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Observation of the topological
Anderson insulator in disordered

atomic wires
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Pietro Massignan®**, Taylor L. Hughes™, Bryce Gadway"*

Topology and disorder have a rich combined influence on quantum transport. To probe
their interplay, we synthesized one-dimensional chiral symmetric wires with controllable
disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling
of discrete momentum states of ultracold atoms. Measuring the bulk evolution of

a topological indicator after a sudden quench, we observed the topological Anderson
insulator phase, in which added disorder drives the band structure of a wire from
topologically trivial to nontrivial. In addition, we observed the robustness of topologically
nontrivial wires to weak disorder and measured the transition to a trivial phase in the
presence of strong disorder. Atomic interactions in this quantum simulation platform may
enable realizations of strongly interacting topological fluids.

opology and disorder share many surpris-

ing connections, from the formal similarity

of one-dimensional (1D) pseudodisordered

lattices and 2D integer quantum Hall

Hofstadter lattices (7, 2) to the deep con-
nection between the symmetry classes of random
matrices (3) and the classification of symmetry-
protected topological phases (4). Recently, there
has been great interest in exploring both disor-
der (5) and topology (6) through quantum sim-
ulation, stemming from the dramatic influences
that these ingredients can have, separately, on
the localization properties of quantum particles
(7, 8). When combined, disorder and topology
can have a rich and varied influence on quan-
tum transport (9). Indeed, one of the hallmark
features of topological insulators (TIs) is the
topologically protected boundary states that are
immune to certain types of disorder up to some
characteristic strength (10). The robust conduct-
ance of such boundary states, such as the 1D edge
states of integer quantum Hall systems (8) or the
2D surface states of 3D TIs (1I), serves as an
important counterexample to the inevitability
of localization in low-dimensional disordered
systems (7, 12). However, topological features can
eventually disappear when the disorder strength
becomes too large, and unusual critical phenome-
na related to the unwinding of the topology can
accompany such transitions (13, 14).
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Conversely, static disorder can induce non-
trivial topology when added to a trivial band
structure. This disorder-driven topological phase,
known as the topological Anderson insulator
(TAI), was first predicted to occur in metallic
2D HgTe/CdTe quantum wells (15). There has
been much interest in the TAI phase over the
past decade (15-17), and many theoretical studies
have shown the TAI phenomenon to be quite
general, emerging across a range of disordered
systems (18-2I). However, owing to the lack of
precise control over disorder in real materials
and the difficulty in engineering both topology
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Fig. 1. Synthetic chiral symmetric wires
engineered with atomic momentum states.
(A) Schematic lattice of the nearest-neighbor-
coupled chiral symmetric wire. Site-to-site
links within the unit cell (solid) and those
connecting different unit cells (dashed) have
independent tunneling energies m,, and t,,
respectively. (B) Schematic of the experimental
implementation of the tight-binding model
depicted in (A), with tunnelings based on two-
photon Bragg transitions between discrete
atomic motional states with momentum p.
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and disorder in most quantum simulators, the
TAI has so far evaded experimental realization.
In this work, we reach this goal by engineering
synthetic 1D chiral symmetric wires with pre-
cisely controllable disorder using simultaneous,
coherent control over many transitions between
discrete quantum states of ultracold atoms.

The topological band structures we consider
are 1D TIs based on the Su-Schrieffer-Heeger
model with a chiral, or sublattice, symmetry
(4, 19, 22, 23). We describe this system in terms
of a tight-binding model with a two-site unit cell,
consisting of sublattice sites A and B (depicted in
Fig. 1A). We consider the Hamiltonian

