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ABSTRACT

Network Management is a critical process for an enterprise to con-
figure and monitor the network devices using cost effective methods.
It is imperative for it to be robust and free from adversarial or ac-
cidental security flaws. With the advent of cloud computing and
increasing demands for centralized network control, conventional
management protocols like SNMP appear inadequate and newer
techniques like NMDA and NETCONF have been invented. How-
ever, unlike SNMP which underwent improvements concentrating
on security, the new data management and storage techniques have
not been scrutinized for the inherent security flaws.

In this paper, we identify several vulnerabilities in the widely
used critical infrastructures which leverage the Network Manage-
ment Datastore Architecture design (NMDA). Software Defined
Networking (SDN), a proponent of NMDA, heavily relies on its data-
stores to program and manage the network. We base our research
on the security challenges put forth by the existing datastore’s de-
sign as implemented by the SDN controllers. The vulnerabilities
identified in this work have a direct impact on the controllers like
OpenDayLight, Open Network Operating System and their pro-
prietary implementations (by CISCO, Ericsson, RedHat, Brocade,
Juniper, etc). Using our threat detection methodology, we demon-
strate how the NMDA-based implementations are vulnerable to
attacks which compromise availability, integrity, and confidentiality
of the network. We finally propose defense measures to address the
security threats in the existing design and discuss the challenges
faced while employing these countermeasures.

1 INTRODUCTION

We live our lives on the Internet. Our entertainment, financial, so-
cial, and intimate interactions are increasingly happening online,
manifesting as bits racing from network to network across the
world. Though, most of the time, the technical details of the config-
uration of these networks are “out of sight and out of mind*, the
networks must be configured and maintained. Traditionally, this
has been a painstaking process involving manual configuration of
individual devices across the network topology. Recently, however,
this has begun to be revolutionized by Software Defined Networking
(SDN).

SDN is an innovative architectural approach to modern computer
networks where the control features of the infrastructure are ab-
stracted from the network devices themselves and placed into a cen-
tralized location. This abstraction of the network allows for novel
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approaches to network management, including third-party applica-
tions, dynamic and adaptive configuration, and cloud-hosting. Many
organizations are realizing the benefit of SDN: Google’s SDN-based
network increased network utilization in their WAN to 100% [14].

However, this applicability comes with some risk: as SDN tech-
nology is used to configure, monitor, and manage computer net-
works, their security is of vital importance. Attacks against an
SDN system can bypass access controls, take down the network,
reroute traffic, or even man-in-the-middle communication. There-
fore, the security of an SDN system is of the utmost importance.
Naturally, security researchers have investigated the security of
these networks, identifying issues stemming from the malicious
applications [29], vulnerable services [13], network configuration
flooding [34, 36], link saturation [16], and so on.

Through our research into SDN security, we observed a cen-
tral theme shared by many of these vulnerabilities. Specifically,
Software Defined Networking suffers from a semantic gap problem
in the way that data is shared between the centralized controller
and the distributed network devices. This semantic gap leads to
differences in the treatment of data by different subcomponents
of a software defined network, potentially manifesting in security
problems.

More interestingly, a deeper look revealed that this semantic
gap problem is not, in fact, solely the fault of SDN’s design deci-
sions, but rather is inherent in the modern standard for network
management data storage architecture (RFC 8342)—the Network
Management Datastore Architecture (NMDA) design [31]—used
by SDN and many other network configuration systems. NMDA
specifies that management, configuration, and operational infor-
mation that is required and generated during the life cycle of SDN
controllers are stored in entities termed datastores. Different states
and stages which appear during the control flow of an event govern
which datastores will be used to hold specific information and what
entities are responsible for processing it.

The NMDA RFC recognizes that its distributed architecture could
open the door to security concerns, but ultimately states in its Secu-
rity Considerations section that the design has “no security impact
on the network (Internet).” We showcase that this is not the case:
different datastore entities and SDN layers are governed by diverse
semantics, and the intercommunication between these entities can
lead to a breach of trust boundaries in two forms. First, although
continuous flow of information happens between SDN planes, there
is no proposed mechanism to verify the integrity and amount of
data that flows between the layers. Second, applications use and
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modify information in datastores without a sense of ownership,
which leads to conflicting responsibilities and loss of integrity of
this information.

In this paper, we investigated the security of SDN in the context
of this design issue, identified multiple security vulnerabilities stem-
ming from the semantic gap. These vulnerabilities impact widely-
used, enterprise-ready SDN controllers: OpenDayLight (ODL) [27],
Open Network Operating System (ONOS) [25], and their propri-
etary implementations by vendors such as Juniper, Ericsson, CISCO
and RedHat. We disclosed these vulnerabilities to the impacted
vendors as we discovered them, and the vendors confirmed the
identified vulnerabilities, resulting in three CVEs and a confirmed
security issue with no CVE yet assigned. Additionally, we worked
with the concerned engineering teams to design countermeasures
and assisted in identifying their implementation-level root causes
bugs to help fix the software itself, where possible. Because the is-
sues that we identified stemmed from design inadequacies, some of
them could not be fixed under the current SDN controller design
without incurring significant performance penalties. Inspired by
this, we identified a number of mitigations that can be applied to
the NMDA specification (and, subsequently, propagated into SDN
designs) to address this semantic gap.

The key contributions of this work can be summarized as:

(1) At the time of the writing, this work is the first security
analysis of the underlying design of SDN datastores, and we
determine that there exists a semantic gap in information
management between different layers of abstraction in SDN.
We examine the problems that stem from this semantic gap
and identify ways to leverage it to adversely impact decisions
of services running inside an SDN controller. Due to the
event-driven nature of SDN, this can have a cascading effect
on the security of the entire network.

(2) We present an adversarial model and threat detection method-
ology (using an approach assisted by black box fuzzing) to
selectively attack different datastores. With this, we iden-
tify vulnerabilities (with corresponding exploits) in widely
adopted SDN controllers.

(3) We propose potential countermeasures to prevent the ex-
ploits that lead to attacks such as denial of service, privilege
escalation, integrity breach, etc.

Although this work focuses on security issues in SDN (a major
application of the NMDA standard), the applications of the vulner-
able network management datastore design are not limited to SDN
controllers (as shown in Table 5). Therefore, vulnerabilities exposed
in this work can potentially be extrapolated to other NMDA-based
network management platforms.

2 BACKGROUND

In this section, we describe the fundamental concepts involved in
network management, SDN, and organization of the stored infor-
mation inside SDN controllers which result in the semantic gap

problem.
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Figure 1: The constitution of SDN: Applications store net-
work configuration in controller, controller configures the
network and provides operational state back to applications

2.1 Network Management

A network is composed of multiple entities (switches, routers, links,
hosts, etc.) which can be individually managed and programmed
with forwarding logic. However, individually managing these en-
tities increases the degree of management for the entire network
which in turn increases its cost of maintenance. The Simple Network
Management Protocol (SNMP) marked the beginning of remote
monitoring and configuration of management devices. The first
draft of SNMP appeared in 1988 [4] has since undergone multiple
amendments. At its prime, however, SNMP started to appear re-
dundant and unsuitable to manage dynamically scalable networks.
SNMP automation scripts are costly and fragile to maintain (e.g.,
CISCO IOS scripts) as they lack API-based programming benefits
or support for transaction management.

