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Abstract— Edge computing is an emerging paradigm whose
goal is to boost with proximity cloud resources the computa-
tional capability of otherwise weak devices. This is also useful
to reduce user perceived access latency to backend service. A
central mechanism in edge computing is cyber-foraging, :.e.,
the search and delegation to capable edge cloud processes of
tasks too complex, time consuming or resource intensive to
be running on user devices or low-latency demanding to be
running remotely, as a form of edge function. An edge function
is any network or device-specific process that may be run
on an edge process instead. Despite the recent interest for
this technology from industry and academia, cyber-foraging
techniques and protocols have yet to be standardized.

In this paper, we leverage decomposition theory to propose an
architecture whose aim is to provide insights in the design and
implementation of protocols for cyber-foraging of multiple edge
functions. In contrast with several existing solutions, we also
argue that the (distributed) cyber-foraging orchestration should
be policy-based and not ad-hoc solution, as opposed to either
a pure edge cloud burden or a device decision. To this end,
via simulations and leveraging decomposition theory, we show
how our approach can be used by edge computing providers
and application programmers to compare and evaluate different
alternative cyber-foraging solutions. Our decomposition-based
approach has general applicability to other network utility max-
imization problems, even outside the edge computing domain.

I. INTRODUCTION

The Internet of Things (IoT) paradigm supports interaction
with sensing and actuating devices distributed in the physical
environment, thus fostering the development of novel ap-
plications and services in several domains e.g., healthcare,
disaster response [3], home automation, or automotive, to
name a few. Typically, IoT deployments leverage cloud
computing to complement constrained local resources with
remote processing and storage capabilities (Data Centers). To
support the increasing demand for low-latency, responsive
and resource intensive applications, a fork of the cloud
computing paradigm (Mobile Edge Computing) has seen the
evolution of heterogeneous, federated clouds distributed at
the edge of the network. Edge computing [14] is enabled by
the ability to run powerful servers at the edge of the network
e.g., at a base station site, thus allowing applications hosted
on those edge servers to deliver low-latency and responsive
edge functions i.e. software capabilities run at the edge of
the network to leverage the advantages of user proximity and
local network information.
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In such scenario, distributed applications that require
low latency communications and context-based adaptation
and exploit such distributed resource infrastructure can be
conceived, also leveraging proximity to end users, data
sources (e.g., sensors) and actuators. For instance, an ap-
plication could be deployed as a composition of functions
that process data and video streams delivered by sensors,
e.g. a microscope camera being controlled remotely in a
tactile Internet, a phone or UAV camera hovering a disaster
scenario looking for survivals [3], or a vehicle inferring
the status of the road sending alerts to other subscriber
vehicles. Moreover, leveraging the current evolution trend
in networking towards network programmability (Software-
Defined Networking - SDN) and virtualization of network
functions (Network Function Virtualization - NFV [12],
[6]), specific traffic handling requirements and Service Level
Agreements could be flexibly handled through appropriate
network orchestration mechanisms [18] (a video optimizer
could be deployed to handle the video streams originated by
webcams). In a challenged edge computing scenario, e.g.,
for natural or man-made disaster response, or for Internet of
Medical Things (IoMT) applications, multiple processes need
to establish and maintain a set of virtual flows to guarantee
a set of Service Level Objectives, ¢.e., some acceptable
levels of network performance, to accomplish a phase or,
more generally, to provide a service. Several edge cloud
infrastructures arose in the research community, see e.g. [2],
[51, [15], [20], [21], as well as from industry initiatives, such
as ETSI Mobile Edge Computing [10].

Our contribution. In contrast with the vast majority
of these proposals, that either choose back-end driven on-
loading [7], [16] or mobile-driven offloading [2], [5], [15],
[20], we argue that leaving the flexibility of a choice to
application programmers and edge computing providers is
a wiser alternative, since it allows decisions to be made
considering several aspects, such as the type of process
(e.g., I/O or computation intensive), available orchestration
architectural options, as well as application and edge in-
frastructure providers’ goals. In some cases, client-driven
offloading algorithms are the only available option [10],
while in other cases they face many challenges, due to
the diversity of devices and to their scarce computational
resources available: (i) different operating systems need to
cooperate across a (i¢) plethora of numerous apps, trying to
run (i¢i) accurate code profiling, and (iv) gauging optimal
offload conditions. Moreover, several related solutions focus



on the orchestration of a single edge function [2], [5], [16].