H=}%" {mncILScn + tn(c;HMCH + h.c.)}
n

2
1

where ¢}, = (cl ., ¢l ;) creates a particle at unit
cell n in sublattice site A or B, ¢, is the cor-
responding annihilation operator, h.c. denotes
the Hermitian conjugate, and o; are the Pauli
matrices related to the sublattice degree of freedom
(23). The m,, and t,, characterize the intra- and
intercell tunneling energies, respectively. This
model can describe chiral wires of the AIII or
BDI symmetry classes, by choosing the intracell
hopping term to be S = 6; (BDI) or S = o, (AILL).
Both the AIII (chiral unitary) and the BDI (chiral
orthogonal) class models respect chiral symmetry—
that is, they obey 'HT = —H with the chiral
operator I' = o3 @ [ —whereas the BDI class
also obeys particle-hole and time-reversal sym-
metries (4). In this work we chose to study both
BDI and AIII class systems because they rep-
resent all possible distinguishable chiral classes
for which the Z topological invariant in one
dimension, the winding number, is defined.
We experimentally implement effective tight-
binding models of the form of Eq. 1 using the
controlled, parametric coupling of many discrete
momentum states of ultracold atoms (24). We
start with a weakly trapped Bose-Einstein con-
densate (BEC) of *Rb atoms and apply a pair of
counter-propagating laser fields with nominal
wavelength A and wave vector k& = 2rt/A. These
lasers are far-detuned from any atomic transi-
tion; however, their interference pattern couples
to the atoms through the ac Stark effect. The
spatial periodicity of the laser interference pat-
tern, n/k, defines the set of momentum states
whose momenta are separated by integer values
of 27k (where h = 2nh is the Planck constant).
Atoms initially in the BEC, which is a source of
atoms with essentially zero momentum, may
undergo transitions between these many discrete
momentum states, which represent the sites of
our synthetic lattice. The effective tunneling of
atoms between these sites is precisely controlled
by simultaneously driving many two-photon
Bragg transitions with the applied laser fields.
The individual, spectroscopically resolved con-
trol over many such transitions is allowed for
by the Doppler shifts experienced by the atoms,
which are specific to the various Bragg transitions
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(Fig. 1B). This provides local (in momentum space)
control of the intra- and intercell tunneling am-
plitudes and phases, directly through the ampli-
tudes and phases of the corresponding Bragg
laser fields (24). This control gives us access to
both BDI and AIII class wires, in contrast to
previous studies based on real-space superlattices
that were restricted to exploring BDI wires, be-
cause quantum tunneling between stationary lat-
tice sites is real-valued (25-27).

The ability to create precisely defined disorder
in the off-diagonal tunneling terms is crucial for
this study. Unlike the site-potential disorder that
is more naturally realized in real-space cold atom
experiments—for example, through optical speckle
(28) or quasiperiodic lattice potentials (29)—pure
tunneling disorder is important for preserving
the chiral symmetry of our wires (19, 23). In par-
ticular, we let

t, = (1 + Wyio,,) (2)

my, = tlm + Wao'y,) 3)

define the controlled fluctuations of our hop-
ping terms, where ¢ is the characteristic intercell
tunneling energy, m is the ratio of intra- to
intercell tunneling in the clean limit, ®,, and o',
are independent random real numbers chosen
uniformly from the range [-0.5, 0.5], and W;
and W, are the dimensionless disorder strengths
applied to inter- and intracell tunneling.

We begin by considering the influence of dis-
order added to a BDI-class wire. The wire is

strongly dimerized, as characterized by a small
intracell-to-intercell tunneling ratio of m = 0.100(5)
(with t/h = 2r x 1.2 KHz), and hence is in the
topological regime in the clean limit. We fix the
disorder amplitudes to be W=W, = 2W; and
show in Fig. 2A the disorder-averaged topologi-
cal phase diagram of this model as a function of
W and m, as determined numerically by a real-
space calculation of the winding number v for a
system with 200 unit cells, together with the
critical phase boundary predicted for an infinite
system based on the divergence of the localiza-
tion length A (23, 30).

The strong dimerization produces a large (in
units of the bandwidth) energy gap in the band
structure. Such large bandgaps are typically fa-
vorable for experimentally observing the topo-
logical nature of disorder-free nontrivial wires
via adiabatic charge pumping (25, 26) or the
adiabatic preparation of boundary states (3I).
However, it is expected that in disordered chiral
symmetric wires, the bulk energy gap will essen-
tially vanish at moderate disorder strengths, well
below those required to induce a change in topol-
ogy (23). The energy gap is replaced by a mobility
gap, and the band insulator of the clean system is
replaced by an Anderson insulator that remains
topological, with topology carried by localized
states in the spectrum (23). Thus, without the
spectral gap, experimental probes relying on
adiabaticity are expected to fail in evidencing
the topology of disordered wires.