The next generation of network management is represented
by model-driven architectures that work with dynamically scaling
systems such as cloud and data centers. These architectures provide
APIs and models to describe not just the network elements, but
also the policies, services, and transactions in a network. Some of
these new protocols, which are quickly gaining popularity, include
RESTCONEF [3], NETCONF [6], and OpenFlow [22].

2.2 Rise in Adoption of NMDA with SDN

The Network Management Datastore Design (NMDA) [31] and the
Network Configuration Protocol (NETCONF) [6] were introduced
to address the challenges of portability of systems and mainte-
nance cost in SNMP respectively. However, they suffered from lack
of early adoption as their adoption required a massive change in
the architecture of existing systems and rewriting of automation
frameworks.

With the introduction of Software Defined Networking (SDN)
and Network Function Virtualization (NFV), the merits of central-
ized network programming were realized and adoption of API-
based protocols and modular design started to gain momentum.
A recent report on NMDA’s current state of affairs documents an
exponential growth in the number of NMDA-based models [1].

The SDN architecture obsoletes SNMP constructs and necessi-
tates the adoption of modeled datastores design. The configuration
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settings stored inside an SDN-controller are transferred to infras-
tructure (in SDN terminology, this is a movement of information to
different physical and logical planes) and it is possible to miss a part
or whole of the information during communication if a principled
design is not followed. Therefore, SDN leverages NMDA to define a
set of abstracted datastores which keep conceptual data in separate
places (datastores) as shown in Figure 1.

In addition to configuration and operational datastores of NMDA,
vendors that implement SDN controllers also add a third datastore
for storing the management information (such as network adminis-
trator credentials, authorized applications, etc.). Information cate-
gorization is explained in further details in Section 2.4.

2.3 SDN

In SDN, remote applications configure a centralized server (running
multiple services) to manage a physically separated networking
infrastructure. As shown in Figure 1, these entities are distributed in
different layers which are important to the semantic gap problem.

2.3.1 SDN Controller. An SDN controller is a collection of
services and sub-systems which manage, configure, and program
the entire network from a centralized location. SDN controllers are
required to maintain network states for management and distribu-
tion of information [24]. Numerous SDN controllers from different
vendors are available in the market.

In this paper, we primarily target the design issues in two of
the most common open source SDN controllers in the market:
OpenDayLight (ODL [23]) and Open Network Operating System
(ONOS [2]). These controllers are the base systems for many en-
terprise controllers from vendors such as Brocade, CISCO, and
Ericsson.

The information shared or retrieved from controller is of vital
interest to security research since these are the potential entry
points for an attacker to abuse and compromise the information.

2.3.2 Network,Services and Applications. To communicate
with network entities, the SDN controller uses different southbound
plugins (named after the typical SDN topology representation,
where the switches are below, or “south”, of the controller) which
include OpenFlow [22], NETCONF [6], BGP, etc. In this paper, we
primarily focus on security challenges involved when the network
is programmed using NMDA as the datastore management design,
and OpenFlow as a messaging channel between controller and
switches. The payload of the OpenFlow messages contains sensi-
tive information stored or retrieved from NMDA-defined datastores
and is used to configure and monitor the network. This approach
is taken by ODL and ONOS, and thus inherited by a significant seg-
ment of the SDN market. Clearly, the integrity of the information
stored inside datastores is critical for operation of an SDN network.

An SDN controller is an advanced Network Operating System (7,
23] that involves critical services like the learning switch, the flow
programmer, topology discovery, etc. Availability of these services
that provision information to the users and govern network opera-
tions is critical. For example, a service collects the configuration
from an administrator and stores it in a datastore. A notification
daemon notifies a flow programming service to pick the new con-
figuration, create OpenFlow messages, and send the messages to
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Figure 2: Threat model.

the network devices for the final configuration. A failed or incor-
rect operation of any of these participating services will have an
immediate impact on the dependent network functions.

The applications that configure and monitor the network use
a separate northbound plugins (REST, RPC, CLI, etc.) to commu-
nicate with the services running in controller. Applications like
load balancers and software firewall can be located in logically or
physically different locations and do not establish a direct commu-
nication channel with network. Since controller relays an applica-
tion’s intent to the network, access control and confidentiality of
application’s information are functional obligations of controller.

2.4 SDN Information Organization

We categorize the data used by SDN controllers into three categories
based on the datastore used (as shown in Figure 1) as the specific
datastore used influences security requirements:

24.1 Control/Configuration Data. Services and applications
store the network configuration inside the NMDA-based configura-
tion datastore. The configuration stored include flow rules, access
control policies, quality of service criteria, etc. Notification services
run as a daemon inside the controller and periodically check for
updates to notify other registered services. Control information is
dynamically accessed and deployed and requires critical response
times, meaning minimal performance overhead.

2.4.2 Inventory/Operational Data. The centralized view of
the network (topology, runtime state, traffic statistics), obtained
using southbound plugins, is stored in the NMDA-based operational
datastore. The consistency and accuracy of this information are
critical as it reflects the state of the physical network. For instance,
if a firewall application consumes incorrect topology, its decision
to enforce access control is based on incorrect data, leading to
unauthorized communication in the network, thus breaking policy
control and potentially affecting the decisions of load balancing
applications in turn.

2.4.3 Management Data. An SDN controller requires all man-
agement level of information such as the list of SDN users, groups,
authorization levels, etc. This information is often configured as
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part of the initialization process of the controller and is often di-
rectly stored in relational databases.

3 THREAT MODEL

In our threat model, we consider any communication channel that
an external entity can establish with the controller as a threat.
However, we assume that the channel to communicate with the
controller is secure—that is, we assume that the southbound channel
between a controller and the network is encrypted and protected
(using OpenFlow, SSL, TLS, etc.). Similarly, we assume the north-
bound communication is secure: connections between applications
and the controller (secured REST, HTTPs, etc).

In this paper we focus on the interactions between entities in
SDN which involve the datastores and the information stored within
them. As shown in Figure 2, we investigate three susceptible com-
munication channels during information exchange.

First, the interaction between SDN applications and the SDN
controller to install configurations for the resources operating in
the network. Second, the interaction between network devices and
the SDN controller for state management and monitoring. Lastly,
the coordination between SDN services, which is an essential aspect
of the SDN controller for operational purposes.

