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Abstract— This study examines human control of physical
interaction with objects that exhibit complex (nonlinear, chaotic,
underactuated) dynamics. We hypothesized that humans ex-
ploited stability properties of the human-object interaction.
Using a simplified 2D model for carrying a “cup of coffee”, we
developed a virtual implementation to identify human control
strategies. Transporting a cup of coffee was modeled as a cart
with a suspended pendulum, where humans moved the cart
on a horizontal line via a robotic manipulandum. The specific
task was to transport the cart-pendulum system to a target,
as fast as possible, while accommodating assistive and resistive
perturbations. To assess trajectory stability, we applied con-
traction analysis. We showed that when the perturbation was
assistive, humans absorbed the perturbation by controlling cart
trajectories into a contraction region prior to the perturbation.
When the perturbation was resistive, subjects passed through a
contraction region following the perturbation. Entering a con-
traction region stabilizes performance and makes the dynamics
more predictable. This human control strategy could inspire
more robust control strategies for physical interaction in robots.

I. INTRODUCTION

Compared to modern-day robots, human actuation is in-

ferior in both bandwidth and speed of information trans-

mission. Despite this fact, humans display superior agility

and dexterity, especially when they are physically interacting

with dynamically complex objects. This disparity in per-

formance raises the question of how humans achieve their

remarkable dexterity. Better understanding of human motor

control might inform advances in the control of robots,

exoskeletons and prostheses.

Insights gained in human motor control have helped in-

spire new ways to address problems in robot motion and

control. For example, the framework of dynamic movement

primitives for motor control in robotics is closely related
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to Central Pattern Generators (CPG) in neurobiology [1].

Building upon recent advances in the control of the human

hand during grasping, Ciocarlie et al. [2] [3] devised a grasp

planning algorithm that operates on a hand posture subspace

of highly reduced dimensionality. Recently, Ott et al. [4]

showed on a humanoid robot that a biologically inspired

posture control approach is more robust than a model-based

one. Inspired by human motor learning principles, Gehring et

al. [5] devised a method for fine-tuning the parameters of a

quadruped robot controller by introducing slight variations

over repeated motions. Sugimoto et al. [6] were able to

efficiently improve the movement policy of a humanoid

robot using a limited number of samples from its real

environment. Further, in physical human-robot interaction a

recent study showed that interaction was facilitated when the

robot movement closely resembled natural human movement

[7]. These examples demonstrate that applying insights from

biological motor control principles may prove useful for

robot motor control and human-robot interaction.

This study examined the control strategies that humans

employ when physically (and skillfully) interacting with

dynamically complex objects. In particular, we studied the

task of transporting a cup of coffee in the presence of visible

and predictable external perturbations. The task was rendered

in a virtual environment using a robotic manipulandum [8]

and perturbations either resisted or assisted the motion.

Such a task poses a challenge due to the underactuated,

nonlinear, and chaotic dynamics of the object. Moreover,

object interaction introduces bidirectional forces that pose

a control challenge absent in free movements [9].

It is generally assumed that humans acquire an internal

model of the task to predict object dynamics and thereby

afford inverse dynamics control [10] [11] [12] [13]. However,

control based on internal models for physical interaction with

objects exhibiting nonlinear and underactuated dynamics

appears challenging. Furthermore, relying on feedback cor-
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rections is not plausible due to the relatively long feedback

delays in the neuromotor system. We therefore hypothesized

that rather than learning accurate and precise models, humans

seek to make interactions predictable. Predictability implies

that expected uncertainties in the future, and their effects,

are minimized.

We operationalize predictability in terms of stability: A

stable system rejects small perturbations and returns to its

stable orbit, which is predictable. We hypothesized that

humans learn such stable and predictable trajectories to

obviate error corrections and extensive computations based

on accurate and precise models of nonlinear dynamics.

This strategy provides robustness in the face of external

perturbations and model-based closed-loop control becomes

less critical.

To measure stability and convergence of a given trajectory,

we used contraction theory [14]. Contraction analysis as-

sesses stability of nonlinear systems by studying convergence

between trajectories. Contraction theory is well-suited to

the problem at hand since we are not interested in the

final nominal behavior, such as equilibrium points or limit

cycles, but rather in those trajectories that forget initial

conditions, noise, and perturbations. Regions of the state

space in which neighboring trajectories converge to each

other are contraction regions.

This study shows that humans indeed exploit contrac-

tion regions to deal with perturbations during dynamically

complex physical interactions. In particular, we show that

humans exploit the contraction regions of the free, unforced

system. This is energetically efficient since the system is

driven to a state where its natural, passive dynamics guide it

to convergence and there is no need to exert any extra effort.