To capture the benefits of both alternative cyber-foraging
orchestration architectures, and the need of a more holistic
cyber-foraging orchestration, in this paper we propose a
policy-based architecture that leverages decomposition the-
ory to model the (holistic) cyber-foraging of multiple edge
functions. We analyze via simulations alternative decompo-
sition policies to evaluate competing (distributed) orchestra-
tion of both user and edge cloud resources.The goals of
our architecture were (i) to identify the minimum set of
mechanisms in the cyber-foraging problem, (¢7) to propose
an edge computing protocol design tool that could be used to
evaluate and compare possible cyber-foraging architectures.

Paper organization. The remainder of the paper is or-
ganized as follows: in Section II we discuss related work.
In Section Il we introduce the problem, in Section IV
we discuss how primal and dual decomposition techniques
can be applied to solve it. In Section V we propose two
iterative solutions based on primal and dual decomposition.
In Section VI we analyze the tradeoffs between the two
proposed primal and dual decompositions solutions in terms
of optimality, convergence speed and signaling overhead and
we conclude our work in Section VII.

II. RELATED WORK

Offloading Algorithms. Although the problem of function
placement over a distributed resource infrastructure has been
floated before, such as across distributed data centers [11]
and in network infrastructures [13], only recently some
authors have begun tackling such problem in an Edge/IoT
environment. Here we only show significant related work
to highlight our contributions. We classify these solutions
in two categories: i) solutions that focus on the problem of
offloading from mobile devices to the edge cloud, and ii)
solutions that focus on workload distribution among edge
nodes. In the first category, the burden of offloading decision
is usually placed on the end-user device. MAUI [5] and
CloneCloud [2] provide different optimization strategies for
the migrating part of the workload from a mobile device to
a server on the edge cloud. ThinkAir [20] is a framework
that allow to offload mobile computation on multiple virtual
machines exploiting parallelization. In the second category,
the offloading decision is typically assigned to a cloud
manager in either a centralized or distributed fashion. Our
work differs from these, since we do not argue for one
solution, but rather we propose a decomposition theory-based
architecture that can evaluate both approaches by merely
instantiating a few decomposition policies.

Decomposition Theory. Decomposition theory has been
used as a tool for architecting other network utility maxi-
mization problems before [17], [8], [9]. In [9] for example,
authors use decomposition theory to solve the virtual network
embedding, a constrained graph matching problem modeled
as network utility maximization. Other solutions used decom-
position theory for network utility maximization problems,
although most of their focus is on optimization for scarse
wireless resources [17] or scheduling for grid computing [4].

Our network utility maximization problem is different as
it uses decomposition theory to solve the cyber-foraging of
multiple edge functions, and takes a step forward from the
system architecture point of view by introducing a unifying
architecture, whose policies lead to several distributed cyber-
foraging solutions.

ITII. PROBLEM STATEMENT

Let us consider a network with n physical or virtual edge
computing nodes, with index set Z = {1,...,n}, which
are required by the edge computing infrastructure to run
a set of (offloaded or onloaded) tasks or edge functions.
These edge functions have been sometimes considered in
a (chained) order, other times as standalone jobs to run at
the edge rather than on the IoT device. Edge functions may
require implementing network mechanisms or preprocessing
of application data. Examples of (virtual) network edge
functions, may be a stateful firewall, a deep-packet inspection
process, or a load balancer, while examples of applications
functions may be histological image preprocessing, data
partitions or aggregations for very large database queries,
real-time (vehicle’s plate) image recognition, video encoding
and compression, or even a public key encryption.

