Heuristic and Cost-based Optimization for
Diverse Provenance Tasks

Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, Vasudha Krishnaswamy,
Venkatesh Radhakrishnan

Abstract—A well-established technique for capturing database provenance as annotations on data is to instrument queries to
propagate such annotations. However, even sophisticated query optimizers often fail to produce efficient execution plans for
instrumented queries. We develop provenance-aware optimization techniques to address this problem. Specifically, we study algebraic
equivalences targeted at instrumented queries and alternative ways of instrumenting queries for provenance capture. Furthermore, we
present an extensible heuristic and cost-based optimization framework utilizing these optimizations. Our experiments confirm that
these optimizations are highly effective, improving performance by several orders of magnitude for diverse provenance tasks.

Index Terms—Databases, Provenance, Query Optimization, Cost-based Optimization

1 INTRODUCTION

Database provenance, information about the origin of data
and the queries and/or updates that produced it, is crit-
ical for debugging queries, auditing, establishing trust in
data, and many other use cases. The de facto standard
for database provenance [1], [2] is to model provenance
as annotations on data and define a query semantics that
determines how annotations propagate. Under such a se-
mantics, each output tuple ¢ of a query () is annotated with
its provenance, i.e., a combination of input tuple annotations
that explains how these inputs were used by @ to derive t.
Database provenance systems such as Perm [3],
GProM [4], DBNotes [5], LogicBlox [2], declarative Datalog
debugging [6], EXSPAN [7], and many others use a rela-
tional encoding of provenance annotations. These systems
typically compile queries with annotated semantics into
relational queries that produce this encoding of provenance
annotations following the process outlined in Fig. 2a. We
refer to this reduction from annotated to standard relational
semantics as provenance instrumentation or instrumentation
for short. The example below introduces a relational encod-
ing of provenance polynomials [1] and the instrumentation
approach for this model implemented in Perm [3].

Example 1. Consider a query over the database in Fig. 1
returning shops that sell items which cost more than $20:
Hname(Shop D<]ntnne:shop sale >Xitem=id Oprice>20 (ztem))
The query’s result is shown in Fig. 1d. Using provenance
polynomials to represent provenance, tuples in the database are
annotated with variables encoding tuple identifiers (shown to
the left of each tuple). Each query result is annotated with a

e X.Niu, R.Kapoor and B. Glavic, Department of Computer Science, Illinois
Institute of Technology, Chicago, IL 60616, USA.

E-mail: {xniu7, rkapoor7}@hawk.iit.edu, bglavic@iit.edu.

D. Gawlick, Z.H.Liu and V. Krishnaswamy, Oracle, Rewood City, CA
94065, USA.

E-mail: {dieter.gawlick, zhen.liu, vasudha.krishnaswamy }@oracle.com.

V. Radhakrishnan, YugoByte, Sunnyvale, CA 94085 , USA.

E-mail: venkatesh@yugabyte.com.

+

) name | #emp
shop item s1 | Aldi 3
a; | Aldi | Steak so | Cosco 14
as Aldi | Butter
as Aldi Bread id price (b) Shop name
ay | Cosco | Butter | i, | Steak 100 | sy-a1-%4 Aldi
as | Cosco | Bread | iz | Butter | 10 |+s;-a3-i3
(a) sale i3 | Bread | 25 | s9-as-is Cosco
(c) item (d) Provenance of Q
‘ result J prov. shop prov. sales || prov.items
name | P(name) | P(#emp) | P(shop) | P(item) || P(id) | P(price)
S1-aq -1 Aldi Aldi 3 Aldi Steak Steak 100
s1-az-iz | Aldi Aldi 3 Aldi Bread Bread 25
So - as - i3 | Cosco Cosco 14 Cosco Bread Bread 25

(e) Relational encoding of query Q’s provenance

Fig. 1: Provenance annotations and relational encoding

polynomial that explains how the tuple was derived by combining
input tuples. Here, addition corresponds to alternative use of
tuples (e.g., union) and multiplication to conjunctive use (e.g., a
join). For example, the tuple (Aldi) is derived by joining tuples
51, a1, and i1 (s1-ay-41) or alternatively by joining tuples s1, as,
and 3. Fig. le shows a relational encoding of these annotations
as supported by the Perm [3] and GProM [4] systems: variables
are represented by the tuple they are annotating, multiplication
is represented by concatenating the encoding of the factors, and
addition is represented by encoding each summand as a separate
tuple (see [3]). This encoding is computed by compiling the
input query with annotated semantics into relational algebra.
The resulting instrumented query is shown below. It adds
input relation attributes to the final projection and renames them
(represented as —) to denote that they store provenance.

Qjoi’n = S}LOP Xpame=shop sale MNitem=id Tprice>20 (Ztem)
Q = Hname,name%P(name),nu7nEmp—>P(numEmp),.4.(Qjoin)
The instrumentation we are using here is defined for any SPJ]

(Select-Project-Join) query (and beyond) based on a set of
algebraic rewrite rules (see [3] for details).

The present paper extends [8]. An appendix with addi-
tional details is available as a supplementary document.

1.1 Instrumentation Pipelines

In this work, we focus on optimizing instrumentation
pipelines such as the one from Example 1. These pipelines
divide the compilation of a frontend language to a tar-
get language into multiple compilation steps using one or
more intermediate languages. We now introduce a subset
of the pipelines supported by our approach to illustrate
the breadth of applications supported by instrumentation.
Our approach can be applied to any data management
task that can be expressed as instrumentation. Notably, our
implementation already supports additional pipelines, e.g.,
for summarizing provenance and managing uncertainty.

L1. Provenance for SQL Queries. The pipeline from Fig. 2a
is applied by many provenance systems, e.g., DBNotes [5]
uses L1 to compute Where-provenance [9].

L2. Provenance for Transactions. Fig. 2b shows a pipeline
that retroactively captures provenance for transactions [10].
In addition to the steps from Fig. 2a, this pipeline uses a
compilation step called reenactment. Reenactment translates
transactional histories with annotated semantics into equiv-
alent temporal queries with annotated semantics.

L3. Provenance for Datalog. This pipeline (Fig. 2c) produces
provenance graphs that explain which successful and failed
rule derivations of an input Datalog program are relevant
for (not) deriving a (missing) query result tuple of inter-
est [11]. A provenance request is compiled into a Datalog
program that computes the edge relation of the provenance
graph. This program is then translated into SQL.

L4. Provenance Export. This pipeline (Fig.ld in Ap-
pendix A) [12] is an extension of L1 which translates the
relational provenance encoding produced by L1 into PROV-
JSON, the JSON serialization of the PROV provenance ex-
change format. This method [12] adds additional instru-
mentation on top of a query instrumented for provenance
capture to construct a single PROV-JSON document repre-
senting the full provenance of the query. The result of L4 is
an SQL query that computes this JSON document.

L5. Factorized Provenance. L5 (Fig.1le in Appendix A) cap-
tures provenance for queries. In contrast to L1, it represents
the provenance polynomial of a query result as an XML doc-
ument. The nested representation of provenance produced
by the pipeline is factorized based on the structure of the
query. The compilation target of this pipeline is SQL/XML.
The generated query directly computes this factorized rep-
resentation of provenance.

L6. Sequenced Temporal Queries. This pipeline (Fig.1f in
Appendix A) translates temporal queries with sequenced
semantics [13] into SQL queries over an interval encoding
of temporal data. A non-temporal query evaluated over
a temporal database under sequenced semantics returns a
temporal relation that records how the query result changes
over time (e.g., how an employee’s salary changes over
time). Pipeline L6 demonstrates the use of instrumentation
beyond provenance. We describe Pipelines L5 and L6 in
more detail in Appendix A.1 and A.2.

1.2 Performance Bottlenecks of Instrumentation

While instrumentation enables diverse provenance features
to be implemented on top of DBMS, the performance of

Provenance Annotated Relational
Request Relational Algebra Algebra

saL
Query
—
PROVENANCE OF Parsel Provenance [SQL Code SELECT *
(SELECT * FROM ... Generation FROM ...
(a) Provenance is captured using an annotated version of relational

algebra which is first translated into relational algebra over a relational
encoding of annotated relations and then into SQL code.

Annotated Relational Annotated
Pro;:zzg::e Update Algebra Relational Query Algebra

R
—
- e
(b) In addition to the steps of (a), this pipeline uses reenactment [10] to
compile annotated updates into annotated queries.

Provenance i Datalog Relational
Request with Provenance Requests Algebra

Datalog
T Datalog to
QX) - RXY). Provenance Q(X) = Fire(X,Y,2). _———
WHY(Q(1). Rares Instrumentation | ~ | Fire(X,Y,2) :- ... ploebrg

(c) Computing provenance graphs for Datalog queries [11] based on a
rewriting called firing rules. The instrumented Datalog program is first
compiled into relational algebra and then into SQL.

Fig. 2: Instrumentation: (a) SQL, (b) transactions, (c) Datalog

instrumented queries is often suboptimal. Based on our ex-
tensive experience with instrumentation systems [11], [12],
[4], [10], [3] and a preliminary evaluation we have identified
bad plan choices by the DBMS backend as a major bot-
tleneck. Since query optimizers have to trade optimization
time for query performance, optimizations that do not ben-
efit common workloads are typically not considered. Thus,
most optimizers are incapable of simplifying instrumented
queries, will not explore relevant parts of the plan space, or
will spend excessive time on optimization. We now give an
overview of problems we have encountered.

P1. Blow-up in Expression Size. The instrumentation for
transaction provenance [10] shown in Fig. 2b may produce
queries with a large number of query blocks. This can lead
to long optimization times in systems that unconditionally
pull-up subqueries (such as Postgres) because the subquery
pull-up results in SELECT clause expressions of size ex-
ponential in the number of stacked query blocks. While
advanced optimizers do not apply this transformation un-
conditionally, they will at least consider it leading to the
same blow-up in expression size during optimization.

