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Abstract—The Automata Processor (AP) accelerates applica-
tions from domains ranging from machine learning to genomics.
However, as a spatial architecture, it is unable to handle larger
automata programs without repeated reconfiguration and re-
execution. To achieve high throughput, this paper proposes
for the first time architectural support for AP to efficiently
execute large-scale applications. We find that a large number
of existing and new Non-deterministic Finite Automata (NFA)
based applications have states that are never enabled but are
still configured on the AP chips leading to their underutilization.
With the help of careful characterization and profiling-based
mechanisms, we predict which states are never enabled and
hence need not be configured on AP. Furthermore, we develop
SparseAP, a new execution mode for AP to efficiently handle
the mis-predicted NFA states. Our detailed simulations across 26
applications from various domains show that our newly proposed
execution model for AP can obtain 2.1× geometric mean speedup
(up to 47×) over the baseline AP execution.

I. INTRODUCTION

Many applications from domains such as genomics, malware

detection, machine learning, and data analytics exhibit high

levels of parallelism and are being accelerated through the

use of spatial architectures that can exploit higher levels of

parallelism than CPUs and also can significantly reduce data

movement [1]–[9]. Spatial architectures usually consist of many

interconnected processing elements that expose a very high

degree of parallelism. Field-programmable gate arrays (FPGAs)

are a classic example; the systolic-array-based Matrix Multiply

Unit in Google’s Tensor Processing Unit [10] is also a spatial

architecture. One of the fundamental challenges with spatial

architectures is that program size is a first order concern – there

are a fixed number of states available and a spatial program

must fit completely to begin execution. Otherwise, execution

may be impossible, or in the best case multiple rounds of

reconfiguration and re-execution may be required that can

incur significant performance penalties [11]. On traditional von

Neumann architectures, these issues can typically be handled

by traditional mechanisms such as context switching and

virtualization. However, the large size of the spatial program

state means that these techniques do not transfer directly. Some

of these issues affect also traditional architectures like the

Graphics Processing Units (GPUs), whose massive parallelism

also means that the amount of state is often prohibitively large

to support efficient multitasking [12]–[15].

In this paper, we focus on providing architectural support

for executing large-scale tasks on a special class of spatial

architectures, known as automata processors (APs) [16]. These

architectures accelerate the processing of Non-deterministic

Finite Automata (NFA), a widely used representation of Finite

State Machines (FSMs). FSMs are foundational in a wide

range of application domains such as DNA sequence matching,

network intrusion detection and machine learning [17]–[22].

Although many existing approaches [23]–[26] accelerate NFA

processing on CPUs or GPUs, none of them completely solve

the problem of data movement caused by irregular accesses

due to NFA transition table lookups. In comparison, the AP

executes NFAs natively and achieves significant performance

speedup [27], [28] primarily because of: a) AP’s massive

parallelism where NFA states are mapped to columns in DRAM

and can be activated independently and simultaneously in a

given cycle; and b) AP’s in-memory processing capability

that handles NFA transitions without data movement between

processor and memory.

An AP half-core (the basic processing unit of AP) can hold

up to 24K states. However, in future, we expect that the NFA-

based applications are going to scale both in terms of the

number of NFAs per application and the number of states

in an NFA. We expect this scaling from at least two aspects.

First, in the era of big-data, the new applications will likely

be mining even larger databases. For example, ClamAV [29],

an anti-virus application, uses a variant of regular expression

to specify each virus signature in an ever-enlarging database.

The number of NFA states constructed from these signature

regular expressions is consequently larger and state-of-the-art

AP chips can no longer hold all the states at once. Second, a

number of existing and newly proposed techniques enhance

the throughput of FSM processing, but only by increasing the

number of states. For example, existing AP supports duplicating

NFAs to run multiple input symbol streams in parallel [30];

newly proposed Parallel Automata Processor [31] duplicates

NFAs for parallel enumeration; and the Multi-stride NFAs [32],

[33] transformation increases the number of transitions for

processing multiple symbols at one step. Current AP chips

execute these applications with a large number of NFAs/states

by making independent batches of NFAs and executing each

batch on the entire input while reconfiguring the AP between

each batch.