We have identified the following threats that are relevant to our
discussion:

Inconsistent Network State. Applications that run on the SDN
controller (and the controller software itself), particularly security-
critical applications such as firewalls, require a consistent view of
the network state. A consistent view of the network state means
that when an application adds a flow rule to the controller, that
flow rule is added to the network. While not every inconsistent
network state is a vulnerability, an inconsistent network state can
be a very serious security vulnerability (as we further demonstrate
in this paper). For instance, if a firewall application inserts a flow
rule to limit communication between two hosts, if that rule is not
actually implemented in the network (yet the firewall app thinks
that it is), then that is a vulnerable inconsistent network state.

Denial of Service. As the controller is the central “brains” of the
SDN network, it is also the central point of failure. If an adversary
is able to cause the controller to crash, then the entire network is
unusable. A controller crash can be caused by depleting computing,
memory, or storage limits.

Other commonly known threat models for SDN (such as those
presented in DELTA [19] and [12]) focus on layers surrounding
the controller that exploit the controller’s communication channels.
However, our model discusses exploiting the datastore design of
SDN controllers. Additionally, we consider that the vulnerabilities
which exist in the SDN-datastores can be exploited in both forced
and accidental situations.

In the case of an adversarial threat, an adversary can compromise
the security of the SDN controllers and the network by directly
exploiting the inherent weaknesses in its datastore design. In the
absence of an adversary, security issues identified in this paper can
also cause accidental misconfiguration leading to emergent trust
violations.
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Figure 3: Control flow and disparity in information.

4 THE SEMANTIC GAP

As described in Section 2.4, the SDN uses several different data-
stores in which different types of data are stored. Unfortunately,
the underlying specification for these datastores, as determined by
the Network Management Datastore Architecture (NMDA) [31],
lacks two critical considerations. First, it does not propose a way
for applications interacting with one datastore to have guarantees
that their information will actually be synchronized to another
datastore, and second, it does not provide any functionality for the
tracking of the ownership of information.

These design drawbacks of NMDA result in a design-level se-
mantic gap in SDN and manifest in symptoms of both inconsistent
network states and to denial of service attacks. In this section,
we discuss the nature of this semantic gap and present a semi-
automated tool that can help in probing for potential vulnerabilities
spawning from it.

4.1 The Problem

Figure 3 describes the flow of control and data in an SDN envi-
ronment. Inside the controller (middle of Figure 3), there are two
datastores: one called configuration, for the desired network state,
and one called operational, for the actual network state. SDN ap-
plications, via the northbound API, communicate network state
changes to the controller, which the controller first places in the
configuration datastore. Controller services then apply these net-
work state changes into the actual network via the southbound
API (commonly, OpenFlow). Later, other services in the controller
request information about the state of the actual network devices
to update the operational datastore.

As Figure 3 demonstrates, we consider three different semantic
levels in the SDN environment: application semantics, controller
semantics, and network semantics. This idea of semantics captures
the notion that a request by an application asking the controller
to insert a flow rule has a semantic meaning to that application:
It wants that flow rule inserted in the network so that it can im-
pact allowed communications. The controller semantics handle
the managing of application network change events, programming
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of switches, and monitoring of switches. The network semantics
define the actual state of the network switches.

This gap between the layers is the semantic gap problem, and
there are three key causes: (1) information disparity, (2) blurred
responsibilities, and (3) unreliable service chaining.

4.1.1 Information Disparity. In an ideal scenario, when an
application issues a network change request, it is expected that
the network will be configured as and when intended. In fact, the
application semantics expect and demand this behavior. If there is a
temporal delay (caused by server load, network load, or adversarial
behavior) in the controller issuing the network change request to
the actual network, then this can lead to an inconsistent network
state.

For instance, if the administrator disables a terminated employee’s
machine’s network access through the firewall application, and the
firewall application asks the controller to implement the desired
flow rule, but the flow rule is delayed or even dropped, then the
firewall application and the administrator have an inconsistent
view of the network state.

4.1.2 Blurred Responsibilities. Another key aspect of the se-
mantic gap problem is the blurred responsibilities in the datastores.
Consider Figure 4, which shows a user producing rules. A service
called the SAL Add-Flow controller module adds these rules to
the configuration datastore. At a later point, the controller’s Flow
Programmer module adds the rules to the switches. Finally, the
switch’s rules are queried by the OpenFlow plugin and stored in
the operational datastore. There is a fundamental question at this
point: Who owns the rules? The User, the SAL Add-Flow, the Flow
Programmer, or the OpenFlow plugin? If the rule has a timeout,
who is responsible for deleting the rule after the timeout?

The implications of blurred responsibility lead to either the sub-
sequent tasks being done twice or not being done at all. The former
poses performance issues when one or more applications perform
repetitive tasks. The latter has serious implications as it leads to
lack of action and an inconsistent network state.

Additionally, such faulty or unintended configuration can have
cascading affects on the network. Hong et al. [13] poison the topol-
ogy information and demonstrate its global impact on network and
functionality of other applications. As we demonstrate in this paper,
most of the controllers in the market leverage this design and are
prone to inconsistent network states (whether forced or accidental).

4.1.3 Unreliable Service Chaining. When an application re-
quests a network change, there are several SDN services that act
on that request, and the application expects and requires that all
the services act on the request in the intended order. In a similar
fashion, if an application requests a series of network changes in
order, they expect those changes to act in that order. However, the
datastores fundamentally lack synchronization measures for ensur-
ing a chained sequence of actions, which can cause an inconsistent
network state.

In fact, Xu et al. [35] showed that logic flaws (race conditions) in
applications developed for SDN controllers can be exploited from
a remote location and can lead to a compromised network as a
result of unreliable service chaining. We argue that race conditions
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Figure 4: Ownership issues (mixed patterns show conflicts).

in SDN applications is one symptom of the underlying unreliable
service chaining problem.

4.2 Probing the Semantic Gap

As mentioned Section 3, datastore-based vulnerabilities can be ex-
ploited in both forced or accidental situations to trigger either
an inconsistent network state or denial of service. To automati-
cally identify possible datastore-based vulnerabilities, we designed
a systematic procedure to exploit the semantic gap problem and
implemented it into a tool.

4.2.1 Threat Detection Methodology. We propose a system-
atic SDN-fuzzer to perform black-box fuzzing of mainstream SDN
controllers: OpenDayLight and Open Network Operating System.
Unlike existing work [34, 36], we do not attempt to impact the per-
formance of the controller by merely flooding it with random traffic.
Instead, we acquire a list of critical services involving datastores,
analyze them to expose their entry points, and selectively target
the datastores by fuzzing the communication channels described
as part of our threat model (Section 3).

The fuzzer is provided with a list of services to be inspected. It
iteratively detects the interfaces exposed by each service by check-
ing the response header of the RESTful requests (GET, POST, PUT,
DELETE, UPDATE) made to the service. If a response such as "HTTP-
405: Method Not Allowed" is received, it is inferred that service has
disabled certain operations. This response is crucial for the fuzzer
as it is consumed to infer the kind of datastore (configuration/oper-
ational) the service uses.