P2. Common Subexpressions. Pipeline L3 [11] (Fig. 2c) in-
struments the input Datalog program to capture rule deriva-
tions. Compiling such queries into relational algebra leads to
queries with many common subexpressions and duplicate
elimination operators. Pipeline L4 constructs the PROV
output using multiple projections over an instrumented
subquery that captures provenance. The large number of
common subexpressions in both cases may significantly
increase optimization time. Furthermore, if subexpressions
are not reused then this significantly increases the query
size. The choice of when to remove duplicates significantly
impacts performance for Datalog queries.

P3. Blocking Join Reordering. Provenance instrumenta-
tion in GProM [4] is based on rewrite rules. For instance,
provenance annotations are propagated through an ag-
gregation by joining the aggregation with the provenance
instrumented version of the aggregation’s input on the
group-by attributes. Such transformations increase query
size and lead to interleaving of joins with operators such as
aggregation. This interleaving may block optimizers from
reordering joins leading to suboptimal join orders.

Provenance

Yes | instrumentation
Request .
enerate
Next Plan?, o) (sereeT)@ sarcom
no Estimator |~ FROM ... Generator
AN

=1

Fig. 3: GProM with Cost-based Optimizer

Algebra
PATs i)

PROVENANCE
OF (SELECT *
FROM
Bookkeeping
and

GProM

Relational

N eren Callback

SELECT*
FROM ...

P4. Redundant Computations. To capture provenance, sys-
tems such as Perm [3] instrument a query one operator
at a time using operator-specific rewrite rules. To apply
operator-specific rules to rewrite a complex query, the rules
have to be generic enough to be applicable no matter how
operators are combined. This can lead to redundant com-
putations, e.g., an instrumented operator generates a new
column that is not needed by downstream operators.

2 SOLUTION OVERVIEW

While optimization has been recognized as an important
problem in provenance management, previous work has al-
most exclusively focused on how to compress provenance to
reduce storage cost, e.g., see [14], [15], [16]. We study the or-
thogonal problem of improving the performance of instru-
mented queries that capture provenance. Specifically, we
develop heuristic and cost-based optimization techniques to
address the performance bottlenecks of instrumentation.

An important advantage of our approach is that it ap-
plies to any database backend and instrumentation pipeline.
New transformation rules and cost-based choices can be
added with ease. When optimizing a pipeline, we can either
target one of its intermediate languages or the compilation
steps. As an example for the first type of optimization,
consider a compilation step that outputs relational algebra.
We can optimize the generated algebra expression using
algebraic equivalences before passing it on to the next stage
of the pipeline. For the second type of optimization consider
the compilation step from pipeline L1 that translates an-
notated relational algebra (with provenance) into relational
algebra. If we know two equivalent ways of translating an
algebra operator with annotated semantics into standard
relational algebra, then we can optimize this step by choos-
ing the translation that maximizes performance. We study
both types of optimization. For the first type, we focus on
relational algebra since it is an intermediate language used
in all of the pipelines from Sec. 1.1. We investigate algebraic
equivalences that are beneficial for instrumentation, but
which are usually not applied by database optimizers. We
call this type of optimizations provenance-specific algebraic
transformations (PAT5). We refer to optimizations of the sec-
ond type as instrumentation choices (ICs).

PATs. We identify algebraic equivalences which are effective
for speeding up provenance computations. For instance, we
factor references to attributes to enable merging of projec-
tions without blow-off in expression size, pull up projections
that create provenance annotations, and remove unneces-
sary duplicate elimination and window operators. We infer
local and non-local properties [17] such as candidate keys
for the algebra operators of a query. This enables us to define
transformations that rely on non-local information.

3

ICs. We introduce two ways for instrumenting an aggrega-
tion for provenance capture: 1) using a join [3] to combine
the aggregation with the provenance of the aggregation’s in-
put; 2) using window functions (SQL OVER clause) to directly
compute the aggregation functions over inputs annotated
with provenance. We also present two ways for pruning
tuples that are not in the provenance early-on when com-
puting the provenance of a transaction [10]. Furthermore,
we present two options for normalizing the output of a
sequenced temporal query (L6).

Note that virtually all pipelines that we support use
relational algebra as an intermediate language. Thus, our
PATs are more generally applicable than the ICs which target
a compilation step that only is used in some pipelines. This
is however an artifact of the pipelines we have chosen.
In principle, one could envision ICs that are applied to a
compilation step that is common to many pipelines.

CBO for Instrumentation. Some PATs are not always ben-
eficial and for some ICs there is no clearly superior choice.
Thus, there is a need for cost-based optimization (CBO). Our
second contribution is a CBO framework for instrumenta-
tion pipelines that can be applied to any such pipeline no
matter what compilation steps and intermediate languages
are used. This is made possible by decoupling the plan space
exploration from actual plan generation. Our optimizer
treats the instrumentation pipeline as a blackbox function
which it calls repeatedly to produce SQL queries (plans).
Each such plan is sent to the backend database for planning
and cost estimation. We refer to one execution of the pipeline
as an iteration. It is the responsibility of the pipeline’s com-
ponents to signal to the optimizer the existence of optimiza-
tion choices (called choice points) through the optimizer’s
callback API. The optimizer responds to a call from one of
these components by instructing it which of the available
options to choose. We keep track of which choices had to
be made, which options exist for each choice point, and
which options were chosen. This information is sufficient
to iteratively enumerate the plan space by making different
choices during each iteration. Our approach provides great
flexibility in terms of supported optimization decisions, e.g.,
we can choose whether to apply a PAT or select which ICs
to use. Adding an optimization choice only requires adding
a few lines of code (LOC) to the pipeline to inform the
optimizer about the availability of options. To the best of our
knowledge our framework is the first CBO that is plan space
and query language agonistic. Costing a plan (SQL query)
requires us to use the DBMS to optimize a query which can
be expensive. Thus, we may not be able to explore the full
plan space. In addition to meta-heuristics, we also support
a strategy that balances optimization vs. execution time.

We have implemented these optimizations in GProM [4],
our provenance middleware that supports multiple DBMS
backends and all the instrumentation pipelines discussed
in Sec. 1.1. GProM is available as open source (https://
github.com /IITDBGroup/gprom). Using L1 as an example,
Fig. 3 shows how ICs, PATs, and CBO are integrated into the
system. We demonstrate experimentally that our optimiza-
tions improve performance by over 4 orders of magnitude
on average compared to unoptimized instrumented queries.
Our approach peacefully coexists with the DBMS optimizer.

Definition

oo(R) = {{"]i" € RAL = 0}

HaA(R) ={t"In=3 4y R(u)}
RUS={t"tT™i" € RAt™ € S}

RN S = {gminnm)jgn ¢ RAt™ € S}
R— S = {tmaz(n-m0|n ¢ RAt™ € S}
RxS={%s)" " € RAs™ € 5]
a7y (R) ={({t.G, f(G)']t € R}

Gt = {(t1.a)n‘t1n e RAt1.G = t.G}
5(R) = {t'|t € R}

Wi(a)oz,aloB) = {(t, f(P))"[t" € R}
P ={(t1.a)"t1™ € RAt1.G=t.GAt1 <o t}

TABLE 1: Relational algebra operators

Operator

=Ix|||D|C|gla

=2}

€

We use the DBMS optimizer where it is effective (e.g., join
reordering) and use our optimizer to address the database’s
shortcomings with respect to provenance computations.

3 BACKGROUND AND NOTATION

A relation schema R(aq, ..., a,) consists of a name (R) and
a list of attribute names a; to a,. The arity of a schema
is the number of attributes in the schema. We use the bag
semantics version of the relational model. Let I/ be a domain
of values. An instance R of an n-ary schema R is a function
U" — N mapping tuples to their multiplicity. Here R(t)
denotes applying the function that is R to input ¢, i.e., the
multiplicity of tuple ¢ in relation 1. We require that relations
have finite support SUPP(R) = {¢t | R(t) # 0}. We use
t™ € R to denote that tuple ¢ occurs with multiplicity m,
i.e.,, R(t) = mand ¢ € R to denote that ¢t € SUPP(R). An n-
ary relation R is contained in a relation S, written as R C 5,
iff Vt € U™ : R(t) < S(t), i-e., each tuple in R appears in S
with the same or higher multiplicity.

Table 1 shows the definition of the bag semantics version
of relational algebra we use in this work. We use SCH(Q) to
denote the schema of the result of query @ and Q(I) to de-
note the result of evaluating query () over database instance
I. Selection oy (R) returns all tuples from relation R which
satisfy the condition 6. Projection IT4(R) projects all input
tuples on a list of projection expressions. Here, A denotes
a list of expressions with potential renaming (denoted by
e — a) and t.A denotes applying these expressions to a
tuple t. The syntax of projection expressions is defined by
the grammar shown below where const denotes the set of
constants, attr denotes attributes, ¢ defines conditions, and
v defines projection expressions.

v:=v+v|v-.v|const|attr |if cthenvelse v
c:=vcmpv|cAc|cVe]|-c
cmp : = =[#[<|<[>[>

For instance, a valid projection expression over schema
R(a,b) is (a + b) - 5. The expression type if ¢ then v else v
is introduced to support conditional expressions similar
to SQL’s cASE. The semantics of projection expressions is
defined using a function eval(t, e) which returns the result
of evaluating e over ¢. In the following we will often use ¢.e
to denote eval(t, e). The definition of eval and an example
for how to apply it are shown in Appendix B.1.