To address the performance inefficiencies from repeated

re-executions, we propose hardware and software support for

large-scale NFA-based applications that currently do not fit in

the AP chips. Our mechanisms are based on our key observation

that not all states of an NFA are enabled during execution, and















the implementation of the SpAP operations. Then we estimate

the execution time overhead of these operations. Finally, we

demonstrate the storage requirements for the intermediate

reports.

Jump Operation. The jump operation modifies a register that

tracks the current input position. Specifically, if no STE is

enabled, the jump operation updates the register value with the

input position from the next intermediate report. Since no state

configured to SpAP is always enabled, the enabled states in

next cycle are only determined by the activated states in the

current cycle. Therefore, given that the routing matrix routes

the enable signal from the activated states, we assume that the

routing matrix provides a flag that is set if no STE is enabled.

Enable Operation. Given an intermediate report, we use the

state ID information to enable the corresponding STE. Since

STEs are connected to the routing matrix, and the routing matrix

follows a hierarchical design (block, rows, and STEs) [16], we

utilize such hierarchy to perform the enable operation. The

routing matrix consists of 96 blocks per half core. Each block

is a group of 16 rows, and each row is a group of 16 STEs.

Since state ID is represented by 16 bits, we divide these bits to

enable the required STE in a hierarchical manner. We use the

first 8 bits to select the block, the middle 4 bits to select the row,

and the last 4 bits to select the required STE within the row.

We use a total of three decoders to select the required block,

row, and STE, respectively. Specifically, a 7×128 decoder is

used to select the block. Then, a 4× 16 decoder selects the

row. Finally, a 4×16 decoder enables the required STE. The

enable operation works in parallel with the processing of input

symbols during SpAP mode.

Enable Operation Execution Overhead. We can overlap

the enable operation of only one intermediate report with

the processing of the input symbols in SpAP mode. Thus,

if multiple intermediate reports were generated in the same

input position during BaseAP mode, the input processing is

stalled until all the states in the simultaneous intermediate

reports are enabled. In SpAP mode, to do that, we compare

the input position of the head intermediate report with the

next input position (current input position + 1). Similarly, we

compare the input position of the second intermediate report

with the next input position. If both of these comparisons

are set, we pause the processing of the input symbols. After

enabling the states in all simultaneous intermediate reports,

the input processing resumes. The cycles spent to enable the

simultaneous intermediate reports are considered overhead to

the overall SpAP mode execution and are accounted for in our

evaluation methodology.

Intermediate Reports Storage Overhead. The list of inter-

mediate reports is stored in the off-chip device memory. Only

a portion of the reports is loaded to the on-chip memory to

be consumed during the SpAP mode. We use a queue of 128

entries to store the loaded intermediate reports. Because each

intermediate report is a (input position, state ID) tuple, we need

6 bytes per intermediate report (4 bytes for the input position,

and 2 bytes for the state ID). Thus, the overall storage required

for the intermediate reports queue is 128×6 bytes.

VI. EVALUATION METHODOLOGY

A. Applications

We evaluate our mechanisms with all applications in the

ANMLZoo benchmark suite [27] and the Regex benchmark

suite [34]. Table II shows that these applications have states

ranging from approximately 2K to 100K, and several of them

have states more than 24K, which is the size of our baseline AP

half-core. In order to evaluate applications with an even larger

number of states, we generate multiple applications based on

three sources: ClamAV [29], Hamming [40], and Snort [41].

ClamAV4k (CAV4k). We convert the regular expressions

in main.cvd of the Q1 2018 ClamAV Virus Database to

ANML format. We select the first 4,000 patterns from the virus

database. We use the same input of ClamAV in ANMLZoo [27].

Hamming. We generate Hamming automata using the same

approach as the ANMLZoo benchmark suite [40]. To keep

it consistent with Hamming in ANMLZoo, we also create

the automata in the BMIA (Bounded Mismatch Identification

Automaton) format. We created three different workloads from

Hamming that contain different number of NFAs, namely

HM500, HM1000 and HM1500. For each workload we gener-

ate, we create a mix of different expected pattern lengths (8, 12,

20, 30), each with a distance of 2 to 20% of the pattern length

(e.g., 0.2×30 = 6). Similar to Hamming in ANMLZoo [27],

we generate the inputs randomly.