According to the NMDA rule, the operational datastore cannot
be configured (no POST, DELETE, etc.) from the northbound ap-
plications but can be read (GET) by all authorized applications.
Conversely, the configuration datastore can be both read and mod-
ified by all applications. As an example, a flow statistics service
provides dynamic updates of network traffic and thus sends back
the information stored in the operational (state) datastore. Because
this information is stored only in the operational datastore, a GET
request to a configuration datastore for statistics will result in
a HTTP-405 error. Similarly, when a PUSH request for the flow
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Code  Response reason Inference

200 Request successful Datastore found

401 Unauthorized Wrong credentials

404 Not found Datastore not supported

405 Method not allowed ~ Datastore with limited features
429 Too many requests Rate limiting measures present
500 Internal server error Exceptions, crashes, errors

503 Service unavailable Latency and deadlocks

507 Insufficient storage Resource cruch

programmer service is made for a configuration datastore, a suc-
cess HTTP-200 message is received. However, the same request for
the operational datastore will result in a HTTP-405 error, and it is
inferred that the service does not involve the operational datastore
and is used only for configurational purposes.

In Table 1, we list the critical responses which the fuzzer receives
from the services in the SDN controller and the inference that is
derived. The fuzzer incorporates an input generator engine, which
automatically creates inputs in the supported format (e.g., JSON)
and issues HTTP requests to the given URL.

The response returned is interpreted and analyzed by the analysis
engine. Finally, for successful responses (HTTP-200), the fuzzer
checks the state of the network to confirm the consistency of the
network as was intended from the configuration.

If a mismatch between the applied configuration and expected
configuration is detected, this is a inconsistent network state.

To identify the root cause, we manually examine the container
logs and attempt to reproduce the problem. We also rerun the tests
for inputs that cause misconfiguration in the system to determine
the persistence and impact of the problem. Recoverable crashes
(change of HTTP code from 500 to 200) are considered less harmful
than the irrecoverable shutdown of services. Similarly, runtime
exceptions are considered less fatal than a crash.

5 IDENTIFIED VULNERABILITIES

In this section, we evaluate SDN-fuzzer and present our results
based on the security properties and the vulnerability classes that
were exploited during the experiments on mainstream SDN con-
trollers. Our experimental setup consisted of the SDN controllers
(ODL [27] and ONOS [25]), a real network (university datacenter),
a simulated network (mininet [33]), and the fuzzer. The SDN con-
trollers had roughly 724 installed services (features), and we actively
tracked the impact of fuzzing on 77 critical services. Core services
which were impacted are mentioned in Table 3. The extent of these
attacks in different platforms which implement the NMDA datastore
design manifesting in its vulnerabilities is shown in Table 5.

5.1 Attacks on Availability

In SDN controllers, the semantic gap problems discussed in Sec-
tion 4.1 aggravate the central-point of failure of SDN by exposing
security vulnerabilities which impact the availability of a network.
The performance of the SDN controller can be impacted in two

ways depending on the threat source and the attack surface:
o Northbound attack: As per the threat model (Section 3), the

northbound communication with the SDN controller is for
programming or monitoring the network which requires

applications to store the configuration in the datastores.
Unchecked storage and improper management of the stored
information can lead to memory overflows and impact the
controllers’ availability.

o Southbound attack: The forwarding plane can generate events
not triggered by the controller (e.g., host and switch migra-
tion, switch reboots, or manual device configuration) which
are updated in the operational datastore. This leads to perfor-
mance overhead in the southbound channel and consump-
tion of memory resources of the controller.

For the communications that happen at the northbound API, both
read and write controls for the configuration datastore are exposed
to applications. Also, as described in Section 4.1.2, there is a blurred
sense of ownership of the configuration stored in the configuration
datastore. This arrangement means that services/applications inside
the controller do not have the responsibility to clean and manage
the configuration after use, and they depend on someone else to
do it. As part of our experiments, we leveraged an application
with RESTful privileges to install configuration (flow rules) in the
SDN controllers which support the datastore model. There is no
threshold or limit of flows that an application can install. Also, the
SDN controllers will always accept a new configuration.

AT-1 (Northbound channel overflow): We installed applica-
tions and attacked the services in a distributed fashion to evade
detection. If an application is allowed to send unchecked amounts
of configuration, it impacts the overall latency to serve similar
requests and at some point in time causes service unavailability
(HTTP-503). We validated the latency impact on RESTful configura-
tions on an SDN controller with two different hardware capabilities
as shown in Figure 5. At the time of this writing, no SDN controllers
had implemented preventive measures to implement rate limiting
as shown in Table 5.
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Figure 5: Flooding attack on configuration datastores.

AT-2 (Persistence): In our experiments using mutated flows to
fuzz the configuration datastore, we discovered issues with man-
agement of stored information. We found that the configuration
(active or inactive) persists for an indefinite amount of time inside
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Table 2: Summary of service disruptions while configuring operational network.

Tracked services

Impact on Services

No. of rules ~ Time (total - 724) - Attacks Overall impact
Exception  Crash Dead Recovered
25 (default) 0 77 0 0 0 0 AT-1 None
20000 25 77 4 1 0 4 AT-1, AT-2.1 Low
AT-1, AT2.1,
38400 50 68 10 3 2 (deadlock) 8 AT-2.2, AT-3 Latency surge
54000 75 61 10 5 2 (deadlock) 2 2%;?}31,_13 High (service failure)
60000 100 0 (system crash) 14 7 Unknown Uknown 2%2213’ AT-22, Severe
Table 3: Impacted services and datastores in ODL and ONOS S Legend
(C: configuration, O: operation, M: management). | me || e || e | © RG] = e ==
—— A->B DENY ) Hacked loop
i el 1l el & rotentil attack zones
Controller  Service Datastore  Result - JQNTROLI:EL . -
LearningSwitch (¢} event miss Cor;figu:h;nal ‘ C;pe;on;l Flow table (configured)
TopologyManager C/O0 exceptions — T A->BALLOW 30s
HostTracker [¢] event miss s ﬂ
ODL DLUX UI c/0 deadlock } [ g v
MD-SAL (core) C/O/M crash ARV ® .
SwitchManager o posioned O 0 60 6 Flow table (runtime-1)
RESTCONF C/O latency A—->BALLOW 1s
SALFlowManager C/O misconfig R
SwitchManager O poisoned ®
FlowAnalyzer C/O event miss Flow table (reset) Flow table (runtime-2)
ONOS ReactiveForwarder C misconfig A ->B ALLOW 30s > A—=>BDENY
LinkManager C/O latency e e
HostMobility o event miss

the configuration datastore. The results of these experiments are
elaborated in Table 2. Due to blurred responsibility, the expired
configuration (flow rules with timeouts) is never deleted by services
running inside the controller even after the expiration of timeout
values. The communicating entity outside of the controller believes
that the timeout value has a purpose which will be respected—the
configuration will be cleared from the network (and operational
datastore) and the controller (configuration datastore).