Edge function mapping requests may arrive at any time
in an online fashion. We assume that each edge computing
node 7 can be assigned at most a bundle of edge functions
B;(t), as a subset of the resources available at time ¢. An
edge function bundle B;(t) to run on the edge process i € 7
is a list of (virtual) functions that must be executed by the
edge computing infrastructure, in a strict order (if it’s a
service function chain) or in parallel (if it’s a single expensive
process that we plan to onload using cyber-foraging. We
define the time-varying set of overall edge tasks at ¢ as
J(@t) = UE_|S.(t), where S, is the set of edge functions
within request » € {1,...,R} to the edge computing
infrastructure. Due to the online nature of the edge function
request arrival, J;(¢) is a stochastic function. When sampled,
J;(t) returns a vector (or list) of edge function identifiers to
run. We assume that edge processes consider only functions
in J(t), and they are unaware of subsequent requests. Due
to its connectivity, end-user processes may be unable to
offload computations to some edge node. Similarly, every
edge node has a limited capacity and hence is only capable
to onload a function from a limited number of processes
e.g., geographically close, or following any other distance
function.

Given a planning time horizon H, and a non-negative cost
function ¢;;(¢) : Z x J(t) — R indicating the system cost
when the edge node 7 is assigned to the computational edge
function j, the online multi-edge function cyber-foraging
problem can be stated as the following stochastic binary
(mixed-integer linear) program:
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Considered the scenario described above, in this paper we
solve the following problem:

Problem 3.1: Given the network of n edge servers and
the time varying set of edge functions J(t), solve problem
(1)-(4) in a decentralized fashion.

Reducing it from the set packing problem, it is easy to
show that even the deterministic version of Problem (3.1) is
NP-Hard. In the next section we show how, instead of finding
heuristics to solve our problem, we rely on decomposition
theory and on the the interior point method. In the next
section we describe how we can use decomposition theory to
provide a policy-based architecture to solve Problem (3.1).

IV. DECOMPOSITION ARCHITECTURE

A single process may solve Problem (3.1) logically cen-
tralized; in some cases, a logically centralized solution is
preferable. In other cases though, a distributed solution is
more appropriate, e.g., to avoid a single point of failure, or
to allow federated edge cloud providers to collaborate (or
compete) in the resource allocation process. In this paper,
we are interested in allowing edge cloud processes to solve
the problem either in a centralized or in a distributed way,
by merely choosing a (decomposition) policy. By policies
we mean the variant aspects of any of the decomposition
mechanisms (invariances), that is, dual decomposition, pri-
mal decomposition, Bender decomposition, or a combina-
tion of them, iteratively applied on different versions of
the subproblems. Each alternative decomposition leads to
a different distributed algorithm, with potentially different
desirable properties. The choice of the adequate decom-
position method and distributed algorithm for a particular
sub-problem depends on the application as well as on the
edge infrastructure provider goals. The idea of decomposing
Problem (3.1) is to convert it into equivalent formulations,
where a master problem interacts with a set of subproblems.
Decomposition techniques can be classified into primal and
dual [1]. Primal decompositions are based on decomposing
the original primal problem (3.1), while dual decomposition
methods are based on decomposing its dual. In a primal
decomposition, the master problem allocates the existing
resources by directly assigning to each subproblem the
amount of resources that it can use. Dual decomposition
methods instead correspond to a resource allocation via
pricing, ¢.e., the master problem sets the resource price for
all the subproblems, that independently decide if they should
use their resource to host a task or not, based on such prices.

Primal decompositions are applicable to problem (3.1)
by an iterative partitioning of the decision variables into
multiple subsets. Each partition set is optimized separately,
while the remaining variables are fixed. For example, we
could apply a primal decomposition policy by first solving
Problem (3.1) with respect to the set of edge functions that
deal with load balancing (without loss of generality, we can
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Fig. 1.  Architecture Overview: different cyber-foraging solutions can
be modeled via primal and dual decompositions. A logically centralized
controller may instantiate a problem formulation according to its policies
by (1) picking an objective function c (2). Processing agents solve the
decomposed subproblems, possibly further decomposing them (3-4). Finally,
the optimal variables are returned to the cyber-foraging orchestrator (5-6),
that eventually releases the next problem partition variable set.

assume that those are the first k£ decision variables), and
then optimize with respect to the remaining k& — n variables,
referring to all other virtual edge function services, given the
optimal values of the first k variables. Alternatively, a dis-
tributed multi-edge function cyber-foraging algorithm could
simultaneously optimize all edge functions under the control
of a single edge computing process (after electing a leader
with a decentralized consensus algorithm such as Raft [19]),
and subsequently optimize the other variables under control
of other providers. Primal decompositions can also be applied
with respect to different horizons. For example, by fixing
each time interval, the problem can be solved by optimizing
the edge function that require more frequent operation, for
example packet compressions or encryptions, and then later,
given those optimal values of the vector X4, minimizing
the onloading or offloading costs for functions that run less
frequently, such as routing or stateful firewall (run only at
the beginning of each connection setup).