Union R U S returns the bag union of tuples from rela-
tions R and S. Intersection R N S returns the tuples which
are both in relation R and S. Difference R — S returns the

U @]
ﬂ ?I ﬂ ?[Ql = Ha(qub) U Hb(qub)

Ha b Ha b
sub = Oc¢ R
‘\ 7 T T Q b <5()
o o o
:5 :5 1~<5 QQ = Ha(ac<5(R))
R R R UTly(oc<s(R))

Fig. 4: Algebra graph (Q1, left), equivalent algebra tree (Q2,
middle), and corresponding algebra expressions (right)

tuples in relation R which are not in S. These set operations
are only defined for inputs of the same arity. Aggregation
G7Vf(a)(R) groups tuples according to their values in at-
tributes G and computes the aggregation function f over
the bag of values of attribute a for each group. We also
allow the attribute storing f(a) to be named explicitly, e.g.,
GVf(a)—z(R) renames f(a) as x. Duplicate removal §(R)
removes duplicates. R x S is the cross product for bags
(input multiplicities are multiplied). For convenience we
also define join R My S and natural join R X S in the usual
way. For each tuple ¢, the window operator w¢(q)—a,cj0(R)
returns ¢ with an additional attribute x storing the result
of the aggregation function f. Function f is applied over
the window (bag of values from attribute a) generated by
partitioning the input on G C SCH(R) and including only
tuples which are smaller than ¢ wrt. their values in attributes
O C ScH(R) where G N O = . An example is shown in
Appendix B.2. We use the window operator to express a
limited form of SQL’s OVER clause.

We represent algebra expressions as DAGs (Directed
Acyclic Graph) to encode reuse of subexpressions. For in-
stance, Figure 4 shows an algebra graph (left) which reuses
an expression o.<5(R) and the corresponding algebra tree
(right). We assume that nodes are uniquely identified within
such graphs and abusing notation will use operators to
denote nodes in such graphs. We use Q[}Q)1 < (2] to denote
the result of substituting subexpression (subgraph))1 with
Q2 in the algebra graph for query (). Again, we assume
some way of identifying subgraphs. We use Q = op(Q’) to
denote that operator op is the root of the algebra graph for
query @ and that subquery Q' is the input to op.

4 PROPERTIES AND INFERENCE RULES

We now discuss how to infer local and non-local properties
of operators within the context of a query. Similar to Grust et
al. [17], we use these properties in preconditions of algebraic
rewrites (PATs). PATs are covered in Sec. 5.

4.1 Operator Properties

keys. Property keys is a set of super keys for an operator’s
output. For example, if keys(R) = {{a}, {b,c}} for a rela-
tion R(a, b, ¢, d), then the values of attributes {a} and {b, c}
are unique in R.

Definition 1. Let Q) be a query. A set E C SCH(Q) is a super
key for Q iff for every instance I we have Vt,t' € Q(I) : t.E =
t'E —t=1tand Vt : Q(I)(t) < 1. A super key is called a
candidate key if it is minimal.

Since we are using bag semantics, in the above definition
we need to enforce that a relation with a superkey cannot
contain duplicates. Recall that we defined bag relations as
functions, thus, Q(I)(t) denotes the multiplicity of ¢ in the
result of @ over I. Klug [18] demonstrated that computing
the set of functional dependencies that hold over the output
of a query expressed in relational algebra is undecidable.
The problem studied in [18] differs from our setting in two
aspects: 1) we only consider keys and not arbitrary func-
tional dependencies and 2) we consider a more expressive
algebra over bags which includes generalized projection. As
the reader might already expect, the undecidability of the
problem caries over to our setting.

Theorem 1. Computing the set of candidate keys for the output
of a query () expressed in our bag algebra is undecidable. The
problem stays undecidable even if () consists only of a single
generalized projection, i.e., it is of the form Q = I14(R).

Proof. We prove the theorem by a reduction from the unde-
cidable problem of checking whether a multi-variant poly-
nomial over the integers (Z) is injective. The undecidability
of injectivity stems from the fact that this problem can
be reduced to Hilbert’s tenth problem [19] (does a Dio-
phantine equation have a solution) which is known to be
undecidable for integers. Given such a polynomial function
f(x1,...,x,) over Z, we define a schema R(z1,...,z,)
over domain Z with a candidate key X = {z1,...,2,}
and a query Q; = (4, .. 2.)—5(R). Intuitively, the query
computes the set of results of f for the set of inputs stored
as tuples in R. For instance, consider the multivariant
polynomial f(z,y) = z? + z - y. We would define an
input relation R with schema SCH(R) = (z,y) and query
Qs = (z.042.y)—b(R) which computes f.

Now for sake of contradiction assume that we have a
procedure that computes the set of candidate keys for a
query based on keys given for the relations accessed by
the query. The result schema of query Qs for polynomial f
consists of a single attribute (b). Thus, it has either a candiate
key {b} or no candidate key at all. Since X is a candidate
key for R, {b} is a candidate key iff f is injective (we prove
this equivalence below). Thus, the hypothetical algorithm
for computing the candidate keys of a query result relation
gives us a decision procedure for f’s injectivivity. However,
deciding whether f is injective is undecidable and, thus, the
problem of computing candidate keys for query results has
to be undecidable.

We still need to prove our claim that {b} is a candidate
key iff f is injective.
=-: For sake of contradiction assume that {b} is a candidate
key, but f is not injective. Then there have to exist two
inputs I = (i1,...,4,) and J = (j1,. .., jn) with I # J such
that f(I) = y and f(J) = y for some value y. Now consider
an instance of relation R defined as {I,J}. The result of
evaluating query Q; over this instance is clearly {(y)?}.
That is, tuple (y) appears twice in the result. However, this
violates the assumption that {b} is a candidate key.

<: For sake of contradiction assume that f is injective, but
{b} is not a candidate key. Then there has to exists some
instance of R such that Qs(R) contains a tuple t with
multiplicity n > 1. Since X is a candiate key of R, we

5

know that there are no duplicates in R. Thus, based on the
definition of projection, the only way ¢ can appear with a
multiplicity larger than one is if there are two inputs ¢; and
t2 in the input such that f(t1) = f(¢2) which contradicts the
assumption that f is injective. O

Given this negative result, we will focus on computing a
set of keys that is not necessarily complete nor is each key
in this set guaranteed to be minimal. This is unproblematic,
since we will only use the existence of keys as a precondi-
tion for PATs. That is, we may miss a chance of applying
a transformation since our approach may not be able to
determine that a key holds, but we will never incorrectly
apply a transformation.

set. Boolean property set denotes whether the number of
duplicates in the result of a subquery Qs of a query @
is insubstantial for computing (). We model this condition
using query equivalence, i.e., if we apply duplicate elimina-
tion to the result of Qsys, the resulting query is equivalent
to the original query Q.

Definition 2. Let Q¢yp be a subquery of a query Q. We say Q sup
is duplicate-insensitive if Q = Q[Qsub + 0 (Qsup)]-

The set property is useful for introducing or removing
duplicate elimination operators. However, as the follow-
ing theorem shows, determining whether a subquery is
duplicate-insensitive is undecidable. We, thus, opt for an
approach that is sound, but not complete.

Theorem 2. Let Qqyp be a subquery of a query Q. The problem
of deciding whether Q sy is duplicate-insensitive is undecidable.

Proof. See Appendix C in the supplementary document. [

ec. The ec property stores a set of equivalence classes (ECs)
with respect to an equivalence relation ~ over attributes
and constants. Let a,b € (SCH(Qsup) UU) for a subquery
Qsub of a query (). We consider a ~ b if to evaluate Q we
only need tuples from the result of Q)5,, where a = b holds.
We model this condition using query equivalence: if a ~ b
for a subquery Qs of a query @ then Q = Q[Qsup
Ua:b(qub)]~

Definition 3. Let Q)syp be a subquery of query @ and a,b €
(SCH(Qsupb) UU). We say a is equivalent to b, written as a ~ b,
lfQ = Q[qub <~ Ua:b(qub)]~ Aset B - (SCH(qub) UZ/{)
is an equivalence class (EC) for Qsup if we have Va,b € E :
a ~b. An EC E is maximal if no superset of I/ is an EC.

As a basic sanity check we prove that ~ is in fact an
equivalence relation.

Lemma 1. =~ is an equivalence relation.
Proof. See Appendix C in the supplementary document. [

Note that our definition of equivalence class differs from
the standard definition of this concept. In fact, what is
typically considered to be an equivalence class is what
we call maximal equivalence class here. We consider non-
maximal equivalence classes, because, as the following the-
orem shows, we cannot hope to find an algorithm that
computes all equivalences that can be enforced for a query
using generalized projection.

Theorem 3. Let Qsup be a subquery of a query Q) and a,b €
SCH(Qsup). Determining whether a ~ b is undecidable.

Proof. See Appendix C in the supplementary document. [

In the light of this undecidability result, we develop
inference rules for property ec (Section 4.2) that are sound,
but not complete. That is, all inferred equivalences hold,
but there is no guarantee that we infer all equivalences
that hold. Put differently, the equivalence classes computed
using these rules may not be maximal.

icols. This property records a set of attributes that are
sufficient for evaluating the ancestors of an operator. By
sufficient, we mean that if we remove other attributes this
will not affect the result of the query.

Definition 4. Let Q) be a query and Qsyp be a subquery of Q,
a set of attributes E C SCH(Qsyp) is called sufficient in Qgup

wrt. Q lfQ = Q[qub — HE(qub)]

For example, attribute d in II,(II, ptc—q(R)) is not
needed to evaluate II,. Note that there exists at least one
trivial set of sufficient attributes for any query Q). which is
SCH(Qsup)- Ideally, we would like to find sufficient attribute
sets of minimal size to be able to reduce the tuple size of
intermediate results and to remove operations that generate
attributes that are not needed. Unfortunately, it is undecid-
able to determine a minimal sufficient set of attributes.

Theorem 4. Let Q)syp be a subquery of a query Q and let E C
SCH(Qsup). The problem of determining whether E is sufficient
is undecidable.

Proof. See Appendix C in the supplementary document. [

The icols property we infer for an operator is guaranteed
to be a sufficient set of attributes for the query rooted at this
operator, but may not represent the smallest such set.