Snort L. Our Snort_L application includes 3,126 rules from

both community rules and registered rules of the Snort network

intrusion detector [41]. We convert the regular expressions to

ANML format. We use the same network traffic input as the

Snort application in ANMLZoo.

We consider a total of 26 applications and divide them into

three groups based on the number of states they contain. The

high resource requirement (high) group contains applications

with states more than the capacity of an AP chip (49K).

The medium resource requirement (medium) group contains

applications with states more than the capacity of an AP half-

core (24K). The rest of the applications are grouped into low

resource requirement (low) group.

B. Experimental Setup

We build our mechanisms on top of the open-source virtual

automata simulator – VASim [42]. As we mentioned in

Section V, we evaluate both AP–CPU and BaseAP/SpAP

execution. In the AP–CPU execution, the states that are

executed in the SpAP mode are instead executed on the

CPU. Table III shows a summary of the evaluated scenarios.

We model different timing mechanisms for AP–CPU and

BaseAP/SpAP in the simulator as detailed below.

Timing AP–CPU Execution. We record the total amount of

time that the CPU spends to handle the intermediate reports

by using std::chrono in C++ library. Therefore, we use

the real time when we calculate the speedup in the AP–CPU

execution. We run our experiments on a machine with Intel(R)

Xeon(R) CPU E5-2683 v3. We use 7.5 ns as the cycle time

per symbol [31] for the BaseAP execution.



TABLE II: List of evaluated applications: “RStates” stands for
reporting states and “MaxTopo” stands for maximum topological
order across NFAs. “Grp” stands for resource requirement
groups: High (H), Medium (M), Low (L).

Application Abbr. Grp. #States #NFAs MaxTopo #RStates

ClamAV4000 [29] CAV4k H 1124947 4000 2080 4015

Hamming1500 [40] HM1500 H 366000 3000 32 6000

Hamming1000 [40] HM1000 H 244000 2000 32 4000

Snort big [41] Snort L H 132171 3126 4509 4043

Hamming500 [40] HM500 H 122000 1000 32 2000

SPM [27] SPM H 100500 5025 16 5025

Dotstar [27] DS H 96438 2837 95 2838

EntityResolution [27] ER H 95136 1000 64 1000

RandomForest1 [27] RF1 H 75340 3767 3 3767

Snort [27] Snort H 69029 2687 133 4166

ClamAV [27] CAV H 49538 515 542 515

Brill [27] Brill M 42658 1962 38 1962

Protomata [27] Pro M 42009 2340 123 2365

Fermi [27] Fermi M 40783 2399 13 2399

PowerEN [27] PEN M 40513 2857 44 3456

RandomForest2 [27] RF2 M 33220 1661 3 1661

TCP [34] TCP L 19704 738 100 767

Dotstar06 [34] DS06 L 12640 298 104 300

Ranges05 [34] Rg05 L 12621 299 94 299

Ranges1 [34] Rg1 L 12464 297 96 297

ExactMath [34] EM L 12439 297 87 297

Dotstar09 [34] DS09 L 12431 297 104 300

Dotstar03 [34] DS03 L 12144 299 92 300

Hamming [27] HM L 11346 93 20 186

Levenshtein [27] LV L 2784 24 23 96

Bro217 [34] Bro217 L 2312 187 84 187

TABLE III: Summary of Execution Scenarios

System Software Hardware

Execution of

entire NFAs

Execution of

predicted

hot set

Execution of

predicted

cold set

AP
Partition

(at NFA granularity)
BaseAP Mode N/A N/A

AP–CPU
Partition

(hot/cold set)
N/A BaseAP Mode CPU

BaseAP/SpAP
Partition

(hot/cold set)
N/A BaseAP Mode SpAP mode

Recording the Cycles in BaseAP/SpAP Execution. In

the BaseAP/SpAP execution, we record the execution

cycles via the simulator. The number of cycles in

BaseAP/SpAP execution is the sum of cycles spent on BaseAP

mode and SpAP mode. Therefore, SpeedupBaseAP/SpAP =

Number of cycles on AP baseline execution
Number of cycles on BaseAP Mode+Number of cycles on SpAP Mode

.