This paper is organized as follows. A review of some of

the main results of contraction analysis is provided in Section

II. Section III details the task, its simplified model, and the

experimental paradigm. Section IV presents computations

of the contraction regions. Section V tests the hypothesis

and assesses the human trajectories with respect to the

contraction regions. Section VI explores directions for future

work.

II. BACKGROUND

Lohmiller and Slotine [14] developed contraction analysis

as a method for differentially analyzing stability and conver-

gence of nonlinear systems, by quantifying the convergence

of neighboring trajectories.

Consider the general form of a nonlinear system

ẋ = f(x, t), (1)

where f is an n×1 nonlinear vector function and x is an n×1
state vector. This equation may also represent the closed-

loop dynamics of a control system with a feedback controller

u(x, t).
Next, consider two neighboring trajectories, x1(t) and

x2(t), representing two solutions of (1) for two different ini-

tial conditions x0
1 and x0

2 respectively. A virtual infinitesimal

Fig. 1. Virtual displacement δx between two neighboring solutions x1(t)
and x2(t) of ẋ = f(x, t).

displacement between the trajectories at a fixed time is δx,

as illustrated in Figure 1.

From (1), the differential is

δẋ =
∂f

∂x
(x, t)δx. (2)

Thus, the rate of change of the squared distance between

these trajectories is

d

dt
(δxT δx) = 2δxT ∂f

∂x
δx. (3)

Any length ‖δx‖ converges exponentially to zero if the

Jacobian ∂f
∂x is uniformly negative definite. Any region of

the state space in which the Jacobian satisfies this negative

definite condition is referred to as a contraction region. For

the Jacobian to be uniformly negative definite, this means

that

∃β > 0, ∀x, ∀t ≥ 0,
1

2
(
∂f

∂x
+

∂fT

∂x
) ≤ −βI < 0. (4)

In this case, all the eigenvalues of the symmetric part of the

Jacobian need to be uniformly negative definite. However,

this is only a sufficient condition for exponential conver-

gence.

A necessary and sufficient condition for exponential con-

vergence can be formulated by a more general definition of

differential length. Consider a differential coordinate trans-

formation of the form

δz = Θ(x, t)δx, (5)

where Θ(x, t) is a square matrix that satisfies ΘTΘ > 0. Θ is

referred to as the contraction metric. In this new coordinate

frame, a contraction region is one that satisfies

1

2
(F + FT ) < 0, (6)

where F is the generalized Jacobian

F = (Θ̇ + Θ
∂f

∂x
)Θ−1. (7)

All eigenvalues of the symmetric part of the generalized

Jacobian F must be uniformly negative definite. Therefore,

a necessary and sufficient condition for a region of the state
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space to be contracting is that there exist a metric Θ such

that ΘTΘ > 0 and 1
2 (F + FT ) < 0 over that region. If

this condition is satisfied, any trajectory starting in a ball

of constant radius (with respect to the metric), centered on a

given trajectory that is contained at all times in a contraction

region with respect to that metric, remains in that ball and

converges exponentially to that trajectory.

It is important to mention that finding a suitable metric

is not trivial, and can be the most challenging part of

contraction analysis. Several methods have been proposed

for obtaining a metric, including semi-definite programming

[15] and sums-of-squares programming [16]. This study will

use a method based on solving a partial differential equation

to arrive at a suitable metric.

III. THE CUP-OF-COFFEE TASK EXPERIMENT

Transporting a cup filled with coffee is an example of

physical interaction with a dynamically complex object;

moving the cup causes sloshing of the coffee, which in turn

exerts forces on the cup and the hand, i.e., the task requires

interacting with complex nonlinear fluid dynamics. In the

experimental task subjects transported this underactuated

object from a start point to an end point, while traversing a

visible perturbation along the way. Magnitude and direction

of the perturbation are known and subjects could learn the

best strategy in 60 trials.

A. Mechanical Model of the Task

Simulating a realistic 3D cup with sloshing coffee with

nonlinear equations from fluid mechanics is computationally

expensive, especially when representing the system in a vir-

tual environment. In addition, analytical treatment becomes

vastly more challenging. Therefore, the task was simplified

to a semicircular 2D arc with a ball rolling inside. The

motion of the cup was limited to one direction along the

horizontal axis. Assuming that the ball does not roll and only

slides without friction along the cup, the system becomes

mathematically equivalent to the well-known cart-pendulum

system, with the pendulum being undamped. Despite this

simplification, much of the complex dynamic behavior was

retained. Figure 2 illustrates the real task (Fig. 2A), the

conceptual model (Fig. 2B), and the mechanical model (Fig.