Dual decomposition approaches are based on decomposing
the Lagrangian function formed by augmenting the master
problem with the relaxed constraints. Also in this case, it
is possible to obtain different decompositions by relaxing
different sets of constraints, hence obtaining different dis-
tributed cyber-foraging algorithms. For example, by relaxing
constraints (2), we can model solutions that separate the edge
function feasibility subproblem from the final assignment
subproblem. Regardless of the number of constraints that are
relaxed, dual decompositions are different than primal in the
amount of required parallel computation (all the subproblems
could be solved in parallel), and the amount of message
passing between one phase and the other of the iterative
solution method. The dual master problem communicates
to each subproblem the shadow prices, i.e., the Lagrangian
multipliers, then each of the subproblems (sequentially or in
parallel) is solved, and the optimal value is returned, together
with the subgradients. It is also possible to devise solutions
using both primal and dual decompositions.

In general, an edge cloud infrastructure process may



instantiate a set of policies at the master problem, after
receiving an offloading request, dictating the order in which
the variables need to be optimized and on which (geolo-
cated) partition of the edge cloud. The subproblems resulting
from the decomposition can also instantiate other sets of
decomposition policies, to decide which variables are to be
optimized next, in which order, or even further decomposing
the subproblems, as shown in Figure 1.

V. DECOMPOSITIONS TRADEOFF

Every optimization problem can be decomposed to be
solved in either a centralized or distributed fashion. In this
section we analyze the tradeoffs between primal and dual
decompositions, for a sample subproblem, and we propose a
subgradient distributed algorithm to solve it. We later use this
case study to show the results of a tradeoff analysis between
optimality and speed of convergence of the iterative method
used by a CPLEX solver. As a use case study, we consider
Problem (3.1) formulated in a standard form, spliting the
variables in two partitions. The problem can be formulated
as follows:

max cTu+éTo
subject to Au<b (5a)
Av <b (5b)
Mu+ Mv<h (5¢)

where u and v are the sets of decision variables referring to
the first and to the second problem partition, respectively; M
and M are the matrices of capacity values for the tasks in
the two partitions, and h is the vector of all robot capacity
limits. The constraints (5a) and (5b) capture the separable
nature of the problem into the two partitions. Constraint (5¢)
captures the complicating constraint.

Distributed Edge Function Stochastic Cyber-Foraging by
Primal Decomposition. By applying primal decomposition
to problem (5), we can separately solve two subproblems,
one for each set of edge functions, by introducing an auxil-
iary variable z, that represents the fraction of physical and
virtual resource allocated to each subproblem. The original
problem (5) is equivalent to the following master problem:

max d(z) + o(2) (6)

where:
¢(z) = {Sup c"u | Au < b, Mu < z} (7)

u

and <Z)(Z) = {supETU | Av < E,_/\;lv < h-— Z} ®)

The primal master problem maximizes the sum of the
optimal values of the two subproblems, over the auxiliary
variable z. After z is fixed, the subproblems (7) and (8)
are solved separately, sequentially or in parallel, depending
on the edge function requirement. The master algorithm
updates z, and collects the two subgradients, independently
computed by the two subproblems. To find the optimal z,
we use a subgradient method. In particular, to evaluate a
subgradient of ¢(z) and ¢(z), we first find the optimal dual

Algorithm 1 Distributed Stochastic cyber-foraging by Primal Decomp.

