 3. Let ϕ be a formula, π a N[X, X̄]-inter-
pretation, Q : =Tlϕ→Q(ϕ), and Iπ the instance corre-

sponding to π as defined above. Then

TrExpl→N[X,X̄](PG(Q, Iπ)) = πJϕKν

Proof. We prove the theorem by induction over the

structure of the input formula ϕ for a given valuation

ν of free(ϕ). For the full proof, see [27].

8 Computing Explanations

We now present our approach for computing explana-

tions using Datalog. Our approach generates a Datalog

program GPP,ψ by rewriting a given query (input pro-

gram) P to return the edge relation of the explanation
Expl(P, ψ, I) for a provenance question (PQ) ψ. Re-

call that a PQ is a pattern describing existing/missing

outputs of interest and that an explanation for a PQ is

a subgraph of the provenance which contains the pro-
venance of all tuples described by the pattern.

Our approach for computing GPP,ψ consists of the
following steps that we describe in detail in the follow-
ing subsections: 1) we unify the input program P with

the PQ ψ by propagating constants from ψ top-down

to prune derivations of outputs that do not match the
PQ; 2) we determine for each IDB predicate whether

the explanation may contain existing, missing, or both
types of tuples from this predicate. Similarly, for each
rule we determine whether successful, failed, all, or no
derivations of this rule may occur in the provenance

graph; 3) based on restricted and annotated version of

the input program produced by the first two steps, we

then generate firing rules which capture the variable

bindings of successful and failed derivations of the in-

put program’s rules; 4) The result of the firing rules is

a superset of the set of relevant provenance fragments.

We introduce additional rules that enforce connectivity
to remove spurious fragments; 5) finally, we create rules
that generate the edge relation of the explanation. This

is the only step that depends on what provenance type

(e.g., Fig. 4) is requested.

In the following, we will illustrate our approach us-

ing the provenance question ψn,s = Why Q(n, s) from

Example 1, i.e., why New York is connected to Seattle

via train with one intermediate stop, but there is no

direct connection.

8.1 Unifying the Program with the PQ

The node Q(n, s) in the provenance graph (Fig. 2) is

only connected to derivations which return Q(n, s). For

instance, if variable X is bound to another city x (e.g.,
Chicago) in a derivation of the rule r1, then this rule

cannot return the tuple (n, s). This reasoning can be

applied recursively to replace variables in rules with

constants. That is, we unify the rules in the program

top-down with the PQ. This process corresponds to
selection push-down for relational algebra expressions.

We may create multiple partially unified versions of a
rule or predicate. For example, to explore successful
derivations of Q(n, s), we are interested in both train

connections from New York to some city (T(n,Z)) and

from any city to Seattle (T(Z, s)). Furthermore, we need

to know whether there is a direct connection from New
York to Seattle (T(n, s)). We store variable bindings

as superscripts to distinguish multiple copies of a rule
generated based on different bindings.

Example 9. Given the question ψn,s, we unify the sin-
gle rule r1 using the assignment (X=n, Y=s):

r
(X=n,Y=s)
1 : Q(n, s) :− T(n,Z), T(Z, s),¬ T(n, s)

This approach is correct because if we bind a vari-

able in the head of rule, then only rule derivations that
agree with this binding can derive tuples that agree
with this binding. Based on this unification step, we
know which bindings may produce fragments of PG(P, I)

that are relevant for explaining the PQ (the pseudocode

for the algorithm is presented in [25]). For an input P ,
we use PUnified to denote the result of this unification.

8.2 Add Annotations based on Success/Failure

For WhyQ(t) (WhynotQ(t)), we are only interested

in subgraphs of the provenance rooted at existing (miss-
ing) tuple nodes for Q. With this information, we can

infer restrictions for the success/failure state of nodes
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in the provenance graph that are directly or indirectly

connected to PQ node(s) (belong to the explanation).
We store these restrictions as annotations T , F , and

F/T on heads and goals of rules and use these anno-

tations to guide the generation of rules that capture

derivations in step 3. Here, T (F ) indicates that we are
only interested in successful (failed) nodes, and F/T

that we are interested in both.

Example 10. Continuing with our running example
question ψn,s, we know that Q(n, s) is in the result (Fig. 1).

This implies that only successful rule nodes and their

successful goal nodes can be connected to this tuple node.

Note that this annotation only indicates that it is suffi-

cient to focus on successful rule derivations since failed

ones cannot be connected to Q(n, s).

r
(X=n,Y=s),T
1 : Q(n, s)T :− T(n,Z)T , T(Z, s)T ,¬ T(n, s)T

We now propagate the annotations of the goals in r1
throughout the program. That is, for any goal that is

an IDB predicate, we propagate its annotation to the

head of all rules deriving the goal’s predicate and, then,

propagate these annotations to the corresponding rule

bodies. Note that the inverted annotation is propagated

for negated goals (e.g., ¬ T(n, s)T ). For instance, if T

would be an IDB predicate, then we would annotate the

head of all rules deriving T(n, s) with F , because Q(n, s)

can only exist if T(n, s) does not exist.

Partially unified atoms such as T(n,Z) may occur

in both negative and positive goals. We annotate such

atoms with F/T . The algorithm generating the annota-
tion consists of the steps shown below (the pseudocode

is presented in [25]). We use PAnnot to denote the result

of this algorithm for PUnified (input to this step).

1. Annotate the head of all rules deriving tuples match-

ing the question with T (why) or F (why-not).

2. Repeat the following steps until a fixpoint is reached:
(a) Propagate the annotation of a rule head to goals

in the rule body as follows: propagate T for T an-

notated heads and F/T for F annotated heads.

(b) For each annotated positive goal in the rule

body, we propagate its annotation (F , T , or F/T )

to all rules that have this atom in the head. For
negated goals, we propagate the inverted anno-
tation (e.g., F for T ) unless the annotation is

F/T in which case we propagate F/T .