AT-2.1(Service crash): Before we could notice an impact on the
availability of the controller, critical services (eg., flow programmer)
of both ODL and ONOS were impacted as shown in Table 3. The
repeated experiments on ODL are shown in Table 2, the tracked
services faced deadlock, exceptions and crash. Some of these services
could recover, other services (eg., clustering and UI) remained dead.

AT-2.2 (Southbound latency surge): As the amount of flows
stored in the datastore kept increasing, the time required for ser-
vices to query valid flows (flow programmer) and push them to
network degraded. Surge in latency to learn the events from the
network had a logical impact on dependent services.

AT-2.3 (Controller shutdown): The blurred responsibility leads
to information to accumulate within the controller. SDN controllers
such as OpenDayLight, which run inside a Java virtual environ-
ment, depend on the configured JVM memory. If an application is
allowed to send unchecked amount of configurations, theoretically,
every controller will run out of memory eventually. The MD-SAL
service which is a kernel of the OpenDayLight controller ran out of
memory to maintain the running state of the controller and even-
tually crashed causing the shutdown as shown in Figure 5b (error
message shown in Listing 5c).

Figure 6: Configuration poisoning attack: an attacker com-
promises the flow table and establishes a hacked loop to in-
definitely allow communication in the network.

AT-3 (Unused Configuration): The NMDA design allows SDN
controllers to store the configuration for nodes which are absent
from the network. SDN-fuzzer could install configurations for
switches that were not active in the network.Although this is as
per the design requirement of NMDA [31], the feature gives an
advantage to the attacker to degrade the performance of the con-
troller without impacting the network and successfully hiding the
malicious behavior by the traffic monitoring service.

5.2 Attacks on Integrity

Most of the information that is placed into the configuration datas-
tore is for programming the network, therefore manipulating the
configuration datastore information leads to a direct impact on the
network. The consistency and accuracy of the information that is
stored in the datastores and passed to the network can be manipu-
lated using two communication channels with SDN controller:

o Northbound attack: Applications and users install configu-
ration in the configuration datastore, which are later prop-
agated to the network. The details of how and when this
information is propagated are security-critical. If the config-
uration is installed in the network at the time not primarily
intended by the administrator, unauthorized and undesired

traffic may be allowed in the network.
e Southbound attack: Services in the SDN controller register

listeners for events that happen in the forwarding plane.
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Changes are updated in the operational store which trigger
desired (or spoofed) actions from the registered services.

AT-4 (Advance Persistent Threat): As illustrated in Figure 6,
we base the APT attack on the design flaw to retain information
even after its expiration.

As part of the root cause analysis of detected policy conflict, we
discovered that one of the switches in our network had dropped
off of the network, then re-spawned automatically as the TCP/IP
connection channel between the switch and controller was reestab-
lished. When the flow programmer service inside the controller
detects such an event, it checks where there is existing configu-
ration data for the new node. Because the service find a stored
configuration for the node in the configuration datastore, it was
restored as part of a process called node reconciliation. With this
process, the otherwise-expired configuration was re-installed in the
network as part of reconciliation, and its time-to-live was reset to
the originally-configured amount as opposed to the amount it was
at when the switch disconnected.

We regularly monitored the traffic against the policies defined
by the fuzzer and found that the communication that was intended
to take place in the past had suddenly started again.

This attack is carried out as follows: (D) A switch initiates a
connection with the controller and is configured with the default
forwarding rules. (2) An application installs the network flow con-
figurations with timeouts. (3) The flow programmer service installs
this configuration because it does not cause any direct policy vi-
olation. (2) The application persistently installs similar configura-
tions in the network for the switches which physically exist in
the network. (5) At any point in the future when there is a switch
reconnection procedure (forced [19, 21] or natural), (6) the existing
configuration (which includes the expired configuration) will be
installed in the switch.

Since the configuration datastore holds the original (configuration-
level time-to-live, rather than the actual remaining operation-level
one, the TTL was reset to its full value. In effect, this allows flow
rules in the network to persist beyond their original expiration time,
thus allowing communication between hosts that should otherwise
be unable to communicate.

Interestingly, switch disconnections from the controller can be
natural or forced. For example, forced disconnections can be ini-
tiated by attacking the network time protocol (NTP) [19, 21], or
through the triggering of DoS vulnerabilities in a switch itself. This
means that in addition to being caused by accidental switch dis-
connections, this issue can be triggered by an adversarial agent to
retain access to network resources that should otherwise time out.

AT-4.1 (Switch Table Overflow): SDN controllers are required
to store the entire network’s configuration and therefore may pos-
sess massive storage capacity. However, OpenFlow switches have
limited storage capacity, and as part of the reconnection procedure,
when a switch’s flow tables receive too many flow rules (everything
since the beginning of time), the flow table’s upper bound can be
easily reached, and a table overflow attack is eventually realized.

AT-4.2 (Infinite Access): Since the flawed reconciliation pro-
cess installs configuration data which is not necessarily intended at
the time of installation, an OpenFlow switch being reconciled may
allow unintended traffic or block allowed traffic. When this attack

‘ Flow packet headers to match ‘ ‘ No. of packets matched by rule ‘ ‘ Processing order of rule ‘
Match Action | Statistics | Time-out | Priority
‘ Action on matched packet‘ ‘ Idle/Hard timer for rule deletion ‘
Figure 7: OpenFlow rule format.
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(a) Packets and payload statistics for benign and malicious traffic.
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(b) Reseting of rule and poisoning of statistics.

Figure 8: Poisoned statistics during rule reset.

is carefully crafted, an application needs to configure the network
just once and then force the controller to configure the switch in a
loop ®-©®-G.

The reconnection workflow is initiated at a regular interval, just
before the rule expiry (when timeout in Figure 7 is expiring). Thus,
the switch always retains the rule for the ongoing (malicious) flow.
This circumvents the OpenFlow policy (switch should send the first
packet of an unknown flow to the controller for taking decision)
and allows the traffic between two hosts in the network for an
indefinite period.

As shown in Figure 6, both switch and hosts can be potential
trigger zones for these attacks.

AT-4.3 (QoS Poisoning): OpenFlow rules support metering and
statistics (as a field in Figure 7) for network monitoring and Quality
of Service (QoS) purposes. A side-effect of AT-4 is the potential to
poison these statistics. As shown in Figure 8b, a reset (expired) flow
rule resets not only the timers (used in AT-4.2) but also the counters
that are assigned to each flow rule. For example, a flow rule with
timeout 25 seconds is installed in a switch to allow communication
between two connected hosts (10.0.0.1, 10.0.0.2). After the benign
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Table 4: Attack analysis.