We instead characterize the topology of our
wires by monitoring the bulk dynamical response
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of atoms to a sudden quench. Specifically, we
measure the mean chiral displacement of our
atoms. This observable was recently introduced
in the context of discrete-time photonic quantum
walks (32); here we measure it for continuous-
time dynamics. We define the expectation value
of the chiral displacement operator as

C = 2(I'X) (4)

given in terms of the chiral operator I and the
unit cell operator X (32). The dynamics of C, in
general, display a transient, oscillatory behavior,
and their time- and disorder-average (C) con-
verges to the winding number v, or equivalently
to the Zak phase @, divided by =, in both the
clean and the disordered cases. Moreover, at
topological critical points, (C) converges to the
average of the invariants computed in the two
neighboring phases (30, 32, 33).

For our experiment, we begin with all tunnel
couplings turned off, and the entire atomic popu-
lation localized at a single central bulk lattice site
(site A of unit cell n = 0, for a system with 20 unit
cells). We then quench on the tunnel couplings
in a stepwise fashion. The projection of the local-
ized initial state onto the quenched system’s
eigenstates leads to rich dynamics, as depicted
in Fig. 2B for both weak (W = 0.5) and strong
(W = 5) disorder. Such site-resolved dynamics of
the atomic population distribution are directly
measured by a series of absorption images taken
after dynamical evolution under the Hamilto-
nian of Eq. 1 for a variable time 1 (given in units

0.75F ? 1

T (h/t)
1

Fig. 2. Disorder-driven transition from topological to trivial wires.

(A) Calculated topological phase diagram of the BDI wire model described
in Eqg. 1, showing the winding number v (inset color scale) as a function of
disorder strength W and tunneling ratio m with tunneling disorder strengths
W = W, = 2W;. The striped black and white line at m = 0.1 indicates the
region explored experimentally in (B) to (D). The solid red curve indicates
the critical phase boundary (i.e., the set of points where the localization
length A diverges for an infinite chain) (23, 30). (B) Integrated absorption
images of the bulk dynamics after a sudden quench of the tunnel couplings,
for both weak disorder (W = 0.5) and strong disorder (W = 5), each for a
single disorder configuration. (C) Dynamics of C calculated from the data
shown in (B). The solid red curves are numerical simulations according to
Eq. 1 with no free parameters (30). The dashed gray horizontal lines denote C
for each dataset. (D) (C) as a function of W for m = 0.100(5). The data are
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averaged over 20 independent disorder configurations and times in the range
0.5 h/t to 8 h/t in steps of 0.5 h/t. The solid gold line represents a numerical
simulation according to Eq. 1, with no free parameters for 200 disorder
configurations but with the same finite-time sampling as the data (30). The
dashed gold line is based on the same simulation as the solid gold line but
sampled to much longer times (z = 1000 h/t) in a wire with 250 unit cells
(30). The dotted gray curve shows the topological index in the thermody-
namic limit (23), which changes value at the same point as the red line
position in (A). This topological index takes a value of 0.5 at the critical point,
as indicated by the horizontal dashed line. The inset shows C for W = 3 as a
function of time for all 20 disorder configurations (distinguished by color)
with the number of disorder configurations corresponding to various values
of C shown in the histogram. All error bars in (C) and (D) denote one standard
error of the mean.
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Fig. 3. Observation of the TAI phase. (A) Calculated topological
phase diagram of the Alll wire model described in Eq. 1, showing the
computed winding number (color scale at right) as a function of
disorder strength W and tunneling ratio m with tunneling disorder
strengths W=W, (W; = 0). The striped black and white line at m = 1.12
indicates the region explored experimentally in (B). The solid red
curve indicates the critical boundary (i.e., the set of points where the
localization length A diverges for an infinite chain) (23, 30). (B) (C)
as a function of W for m = 1.12(2). The data are averaged over 50
independent disorder configurations and are averaged in time over the
range 1.5 h/t to 4.5 h/t in steps of 0.5 h/t. The solid gold line shows

of the tunneling time 7/t = 130 us) and after the
discrete momentum states separate according
to their momenta during a time-of-flight period
(24). From the data shown in Fig. 2B, we cal-
culate C as a function of t as shown in Fig. 2C,
along with the time average C. We additionally
obtain the disorder-averaged topological char-
acterization of the system (C) by averaging C
over many independent disorder configurations.