8.3 Creating Firing Rules

To compute the relevant subgraph of PG(P, I) (the ex-

planation) for a PQ, we need to determine successful

and/or failed rule derivations. Each derivation paired

FQ,T (n, s) :− Fr1,T (n, s, Z)

Fr1,T (n, s, Z) :− FT,T (n,Z), FT,T (Z, s), FT,F (n, s)

FT,T (n,Z) :− T(n,Z)

FT,T (Z, s) :− T(Z, s)

FT,F (n, s) :−¬ T(n, s)

Fig. 8: Example firing rules for Why Q(n, s)

with the information whether it is successful over the

given database (and which goals are failed in case it is

not successful) is sufficient for generating a fragment

of PG(P, I). Successful derivations are always part of

PG(P, I) for a given query (input program) P whereas

failed rule derivations only appear if the tuple in the

head failed, i.e., there are no successful derivations of

any rule with this head. To capture the variable bind-

ings of successful/failed rule derivations, we create “fir-
ing rules”. For successful rule derivations, a firing rule

consists of the body of the rule (but using the firing

version of each predicate in the body) and a new head

predicate that contains all variables used in the rule. In

this way, the firing rule captures all the variable bind-

ings of a rule derivation. Furthermore, for each IDB

predicate R that occurs as a head of a rule r, we create
a firing rule that has the firing version of predicate R in

the head and firing version of the rules r deriving the

predicate in the body. For EDB predicates, we create

firing rules that have the firing version of the predicate

in the head and the EDB predicate in the body.

Example 11. Consider the annotated program in Ex-

ample 10 for the question ψn,s = Why Q(n, s). We gen-

erate the firing rules shown in Fig. 8. The firing rule for

r
(X=n,Y=s),T
1 (the second rule from the top) is derived

from the rule r1 by adding Z (the only existential vari-
able) to the head, renaming the head predicate as Fr1,T ,

and replacing each goal with its firing version (e.g., FT,T
for the two positive goals and FT,F for the negated goal).

Note that negated goals are replaced with firing rules
that have inverted annotations (e.g., the goal ¬ T(n, s)T

is replaced with FT,F (n, s)). Furthermore, we introduce
firing rules for EDB tuples (three rules at the bottom).

We, now, extend firing rules to support queries with

negation and capture missing answers. To construct a
PG(P, I) fragment corresponding to a missing tuple, we

need to find failed rule derivations with the tuple in the
head and ensure that no successful derivations with this
head exist (otherwise, we may capture irrelevant failed
derivations of existing tuples). In addition, we need to

determine which goals are failed for a failed rule deriva-

tion because only failed goals are connected to the node

representing the failed rule derivation in the provenance

graph. To capture this information, we add additional
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FQ,F (s, n) :−¬ FQ,T (s, n)

FQ,T (s, n) :− Fr1,T (s, n, Z)

Fr1,F (s, n, Z, V1, V2,¬V3) :− FQ,F (s, n), FT,F/T (s, Z, V1),

FT,F/T (Z, n, V2), FT,F/T (s, n, V3)

Fr1,T (s, n, Z) :− FT,T (s, Z), FT,T (Z, n), FT,F (s, n)

FT,F/T (s, Z, true) :− FT,T (s, Z)

FT,F/T (s, Z, false) :− FT,F (s, Z)

FT,T (s, Z) :− T(s, Z)

FT,F (s, Z) :− domT.toCity(Z),¬ T(s, Z)

Fig. 9: Example firing rules for Whynot Q(s, n)

boolean variables — Vi for goal gi — to the head of a

firing rule that record for each goal whether it failed or

not. The body of a firing rule for failed rule derivations

is created by replacing every goal in the body with its
F/T firing version, and adding the firing version of the

negated head to the body (to ensure that only bindings

for missing tuples are captured). Firing rules capturing

failed derivations use the F/T firing versions of their

goals because not all goals of a failed derivation have
to be failed and the failure status determines whether
the corresponding goal node is part of the explanation.
A firing rule capturing missing tuples may not be safe,

i.e., it may contain variables that only occur in negated

goals. These variables should be restricted to the as-

sociated domains for the attributes the variables are

bound to. Recall that associated domain dom(R.A) for
an attribute R.A is given as an unary query domR.A. We

use these queries in firing rules to restrict the values a

variable is bound to. Thus, we ensure that only missing

answers formed from the associated domains are con-

sidered and that firing rules are safe.

Example 12. Consider the question Whynot Q(s, n)

from Example 1. The firing rules generated for this ques-

tion are in Fig. 9. We exclude the rules for the second

goal T(Z, n) and the negated goal ¬ T(s, n) which are

analogous to the rules for the first goal T(s, Z). New
York cannot be reached from Seattle with exactly one

transfer, i.e., Q(s, n) is not in the result. Thus, we are

only interested in failed derivations of rule r1 with X=s

and Y=n. Furthermore, each rule node in the prove-

nance graph corresponding to such a derivation will only

be connected to failed subgoals. Thus, we need to cap-

ture which goals are successful or failed for each such
failed derivation. We model this using boolean variables
V1, V2, and V3 (one for each goal) that are set to true

iff the tuple corresponding to the goal exists. The fir-
ing version Fr1,F (s, n, Z, V1, V2,¬V3) of r1 returns all

variable bindings for derivations of r1 such that Q(s, n)

is the head (i.e., guaranteed by adding FQ,F (s, n) to the

body), the rule derivations are failed, and the tuple cor-

responding to the ith goal exists for this binding iff Vi
is true. The failure status of the ith goal is Vi for pos-
itive goals and ¬Vi for negated goals. To produce all

these bindings, we need rules capturing successful and

failed tuple nodes for each subgoal of the rule r1. We

annotate such rules with F/T and use a boolean vari-
able (true or false) to record whether a tuple exists (e.g.,

FT,F/T (s, Z, true) :− FT,T (s, Z) is one of these rules). Sim-

ilarly, FT,F/T (s, n, false) represents the fact that tuple

T(s, n) (connection from Seattle to New York) is miss-

ing. This causes the third goal of r1 to succeed for any

derivation where X=s and Y=n. For each unified EDB

atom annotated with F/T , we create four rules: one for
existing tuples (e.g., FT,T (s, Z) :− T(s, Z)), one for the

failure case (e.g., FT,F (s, Z) :− domT.toCity(Z),¬ T(s, Z)),
and two for the F/T version. For the failure case, we

use predicate domT.toCity to only consider missing tuples

(s, Z) where Z is a value from the associated domain.