Attack Origin Impacted Affected CIA Atta_ck Privil.eges Attack. Severity Dete.ction Scope  Status
datastore assets c I A duration required complexity risk
flow-manager
AT-1 APP C north channel x x Vv short M L H M H reported
controller-core
21  APP C general impact x v Y long L L M L M CVE1, CVE2
AT-2 22 APP/NW C south channel X X v long L L L L H reported
23 APP/NW  C/O/M controller-core x v v long L M H M H CVE1
AT-3 APP C/M config datastore X x Vv long M H L L M reported
41  APP/NW C/O nw-hardware X x v long LM M M H H CVE2
AT+ 42  APP/NW C/0 firewall v v X moderate LM H H L H CVE2, in-progress
43  APP/NW C/O load-balancer X Vv ¥ moderate LM H L L M in-progress
AT-5 APP/NW [¢] host-tracker v v X long L H L M H on-hold
AT-6 APP M AAA, ACL voox X short L L H L L CVE3

CVEs: (1: DoS, 2: APT, 3: credentials); Risk measurement metrics: (L: low, M: medium, H: high); Security properties: (C: Confidentiality, I: Integrity, A: Availability)

communication is completed, a reset of the expired flow rule (via
switch reconciliation) leads to reset of the timers and counters. At
this point, unauthorized traffic is allowed in the network for the
additional 25 seconds (shown red in Figure 8a), overwriting the
values with the statistics of the flow.

In this attack, when a QoS service (for eg., a load balancer) polls
for the flow statistics, the information collected from the network
is misleading which will influence its further decisions.

AT-5 (Unsolicited Configuration): As mentioned in AT-3, the
NMDA datastore architecture allows the applications to store the
configuration for nodes and entities not present in the network.
Present implementations of this otherwise-essential feature lack
security consideration. The present datastore in OpenDayLight
lacks the capability for the user to specify when the timer for the
flow rules (Figure 7) stored in the configuration datastore should
actually begin. Such issues are primarily due to no sense of state or
time maintenance in the configuration datastore. The operational
datastore simply stores the current operational state of the network.
The future of the present configuration for the absent nodes remain
unclear and thus leads to security issues in the network in the event
of a previously-configured node joins the network.

5.3 Attacks on Confidentiality

As described in Section 2.4, the management information of the
SDN controller is stored in a datastore which is different from those
defined by the NMDA (configuration and state). The design flaws
present in the configuration and state datastores may not appear
in the management datastore. Therefore, we undertake a different
approach to detect security issues with the storage and access of
management information.

Unlike the previously-mentioned vulnerabilities, the attacks on
management data primarily originate from the northbound channel.
This is because events and updates in the forwarding plane do not
have impact on the information stored in management datastore.

AT-6 (Cache invalidation): In our testing we observed that
OpenDayLight controller failed to delete the cache after an update
of the users’ credentials. Thus, even after modifying the controller’s
management credentials, the old credentials still could be used to

authenticate users and north-bound applications. This leads to priv-
ilege escalation and spoofed authentication by anyone, allowing an
attacker full access to controller’s services and stored information.

5.4 Impact Analysis

From our investigation we observe that there are inherent vulnera-
bilities stemming from the semantic gap problem in the datastore
design adopted by SDN. The attacks described in this work invali-
dates the claim by RFC-8342 (NDMA) [31] which mentions that the
datastore design does not have any security impact on the network
being managed.

In Table 4, we capture the principal characteristics of the vulner-
abilities and attacks reported in this paper. We analyze the risks
with respect to the ease of execution, required privileges and the du-
ration of a successful exploit. Additionally, we evaluate the threats
against the possibility of detection and also the extent of the prob-
lem in diverse SDN-based platforms. With this, we derive an overall
view of the prevailing issues in SDN that stem from the problem of
semantic gap.

AT-1 takes an advantage of limited resources in SDN controller
which is also a central point of failure (controller) and can be trig-
gered by one malicious application as also shown in [20]. When an
attacker crashes the SDN controller, applications cannot configure
the network and control over the network is entirely lost (denial of
service).

AT-2 and AT-3 are covert threats targeted on impacting the
availability of SDN controller. Unlike AT-1, an attacker in AT-2 and
AT-3 does not require one continuous attempt at the target (which
increases the probability of evading detection). The attack in AT-1
requires large amount of configurational updates to be made in a
short duration. However, in the case of AT-2 and AT-3, the attack
can be spread out for a considerably longer duration (even months).

The size of configuration updates in AT-2 and AT-3 does not
have a lower bound, making detection difficult. When performed
in a distributed manner over a long period, these attacks make it
difficult to perform root cause analysis: small amounts of updates
from a large number of clients over a long duration increases the
entropy of attack footprint.

The attacks under AT-4 leverage the idea and techniques of flow
table attack when an attack originates from the network (adversarial
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Table 5: Summary of impacted SDN platforms and enterprises.

Platform Base design Vendor Management Open Source  Impact
OpenDayLight (ODL) - Linux-NF NETCONF / NMDA v AT-(1,2,3,4,5,6)
Open Network OS (ONOS) - Linux-NF NETCONF / NMDA v AT-(1,3,4,5)
Cisco Open-SDN ODL Cisco Systems NETCONF / NMDA X AT-(1,2,3,4,5,6)
Contrail / OpenContrail - Juniper OPENSTACK V' X
Lumina SDN ODL Lumina NETCONF / NMDA X AT-(1,2,3,4,5,6)
Ericsson Cloud SDN ODL / OpenStack Ericsson NETCONF / NMDA V' X AT-(1,2,3,4,5.6)
Huawei Agile ODL / ONOS Huawei NETCONF / NMDA X AT-(1,2,3,4,5)
Big Cloud Fabric (BCF) FloodLight Big Switch Networks OF X AT-(1,2,3,4,5)
HP VAN Controller - HP - X -
Cisco APIC - Cisco Systems OF / NETCONF v AT-(2,4)
Open Networking Platform ODL Inocybe NETCONF / NMDA X AT-(1,2,3,4,5.6)
AT&T Integrated Cloud (AIC) Juniper AT&T OF / OPENSTACK X AT-1
ZENIC vDC Controller OpenStack ZTE Corporation OPENSTACK X AT-1

hosts). For attacks originating from the southbound channel, there
exist work on the detection of flow table flooding attacks [34, 36].
However, an attacker in our scenario does not primarily target the
switch’s flow tables. The attacker’s interest lies in the intermediate
impact that a flow table attack has on the controller (and datas-
tores). The performance of the controller can be impacted in such
a situation even if the flow table attack was not successful.

We also analyzed the capabilities that adversary gains when a
forwarding element (e.g., a switch) is already compromised. SDN
security is often analyzed from the scenario of an attacker being able
to compromise a switch on the network and attack the controller-
switch channel. These attacks are widely popular and therefore,
the counter measures are readily available. For example, switch
table overflow can be mitigated [36] and a SYN-Flood attack can
be prevented using [34]. However, the attacks that we describe
don’t need to flood the communication channel, but rather target
the datastore, evading detection from existing techniques.