4.2 Property Inference

We infer properties for operators through traversals of the
algebra graph of an input query. During a bottom-up traversal
the property P for an operator op is computed based on the
values of P for the operator’s children. Conversely, during a
top-down traversal the property P of an operator op is initial-
ized to a fixed value and is then updated based on the value
of P for one of the parents of op. We use < to denote the
operator for which we are inferring a property (for bottom-
up inference) or for a parent of this operator (for top-down
inference). Thus, a top-down rule P(R) = P(R)U P(<) has
to be interpreted as update property P for R as the union
of the current value of P for R and the current value of P
for operator <& which is a parent of R. We use ® to denote
the root of a query graph. Because of space limitations we
only show the inference rules of property set here (Table 2).
We show the inference rules for the remaining properties
(ec, icols and key) in Appendix D. In the following when to
referring to properties such as the sufficient set of attributes
of an operator we will implicitly understand this to refer to
the property of the subquery rooted at this operator. We
prove these rules to be correct in Appendix E. Here by
correct we mean that key(op) is a set of superkeys for op
which is not necessarily complete nor does it only contain

6

Rule Operator & Inferred property set for the input(s) of &
1,2 ® or GYr(a) () set(®) = false, set(R) = false
34 og(R) or I14(R) set(R) = set(R) A set(O)
5 (R) set(R) = set(R)

6-9 Rq—p Sor Rx Sor
RUSorRNSorR—S

set(R) = set(R) A set(O)
set(S) = set(S) A set(O)

10 R—S set(R) = false
set(S) = false
11 wf(a)%:):,GHO(R) set(R) = false

TABLE 2: Top-down inference of Boolean property set

true true false
1I
R— Oc<5 U false
false false \ 11, I
false

Fig. 5: Inferring property set

candidate keys, ec(op) is a set of equivalence classes for op
which may not be maximal, if the set(op) = true than op
is duplicate-insensitive (but not necessarily vice versa), and
finally icols(op) is a sufficient set of attributes for op.

Inferring the set Property. We compute set in a top-down
traversal (Tab. 2). We initialize this property to true for all
operators. As mentioned above our inference rules for this
property are sound (if set(op) = true then the operator
is duplicate-insensitive), but not complete. We set set(®)
for the root operator (®) to false (rule 1) since the final
query result will differ if duplicates are eliminated from
the output of ®. Descendants of a duplicate elimination
operator are duplicate-insensitive, because the duplicate
elimination operator will remove any duplicates that they
produce. The exception are descendants of operators such as
aggregation and the window operator which may produce
different result tuples if duplicates are removed. These con-
ditions are implemented by the inference rules as follows: 1)
set(op) = true if op is the child of a duplicate elimination
operator (Rule 5); 2) set(op) = false if op is the child of
a window, difference, or aggregation operator (Rules 11, 2,
and 10); and otherwise 3) set(op) is true if set(<) is true for
all parents of the operator (Rules 1, 3, 4, 6-10).

Example 2. Consider the algebra graph shown in Fig. 5. We
show set for each operator as red annotations. For the root
operator we set set(UJ) = false. Since the root operator is a
union, both children of the root inherit set(op) = false. We set
set(Ily) = true since IIy, is a child of a duplicate elimination
operator. This propagates to the child of this projection. The
selection’s set property is false, because even though it is below
a duplicate elimination operator, it also has a parent for which
set is false. Thus, the result of the query may be affected by
eliminating duplicates from the result of the selection. Finally,
operator R inherits the set property from its parent which is a
selection operator.

5 PATs

We now introduce a subset of our PAT rules (Fig. 6), prove
their correctness, and then discuss how these rules address
the performance bottlenecks discussed in Sec. 1.2. A rule

2% has to be read as “If condition pre holds, then ¢ can be

a C SCH(O(I14(R)))
O(MTa,a—b(R)) = Uscu(oia(r))),asb(C(Ha(R)))
G C SCcH(R)
aY(R>h=c S) = a¥(apV(R) >p=c S)

@

©)

x & icols(Ws(a)—a,qllo(R))

a€SCH(R)ANa & (GU{b,c}) Nbe GAG CSCH(R) A{c} € keys(S)

keys(R) # 0 set(6(R))

S(R)— R 0(R) > R
e; =if@thena+celse a

H61 esem (R) — Ha+if 6 then c else 0,ea,...,em (R)

A =icols(R)

®) RS TL(R)

(4)

(6)

)
Wia)—a,clo(R) = R

Y f(a) (R >b=c S) = ¢Vf(a)(R) D= S

®)

Fig. 6: Provenance-specific transformation (PAT) rules

/17

rewritten as ¢’”. Note that we also implement standard opti-
mization rules such as selection move-around, and merging
of adjacent projections, because these rules may help us to
fulfill the preconditions of PATs (see Appendix F).

Provenance Projection Pull Up. Provenance instrumenta-
tion [4], [3] seeds provenance annotations by duplicating
attributes of input relations using projection. This increases
the size of tuples in intermediate results. We can delay this
duplication of attributes if the attribute we are replicating is
still available in ancestors of the projection. In Rule (1), b is
an attribute storing provenance generated by duplicating
attribute a. If a is available in the schema of ¢(IT4(R))
(© can be any operator) and b is not needed to compute
<&, then we can pull the projection on a — b through
operator <. For example, consider a query) = o4<5(R)
over relation R(a,b). Provenance instrumentation yields:
0a<s(Iab,a— P(a),b—Pv) (RR)). This projection can be pulled
up: I, b.a— P(a),b—Pb) (Ta<s(R)).

Remove Duplicate Elimination. Rules (2) and (3) remove
duplicate elimination operators. If a relation R has at least
one super key, then it cannot contain any duplicates. Thus,
a duplicate elimination applied to R can be safely removed
(Rule (2)). Furthermore, if the output of a duplicate elimi-
nation op is again subjected to duplicate elimination further
downstream and the operators on the path between these
two operators are not sensitive to duplicates (property set is
true for op), then op can be removed (Rule (3)).

Remove Redundant Attributes. Recall that icols(R) is a set
of attributes from relation R which is sufficient to evaluate
ancestors of R. If icols(R) = A, then we use Rule (4) to
remove all other attributes by projecting R on A. Operator
We(a)—az,clo(RR) extends each tuple ¢ € R by adding a
new attribute z that stores the aggregation function result
f(a). Rule (7) removes w if x is not needed by ancestors of
Wia)—z,alo(R).

Attribute Factoring. Attribute factoring restructures pro-
jection expressions such that adjacent projections can be
merged without blow-up in expression size. For instance,
merging projections Iy p1b—e(Iatata—sb(R)) increases the
number of references to a to 9 (each mention of b is replaced
with a + a + a). This blow-up can occur when computing
the provenance of transactions where multiple levels of
CASE expressions are used. Recall that we represent CASE
as if 6 then e; else ey in projection expressions. For ex-
ample, update UPDATE R SET a = a + 2 WHERE b = 2
would be expressed as Il p=2 then a-+2 else a,b (1) Which can
be rewritten as I, it p=2 then 2 else 0,5(1), reducing the refer-

ences to a by 1. We define analog rules for any arithmetic
operation which has a neutral element (e.g., multiplication).
Aggregation Push Down. Pipeline L5 encodes the prove-
nance (provenance polynomial) of a query result as an
XML document. Each polynomial is factorized based on the
structure of the query. We can reduce the output’s size by
rewriting the query using algebraic equivalences to choose
a beneficial factorization [20]. For example, a-b+a-c+a-d can
be factorized as a - (b+ ¢+ d). For queries with aggregation,
this factorization can be realized by pushing aggregations
through joins. Rule (5) and (8) push down aggregations
based on the equivalences introduced in [21]. Rule 8 pushes
an aggregation to a child of a join operator if the join is
cardinality-preserving and all attributes needed to compute
the aggregation are available in that child. For instance,
consider 7¢(q) (R >p=c S) where {c} is a key of S. Since
R is joined with S on b = ¢, pushing down the aggregation
to R does not affect the cardinality of the aggregation’s
input. Since also {a,b} € SCH(R), we can rewrite this
query into yYy(q)(R) >p=c S. Rule 5 redundantly pushes
an aggregation without aggregation functions (equivalent
to a duplicate elimination) to create a pre-aggregation step.

Theorem 5. The PATs from Fig. 6 are equivalence preserving.
Proof. See Appendix F in the supplementary document. [

5.1 Addressing Bottlenecks through PATs

Rule (6) is a preprocessing step that helps us to avoid
a blow-up in expression size when merging projections
(Sec. 1.2 P1). Rules (2) and (3) can be used to remove
unnecessary duplicate elimination operators (P2). Bottle-
neck P3 is addressed by removing operators that block join
reordering: Rules (2), (3), and (7) remove such operators.
Even if such operators cannot be removed, Rules (1) and (4)
remove attributes that are not needed which reduces the
schema size of intermediate results. P4 can be addressed
by using Rules (2), (3), and (7) to remove redundant oper-
ators. Furthermore, Rule (4) removes unnecessary columns.
Rule (5) and (8) factorize nested representations of prove-
nance (Pipeline L5) to reduce its size by pushing aggrega-
tions through joins. In addition to the rules discussed so
far, we apply standard equivalences, because our transfor-
mations often benefit from these equivalences and they also
allow us to further simplify a query. For instance, we apply
selection move-around (which benefits from the ec property),
merge selections and projections (only if this does not result
in a significant increase in expression size), and remove
redundant projections (projections on all input attributes).
These additional PATs are discussed in Appendix F.

6 INSTRUMENTATION CHOICES

Window vs. Join. The Join method for instrumenting an
aggregation operator for provenance capture was first
used by Perm [3]. To propagate provenance from the
input of the aggregation to produce results annotated
with provenance, the original aggregation is computed
and then joined with the provenance of the aggregation’s
input on the group-by attributes. This will match the
aggregation result for a group with the provenance of
tuples in the input of the aggregation that belong to that
group (see [3] for details). For instance, consider a query
bYsum(a)—z (1) with SCH(R) = (a,b). This query would
be rewritten into Tl . p(a),P(b)(GVsum(a)—a(l1) b=
Oy aP(a)p—Pr) (R)). Alternatively, the aggregation
can be computed over the input with provenance
using the window operator w by turning the group-
by into a partition-by. The rewritten expression is
Hb,z,P(a),P(b) (wsum(a)%m,bﬂ(R)(Ha,b,aeP(a),b%P(b)(R)))‘

The Window method has the advantage that no additional
joins are introduced. However, as we will show in Sec. 9,
the Join method is superior in some cases and, thus, the
choice between these alternatives should be cost-based.