Algorithm 1 takes as input the program PAnnot pro-

duced by step 2 and outputs a program PFire con-

taining firing rules. The pseudocode for the subproce-

dures is presented in [25]. The algorithm maintains a

queue todo of annotated atoms that have to be pro-
cessed which is initialized with Pattern(ψ), i.e., the

provenance question atom. Furthermore, we maintain

a set done of atoms that have been processed already.

Variables todo, done, and PFire are global variables that

are shared with the subprocedures of this algorithm.

For each atom R(t)σ (line 8) from the queue (here σ

is the annotation of the atom, e.g., F ), we mark the
atom as done (line 9). We then consider two cases: R is

an EDB atom or an IDB atom in which case we have
to create firing rules for the predicate (relation) and
the rules deriving it. The firing rules for EDB predi-

cates check whether the tuples do or do not exist. These

rules allow us to determine the success or failure of goals

corresponding EDB predicates in rule derivations. For

IDB predicates, we create firing rules that determine

their existance based on successful or failed rule deriva-

tions captured by firing rules for the rules of the pro-

gram. Consider a given program P with two rules: 1)

r1 : Q(X) :− R(X,Y ), Q1(Y ) and 2) r2 : Q1(Y ) :− S(Y, Z)

where R and S are EDB relations and Q and Q1 are
IDB predicates. To capture provenance for the predi-

cate Q(X), we create firing rules for R and S to check
existence or absence of tuples matching t in R and S.

Moreover, we also generate firing rules for rules r1 and

r2 to explain how derivations of Q(X) through these

rules have succeeded or failed. The firing rule for r1
uses the firing rule for IDB predicate Q1 which in turn
uses the firing rule for r2 since head(r2) = Q1. We de-

scribe these two cases in the following.
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Algorithm 1 Create Firing Rules
1: procedure CreateFiringRules(PAnnot, ψ)
2: PFire ← []
3: state← typeof(ψ)
4: Q(t)← Pattern(ψ)
5: todo← [Q(t)state]
6: done← {}
7: while todo 6= [] do ⊲ create rules for a predicate
8: R(t)σ ← pop(todo)
9: insert(done,R(t)σ)

10: if isEDB(R) then

11: CreateEDBFiringRule(PFire, R(t)σ)
12: else

13: CreateIDBNegRule(PFire, R(t)σ)
14: rules← getRules(R(t)σ)
15: for all r ∈ rules do ⊲ create firing rule for r
16: args← args(head(r))
17: args← args :: (args(body(r))− args(head(r)))
18: CreateIDBPosRule(PFire, R(t)σ , r, args)
19: CreateIDBFiringRule(PFire, R(t)σ , r, args)

20: return PFire

EDB atoms (line 13). For an EDB atom R(t)T , we
use procedure createEDBFiringRule to create one

rule FR,T (t) :−R(t) that returns tuples from relation R
that match t. For missing tuples (R(t)F ), we extract

all variables from t (some arguments may be constants

propagated during unification) and create a rule that

returns all tuples that can be formed from values of the

associated domains of the attributes these variables are

bound to and do not exist in R. This is achieved by

adding goals dom(Xi) as explained in Example 12.

IDB atoms (lines 13-19). IDB atoms with F or F/T
annotations are handled in the same way as EDB atoms

with these annotations. If the atom is R(t)F (line 13),

we create a rule with ¬ FR,T (t) in the body using the

associated domain queries to restrict variable bindings.
Similarly, for R(t)F/T , the procedure called in line 13

adds two additional rules as shown in Fig. 9 (5th and 6th

rule) for EDB atoms. Both types of rules only use the

positive firing version for R(t) and domain predicates in

their body. Thus, these rules are independent of which

rules derive R. Now, for any R, we create positive firing
rules that correspond to the derivation of R through one

particular rule. For that, we iterate over the annotated

versions of all rules deriving R (lines 14+15). For each

rule r with head R(t), we create a rule FR,T (t) :− Fr,T ( ~X)

where ~X is the concatenation of t with all existential
variables from the body of r.

Rules (line 15-19). Consider a rule r : R(t) :− g1( ~X1),

. . . , gn( ~Xn). If the head of r is annotated with T , then

we create a rule with head Fr,T ( ~X) where ~X = vars(r)

(stored in variable args, lines 16+17) and the same

body as r except that each goal is replaced with its

firing version with appropriate annotation (e.g., T for

FQ,T (n, s) :− Fr1,T (n, s, Z)

Fr1,T (n, s, Z) :− FT,T (n,Z), FT,T (Z, s), FT,F (n, s)

FCr2,r11,T
(n,Z) :− T(n,Z), Fr1,T (n, s, Z)

FCr2,r21,T
(Z, s) :− T(Z, s), Fr1,T (n, s, Z)

FCr2,r31,F
(n, s) :−¬ T(n, s), Fr1,T (n, s, Z)

Fig. 10: Example firing rules with connectivity checks

positive goals). For rules annotated with F or F/T , we

create one additional rule with head Fr,F ( ~X, ~V ) where
~X is defined as above, and ~V contains Vi if the ith goal

of r is positive and ¬Vi otherwise. The body of this rule

contains the F/T version of every goal in r’s body plus

an additional goal FR,F to ensure that the head atom is
failed. As an example for this type of rule, consider the

third rule from the top in Fig. 9.

Theorem 4 (Correctness of Firing Rules). Let P be an

input program, r denote a rule of P with m goals, and

PFire be the firing version of P . We use r(t) |= P (I)
to denote that the rule derivation r(t) is successful in

the evaluation of program P over I. The firing rules

for P correctly determine existence of tuples, successful

derivations, and failed derivations for missing answers:

– FR,T (t) ∈ PFire(I) ↔ R(t) ∈ P (I)

– FR,F (t) ∈ PFire(I) ↔ R(t) 6∈ P (I)

– Fr,T (t) ∈ PFire(I) ↔ r(t) |= P (I)

– Fr,F (t, ~V ) ∈ PFire(I) ↔ r(t) 6|= P (I) ∧ head(r(t)) 6∈

P (I) and for i ∈ {1, . . . ,m} we have that Vi is false
iff ith goal fails in r(t).