The dependence of (C) on the strength of
applied disorder Wis summarized in Fig. 2D.
The inset of Fig. 2D depicts the determination
of (C) (shown for the case W = 3), first from the
time average of C over 16 values of t evenly spaced
between 0.57/t and 87/t, followed by an average
over 20 unique realizations of disorder. We ob-
serve that (C) is robust to weak disorder, main-
taining a nearly quantized value close to 1. For
strong disorder, W > 2, we observe a relatively

steep drop in (C), with it falling below (C) = 0.5
for W 2 3. Our observed decrease of (C) with in-
creasing disorder is in reasonably good agreement
with a numerical simulation (solid gold line in
Fig. 2D) of the Hamiltonian in Eq. 1 for experi-
mental time scales. The observed decay of (C) is
associated with a disorder-driven transition be-
tween topological (W <4) and trivial wires (W > 4).

On an infinitely long chain, we would expect to
observe a sharp phase transition in the infinite-
time limit of our (C) measurement, yielding
quantized values of the invariant for all disorders,
and half-integer values at the critical phase
boundary (30, 34). However, we instead observe
a smooth crossover owing to broadening from
our finite period of quench dynamics and the

corresponding finite number of sites. The ob-
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servation of a moderately sharper transition,
such as that of the dashed-line numerical simu-
lation in Fig. 2D, would require that we measure
at extremely long time scales (shown for 1000
tunneling times) and for very large systems
(shown for 250 unit cells), which at the moment
is beyond the capabilities of our experimental
technique (30). The slow convergence of this
transition with increasing measurement time
and system size is a characteristic feature of
random-singlet transitions (74), such as those
found in chiral symmetric wires at strong disorder.

Having demonstrated a disorder-driven change
of topology in BDI-class wires, we now turn our
attention to Alll-class wires, for which we inves-
tigate the surprising feature that an initially clean,
trivial system can be driven topological through
the addition of disorder. This phenomenon is
manifest in the calculated phase diagram of
Alll-class wires shown in Fig. 3A for m just
exceeding 1. The value |m| =1 is the critical
point between the topological and trivial phase
in the clean limit, and values of |m| > lare in the
trivial phase in the absence of disorder. However,
we see that random tunneling disorder induces
the TAI phase over a broad range of weak to
moderate W values, eventually giving way to a
trivial Anderson insulator phase again for very
large disorder. Beyond numerics, a mechanism
for the formation of a TAI phase was first elab-
orated in (17) for 2D systems. In that work, dis-
order is taken into account perturbatively using
the self-consistent Born approximation and was
shown to effectively renormalize the parameters
in the Hamiltonian [including the parameter(s)
that tune between the topological and trivial
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a numerical simulation according to Eq. 1 for 200 disorder configurations
but with the same finite-time sampling as the data (30). The dashed
gold line is based on the same simulation as the solid gold line but
sampled to much longer times (z = 1000 h/t) in a 250-unit cell system (30).
The dotted gray curve shows the topological index in the thermodynamic
limit (23), which changes value at the same point as the red line position
in (A). This topological index takes a value of 0.5 at the critical points,

as indicated by the horizontal dashed line. C as a function of time for all
50 disorder realizations (distinguished by color) is shown at the right

for W = 2.5 and 6; histograms of C are shown to the right of each plot.
All error bars in (B) denote one standard error of the mean.