FilterUpdated vs. HistJoin. Our approach for capturing
the provenance of a transaction 7' [10] only returns the
provenance of tuples that were affected by 7. We consider
two alternatives for achieving this. The first method is called
FilterUpdated. Consider a transaction 7" with n updates and
let 6; denote the condition (WHERE-clause) of the i'" update.
Every tuple updated by the transaction has to fulfill at
least one ;. Thus, this set of tuples can be computed by
applying a selection on condition §; V. ..V 8, to the input of
reenactment. The alternative called HistJoin uses time travel
to determine based on the database version at transaction
commit which tuples where updated by the transaction. It
then joins this set of tuples with the version at transaction
start to recover the original inputs of the transaction. For a
detailed description see [10]. FilterUpdated is typically supe-
rior, because it avoids the join applied by HistJoin. However,
for transactions with a large number of operations, the cost
of FilterUpdated’s selection can be higher than the join’s cost.

Set-coalesce vs. Bag-coalesce. The result of a sequenced
temporal query [13] can be encoded in multiple, equivalent
ways using intervals. Pipeline L6 applies a normalization
step to ensure a unique encoding of the output. Coalesc-
ing [22], the standard method for normalizing interval rep-
resentations of temporal data under set semantics, is not ap-
plicable for bag semantics. We introduce a version that also
works for bags. However, this comes at the cost of additional
overhead. If we know that a query’s output does not contain
any duplicates, then we can use the cheaper set-coalescing
method. We use Property key to determine whether should
we can apply set-coalesce (see Appendix A.2).

7 COST-BASED OPTIMIZATION

Our CBO algorithm (Alg. 1) consists of a main loop that
is executed until the whole plan space has been explored
(function HASMOREPLANS) or until a stopping criterion
has been reached (function CONTINUE). In each iteration,
function GENERATEPLAN takes the output of the parser and

Algorithm 1 CBO

1: procedure CBO(Q)
Thest < 00, Topt < 0.0
while HASMOREPLANS() A CONTINUE() do
thefore +— CURRENTTIME()
P < GENERATEPLAN(Q)
T <+ GETCOST(P)
if T' < Tpest then
Tpest < T, Pbest ~ P
GENNEXTITERCHOICES()
Topt = Topt + (CURRENTTIME() — tpefore)

return Py

SO XN T RN

_
—

runs it through the instrumentation pipeline (e.g, the one
shown in Fig. 3) to produce an SQL query. The pipeline
components inform the optimizer about choice points using
function MAKECHOICE. The resulting plan P is then costed.
If the cost T' of the current plan P is less than the cost Tpes:
of the best plan found so far, then we set Pyes; = P. Finally,
we decide which optimization choices to make in the next
iteration using function GENNEXTITERCHOICES. Our opti-
mizer is plan space agnostic. New choices are discovered at
runtime when a step in the pipeline informs the optimizer
about an optimization choice. This enables the optimizer to
enumerate all plans for a blackbox instrumentation pipeline.

Costing. Our default cost estimation implementation uses
the DBMS to create an optimal execution plan for P and
estimate its cost. This ensures that we get the estimated cost
for the plan that would be executed by the backend instead
of estimating cost based on the properties of the query alone.

Search Strategies. Different strategies for exploring the
plan space are implemented as different versions of
the CONTINUE, GENNEXTITERCHOICES, and MAKECHOICE
functions. The default setting guarantees that the whole
search space will be explored (CONTINUE returns true).

7.1 Registering Optimization Choices

We want to make the optimizer aware of choices available
in a pipeline without having to significantly change exist-
ing code. Choices are registered by calling the optimizer’s
MAKECHOICE function. This callback interface has two pur-
poses: 1) inform the optimizer that a choice has to be made
and how many alternatives to choose from and 2) allowing
it to control which options are chosen. We refer to a point in
the code where a choice is enforced as a choice point. A choice
point has a fixed number of options. The return value of
MAKECHOICE instructs the caller to take a particular option.

Example 3. Assume we want to make a cost-based decision
on whether to use the Join or Window method (Sec. 6) to
instrument an aggregation. We add a call MAKECHOICE(2) to
register a choice with two options to choose from. The optimizer
responds with a number (0 or 1) encoding the option to be chosen.

if (makeChoice(2) == 0) Window(Q) else Join (Q)

A code fragment containing a call to MAKECHOICE may
be executed several times during one iteration. Every call is
treated as an independent choice point, e.g., 4 possible com-
binations of the Join and Window methods will be considered
for instrumenting a query with two aggregations.

Window vs. Join

[1,00] [101] [1,1,0] [1,1,1]
Fig. 7: Plan space tree example

7.2 Plan Enumeration

During one iteration we may hit any number of choice
points and each choice made may affect what other choices
have to be made in the remainder of this iteration. We use
a data structure called plan tree that models the plan space
shape. In the plan tree each intermediate node represents
a choice point, outgoing edges from a node are labelled
with options and children represent choice points that are
hit next. A path from the root of the tree to a leaf node
represents a particular sequence of choices that results in
the plan represented by this leaf node.

Example 4. Assume we use two choice points: 1) Window vs.
Join; 2) reordering join inputs. The second choice point can only
be hit if a join operator exist, e.g., if we choose to use the Window
method then the resulting algebra expression may not have any
joins and this choice point would never be hit. Consider a query
which is an aggregation over the result of a join. Fig. 7 shows the
corresponding plan tree. When instrumenting the aggregation, we
have to decide whether to use the Window (0) or the Join method
(1). If we choose (0), then we have to decide wether to reorder the
inputs of the join. If we choose (1), then there is an additional
join for which we have to decide whether to reorder its input. The
tree is asymmetric, i.e., the number of choices to be made in each
iteration (path in the tree) is not constant.

While the plan space tree encodes all possible plans for a
given query and set of choice points, it would not be feasible
to materialize it, because its size can be exponential in the
maximum number of choice points that are hit during one
iteration (the depth d of the plan tree). Our default imple-
mentation of the GENERATENEXTPLAN and MAKECHOICE
functions explores the whole plan space using O(d) space.
As long as we know which path was taken in the previ-
ous iteration (represented as a list of choices as shown in
Fig. 7) and for each node (choice point) on this path the
number of available options, then we can determine what
choices should be made in the next iteration to reach the
leaf node (plan) immediately to the right of the previous
iteration’s plan. We call this traversal strategy sequential-leaf-
traversal. We have implemented an alternative strategy that
approximates a binary search over the leaf nodes. We opt for
an approximation, because the structure of subtrees is not
known upfront. This strategy called binary-search-traversal is
described in more detail in Appendix G.3. The rationale for
supporting this strategy is that if time constraints prevent
us from exploring the full search space, then we would
like to increase the diversity of explored plans by traversing
different sections of the plan tree.

Theorem 6. Let () be input query. Algorithm 1 iterates over all
plans that can be created for the given choice points.

7.3 Alternative Search Strategies

Metaheuristics are applied in query optimization to deal
with large search spaces. We discuss an implementation of
a metaheuristic in our framework in Appendix G.

Balancing Optimization vs. Runtime. The strategies dis-
cussed so far do not adapt the effort spend on optimization
based on how expensive the query is. Obviously, spending
more time on optimization than on execution is undesirable
(assuming that provenance requests are ad hoc). Ideally, we
would like to minimize the sum of the optimization time
(T,pt) and execution time of the best plan Tj.,; by stopping
optimization once a cheap enough plan has been found. This
is an online problem, i.e., after each iteration we have to
decide whether to execute the current best plan or continue
to produce more plans. The following stopping condition
results in a 2-competitive algorithm, i.e., Top¢ + Thes: is less
than 2 times the minimal achievable cost: stop optimization
once Tyest = Topt- Note that even though we do not
know the length of an iteration upfront, we can still ensure
Thest = Topt by stopping mid iteration.

Theorem 7. The algorithm outlined above is 2-competitive.

Proof. See Appendix G in the supplementary document. [

8 RELATED WORK

Our work is related to optimizations that sit on top of stan-
dard CBO, to compilation of non-relational languages into
SQL, and to provenance capture and storage optimization.

Cost-based Query Transformation. State-of-the-art DBMS
apply transformations such as decorrelation of nested sub-
queries [23] in addition to (typically exhaustive) join enu-
meration and choice of physical operators. Often such
transformations are integrated with CBO [24] by iteratively
rewriting the input query through transformation rules and
then finding the best plan for each rewritten query. Typically,
metaheuristics (randomized search) are applied to deal with
the large search space. Extensibility of query optimizers has
been studied in, e.g., [25]. While our CBO framework is
also applied on-top of standard database optimization, we
can turn any choice (e.g., ICs) within an instrumentation
pipeline into a cost-based decision. Furthermore, our frame-
work has the advantage that new optimization choices can
be added without modifying the optimizer.

Compilation of Non-relational Languages into SQL.
Approaches that compile non-relational languages (e.g.,
XQuery [17], [26]) or extensions of relational languages
(e.g., temporal [27] and nested collection models [28]) into
SQL face similar challenges as we do. Grust et al. [17]
optimize the compilation of XQuery into SQL. The approach
heuristically applies algebraic transformations to cluster join
operations with the goal to produce an SQL query that
can successfully be optimized by a relational database. We
adopt their idea of inferring properties over algebra graphs.
However, to the best of our knowledge we are the first to
integrate these ideas with CBO and to consider ICs.