Proof. We prove Theorem 4 by induction over the struc-
ture of a program. For the proof, see [26] or [27].

8.4 Connectivity Joins

To be in the result of a firing rule is a necessary, but
not sufficient, condition for the corresponding rule node

to be connected to a node Q(t′) ∈ Match(ψ) in the
explanation. Thus, we have to check connectivity of in-

termediate results explicitly.

Example 13. Consider the firing rules for ψn,s shown

in Fig. 8. The corresponding rules with connectivity checks

are shown in Fig. 10. All rule nodes corresponding to

Fr1,T (n, s, Z) are guaranteed to be connected to the node

Q(n, s) (corresponding to the only atom in Match(ψn,s)).

Note that connectivity joins are also required for nega-

tive firing rules (e.g., Fr1,F (s, n, Z, V1, V2,¬V3) in Fig. 9

is used for Whynot ). For sake of example, assume

that instead of using T, rule r1 uses an IDB relation R

which is computed using a rule r2 : R(X,Y ) :− T(X,Y ).
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Consider the firing rule Fr2,T (n,Z) :− T(n,Z) created

based on the 1st goal of r1. Some provenance fragments
computed by this rule may not be connected to Q(n, s).

A tuple node R(n, c) for a constant c is only connected

to the node Q(n, s) iff it is part of a successful binding

of r1. That is, for the node R(n, c), there has to exist
a tuple R(c, s). Connectivity is achieved by adding the

head of the firing rule for r1 to the body of the firing
rule for r2 as shown in Fig. 10 (the 3rd and 4th rule).

Our algorithm traverses the query’s rules starting

from PQ atom(s) to find all combinations of rules ri
and rj such that the head of rj can be unified with

a goal in ri’s body. For each such pair (ri, rj) where

the head of rj corresponds to the kth goal in the body

of ri, we create a rule FCrj,rki,T(
~X) as follows. We unify

the variables of the kth goal in the firing rule for ri with

the head variables of the firing rule for rj . All remaining
variables of ri are renamed to avoid name clashes. We

add the unified head of ri to the body of rj . These rules

check whether rule nodes in the provenance graph are

connected to nodes in Match(ψ).

8.5 Computing the Edge Relation

The program created so far captures sufficient informa-

tion for generating the edge relation of the explanation

for a PQ (which is used when rendering graphs). We

make this step part of the program to offload this work
to database backend. To compute the edge relation, we
use Skolem functions to create node identifiers. An iden-

tifier records the type of the node (tuple, rule, or goal),

variables assignments, and the success/failure status of

the node, e.g., a tuple node T(n, s) that is successful

would be represented as fTT (n, s). Each rule firing cor-

responds to a fragment of PG(P, I). For example, one
such fragment is shown in Fig. 11 (left). Such a sub-

structure is created through a set of rules:

– One rule creating edges between tuple nodes for the

head predicate and rule nodes

– One rule for each goal connecting a rule node to that

goal node (only failed goals for failed rules)

– One rule creating edges between each goal node and

the corresponding EDB tuple node

Example 14. Consider the firing rules with connectiv-

ity joins from Example 13. Some of the rules for creat-

ing the edge relation of the explanation sought by the

user are shown in Fig. 11 (right). For example, each

edge connecting the tuple node Q(n, s) to a successful

rule node r1(n, s, Z) is created by the top-most rule,

and the 2nd rule creates an edge between r1(n, s, Z) and

Q(n, s)

r1(n, s, Z)

g1

1
(n,Z)

T (n,Z)

g2

1
(Z, s)

T (Z, s)

g3

1
(n, s)

T (n, s)

edge(fTQ (n, s), fTr1(n, s, Z)) :− Fr1,T (n, s, Z)

edge(fTr1(n, s, Z), f
T
g1
1

(n,Z)) :− Fr1,T (n, s, Z)

edge(fT
g1
1

(n,Z), fTT (n,Z)) :− Fr1,T (n, s, Z)

edge(fT
g3
1

(n, s), fFT (n, s)) :− Fr1,T (n, s, Z)

Fig. 11: Fragment of an explanation corresponding to a
derivation of rule r1 (left) and the rules generating the

edge relation for such a fragment (right)

g11(n,Z). Edges for failed derivations are created by con-

sidering the corresponding node identifiers and a failure

pattern (e.g., Fr1,F (s, n, Z, V1, V2,¬V3)).

8.6 K-Explanations

To compute one of the K-explanation types introduced

in Sec. 6.2, we only have to adapt the rules generating

the edge relation. As an example, we present the modi-

fications for computing ExplWhich(X) (e.g., Fig. 4c). Re-

call that semiring Which(X) models provenance as a set
of contributing tuples and we encode this as a graph by

connecting a head of a rule derivation to the atoms in

its body. That is, for the ExplWhich(X), we create only

one type of rule that connects tuple nodes for the head

predicate to EDB tuple nodes. We use GP
Which(X)
P,ψ to

denote the program generated in this way for an input
program P , and a PQ ψ.

Example 15. Consider the graph fragment for r1 in

Fig. 11 (left) without rule and goal nodes. The rule that

creates the edge between Q(n, s) and T(n,Z) is

edge(fTQ (n, s), fTT (n,Z)) :− Fr1,T (n, s, Z)

For each successful derivation of result Q(n, s) using

rule r1, a subgraph replacing Z with bindings from the

derivation is included in ExplWhich(X).

8.7 Correctness

We now prove that our approach is correct.

Theorem 5. Let P be a program, I be a instance, and

ψ a PQ. Program GPP,ψ evaluated over I returns the

edge relation of Expl(P, ψ, I).