phases]. The TAI phase arises because, as dis-
order is added to the trivial phase tuned near the
clean critical point, the effective Hamiltonian is
renormalized through the critical point and into
the topological phase. This type of reasoning was
adapted, with strong support from numerical
evidence, and extended to describe the TAI phase
in 1D systems, including both the BDI- and AIII-
class wires that we consider here (19, 23, 34).
Here we probe the influence of tunneling dis-
order on atomic wires of the AIII class. Because
we are interested in the TAI phase, we start with
a slight dimerization [ = 1.12(2)] that places the
system in a trivial phase in the clean limit. We
note that being so near the critical point at m =1
causes the bandgap in the clean limit to be much
smaller than in the previous experimental setup.
The choice of disorder we consider here differs
from the previous case: We add disorder only
to the intracell hopping terms, that is, setting
Wi = 0 and W =W,. The difference in the topo-
logical phase diagrams for the BDI case (Fig.
2A) and the AIII case (Fig. 3A) comes entirely
from this change in disorder configuration. In
one dimension, the topological phase diagrams
for BDI and AIII systems are identical when
exposed to equivalent disorder configurations
(W; and W, values) and with only nearest-neighbor
tunnelings present. From (17, 19, 34), we expect
that, for weak disorder of this form, the intracell
hopping m should be renormalized toward the
topological phase, resulting in a TAIL Thanks to
the smaller bandgap in this case of reduced di-
merization, the effects of off-resonant driving
(24, 30) in our system become more pronounced.
To mitigate these effects, we reduce our tunneling
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energy to t/h = 2n x 600 Hz, resulting in a cor-
respondingly lessened experimental time range
of t = 1.5 h/t to 4.5 h/t.

Figure 3B shows the dependence of (C) on the
strength of added disorder in the AIlI-class wire.
The measured (C) values are obtained, as in Fig. 2,
through the nonequilibrium bulk dynamics of
the atoms after a quench of the tunneling. Be-
cause of the restricted range of 1, we include
many more disorder configurations (50) to allow
for stable measures of (C). For weak disorder, (C)
rises and reaches a pronounced maximum at
W = 2.5. This is consistent with the expected
change in the renormalized m parameter, that
is, given the negative sign of the lowest-order
correction to m, for weak disorder (17, 19, 34).
(C) then decays for very strong applied disor-
der. This observation of an initial increase of
(C) followed by a decrease is indicative of two
phase transitions, first from trivial wires to
the TAI phase and then to a trivial Anderson
insulator at strong disorder, broadened by our
finite interrogation time.

Despite the effects of finite-time broadening,

we see that our measured (C) rises to a value
greater than 0.5 (the infinite-time (C) value
associated with the critical point) for W= 2.5,
lending further evidence to our observation
of the TAI phase. Based on the measurements
of (C) for W = (2.0, 2.5, and 3.0) and their sta-
tistical errors, there is only a 0.3% chance for all
three measurements to fall below 0.5, the critical
value that indicates a change in topology (30).
Further, the excellent agreement of our experi-
mental (C) data with a short-time sampled nu-
merical simulation (solid gold line in Fig. 3B),
combined with the sharper transitions expected
for long-time measurements based on the same
simulations (dashed gold line in Fig. 3B for 1000
tunneling times in a 250-unit cell system), provide
strong evidence for the observation of disorder-
driven topology in an otherwise trivial band
structure (30).

Unlike condensed-matter systems and pho-
tonic simulators, where carrier mobility or lat-
tice parameters may vary from sample to sample,
the spectroscopic control of our atomic physics
platform has allowed us to engineer many dif-
ferent, precisely tuned realizations of disorder.

Meier et al., Science 362, 929-933 (2018)

This level of control will also enable future studies
of quantum criticality in disordered topological
systems (9, 13). By simple extension to longer
evolution times, the interesting physics of log-
arithmic delocalization at the random-singlet
transition may be studied (74). Combined with
the ability to engineer tunneling phases (24)
and artificial gauge fields, our technique may
be extended to study disordered quantum Hall
systems (13). And although our present study has
been restricted to a regime where interactions
are relatively unimportant, the presence of strong
interactions in synthetic momentum-space lattices
(35) will enable future studies of strongly interact-
ing topological fluids.

Note added in proof: After completion and
submission of this work, a related work pres-
ented complementary evidence for the TAI in
photonic waveguide arrays (36).
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A messy topological wire

Adding irregularity to a system can lead to a transition from a more orderly to a less orderly phase. Meier et al.
demonstrated a counterintuitive transition in the opposite direction: Controlled fluctuations in the system's parameters
caused it to become topologically nontrivial. The starting point was a one-dimensional lattice of ultracold rubidium atoms
in momentum space whose band structure was topologically trivial. The researchers then introduced fluctuations in the
tunneling between the lattice sites and monitored the atomic "wires" as the amplitude of the fluctuations increased. The
wires first became topologically nontrivial and then went back to trivial for sufficient disorder strengths.
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