Provenance Instrumentation. Several systems such as DB-
Notes [5], Trio [29], Perm [3], LogicBox [2], ExSPAN [7],
and GProM [4] model provenance as annotations on data
and capture provenance by propagating annotations. Most

systems apply the provenance instrumentation approach de-
scribed in the introduction by compiling provenance cap-
ture and queries into a relational query language (typically
SQL). Thus, the techniques we introduce in this work are
applicable to a wide range of systems.

Optimizing Provenance Capture and Storage. Optimiza-
tion of provenance has mostly focused on minimizing the
storage size of provenance. Chapman et al. [15] introduce
several techniques for compressing provenance information,
e.g., by replacing repeated elements with references and
discuss how to maintain such a storage representation under
updates. Similar techniques have been applied to reduce
the storage size of provenance for workflows that exchange
data as nested collections [14]. A cost-based framework for
choosing between reference-based provenance storage and
propagating full provenance was introduced in the context
of declarative networking [7]. This idea of storing just
enough information to be able to reconstruct provenance
through instrumented replay, has also been adopted for
computing the provenance for transactions [4], [10] and in
the Subzero system [16]. Subzero switches between different
provenance storage representations in an adaptive manner
to optimize the cost of provenance queries. Amsterdamer et
al. [30] demonstrate how to rewrite a query into an equiv-
alent query with provenance of minimal size. Our work is
orthogonal in that we focus on minimizing execution time
of provenance capture and retrieval.

9 EXPERIMENTS

Our evaluation focuses on measuring 1) the effectiveness of
CBO in choosing the most efficient ICs and PATs, 2) the effec-
tiveness of heuristic application of PATs, 3) the overhead of
heuristic and cost-based optimization, and 4) the impact of
CBO search strategies on optimization and execution time.
All experiments were executed on a machine with 2 AMD
Opteron 4238 CPUs, 128GB RAM, and a hardware RAID
with 4 x 1TB 72.K HDs in RAID 5 running commercial
DBMS X (name omitted due to licensing restrictions).

To evaluate the effectiveness of our CBO vs. heuristic
optimization choices, we compare the performance of in-
strumented queries generated by the CBO (denoted as Cost)
against queries generated by selecting a predetermined op-
tion for each choice point. Based on a preliminary study
we have selected 3 choice points: 1) using the Window or
Join method; 2) using FilterUpdated or HistJoin and 3)
choosing whether to apply PAT rule (3) (remove duplicate
elimination). If CBO is deactivated, then we always remove
such operators if possible. The application of the remaining
PATs introduced in Sec. 5 turned out to be always beneficial
in our experiments. Thus, these PATs are applied as long as
their precondition is fulfilled. We consider two variants for
each method: activating heuristic application of the remain-
ing PATs (suffix Heu) or deactivating them (NoHeu). Unless
noted otherwise, results were averaged over 100 runs.

9.1 Datasets & Workloads

Datasets. TPC-H: We have generated TPC-H benchmark
datasets of size 10MB, 100MB, 1GB, and 10GB (SF0.01 to

10

SF10). Synthetic: For the transaction provenance experi-
ments we use a 1M tuple relation with uniformly distributed
numeric values. We vary the size of the transactional history.
Parameter H X indicates X % of history, e.g., H10 represents
10% history (100K tuples). DBLP: This dataset consistes
of 8 million co-author pairs extracted from DBLP (http:
//dblp.uni-trier.de/xml/). MESD: The temporal MySQL
employees sample dataset has 6 tables and contains 4M
records (https://dev.mysql.com/doc/employee/en/).

Simple aggregation queries. This workload computes the
provenance of queries consisting solely of aggregations us-
ing Pipeline L1 which applies the rewrite rules for aggre-
gation pioneered in Perm [3] and extended in GProM [4].
A query consists of ¢ aggregations where each aggregation
operates on the result of the previous aggregation. The leaf
operation accesses the TPC-H part table. Every aggregation
groups the input on a range of PK values such that the last
step returns the same number of results independent of <.

TPC-H queries. We select 11 out of the 22 TPC-H queries
to evaluate optimization of provenance capture for complex
queries. The technique [31] we are using supports all TPC-
H queries, but instrumentations for nested subqueries have
not been implemented in GProM yet.

Transactions. We use the reenactment approach of
GProM [10] to compute provenance for transactions exe-
cuted under isolation level SERIALIZABLE. The transac-
tional workload is run upfront (not included in the mea-
sured execution time) and provenance is computed retroac-
tively. We vary the number of updates per transaction, e.g.,
U10 is a transaction with 10 updates. The tuples to be
updated are selected randomly using the PK of the relation.

Provenance export. We use the approach from [12] to trans-
late a relational encoding of provenance (see Sec. 1) into
PROV-JSON. We export the provenance for a foreign key
join across TPC-H relations nation, customer, and orders.

Provenance for Datalog queries. We use the approach
described in [11] (Pipeline L3). The input is a non-recursive
Datalog query () and a set of (missing) query result tuples
of interest. We use the DBLP co-author dataset for this
experiment and the following queries. Q1: Return authors
which have co-authors that have co-authors. Q2: Return
authors that are co-authors, but not of themselves (while
semantically meaningless, this query is useful for testing
negation). Q3: Return pairs of authors that are indirect
co-authors, but are not direct co-authors. Q4: Return start
points of paths of length 3 in the co-author graph. For each
query we consider multiple why questions that specify the
set of results for which provenance should be generated. We

use Qi.j to denote the j!" why question for query Qi.

Factorizing Provenance. We use Pipelines L1 and L5 to eval-
uate the performance of nested versus “flat” provenance un-
der different factorizations (applying the aggregation push-
down PATs). We use the following queries over the TPC-H
dataset. Q1: An aggregation over a join of tables customer
and nation. Q2: Joins the result of Q1 with the table supplier
and adds an additional aggregation. Q3: An aggregation
over a join of tables nation, customer, and supplier.

Sequenced temporal queries. We use Pipeline L6 to test the
IC which replaces bag-coalesce with set-coalesce for queries

that do not return duplicates. We use the following queries
over the temporal MESD dataset. Q1: Return the average
salary of employees per department. Q2: Return the salary
and department for every employee (3-way join).

9.2 Measuring Query Runtime

Overview. Fig. 17 shows an overview of our results. We
show the average runtime of each method relative to the
best method per workload, e.g., if Cost performs best for a
workload then its runtime is normalized to 1. We use rela-
tive overhead instead of total runtime over all workloads,
because some workloads are significantly more expensive
than other. For the NoHeu and Heu methods we report
the performance of the best and the worst option for each
choice point. For instance, for the SimpleAgg workload the
performance is impacted by the choice of whether the Join or
Window method is used to instrument aggregation operators
with Window performing better (Best). Numbers prefixed
by a '+’ indicate that for this method some queries of the
workload did not finish within the maximum time we have
allocated for each query. Hence, the runtime reported for
these cases should be interpreted as a lower bound on the
actual runtime. Compared with other methods, Cost+Heu
is on average only 4% worse than the best method for the
workload and has 18% overhead in the worst case. Note
that we confirmed that in all cases where an inferior plan
was chosen by our CBO that was because of inaccurate
cost estimations by the backend database. If we heuristically
choose the best option for each choice point, then this results
in a 178% overhead over CBO on average. However, achiev-
ing this performance requires that the best option for each
choice point is known upfront. Using a suboptimal heuristic
on average increases runtime by a factor of ~ 14 compared
to CBO. These results also confirm the critical importance of
our PATs since deactivating these transformations increases
runtime by a factor of ~ 1,800 on average.

Simple Aggregation Queries. We measure the runtime of
computing provenance for the SimpleAgg workload over
the 1GB and 10GB TPC-H datasets varying the number
of aggregations per query. The total workload runtime is
shown in Fig. 8 (the best method is shown in bold). We
also show the average runtime per query relative to the
runtime of Join+NoHeu. CBO significantly outperforms
the other methods. The Window method is more effective
than the Join method if a query contains multiple levels
of aggregation. Our heuristic optimization improves the
runtime of this method by about 50%. The unexpected
high runtimes of Join+Heu are explained below. Fig. 9 and
10 show the results for individual queries. Note that the
y-axis is log-scale. Activating Heu improves performance in
most cases, but the dominating factor for this workload is
choosing the right method for instrumenting aggregations.
The exception is the Join method, where runtime increases
when Heu is activated. We inspected the plans used by
the backend DBMS for this case. A suboptimal join order
was chosen for Join+Heu based on inaccurate estimations
of intermediate result sizes. For Join the DBMS did not
remove intermediate operators that blocked join reordering
and, thus, executed the joins in the order provided in
the input query which turned out to be more efficient in

11

this particular case. Consistently, CBO did either select
Window as the superior method (confirmed by inspecting
the generated execution plan) or did outperform both
Window and Join by instrumenting some aggregations using
the Window and others with the Join method.

TPC-H Queries. We compute the provenance of TPC-H
queries to determine whether the results for simple aggre-
gation queries translate to more complex queries. The total
workload execution time is shown in Fig. 8. We also show
the average runtime per query relative to the runtime of
Join+NoHeu. Fig. 11 and 12 show the running time for each
query for the 1GB and 10GB datasets. Our CBO significantly
outperforms the other methods with the only exception of
Join+Heu. Note that the runtime of Join+Heu for Q13 and Q14
is lower than Cost+Heu which causes this effect. Depending
on the dataset size and query, there are cases where the Join
method is superior and others where the Window method is
superior. The runtime difference between these methods is
less pronounced than for SimpleAgg, presenting a challenge
for our CBO. Except for Q13 which contains 2 aggregations,
all other queries only contain one aggregation. The CBO
was able to determine the best method to use in almost all
cases. Inferior choices are again caused by inaccurate cost
estimates. We also show the results for NoHeu. However,
only three queries finished within the allocated time slot of
6 hours (Q1, Q6 and Q13). These results demonstrate the
need for PATs and the robustness of our CBO method.