Proof. To prove Theorem 5, we have to show that 1)

only edges from PG(P, I) are in GPP,ψ(I) and 2) the

program returns precisely the set of edges of explana-

tion Expl(P, ψ, I). The full proof is presented in [26]
and in our accompanying report [27].

Theorem 6. Let P be a positive program, I be a database

instance, and ψ a PQ. The result of program GP
Which(X)
P,ψ

is the edge relation of ExplWhich(X)(P, ψ, I).
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Proof. We prove Theorem 6 by induction over the struc-

ture of a program as in the proof of Theorem 4. The
full proof is presented in our technical report [27].

9 Factorization

For provenance polynomials, we can exploit the dis-

tributivity law of semirings to generate factorizations

of provenance [33] which are exponentially more con-

cise in the best case. For instance, consider a query r3
returning the end points of paths of length 2 evalu-

ated over the edge-labelled graph in Fig. 12a. The pro-

venance polynomial for the query result Q2hop(d) using

the annotations from Fig. 12a is shown in Fig. 12d. Each

monomial in the polynomial corresponds to one of the

derivations of the result using r3. Each of these 2 · (22)
(we have two options as starting points and, for each

hop, we have two options) derivations corresponds to

one path of length 2 ending in d. When generating pro-

venance graphs for provenance polynomials, we create

“ ·” nodes for rule derivations and “+” nodes for IDB

tuples. Fig. 12b is the factorized representation of this
polynomial. We can exploit the fact that our approach

shares common subexpressions to produce a particu-
lar factorization. This is achieved by rewriting the in-
put program to partition a query by materializing joins
and projections as new IDB relations which can then

be shared. We first review f-trees and d-trees as intro-

duced in [34] which encode possible nesting “schemas”

for factorized representations of provenance (or query

results), the size bounds for factorized representations
based on d-trees proven in [34], and how to chose a d-
tree for a query that results in the optimal worst-case

size bound for the factorized representation of the pro-

venance according to this d-tree. Then, we introduce

a query transformation for conjunctive queries which,

given an input query and the d-tree for this query, gen-

erates a rewritten query which returns a provenance

graph factorized corresponding to this d-tree. We em-

ploy this rewriting to produce more concise provenance

in PUG (experiments are shown in Sec. 11).

Factorized Representations. In [33,34], a factorized

representation (f-rep for short) of a relation is defined
as an algebraic expression constructed using singleton

relations (one tuple with one value) and the relational
operators union and product. Any f-rep over a set of
attributes from a schema S can be interpreted as a re-

lation over S by evaluating the algebraic expression,

e.g., {(a)}×({(b)}∪{(c)}) is a factorized representation

of the relation {(a, b), (a, c)}. Following the convention
from [33], we denote a singleton {(a)} as a. Factoriza-

tion can be applied to compactly represent relations and

query results as well as provenance (e.g., Fig. 12b). We

will factorize representations of provenance which en-
code variables of provenance polynomials as the tuples
annotated by these variables and show how to extract

provenance polynomials from provenance graphs gener-

ated in this way.

F-trees for F-reps. Olteanu et al. [34] introduce f-

trees to encode the nesting structure of f-reps. At first,

let us consider only f-trees which encode the nesting

structure of a boolean query [33]. An f-tree for a boolean

query Q (e.g., r4 in Fig. 12a) is a rooted forest with one

node for every variable of Q.4 An f-rep according to an

f-tree T nests values according to T : a node labelled

with X corresponds to a union of values from the at-
tributes bound to X by the query. The values of at-

tributes bound to children of a node X corresponding

to a single value x bound to X are grouped under x. If
a node has multiple children, then their f-reps are con-

nected via ×. For example, consider an f-tree T with

root X and a single child Y for a query Q() :− R(X,Y ).

An f-rep of Q according to T would be of the form
x1 × (y11 ∪ . . . ∪ yn1

) ∪ . . . ∪ xm × (y1m ∪ . . . ∪ ynm
),

i.e., the Y values co-occurring with a given X value x
are grouped as a union and then paired with x. An f-

tree encodes (conditional) independence of the variables

of a query in the sense that the values of one variable

do not depend on the values of another variable. For

instance, two siblings X and Y in an f-tree have to be
independent since a union of X values is paired (cross-

product) with a union of Y values. This is only correct
if the values of X and Y are independent. The indepen-

dence assumptions encoded in an f-tree may not hold

for every possible query with the same schema as the

f-tree. Thus, only some f-trees with a particular schema

may be applicable for a query with this schema. It was

shown in [34], that a query has an f-rep over an f-tree T
for any database iff for each relation in Q the variables

assigned to attributes of this relation (these variables

are called dependent) are on the same root-to-leaf path

in the f-tree. This is called the path condition. Note

that multiple references to the same relation in a query
are considered as separate relations when checking this

condition. For instance, consider the boolean query r4
in Fig. 12a which checks if there are paths of length 2

ending in the node d. Fig. 12c shows two f-trees T1 and

T2 for this query (ignore the sets on the side of nodes

for now). An f-rep according to T2 for r4 would encode

a union of Y values paired (×) with a union of Z values
for this Y value. Each Z value nested under a Y value

is then paired with a cross-product of L1 and L2 values.