1: Given z¢, solve subproblems to obtain optimal cyber-foraging ¢ and
& for each partition, and dual vars A*(z¢) and M (2t)

2: Send/Receive ¢, ¢, \* and A* ~

3: Master computes subgradient g(z¢) = —A*(2¢) + A*(2¢)

4: Master updates resource vector z¢41 = 2¢ — it g

variables \* for the first subproblem subject to the constraint
Mu < z. Simultaneously (or sequentially), we find the
optimal dual variables A* for the second subproblem, subject
to the constraint Mv < h—z. The subgradient of the original
master problem is therefore g = —\*(z) + A\*(2); that is,
g € 9(¢(2) + ¢(z)). For the proof, please refer to §5.6
of [1]. The primal decomposition algorithm, combined with
the subgradient method for the master problem is repeated,
using a diminishing step size, until a stopping criterion is
reached (Algorithm 1).

Distributed Edge Function Stochastic Cyber-Foraging
by Dual Decomposition. The optimal Lagrangian multiplier
associated with the capacity of the agent i, —A}, tells us
how much worse the objective of the first subproblem would
be, for a small (marginal) decrease in the capacity of edge
process . A7 tells us how much better the objective of the
second subproblem would be, for a small (marginal) increase
in the hosting capacity of edge process i. Therefore, the
primal subgradient g(z) = —A(z) + A(z) tells us how much
better the total objective would be if we move some edge
functions to be offloaded from one subsystem to the other.
At each step of the subgradient method, more resources
(e.g., edge server capacity) of each process is allocated to
the subproblem with the larger Lagrange multiplier. This is
done with an update of the auxiliary variable z. The resource
update z;+1 = 2z — a; g can be interpreted as shifts of some
of the functionalities to offload to the subsystem that can
better use it for the global utility maximization. The analysis
of cyber-foraging by dual decomposition is similar to the
primal, and we do not show it for lack of space.

VI. EVALUATION

The goal of our evaluation is to assess how different
decomposition policies impact the design of an edge function
offloading (distributed) protocol. In particular, we analyze
with a CPLEX solver the tradeoff between optimality, speed
of convergence, and signaling overhead of the primal and
dual decompositions solved by the iterative methods de-
scribed in Procedure 1. We were able to reproduce our results
with different size, and we only show here representative
example of our simulation campaign, when we onload a set
of 50 edge function on an edge cloud of 100, 200, and
500 agents. Since it is always feasible to have a solution
in which an edge function is assigned to a server that
has no more residual capacity, the Slater condition [1] is
satisfied for our Problem (6). This means that there is no
duality gap i.e., the difference between the primal and dual
solutions is zero. Nevertheless, for many latency-sensitive
IoT applications is not desirable to wait for the optimal
offloading assignment when the improvements relative to
the previous iterations are small. Hence, using a diminishing
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using dual (primal) decomposition.

step size rule ay = 0.5/t, where ¢ is the iteration step, we
stopped our simulations after a fixed number of iteration
(Figure 2). We observe that under a primal decomposition
policy, the solution reduces its deviation from the optimal
solution (known as optimality gap) in fewer iterations, albeit
at the cost of larger computation time per iteration, and a
smaller signaling overhead (Figures 2c).

We also run our simulations with and without partitioning
the requested set of edge functions into multiple subsets.
Partitioning the set of edge functions means running such
iterative method multiple (/V;/2) times, but on problems
with smaller input size. We applied a partitioning policy of
N;/2 partitions, of two edge functions each, where N; is
the total number of requested edge functions to onload on
the edge cloud (Figure 2c¢). Note that even when a set of
edge functions is not partitioned, the distributed iterative so-
lution method used for either primal or dual decompositions
requires the passing of messages between the master and the
dual subproblems.

VII. CONCLUSIONS

In this paper we modeled with optimization theory the
edge function cyber-foraging problem, a crucial problem
that integrates data intensive and latency sensitive IoT ap-
plications with edge clouds. We then proposed to solve the
utility maximization problem using decomposition theory,
and we showed how our approach can provide insights into
a systematic design of distributed cyber-foraging solutions.
Using our CPLEX-based simulator, we showed how our
decomposition approach can be used to analyze key edge
function cyber-foraging protocol design tradeoffs. We found
how some decomposition policies may lead to a quicker
reduction of the optimality gap over the iterations of the
distributed solution, at the expense of larger computation
time per iteration, as well as a larger signaling overhead.
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