Transactions. We next compute the provenance of transac-
tions executed over the synthetic dataset using the tech-
niques introduced in [10]. We vary the number of up-
dates per transaction (U1l up to U1000) and the size of
the database’s history (10, H100, and H1000). The total
workload runtime is shown in Fig. 18. The left graph in
Fig. 15 shows detailed results. We compare the runtime of
FilterUpdated and HistJoin (Heu and NoHeu) with Cost+Heu.
Our CBO choses FilterUpdated, the superior option.

Provenance Export. Fig. 13 shows results for the provenance
export workload for dataset sizes from 10MB up to 10GB
(total workload runtime is shown in Fig. 19). Cost+Heu and
Heu both outperform NoHeu demonstrating the key role of
PATs for this workload. Our provenance instrumentations
use window operators for enumerating intermediate result
tuples which prevents the database from pushing selections
and reordering joins. Heu outperforms NoHeu, because it re-
moves some of these window operators (PAT rule (7)). CBO
does not further improve performance, because the export
query does not apply aggregation or duplicate elimination,
i.e., none of the choice points were hit.

Why Questions for Datalog. The approach [11] we use
for generating provenance for Datalog queries with nega-
tion may produce queries which contain a large amount
of duplicate elimination operators and shared subqueries.
The heuristic application of PATs would remove all but the
top-most duplicate elimination operator (rules (2) and (3)
in Fig. 6). However, this is not always the best option,
because a duplicate elimination, while adding overhead, can
reduce the size of inputs for downstream operators. Thus,
as mentioned before we consider the application of Rule 2

12

Queries Join+NoHeu | Join+Hue | Window+NoHeu | Window+Heu Cost+Heu Queries Join+NoHeu | Join+Heu | Window+NoHeu | Window+Heu | Cost+Heu
SAgg 1G 4.79 20.21 4.38 2.69 | 0.81 SAgg 1G 1 3.927 0.946 0.600 0.261
SAgg 10G 44.06 524.78 42.62 2747 | 7.65 SAgg 10G 1 9.148 0.984 0.655 0.265
[TPC-H1G | +173,053.17 | 199.62 | 173,041.27 | 250.18 | 23579 | [TPC-H1G | 1] 0.187 | 0.955 | 0.220 | 0.203 |
| TPC-H10G | +175371.02 [2,033.71 | 175,530.53 | 2,24739 | 2,196.01 | || TPC-H 10G | 1] 0.198 | 0.975 | 0.180 | 0.174 |

Fig. 8: Total (Left) and average runtime per query (Right) relative to Join+NoHeu for SimpleAgg and TPC-H workloads

= Join+NoHeu £z Join+Heu
10} mm Window+NoHeu £z Window+Heu -~

== Cost+NoHeu £z Cost+Heu

)

Q

R T N NN NN e

(0]

£

<

S0.1

o

0.01

mm Window+NoHeu
== Cost+NoHeu

ez Window-+Heu
£za Cost+Heu

TPCH Queries
Fig. 11: Runtime TPC-H - 1GB

10000 ;-

1000 ool

§ wol W BN == Cost+Heu
- Cost+NoHeu
g 10l
£

c JISEES B STCEEN [SUSISSSPRIRTINY I ESSaeeeed
=

o

0.1¢-

0.01

10MB 100MB 1GB

Database Size

10GB

Fig. 13: Provenance Export

100 mm FilterUpdated+NoHeu ~ mm HistJoin+Heu

Fig. 15: Transaction provenance - runtime and overhead

D Em FilterUpdated+Heu mm Cost+Heu
@ Q[-
L
(0] I BN BN P Y Y e
£
501
o
0.01 =
o o o o o
o o o o o oo
I T T IITT
U1 u10 U100 u1000
History Size and Updates/Transaction
100| mm NoHeu -~
S == Heu
Q 10 mm Cost+NoHeu
° mm Cost+Heu
E Al
5
0.1
0.01

1

2 3 4 5 6 7 8 9
Number of Aggregations

10

1000

= Join+NoHeu ez Join+Heu
mm Window+NoHeu £z Window+Heu

_100| ™ Cost+NoHeu £Z2 Cost+Heu

§ .

—10

£

Rl

&

0.1
0.01

Runtime (sec)

10

mm Window.

Join+NoHeu

| == Cost+NoHeu

+NoHeu

Number of Aggregations

. 10: 10GB SimpleAgg runtime

""""""""""""""" ez Join+Heu T
£z Window+Heu
z1 Cost+Heu

Qs
TPCH Queries
Fig. 12: Runtime TPC-H - 10GB
1000 -
__ 100}-
3 mm Cost+Heu
o 10 (]
o l
E
€ o1
>
T oot
0.001
Q1.1Q1.2Q1.3Q1.4Q1.5Q2.1Q2.2Q3.1 Q3.2Q3.3 Q3.4 Q4.1 Q4.2
Queries
Fig. 14: Datalog Provenance
___ 10 mm FilterUpdated+NoHeu
8 E FilterUpdated+Heu
K2 B HistJoin+Heu
o) mm Cost+Heu
£
=01
>
o
0.01 = = > =
(o)) oo [ole] oo
[elele) [eolele] oo o [ele)e]
III III III IIT
U1 u10 U100 U1000

Overhead: History Size and
Updates/Transaction

mm Window+NoHeu == Join+NoHeu
mm Window+Heu

Q1

= Join+Heu

TPCH Queries

Fig. 16: SimpleAgg (Left) and TPC-H (Right) Overhead

Q3 Q5 Q6 Q7 Q8 Q10 Q12 Q13 Q14 Q19

== Cost+NoH
mm Cost+Heu

NoHeu NoHeu Heu Heu | Cost+Heu
(Worst) (Best) (Worst) | (Best)
Min 1.33 1.33 1.00 1.00 1.00
Avg 1,878.76 1,877.95 14.16 2.82 1.04
Max | +12,173.35 | +12,173.35 68.63 7.80 1.18

Fig. 17: Min, max, and avg runtime rel-
ative to the best method per workload
aggregated over all workloads.

Queries | FilterUpdated | HistJoin FilterUpdated Cost
Queries +NoHeu +Heu +Heu +Heu
HSU/T 55.11 69.50 | 891 [896
TAPU 30.13 26.08 | 12.94 | 12.89

Fig. 18: Total workload runtime for
transaction provenance

Queries NoHeu Heu | Cost+Heu
Export 10M 310.49 0.25 0.25
Export 100M 3,136.94 0.27 0.26
Export 1G +21,600 0.28 0.28
Export 10G +21,600 3.03 3.01

[Datalog Provenance | 583.96 [736.50 | 437.75 |

Fig. 19: Total runtime for export and
Datalog workloads

Runtime (sec)

seq

_HN
12345678910 12345678910 12345678910 12345678910

bin seq+adp

Number of Aggregations

(seq+adp).
(seq+adp)

IO IO

(bin+adp)
(bin+adp) -

bin+adp

Fig. 20: Optimization + runtime for Sim-
ple Agg. - 1GB

Runtime (sec)

sim
cool=0.5

O(sim_cool=0.5)
R(sim_cool=0.5)
O(sim_cool=0.8) = O(sin
R(sim_cool=0.8) = R(:

sim sim+adp
cool=0.8 cool=0.5

SimpleAgg. Queries

sim+adp_cool
sim+adp_cool=0.8)

sim+adp_cool=0.5)
sim+adp_cool=0.5)
)

0.8

sim+adp
cool=0.8

Fig. 21: Optimization + runtime for Sim-
ple Aggregation workload using Simu-
lated Annealing - 1GB dataset

Normal (NoHeu) Fac (Heu)
Query | Size Prov Xml Prov Xml
10MB 0.0991 0.0538 0.1062 0.0410
Q1 100MB 0.8481 0.37629 0.9302 0.2582
1GB 8.4233 6.9261 8.9676 4.8069
10GB 122.5400 95.1900 150.2800 77.2800
10MB 0.1876 0.0584 0.1386 0.0352
2 100MB 17.5624 error 12.4271 0.2627
1GB +3600.0000 error 1329.0000 5.3133
10GB +3600.0000 error | +3600.0000 86.9500
Q3 10MB 0.4312 0.1357 0.4414 0.0918
100MB 42.8268 35.9454 47.4869 5.2949

Fig. 22: Runtime for Factorization Queries (Q1 to Q3)

as an optimization choice in our CBO. The total workload
runtime and results for individual queries are shown in
Fig. 19 and Fig. 14, respectively. Removing all redundant
duplicate elimination operators (Heu) is not always better
than removing none (NoHeu). Our CBO (Cost+Heu) has the
best performance in almost all cases by choosing a subset of
duplicate elimination operators to remove.

Factorizing Provenance. We compare the runtime of
Pipeline L1 (Prov) against P5 (XML) which produces a
nested representation of provenance. We test the effect of
the heuristic application of aggregation push-down (Rules
5 and 8 from Fig. 6) to factorize provenance. Fig. 22 shows
the runtimes for the factorization workload (queries Q1 to
Q3). In general, XML outperforms Prov since it reduces the
number of query results (rows) and total size of the results
in bytes. Prov does not benefit much from aggregation push-
down, because this does not affect the size of the returned
provenance. This optimization improves performance for
XML, specifically for larger database instances. In summary,
XML+Heu is the fasted method in all cases, outperforming
Prov+Heu by a factor of up to 250. Note that DBMS X does
not support large XML values in certain query contexts that
require sorting. A query that encounters such a situation
will fail with an error message (marked in red in Fig. 22).

Set vs. Bag Coalescing. We also run sequenced temporal
queries comparing Heu (use set-coalesce) and NoHeu. The
result set of Query Q1 is small. Thus, using set-coalesce
(Heu) only improves performance by ~10%. The runtimes
are 4.85s (Heu) and 5.27s (NoHeu). Choosing the right co-
alescing operator is more important for Query Q2 which
returns 2.8M tuples (35.38s for Heu and 64s for NoHeu).