4 In [34], relational algebra is used to express queries and nodes
of f-trees represent equivalence classes of attributes which in Dat-
alog correspond to query variables.
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r3 : Q2hop(X) :− H(Y, L1, Z), H(Z,L2, X)

r4 : Q2hop−d() :− H(Y, L1, Z), H(Z,L2, d)

r5 : Q2hop() :− QL1(Z), QL2(Z)

r5′ : QL1(Z) :− H(Y, L1, Z)

r5′′ : QL2(Z) :− H(Z,L2, d)

a

b

c d

l1

l2

l3

l4

l5

l6

Relation H

S L E
a l1 c s1
a l2 c s2
b l3 c t1
b l4 c t2
c l5 d u1

c l6 d u2

(a) 2hop queries (r3 and r4), rewriting (r5, r′5, r′′5 ) according to d-tree T1, and example
database (graph)

+

·

+ +

· · · · · ·

s1 s2 t1 t2 u1 u2

(s1 + s2 + t1 + t2) · (u1 + u2)

(b) Factorized representation (r5, r5′ , r5′′ )

Y{Z,L1}

Z{}

L1
{Z} L2

{Z}

Y{}

Z{Y }

L1
{Y, Z} L2

{Z}

(c) Two d-trees of r4: T1 (left) and T2 (right)

+

· · · · · · · ·

s1 u1 s1 u2 s2 u1 s2 u2 t1 u1 t1 u2 t2 u1 t2 u2

s1 · u1 + s1 · u2 + s2 · u1 + s2 · u2 + t1 · u1 + t1 · u2 + t2 · u1 + t2 · u2

(d) Flat representation (r4)

Fig. 12: Factorized and flat provenance graphs (N[X]) explaining Why Q2hop(d) and two d-trees for r4.

D-trees for D-reps. The size of a factorized repre-

sentation can be further reduced by allowing subex-
pressions to be shared through definitions, i.e., using

algebra graphs instead of trees. In [34], such represen-
tations are called d-representations (d-rep). Analogous

to how f-trees define the structure of f-reps, d-trees were
introduced to define the structure of d-reps. A d-tree is

an f-tree where each node X is annotated with a set

key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The

f-rep of the subtree rooted in X is unique for each com-
bination of values from key(X). That is, if key(X) is a

strict subset of the ancestors of X, then the same d-rep

for the subtree at X can be shared by multiple ances-

tors, reducing the size of the representation. In Fig. 12c,

the set key is shown beside each node, e.g., in T2, the
variable L2 depends only on Z, but not on Y . An im-

portant result proven in [34] is that, for a given d-tree

T for a query Q, the size of d-rep of Q over a database

I is bound by |I|s
↑(T ) where s↑(T ) is a rational number

computed based on T alone (see [34] for details of how

to compute s↑(T )). This bound can be used to deter-
mine the d-tree for a query Q which will yield the d-rep

of worst-case optimal size by enumerating the valid d-

trees for Q and, then, chosing the one with the lowest

value of s↑.

Example 16. Consider the d-rep for r4 (Fig. 12a) over
the example instance of relation H (Fig. 12a) according

to d-tree T2 (Fig. 12c). Variable Y at the root of T2 is
bound to the attribute S from the first reference of H,

i.e., the starting point of paths of length 2 ending in d.

There are two such starting points a and b. Now each of

these are paired with the only valid intermediate node

c on these paths (variable Z). Finally, for this node,
we compute the cross-product of the L1 and L2 values

connected to c. Since the L2 values only depend on Z,

we share these values when the same Z value is paired

with multiple Y values. The final result is (a× c× (l1 ∪
l2)× l↑) + (b× c× (l3 ∪ l4)× l↑) where l↑ : =(l5 ∪ l6).

Factorization of Provenance. For the provenance

of a conjunctive query Q that is not a boolean query,

i.e., it has one or more variables in the head (e.g., r3 in

Fig. 12a), we have to compute a provenance polynomial

for each result of Q. We would like the factorization of

the provenance of Q to clearly associate the provenance
polynomial of a result t with the tuple t. That is, we

want to avoid factorizations where head variables of Q

are nested below variables that store provenance (ap-

pear only in the body) since reconstructing the prove-

nance polynomial for t would require enumeration of
the full provenance from the factorized representation

in the worst case. For example, consider a query with
head variable X and body variable Y . If Y is the root

of a d-tree T , then the d-rep of Q according to T would

be of the form y1× (x11 + . . .+xn1
)+ . . .+ym× (x1m +

. . . + xnm
). To extract the provenance polynomial for

a result xi, we may have to traverse all y values since
there is no indication, for which y values, xi appears in

the sum x1i + . . . + xni
. We ensure this by construct-

ing d-trees which do not include the head variables, but
treat those as ancestors of every node in the d-tree when

computing key for the nodes. For instance, to make T1
(Fig. 12c) a valid d-tree for capturing the provenance
of r3 (Fig. 12a), we treat the head variable X as a vir-

tual ancestor of all nodes and get key(Z) = {X} and

key(L2) = {Z,X}. Furthermore, if we are computing

an explanation to a provenance question (PQ) ψ that

binds one or more head variables to constants, then we

can propagate these bindings before constructing a d-

tree for the query. For example, to explain Q2hop(d), we
would propagate the binding X = d resulting in rule r4
(Fig. 12a). Thus, any d-tree for r4 can be used to cre-
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ate a factorized ExplN[X] graph for the user question

Why (Q2hop(d)).

Rewriting Queries for Factorization. We now ex-

plain how, given a d-tree T for a conjunctive query Q
and positive PQ ψ : =WhyQ(t), to generate a Datalog

query Qrewr such that, for any database I, we have that
ExplN[X](Qrewr, ψ, I) encodes N[X](Qrewr, I, t) for each

t ∈ Match(ψ) factorized according to T . We first unify

the query with the PQ as described in Sec. 8.1. Given

a unified input query Q and a d-tree T , we compute
Qrewr as follows.

1. Assume a total order among the variables of Q (e.g.,

the lexicographical order). For every node X with
children Y1, . . . , Yn in the d-tree T , we generate

rX : QX(key(X)) :− QY1(key(Y1)), . . . , QYn(key(Yn))

2. Now for every atom R(Z1, . . . , Zm) in the body of
Q, we find the shortest path starting in a root node

that contains all nodes Z1 to Zm. Let Y = Zi for

some i be the last node on this path. Then, we add

atom R(Z1, . . . , Zm) to the body of rule rY created

in the previous step.