Performance per STE. We define a metric called performance

per STE to show how much throughput each STE can provide

on average. Specifically, performance per STE =
throughput

CAP
,

where throughput =
number of input symbols

number of cycles
. This allows us to

compare APs with different capacities while also considering

techniques that improve performance solely by increasing the

AP size. Because each STE in the AP occupies die area, we

can also consider this metric as a proxy for performance/area.

Overheads. In this paper, we focus on reducing the re-

execution overhead as we found it is the major performance

bottleneck in AP. The new SpAP mode incurs the stall cycles

due to simultaneous intermediate reports (Section V-B). Our

final results include these stall cycles. There are two more

generic overheads related to output and reconfiguration. In our

evaluations, we do not include the output overhead [30] and

rely on existing work [43] that proposes both hardware and

software techniques to address it. We also do not include the

reconfiguration overhead (50 ms [44], [45] for reconfiguring a

full AP board) in our results as we believe it can be amortized

over AP execution, especially when it executes very large

inputs.

VII. EXPERIMENTAL RESULTS

Effect on Performance. To show the benefits of our schemes,

we evaluate the speedup for applications in the high and

medium groups. Our mechanisms do not change the throughput

of AP for applications in the low category since the sizes

of applications are smaller than our baseline AP with 24K

STEs. Figure 10(a) shows the performance results of our

proposal, from which we draw four major observations. First,

The AP–CPU execution shows a significant geometric mean

slowdown of 9.8× and 2.9× under 0.1% and 1% profiling input,

respectively. However, five applications out of 16 applications

(CAV4k, HM1500, HM1000, DS, Snort) achieve a 4.2×
geometric mean speedup at no cost of hardware modification.

Second, we find that BaseAP/SpAP execution shows a speedup

in the majority of evaluated applications. It can achieve 1.8×
and 2.1× geometric mean speedup using 0.1% and 1% of

input as profiling input, respectively. Third, BaseAP/SpAP

execution can be slower than the AP in a few applications (e.g.,

PEN), since these applications generate many simultaneous

intermediate reports, leading to lengthy enable stalls on the

SpAP mode (shown in Table IV). Fourth, in applications with

large SCCs that prevent efficient partitioning (e.g., ER, see

Figure 8), our scheme configures all the states to the BaseAP

mode execution with no change in execution time.

Effect on Performance per STE. In order to evaluate the

efficiency of our schemes across a wider set of system sizes

and configurations, we show performance per STE in Figure 11,

from which we draw two major observations. First, although

different sizes of AP chips can execute the same application

with the same performance (e.g. an application in low group

fits and runs on both an AP chip or an AP half-core), larger

AP chips have less performance/STE, because fewer STEs in

the larger AP are utilized for the same application size. Such

underutilization leads to less performance/STE. Second, on

average, our scheme not only increases performance/STE by

32.1% under the scenario of AP half-core and using 1% pro-

filing input, but consistently achieves better performance/STE

under different sizes of AP as well. There are two major

reasons: (1) we predict cold states and eliminate them from

being configured, which increases AP utilization; (2) we use

fewer cycles in the SpAP mode for mis-prediction handling

than re-execution by batches hence increasing the throughput.

Resource Savings and Speedup. We show the results of

resource savings in Figure 10(b). By comparing it with

Figure 10(a), we make three observations. First, generally,

the applications with high resource savings also have good

speedups. Second, PEN shows slowdown although it has good

resource savings. This is because its SpAP mode execution

has lots of enable stalls due to a large amount of simultaneous

intermediate reports (Table IV). Third, although the resource

savings may be the same under different profiling inputs, the

speedup may be different (e.g., Snort). It is because the

original size of the predicted hot set was different, but due

to the optimization in Section IV-B, each batch was extended

with a part of the predicted cold states to match the capacity

of AP. Consequently, this leads to the same resource savings.
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