Lastly, because we do not focus on the vulnerabilities in appli-
cations that run inside SDN controllers, our attacks are agnostic
to any specific implementation of controller. Therefore, the design
flaws highlighted in this work are not limited in nature to ODL and
ONOS and their users [26, 28]. As shown in Table 5, they also im-
pact SDN controllers and cloud management systems—using NMDA
design—by enterprises such as RedHat, Cisco, Brocade, IBM, Erics-
son, Extreme Networks, Huawei, etc.

5.5 Responsible Disclosure

We demonstrated the importance of the discovered vulnerabili-
ties by verifying them in different carrier-grade controllers (ODL,
ONOS). The organizations involved in the design and development
of these platforms verified the feasibility and impact of the attacks
that we reported. Additionally, in conjunction with the organiza-
tions, we responsibly disclosed some of the vulnerabilities, and were
assigned CVEs: CVE-2017-1000411 (DoS), CVE-2018-1078 (Advance
Persistent Threat), CVE-2017-1000406 (cached credentials)'. We are
actively working with engineers to identify the root cause of some
other attacks which are not publicly disclosed yet, including one
confirmed issue on the ONOS bug tracker: ONOS-74562.

Note, searching for these CVEs will compromise our anonymity.
2Note, this issue is not publicly available as it concerns an open security vulnerability.

10

6 BRIDGING THE SEMANTIC GAP

Through our assistance to the engineers responsible for the SDN
controllers impacted by our identified vulnerabilities, we have iden-
tified several approaches can be incorporated to prevent at least
some of the attacks mentioned in this paper. The mitigation mea-
sures can be employed at several different layers of the SDN design.
However, as the underlying issue lies in the NMDA design, each
mitigation has drawbacks.

6.1 External applications

To prevent the overflow of data, we propose to use a mechanism
to limit the amount of configuration that an application can install.
One can use a rate limiting proxy at the API level to monitor the
REST channel for any suspicious amount of traffic. For strength-
ening the security of the management data, the management APIs
within SDN controller should only ever be deployed within a seg-
regated private network

6.2 Mitigating denial of service

Preventive measures should be placed at the controller level as
the applications are consumers of the services provided by the
controller. Therefore, we propose to set the percentage of heap uti-
lization for the resources and datastores inside the controller. This
threshold can be defined as part of the modeling scheme (YANG)
used by services inside the controller. Based on the dynamic statis-
tics of heap utilization, the resources within the controller can be
dynamically scaled. After reaching the threshold of utilization, the
application can no longer install the configuration and server will
respond accordingly.

Lack of systematic synchronizations between configuration and
operational datastores is a major downside in the present design.
The expired configuration persists in the configuration datastore
only because the datastore is oblivious to the state of the configu-
ration in the network. It will be a huge performance overhead if an
application must continuously (every millisecond) probe the state
of the network in the operational datastore. Instead, we propose
to introduce a system clock in the datastores. An application can
easily know the state of the configuration with respect to time if
every configuration in the datastore has a time variable associated
with it along with other model defined headers. This way when
the configuration expires (system clock vs timeout value), it can
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be pruned from the datastore by an automatic garbage collector.
This also provides the information of the remaining time for the
configuration, which is important in the case of resetting the last
known configuration to avoid the reset of timers to zero.

6.3 Mitigating misconfigurations

Largely, there are two ways an incorrect configuration can be in-
troduced into the network. First, when an application’s configu-
ration is poisoned by another application or service. This is not
a datastore-specific issue and can be handled by the application
logic by implementing a better threat model and strengthening the
control over the information.

Second, when the two primary datastores inside the SDN con-
troller are not in sync and therefore the configuration datastore
is misconfigured. A reconciliation in the network should be done
using the last known information of the node being reconciled.
When the configuration datastore is picked for reconciliation, the
state that will be reconfigured cannot be trusted as it might have
partial life remaining or it might be expired altogether.

The application which installed the configuration in the config-
uration datastore should implement listeners to the updates in the
operational datastore. Upon events, a snapshot of the operational
datastore (last known state) should be updated in the configuration
datastore.

As mentioned in earlier mitigation, implementing a probing (or
syncing) mechanism is not a good approach as it introduces a lot
of overhead. This also can be prevented using a system clock tied
with the configuration. When the configuration is pulled from the
datastore, the clock can be verified with the timeout values. This
way a flow reconciliation manager inside of SDN controller can
understand that a flow is already expired and should not be pushed
to the network.

During an event of removing the data tree for the nodes re-
moved from the network, before updating the network state in
the operational datastore, a snapshot of the most-recent running
configuration should be updated in the configuration datastore.
Upon reconciliation, the data which will be reconciled from the
configuration datastore will not be the initial configuration of the
node but the most recent configuration itself. Such a preventive
measure does not break the programming model either (two or
more applications modifying the same data).

The OpenFlow plugin, which installs the configuration for an
application into the network, breaks the programming model only
when it modifies the configuration (two or more entities not sharing
application context). With the configurational clock, the plugin can
simply ignore the data. This leaves the responsibility of deletion of
the information with the application or the rightful owner.

6.4 Tracking ownership

We propose to introduce metadata with the configuration to miti-
gate the issue of conflicting ownership of the configuration stored
in the datastore. The metadata can be included as a configurational
element provided to the subscribers of the service. An application
configuring the network, when implementing a configuration, owns
the data and the ownership in the configuration is automatically
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assigned. Similarly, when the information is moved within the con-
troller without any external world’s interaction, the metadata will
be updated with the producer of the configuration. This also solves
the problem when no participating entity is willing to take the
ownership of the data.

This is the closest to a design-level change, and the drawback
of this mitigation is that it will require modifications to any SDN
component that produces data. Thus, the implementation of this
mitigation represents a significant undertaking.

7 DISCUSSION

SDN suffers from vulnerabilities that are specific to the new de-
sign and architecture of network management systems. The attacks
(what we discussed in this paper) violate key security principles
of cloud-based systems (eg., SDN) and do not necessarily have a
similar impact on a traditional network systems. On the contrary,
well studied network attacks (e.g., IP/MAC spoofing, DoS) can be
crafted differently in SDN, making present defense measures ob-
solete. Therefore, an evolving architecture like SDN demands a
security reanalysis of its components and the adopted design.

Being a hot topic of Internet and datacenters, SDN is actively
researched by academia and industry. Although security in SDN
is not an ignored subject anymore, the architectural weaknesses
are still unexplored which subside the merits of the SDN power-
house. Prior work have found vulnerabilities in implementations
of the SDN services [13, 38] and underlying threats in channels
connecting to the controller [37]. A ground zero analysis of the
existing issues would have exposed the platform-agnostic design-
level problems discussed in this paper. However, researchers have
focused on finding more such issues in the implementations which
limits the scope of the work to the specifically studied systems
(SDN controllers).

As SDN is changing the world, a robust and reliable backbone
(design) becomes a principal requirement. However, there exists
minimal or no security analysis of management, transfer, and use
of the information stored inside SDN controllers. The datastore
standard defined in RFC-8342 [31], acknowledges the disparity of
information across datastores but lacks security analysis. It fails to
identify the information disparity as a security problem: as part of
security considerations, it mentions that the design has “no security
impact” on the network. In this work, we identify weaknesses in
the design which lead to serious security impact on the network.