2C).

The equations of motion of the mechanical model are

(m+M)ẍ(t) = lm
(
φ̇(t)2 sin(φ(t))− φ̈(t) cos(φ(t))

)

+ u− bẋ(t), (8)

lφ̈(t) = −g sin(φ(t))−Gẍ(t) cos(φ(t)), (9)

where x(t) denotes the position of the cart, φ(t) denotes the

pendulum angle with a counterclockwise positive convention,

m is the mass of the pendulum, M is the mass of the

cart, l is the length of the massless pendulum rod, and g
is the gravitational acceleration. The force exerted by the

human subject is u. For contraction regions to exist, there

must be some form of energy dissipation. Therefore damping

was added in the x coordinate, with the damping coefficient

Fig. 2. Different models of the cup task (A, B, C) and the virtual interface
(D, E).

denoted by b. Applied to the horizontal displacement of the

cart, this damping may arise from human arm impedance.

To increase the task challenge and to exclude the trivial case

where the contraction region spans the entire state space, the

cup acceleration ẍ was multiplied by a gain G. This makes

the ball more responsive to movements of the cup when

implemented in the virtual environment. The parameters used

to simulate the cup task in the virtual environment were:

M = 3.5kg, m = 0.3kg, l = 0.35m, b = 20N.s/m, and

G = 5.

B. The Experimental Virtual Task

This simplified mechanical model was simulated in a vir-

tual environment with visual and haptic feedback interfaced

with a robotic manipulandum, as depicted in Fig. 2D. The

projection screen displayed a cup (corresponding to the cart)

and ball (corresponding to the pendulum bob), as seen in Fig.

2E. Participants were asked to move the cup from the start

box A to the target box B as fast as possible. In addition,

the cup should come to rest in box B without the ball rolling

beyond the rim of the cup and escaping. At 60% of the travel

distance, a perturbation of magnitude 40N and duration 20ms

was applied to the cup in the horizontal direction. The forces

either assisted or resisted the cup, i.e. acted either in the

direction of motion of the cup or against it. The position

of the perturbation was visually displayed as a bump on the

horizontal line (Fig. 2E) and the subject always knew the

magnitude and the direction of the perturbation as they were

presented in blocks.

The experiment consisted of 4 blocks. To familiarize

participants with the task, block 1 did not present any per-

turbation and subjects just moved from left to right. Blocks

2 and 4 comprised 60 trials each and involved assistive and

resistive perturbations respectively. Block 3 comprised 10
baseline trials between the two perturbation blocks. At the

beginning of each trial, the cup was centered in box A and

the ball rested at its equilibrium position.
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C. Apparatus and Data Acquisition

The participants in the experiment were seated in front of

a large projection screen (2.4× 2.4m) at about 2m distance.

Physical interaction with the virtual environment was via a

3-degree-of-freedom force-controlled robotic manipulandum

(HapticMaster, Motekforce, NL [8]). By applying a force

to the handle of the robotic arm, participants controlled the

horizontal x-position of the virtual cup. The robotic arm was

restricted to move only in the horizontal direction along the

subject’s frontal plane to ensure a uni-directional motion of

the cup, consistent with the model. The robotic arm provided

haptic feedback, allowing participants to sense the system’s

inertia, the force of the ball on the cup, and the perturbations.

More details on the manipulandum’s end-effector position

resolution, haptic resolution, and force sensitivity, are pro-

vided in [8].

The force applied by the participants to the manipu-

landum (u) and the kinematics of the cup and the ball

(x, ẋ, ẍ, φ, φ̇, φ̈) were all recorded at 120 Hz. Data was

collected from four subjects.

IV. ANALYSIS OF CONTRACTION REGIONS

To compute the contraction regions of the model (8)

and (9), the equations were re-written in their state-space

representation. Taking X = (ẋ, φ, φ̇)T = (x1, x2, x3)T , the

state-space equations are

Ẋ =

⎛
⎝
ẍ

φ̇

φ̈

⎞
⎠ =

⎛
⎝
ẋ1
ẋ2
ẋ3

⎞
⎠

=

⎛
⎜⎝

−bx1+u+gm sin(x2) cos(x2)+lmx32 sin(x2
−Gm cos2(x2)+m+M

x3
G cos(x2)(u−bx1)+g(m+M) sin(x2)+Glmx32 sin(x2) cos(x2)

Glm cos2(x2)−l(m+M)

⎞
⎟⎠ .