3. Let X1, . . . , Xn be the roots of the d-tree T (being
a forest, a d-tree may have multiple roots). Further-

more, let Y1, . . . , Ym denote the head variables of

the unified input query Q with the PQ. We create

rQ : Q(Y1, . . . , Ym) :− QX1(key(X1)), . . . , QXn(key(Xn))

The rewriting above creates a factorization accord-

ing to a d-tree T . However, it may contain rules which

cannot potentially lead to reuse and, thus, result in

overhead that could be avoided if we were able to iden-

tify such rules. We now present an optimization that

removes such rules to further reduce the size of the

generated provenance graphs. Consider two nodes X
and Y in a d-tree where Y is the only child of X, i.e.,

key(Y ) = key(X) ∪ {X}. We would generate rules

rX : QX(key(X)) :− QY(X ∪ key(X))

rY : QY(X ∪ key(X)) :− . . .

In this case, the intermediate result QY does not

lead to further factorization (we have a union of unions).
Thus, we can merge the rules by substituting the atom

QY(X ∪ key(X)) in rX with the body of rY . A simi-
lar situation may arise with the rule rQ deriving the

final query result. In general, we can merge any rule

of the form Q1(X1, . . . , Xn) :− Q2(X1, . . . , Xn) with the

rule deriving Q2 (in our translation, there will be exactly

one rule with head Q2).

Example 17. Consider the question Why Q2hop(d) over

the query r3 from Fig. 12a. Unifying the query with

this question yields r4 (below r3 in the same figure).

To rewrite the query according to the d-tree T1 from
Fig. 12c, we apply the above algorithm to create rules:

rQ2hop
: Q2hop() :− QZ() rZ : QZ() :− QL1(Z), QL2(Z)

rL1
: QL1(Z) :− QY(Z,L1) rY : QY(Z,L1) :− H(Y, L1, Z)

rL2
: QL2(Z) :− H(Z,L2, d)

Applying the optimizations introduced above, we merge
the rules rQ2hop

with rZ (the head QZ is the body of

rQ2hop
). Since key(Y ) = key(L1) ∪ {L1} and L1 has

only one child, we merge rY into rL1
. The resulting

program is shown as rules r5, r5′ and r5′′ in Fig. 12a.

Factorized Explanations. To generate a concise fac-

torization of provenance for a PQ ψ over a conjunc-

tive query Q, we first find a d-tree T with minimal
s↑ among all d-trees for Q (such a d-tree T guarantees

worst-case optimal size bounds for the generated factor-
ization). Then, we rewrite the input query according to
T (explained above) and use the approach in Sec. 8 to

generate ExplN[X](Qrewr, ψ, I) encoding the d-rep of

N[X](Qrewr, I, t) for each t ∈ Match(ψ).

Example 18. Continuing with Example 17, assume we
compute the N[X] explanation using the rewritten query

(r5, r5′ , and r5′′). The result over the example database
is shown in Fig. 12b. The top-most addition and mul-
tiplication correspond to the successful derivation using
rule r5 (using c as an intermediate hop from some node

to d). The left branch below the multiplication encodes

the four possible derivations of QL1(c) (s1+ s2+ t1+ t2)
and the right branch corresponds to the two derivations

of QL2(c) (u1 + u2). The polynomial captured by this

graph is (s1+ s2+ t1+ t2) · (u1+u2). That is, there are

4 ways to reach c from any starting node and two ways

of reaching d from c leading to a total of 4 · 2 = 8 paths

of length two ending in the node d.

10 Implementation

We have implemented the approach presented in this

paper in a system called PUG (Provenance Unification

through Graphs). PUG is an extension of GProM [1],

a middleware that executes provenance requests us-

ing a relational database backend (shown in Fig. 13).

We have extended the system to support Datalog en-

riched with syntax for stating provenance questions.
The user provides a why or why-not question and the
corresponding Datalog query as an input. Our system

parses and semantically analyzes this input. Schema in-

formation is gathered by querying the catalog of the

backend database (e.g., to determine whether an EDB

predicate exists). Modules for accessing schema infor-

mation are already part of the GProM system, but a
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DBLP (#tuples) 100 1K 10K 100K
2 Variables (r2) 0.043 0.171 14.016 -
3 Variables (r1) 0.294 285.524 - -
4 Variables (r3) 56.070 - - -
TPC-H (Size) 10MB 100MB 1GB 10GB
> 10 Variables

- - - -
(r4, r5, r6, r7)

Fig. 15: Runtime of DM in seconds. For entries with ‘-’,

the computation did not finish within 10 min.
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Query \ Binding X Y
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(f) Variable bindings for TPC-H PQs

Fig. 16: Why questions: DBLP (top), TPC-H (bottom)

nodes of the constructed graph) and 2) recursive Dat-
alog queries have to be evaluated over this graph us-
ing the well-founded semantics. The results for differ-

ent instance sizes and number of variables are shown in

Fig. 15. Even for only 2 variables, DM did not finish for

datasets of more than 10K tuples within the allocated

10 min timeslot. For queries with more than 4 variables,
DM did not even finish for the smallest dataset.

Why Questions. The runtime of generating explana-

tions for why questions over the queries r1, r2, r4, and r5
(Fig. 14) is shown in Fig. 16. For the evaluation, we con-

sider the effect of different binding patterns on perfor-

mance. Fig. 16c and 16f show which variables are bound

by the provenance questions (PQs). Fig. 16a and 16b

show the runtime for DBLP queries r1 and r2, respec-
tively. We also provide the number of rule nodes in the

explanation for each binding pattern below the X axis.

If only variableX is bound (BindingX), then the queries

determine authors that occur together with the author
we have bound to X in the query result. For instance,

the explanation for only2hop with BindingX explains
why persons are indirect, but not direct, co-authors of
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Query \ Binding X Y
(a) only2hop Tore Risch Svein Johannessen

(b) XwithYnotZ Tor Skeie Joo-Ho Lee

(c) Variable bindings for DBLP PQs

Fig. 17: Why-not questions over the DBLP dataset

“Tore Risch”. If both X and Y are bound (BindingXY),

then the provenance for r1 and r2 is limited to a par-

ticular indirect and direct co-author, respectively. The

runtime for generating explanations grows roughly lin-

ear in the dataset size and outperforms DM even for small
instances. Furthermore, Fig. 16d and 16e (for r4 and r5,

respectively) show that our approach can handle queries

with many variables (attributes in TPC-H) where DM

times out even for the smallest dataset we have con-

sidered. Binding one variable (BindingY) in queries r4
and r5 expresses a condition, e.g., Y = ‘1-URGENT’ in

r4 requires the order priority to be urgent. If both vari-
ables are bound, then the PQ verifies the existence of

orders for a certain customer (e.g., why “Customer16”

has at least one urgent order). Runtimes exhibit the

same trend as for the DBLP queries.