The vendors which implement the NMDA design trust the stan-
dard for what it mentions about the inherent security. Therefore,
organizations tend to focus only on improving the scalable and mod-
ular attributes of SDN. Security considerations are ignored during
the modeling and development of these controllers and are worked
upon only when researchers highlight serious security problems.
This became increasingly apparent in our research and involve-
ment with these organizations. Many enterprise SDN controllers
are based on open-sourced systems and also contribute to their
development. Therefore, the security issues discussed in this work
spread to a breadth of cloud-based platforms as shown in Table 5.

To continue to harness the benefits of SDN, it is important to
ensure that the identified security risks are attended. Merely ac-
knowledging the security problems and delaying to address them
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may not be a fruitful approach in the long run. Likewise, providing
workarounds to contain a specific threat is a costly approach as it
does not guarantee a solution or a threat-free SDN controller. To
this extent, a re-design of the datastore management system might
be costly at the moment but can be deemed necessary, profitable
and a more secured approach for safeguarding the future.

8 RELATED WORK

In this section, we analyze the security research done in network
management systems and discuss the relevant attack classes of
SDN.

Security Research in Network Management. Network man-
agement system has been continuously studied and improved since
the inception of the Internet. SNMPv1 [4] suffered many perfor-
mance and security issues which were only partially addressed by
SNMPv2 [9] (with community-based security) and fully addressed
with SNMPv3 [8] which encrypted the traffic and detected mal-
formed packets. However, based on Management Information Base
(MIB), SNMP appears as a costly alternative to manage advancing
networks.

The modern protocols such as NETCONF [6] and OpenFlow [22]
receive research attention from the security community. RFC-5539
[11] and RFC-4742 [10] propose to use Transport Layer Security
(TLS) and Secure Shell (SSH) channel to secure exchanges used
in the protocol. Similarly, OpenFlow is actively researched for im-
provements against spoofing, packet tampering, denial of service,
and side channel attacks as surveyed in [18, 30]. However, much of
the research focus has been in securing the channel of communi-
cation and, consequently, secured mechanisms to manage critical
information within the controller have not been addressed.

Kim and Feamster [17] have attempted to realize the criticality
of robust network management. However, the work is limited to
leveraging the merits of SDN (abstraction and centralized control)
to improve the conventional management techniques and handle
a deluge of network events. Kim and Feamster did not investigate
the security impact of a poorly designed management system over
the entire network and other services.

SDN Attacks and Defense Frameworks. SDN is hot topic of
network security research with noteworthy work done to address
the weaknesses in protecting the availability and integrity of the
network. Various frameworks exist to attack and identify threats
in SDN and its abstracted planes. Most recently, DELTA [19] re-
instantiated and combined the attacking mechanisms defined in
earlier work in a platform agnostic tool (opensourced) and added
protocol-aware fuzzing mechanism to discover vulnerabilities. Al-
though DELTA succeeded in discovering 27 security threats in
diverse SDN environments, its black-box fuzzer could only target
the communication channels with the controller (northbound and
southbound). To discover the vulnerabilities within the controller,
the fuzzer cannot identify a datastore from the behavior of the
service being fuzzed. Therefore, DELTA cannot detect the security
issues that surface from the NMDA design (incorporated by most
of the controllers that it is tested against). We were motivated by
the design of DELTA’s fuzzer to create the randomization in the
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flow entries to fuzz the target service after identifying its datastore
as mentioned in Section 4.2.

Flow Wars [38] presents a consolidated report on the the current
attack surfaces and threats in SDN and showcases common design
and implementation pitfalls that allow the abuse of SDN networks.
However, since no earlier work has attempted to attack the SDN
datastores, potential issues in the NMDA design (a critical aspect
of the most SDN controllers) are missed as part of its findings.

Other attacks target specific network functions in SDN: Dhawan
et al. [5] detect policy violations in the forwarding plane but does
not take into account the impact on controller and its services, Lee
et al. [20] elaborate on attacks induced from seemingly benign ap-
plications against implementation flaws in other SDN applications.

Xu et al. [35] target the novel TOCTOU attacks against SDN.
Similar to our work, the authors propose a framework in which
forced or natural race conditions in the event-driven system cre-
ate chaos in the network and ultimately lead to breach of trust
boundaries. The framework, however, is not agnostic: an attacker
requires implementation knowledge and expertise to carefully craft
an attack inducing race condition.

Potential defense mechanisms against threats in SDN are pro-
posed in NOSArmor [15] and Avant-guard [32]. As mentioned
in Section 5.4, these systems provide defenses only against the
known attacks in SDN. The attacks mentioned in this paper will
go undetected as they endure a covert execution pattern and do
not necessarily depend on the abuse of communication channels
with controller. Upon integrating these unknown attack classes
with subverting mechanisms such as SDN Rootkits [29], an adver-
sary, outside of the controller can successfully evade detection and
launch an advanced persistent threat to manipulate the network.

Denial of Service and Poisoning Attacks in SDN. Various
works study the impact of availability and integrity of SDN network
through denial of service and poisoning attacks. DoS attacks com-
monly originate from the SDN data plane and target either the for-
warding element (switch) by flooding the local flow tables [34, 36]
or impacting the availability of controller by flooding the south
bound channel between the controller and network [37].

However, the threat model incorporated by the frameworks to
detect the DoS attacks primarily concentrate on detecting the ab-
normal surge in the traffic being handled by the controller. That
is, the focus is placed on identifying the saturation of communica-
tion channels. Design problems that lead to resource consumption
within SDN datastores, as we discuss in this paper, are not explored
yet.

To impact the integrity of the information stored within the con-
troller, TopoGuard [13] aims to detect poisoning attacks. TopoGuard
takes advantage of poor implementation and coordination of ser-
vices (host tracking, topology) within enterprise SDN controllers
to spoof the controller’s view of the infrastructure and impacting
the decision of other dependent services. The paper highlights the
impact that vulnerabilities in one service can have over the entire
network. However, the root cause analysis of the detected issue is
not discussed in the work. Therefore, in this work, we focus on the
root cause for various controller-level violation of trust boundaries.
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CONCLUSION

In this work, we perform a first-of-its-kind security analysis of
the NMDA-defined datastores as implemented by carrier-grade
SDN controllers. We identify new vulnerabilities that stem from a
semantic gap problem between different abstractions as part of the
network and the datastore design. We present new attacks on SDN
that leverage the semantic gap and compromise the controller’s
performance, force misconfigurations in the network, cause races in
the control flow of core services in the controller, and finally disrupt
the critical functionalities of SDN ultimately leading to the crash
of the SDN controller. We demonstrate the proof and impact of
these vulnerabilities by attacking enterprise SDN controllers (ODL
and ONOS) and later working with the concerned organizations to
formulate defensive measures.
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