(10)

For a region to be contracting, the Jacobian must be uni-

formly negative definite in this region. For the parameterized

model, the symmetric part of the Jacobian, Jsym, for the free

uncontrolled system (u = 0) was not found to be negative

definite for any point in the state space. However, this did

not rule out the existence of contraction regions, since the

condition on negativity of Jsym is only a sufficient one.

The next step was to find a contraction metric Θ(X, t) for

which some regions of the state space would be contracting.

The partial differential equation provided in [14] for com-

puting a suitable metric revealed the contraction regions

∂Θ

∂X
f +ΘJ = −Θ, (11)

where f is the nonlinear vector function describing the

dynamics (10) and J is the Jacobian ∂f
∂X . This partial

differential equation was solved numerically to obtain the

contraction metric, which then enabled the computation

of the generalized Jacobian F from (7). To deduce the

contraction regions, the negativity condition (6) was tested

for points in the state space within the range

−0.2 ≤ ẋ ≤ 0.7; −1.5 ≤ φ ≤ 1.5; −6 ≤ φ̇ ≤ 6.

Fig. 3. Contraction regions in the state space of the cart-pendulum (cup-
ball) system. The black points indicate states that satisfied the negativity
condition (6). The yellow contraction regions are the minimum volume
ellipsoids that contain these points.

These boundaries were used since human subject’s data were

confined to this range. The points in the state space that sat-

isfied the condition were therefore elements of a contraction

region. Figure 3 displays these contraction regions.

V. EXPERIMENTAL RESULTS

As the contraction regions have been computed, the human

data were evaluated with respect to the contraction regions.

The goal was to test the hypothesis that humans take ad-

vantage of the contraction regions to absorb or exploit the

perturbations.

A. Assisting Perturbations

Figure 4 illustrates one early trial and one late trial for one

exemplary subject in the block with assisting perturbations.

For ease of interpretation, the trajectories and the contraction

regions have been projected onto the φ−φ̇ plane. In the early

trials, the trajectories did not pass through any contraction

regions. However, after some practice, the contraction region

was entered just prior to the perturbation. This caused the

perturbation to occur within the contraction region, thereby

mitigating instability and increasing predictability.

This strategy is effective as it reduces divergence and the

probability of chaotic and unpredictable behavior. Figure 5

presents one late trial in the full 3 dimensions of the state

space. The same changes of strategy were observed in four

other subjects.

B. Resistive Perturbations

Figure 6 illustrates an early and a late trial for one subject

when performing the task with a resistive perturbation.

For ease of interpretation, the human trajectories and the

contraction regions have been projected onto the φ − φ̇
plane. As for assistive perturbations, early trials did not

make use of the contraction regions. However, as the subject

learned to navigate the perturbations, the strategy changed

and the trajectory passed through a contraction region after

the perturbation. This attenuated the transient effects of the
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(a) (b)

Fig. 4. Human trajectories for the condition with assisting perturbation: (a) Early trial (b) Late trial. P− denotes the instant just before the perturbation
while P+ denotes the instant after the perturbation. The system starts at (0, 0).

Fig. 5. One late trial with assisting perturbations. The subject learned the perturbation and shapes the trajectory to arrive at a contraction region.

(a) (b)

Fig. 6. Human trajectories for resistive perturbation: (a) Early trial (b) Late trial. P− denotes the instant just before the perturbation while P+ denotes
the instant after the perturbation. The initial conditions are (0, 0).

perturbation and stabilized the trajectory, thereby increasing

predictability. The same pattern was observed in all four

subjects. Figure 7 presents a different late trial in the full

3 dimensions of the state space.

The differences between the control strategies for assistive

and resistive perturbations are noteworthy. For an assistive

perturbation, the velocity of the cart increased and hence

there was a greater risk of onset of chaotic and unpredictable

dynamics. This is why subjects chose to absorb the per-

turbation immediately. In contrast, a resistive perturbation

decreased the velocity of the system and did not require

an immediate stabilization. However, the transients of this

sudden change in the direction of motion needed to be

attenuated, which required that the system enter a contraction
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Fig. 7. A late trial with resistive perturbations. The subject passed through the contraction region after the perturbation to stabilize the trajectory.

region after the perturbation.

VI. CONCLUSION AND FUTURE WORK

This work examined a complex interactive task of trans-

porting an underactuated dynamic object, a cup of coffee,

to reveal human motor control strategies. We showed that

humans exploited contraction regions of the unforced, free

system to compensate for known perturbations. Future work

will examine whether these human control principles can

enhance dexterous manipulation capabilities of robots. We

envisage that “contraction-based” control will naturally lead

to robust manipulation, particularly in physically interactive

tasks. Moreover, we would like to investigate the generality

of this control strategy in human motor control, and whether

it extends to other types of tasks.
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