9.3 Optimization Time and CBO Strategies

Simple Aggregation. We show the optimization time of
several methods in Fig. 16 (left). Heuristic optimization
(Heu) results in an overhead of ~50ms compared to the time
of compiling a provenance request without optimization
(NoHeu). This overhead is only slightly affected by the
number of aggregations. The overhead is higher for Cost
because we have 2 choices for each aggregation, i.e., the
plan space size is 2! for i aggregations. We have measured
where time is spend during CBO and have determined that
the majority of time is spend in costing SQL queries using
the backend DBMS. Note that even though we did use the
exhaustive search space traversal method for our CBO, the
sum of optimization time and runtime for Cost is still less
than this sum for the Join method for some queries.

13

cooling rate (cr)

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sim 289 | 14.6 8.6 6.5 4.6 3.6 2.6 2.0 1.5
Sim+Adp | 1.64 | 1.64 | 1.64 | 164 | 1.64 | 1.64 | 1.63 | 1.62 | 1.5

TABLE 3: Parameter Sensitivity for Simulated Annealing

TPC-H Queries. In Fig. 16 (right), we show the optimization
time for TPC-H queries. Activating PATs results in ~50ms
overhead in most cases with a maximum overhead of ~0.5s.
This is more than offset by the gain in query performance
(recall that with NoHeu only 3 queries finish within 6 hours
for the 1GB dataset). CBO takes up to 3s in the worst case.

CBO Strategies. We now compare query runtime and opti-
mization time for the CBO search space traversal strategies
introduced in Sec. 7. Recall that the sequential-leaf-traversal
(seq) and binary-search-traversal (bin) strategies are both ex-
haustive strategies. Simulated Annealing (sim) is the meta-
heuristic as introduced in Sec. 7.3. We also combine these
strategies with our adaptative (adp) heuristic that limits time
spend on optimization based on the expected runtime of the
best plan found so far. Fig. 20 shows the total time (runtime
(R) + optimization time (O)) for the simple aggregation
workload. We use this workload because it contains some
queries with a large plan search space. Not surprisingly,
the runtime of queries produced by seq and bin is better
than seg+adp and bin+adp as seq and bin traverse the whole
search space. However, their total time is much higher than
seq+adp and bin+adp for larger numbers of aggregations.
Fig. 21 shows the total time of sim with and without the adp
strategy for the same workload. We used cooling rates (cr)
of 0.5 and 0.8 because they resulted in the best performance.
The adp strategy improves the runtime in all cases except for
the query with 3 aggregations. We also evaluated the effect
of the ¢r and c parameters for simulated annealing (sim)
and its adaptive version (sim+adp) by varying the cr (0.1 ~
0.9) and ¢ value (1, 100 and 10000) for Simple Aggregation
query Q10 over the 1GB dataset. The choice of parameter ¢
had negledible impact. Thus, we focus on cr. Tab. 3 shows
the optimization time for ¢=10000 for these two methods.
The query execution time was 0.27s for cr (0.1 ~ 0.8) and
1.2s for cr 0.9. The total cost is minimized (2.0+0.27=2.27s)
when for cr 0.8. sim+adp further reduces the optimization
time to roughly 1.64s independent of the cr.

10 CONCLUSIONS AND FUTURE WORK

We present the first cost-based optimization framework
for provenance instrumentation and its implementation in
GProM. Our approach supports both heuristic and cost-
based choices and is applicable to a wide range of in-
strumentation pipelines. We study provenance-specific al-
gebraic transformations (PATs) and instrumentation choices
(ICs), i.e., alternative ways of realizing provenance cap-
ture. We demonstrate experimentally that our optimizations
improve performance by several orders of magnitude for
diverse provenance tasks. An interesting avenue for future
work is to incorporate CBO with provenance compression.

Acknowledgements. This work was supported by NSF Award
#1640864. Opinions, findings and conclusions expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(%]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
[22]
(23]

[24]

[25]
[26]

[27]

(28]

[29]

G. Karvounarakis and T. Green, “Semiring-annotated data:
Queries and provenance,” SIGMOD, vol. 41, no. 3, pp. 5-14, 2012.
T.]J. Green, M. Aref, and G. Karvounarakis, “Logicblox, platform
and language: A tutorial,” in Datalog in Academia and Industry.
Springer, 2012, pp. 1-8.

B. Glavic, R. J. Miller, and G. Alonso, “Using SQL for efficient
generation and querying of provenance information,” in In Search
of Elegance in the Theory and Practice of Computation. Springer, 2013,
pp- 291-320.

B.S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng, “GProM
- A swiss army knife for your provenance needs,” Data Eng. Bull.,
vol. 41, no. 1, pp. 51-62, 2018.

D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “An
annotation management system for relational databases,” VLDB],
vol. 14, no. 4, pp. 373-396, 2005.

S. Kohler, B. Ludéscher, and Y. Smaragdakis, “Declarative datalog
debugging for mere mortals,” Datalog in Academia and Industry, pp.
111-122, 2012.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao, “Efficient
querying and maintenance of network provenance at internet-
scale,” in SIGMOD, 2010, pp. 615-626.

X. Niu, R. Kapoor, B. Glavic, D. Gawlick, Z. H. Liu, V. Kr-
ishnaswamy, and V. Radhakrishnan, “Provenance-aware query
optimization,” in ICDE, 2017, pp. 473-484.

J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in Databases:
Why, How, and Where,” Foundations and Trends in Databases, vol. 1,
no. 4, pp. 379-474, 2009.

B. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and
B. Glavic, “Reenactment for read-committed snapshot isolation,”
in CIKM, 2016, pp. 841-850.

S. Lee, S. Kohler, B. Ludéscher, and B. Glavic, “A sql-middleware
unifying why and why-not provenance,” in ICDE, 2017.

X. Niu, B. Glavic, D. Gawlick, Z. H. Liu, V. Krishnaswamy,
and V. Radhakrishnan, “Interoperability for Provenance-aware
Databases using PROV and JSON,” in TaPP, 2015.

M. H. Bohlen and C. S. Jensen, “Sequenced semantics,” in Encyclo-
pedia of Database Systems, 2009, pp. 2619-2621.

M. K. Anand, S. Bowers, T. McPhillips, and B. Ludéscher, “Efficient
provenance storage over nested data collections,” in EDBT, 2009,
pp. 958-969.

A. Chapman, H. V. Jagadish, and P. Ramanan, “Efficient prove-
nance storage,” in SIGMOD, 2008, pp. 993-1006.

E. Wu, S. Madden, and M. Stonebraker, “Subzero: a fine-grained
lineage system for scientific databases,” in ICDE, 2013, pp. 865-
876.

T. Grust, M. Mayr, and J. Rittinger, “Let SQL drive the XQuery
workhorse (XQuery join graph isolation),” in EDBT, 2010, pp. 147-
158.

A. Klug, “Calculating constraints on relational expression,” TODS,
vol. 5, no. 3, pp. 260-290, 1980.

Y. V. Matiyasevich and J. E. Fenstad, Hilbert's tenth problem. MIT
press Cambridge, 1993, vol. 105.

D. Olteanu and J. Zavodny, “On factorisation of provenance
polynomials,” in TaPP, 2011.

S. Chaudhuri and K. Shim, “Including group-by in query opti-
mization,” in VLDB, 1994, pp. 354-366.

M. H. Bohlen, R. T. Snodgrass, and M. D. Soo, “Coalescing in
temporal databases,” in VDLB, 1996, pp. 180-191.

P. Seshadri, H. Pirahesh, and T. Leung, “Complex Query Decorre-
lation,” ICDE, pp. 450-458, 1996.

R. Ahmed, A. Lee, A. Witkowski, D. Das, H. Su, M. Zait, and
T. Cruanes, “Cost-based query transformation in Oracle,” in
PVLDB, 2006, pp. 1026-1036.

G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in ICDE, 1993, pp. 209-218.

Z. H. Liu, M. Krishnaprasad, and V. Arora, “Native XQuery
processing in Oracle XMLDB,” in SIGMOD, 2005, pp. 828-833.

G. Slivinskas, C. S. Jensen, and R. T. Snodgrass, “Adaptable
query optimization and evaluation in temporal middleware,” in
SIGMOD, 2001, pp. 127-138.

J. Cheney, S. Lindley, and P. Wadler, “Query shredding: efficient re-
lational evaluation of queries over nested multisets,” in SIGMOD,
2014, pp. 1027-1038.

C. C. Aggarwal, “Trio a system for data uncertainty and lineage,”
in Managing and Mining Uncertain Data. Springer, 2009, pp. 1-35.

14

[30] Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen, “On prove-

nance minimization,” TODS, vol. 37, no. 4, p. 30, 2012.

[31] B. Glavic and G. Alonso, “Provenance for nested subqueries,” in

EDBT, 2009, pp. 982-993.

Xing Niu received a Master in CS from Henan
University. He is now a PhD student at lllinois
Institute of Technology.

Raghav Kapoor received a Master in CS from
lllinois Institute of Technology. He is now a soft-
ware engineer at Teradata.

Boris Glavic received the PhD in computer sci-
ence from the University of Zurich. Currently, he
is an Assistant Professor at the lllinois Institute
of Technology focusing on data provenance and
integration.

Dieter Gawlick is an architect at Oracle. He
has developed key concepts for high-end OLTP,
storage management, messaging, workflow, and
information dissemination.

Zhen Hua Liu He is the architectural brain be-
hind semi-structured data management at Ora-
cle.

Vasudha Krishnaswamy received the PhD in
computer science from the University of Califor-
nia, Santa Barbara working on semantics based
concurrency control. Currently, she is a Consult-
ing Member of Technical Staff at Oracle.

Venkatesh Radhakrishnan received the PhD in
computer science from SUNY Albany. Currently,
he is a Software Engineer at Yugabyte, working
on a transactional, high-performance database
for planet-scale cloud applications. Prior to that,
he was a Staff Software Engineer at LinkedIn,
working on Pinot, a realtime distributed OLAP
datastore.