Why-not Provenance. We use queries r1 and r2 from

Fig. 14 to evaluate the performance of computing expla-

nations for failed derivations. When binding all vari-

ables in the PQ (BindingXY) using the bindings from

Fig. 17c, these queries check if a particular set of au-

thors do not appear together in the result. For instance,
for only2hop (r1), the query checks why “Tore Risch” is

either not an indirect co-author or is a direct co-author
of “Svein Johannessen”. The results for queries r1 and

r2 (DBLP) are shown in Fig. 17a and 17b, respectively.

The number of tuples produced by the provenance com-
putation (the number of rule nodes is shown below the

X axis) is quadratic in the database size resulting in a
quadratic increase in runtime. DM only finishes within

the allocated time for very small datasets while our ap-
proach scales to larger instances.

Queries with Negation. Recall that our approach
also handles queries with negation. We choose rules

r3 (multiple negated goals) and r6 (one negated goal)

from Fig. 14 to evaluate the performance of answering

why questions over such queries. We use the bindings

shown in Fig. 18c. The results for r3 and r6 are shown

in Fig. 18a and 18b, respectively. These results demon-

strate that our approach efficiently computes explana-
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Fig. 18: Why questions for queries with negation
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(a) Q7 (employee)

4 8 16 32 64 128 256 512 10242048

(b) QF3 (employee)

Fig. 19: Comparing Which(X) in PUG with Links

tions for such queries. When increasing the database

size, the runtimes of PQs for these queries exhibit the

same trend as observed for other why (why-not) ques-

tions and significantly outperform DM. For instance, the
performance of partNotAsia (Fig. 18b), which contains

many variables and negation exhibits the same trend as

queries that have no negation (i.e., r4 and r5 in Fig. 16d

and Fig. 16e, respectively).

Comparison with Links. In this experiment, we com-

pare the runtime of computing ExplWhich(X) (e.g., Fig. 4c)
with computation of Lineage in LinksL from [9]. We

show relative runtimes where PUG is normalized to

1. For this particular evaluation, we use Postgres as a

backend since it is supported by both PUG and Links.

Note that ExplWhich(X) contains a full description of
each tuple unlike LinksL which returns tuple identifiers

(OIDs in Postgres). To get a nuanced understanding of

the system’s performance, we show three runtimes for

Links: 1) Links is the actual implementation in Links

which computes Lineage (only OIDs) and where the

runtime includes the construction of in-memory Links

types from the provenance fetched from Postgres; 2)

LinksQ is the runtime of the queries that Links uses to

capture Lineage; and 3) LinksQasEXPL which joins the
output of LinksQ with the base tables (i.e., as informa-

tive as ExplWhich(X)). We choose two queries from [9].

The query Q7 applies a range condition to the result of

a two-way join. QF3 is a self-join on equality with an ad-

ditional inequality condition (see [9] for more details).

The queries are expressed over two tables dept and emp.
The number of departments is varied from 4 to 2048 (by

10MB

7.9MB

1.4MB

100MB

762MB

14MB

1GB

7.7GB

141MB

10GB

77GB

1.4GB

(a) Runtime of suppCust
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8.2MB

100MB

137MB

84MB

1GB

1.4GB

860MB

10GB

14GB

8.7GB

(b) Runtime of ordDisc

Fig. 20: Explanations vs. factorized explanations

powers of 2 to replicate the setting from [9]), and each

department has 100 employees on average. The relation
dept consists of one attribute (department name), and

emp has three attribute (department name, employee

name, and salary). QF3 can be written in Datalog as:

QF3(N1, N2) :− emp(_, D,N1, S), emp(_, D,N2, S), N1 6= N2

The runtimes of queries Q7 and QF3 are shown in

Fig. 19a and 19b, respectively. Links performs better

on smaller instances. The gap between Links and PUG

shrinks with increasing dataset size. PUG outperforms

Links and LinksQasEXPL on larger datasets.

Factorized Explanations. We now compare the per-

formance of generating provenance for a query (EXPL)

and a factorized representation of provenance (Fact) by

rewriting the input query (Sec. 9). Factorization tech-
niques perform best for many-to-many joins (e.g., the

query r7 in Fig. 14). The rewritten version of suppCust

(r7) producing factorized provenance is shown below.

r8 : suppCust(N) :− supp(N), cust(N)

r8′ : supp(N) :− SUPPLIER(A,B,C,N,D,E, F )

r8′′ : cust(N) :− CUSTOMER(G,H, I,N, J,K,L,M)

For this experiments, we use a 15 minute time-out.

The runtimes for r7 (yellow bars) and r8 (red bars)

are shown in Fig. 20a. We show the total result size
in bytes below the X axis. The runtime of Fact grows

roughly linear unlike EXPL whose growth is quadratic in
dataset size. We also evaluate query r5 which includes

one-to-many joins to see how Fact performs for a query

(Fig. 20b) where factorization only reduces size by a

constant factor. This is confirmed by the measurements:

the performance of Fact for r5 is ∼ 30% that of EXPL

independent of dataset size.

12 Conclusions

We present a provenance model and unified framework

for explaining answers and non-answers over first-order

queries expressed in Datalog. Our efficient middleware

implementation generates a Datalog program that com-

putes the explanation for a provenance question and

compiles this program into SQL. We prove that our
model is expressive enough to encode a wide range of
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provenance models from the literature and extend our

approach to produce concise, factorized representations

of provenance. In future work, we will investigate sum-

marization of provenance (we did present a proof-of-

concept in [28]) to deal with the large size of expla-

nations for missing answers. We plan to also support

query-based explanations [2,3,4,40] and more expres-

sive query languages (e.g., aggregation).
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