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Abstract—Cyber foraging techniques have been proposed
in edge computing to support resource-intensive and latency-
sensitive mobile applications. In a natural or man-made disaster
scenario, all cyber foraging challenges are exacerbated by two
problems: edge nodes are scarce and hence easily overloaded
and failures are common due to the ad-hoc hostile conditions.

In this paper, we study the use of efficient load profiling and
migration strategies to mitigate such problems. In particular,
we propose FORMICA, an architecture for cyber foraging
orchestration, whose goal is to minimize the completion time
of a set of jobs offloaded from mobile devices. Existing service
offloading solutions are mainly concerned with outsourcing a job
out of the mobile responsibility. Our architecture supports both
mobile-based offloading and backend-driven onloading i.e., the
offloading decision is taken by the edge infrastructure and not
by the mobile node. FORMICA leverages Gelenbe networks to
estimate the load profile of each node of the edge computing
infrastructure to make proactive load profiling decisions. Our
evaluation on a proof-of-concept implementation shows the
benefits of our policy-based architecture in several (challenged
disaster) scenarios but its applicability is broad to other IoT-
based latency-sensitive applications.

I. INTRODUCTION

Mobile applications that serve the needs of disaster incident

response generate large dataset and demand large computa-

tional resource access. Such datasets are usually collected

in real-time at the disaster scenes using different Internet of

Things (IoT) devices. Examples of such devices are wearable

heads-up devices, Unmanned Aerial Vehicles equipped with

sensors, cameras, or civilian tablets or smartphones [1], [2].

To enable immediate feedback to first responders, crucial for

survivors’ rescue, IoT devices today could benefit from the

mobile edge computing paradigm [1], [3]. It is inefficient

to marshal all data collected by a bundle of sensors to the

cloud for processing and analysis; doing so requires a great

deal of bandwidth and all the back-and-forth communication

between the sensors and the cloud, and can negatively impact

performance. In this paradigm, much of the processing takes

place at the edge of the network (as opposed to taking placr in

the core of the network as in the Cloud Computing paradigm).

This (distributed) approach is growing in popularity due to

the latency-critical application needs of modern applications,

in modern telecommunication infrastructures such as 5G,

healthcare, disaster responsiveness or video gaming indus-

tries, to name a few. Such technology is often integrated with

network virtualization and Software-Defined Infrastructures

that dynamically provide on-demand access to networking,

computation and storage resource, wherever available.
One of the most important mechanisms in edge computing

is cyber foraging: processes from mobile resources delegate

computations or code to (compile or) execute to servers

within the edge computing infrastructure [4]. A particular

case of cyber foraging is also known as offloading. The

term offloading (restrictively) implies that the cyber foraging

mechanism is orchestrated by mobile devices. When the

cyber foraging decision is managed instead by a process

within the infrastructure, the cyber foraging process is called

“onloading”. We argue that (mobile) device-driven offloading

and back-end driven should merely be policies of the cyber

foraging mechanism. The overwhelming majority of existing

solutions for cyber foraging focus on offloading [2]. As

already floated in recent work [5], [6], we instead believe that

backend-driven onloading is a wiser (fast and more scalable)

alternative to mobile devices-driven offloading. Not only

because mobile devices have resource constraints and should

not be overloaded with additional decisions, but because

resources at the edge of the network are programmable and

hence they can be better managed.
To this end, in this paper we propose FORMICA (FOR-

aging and MIgration Cyber Architecture), a policy-based

architecture for cyber foraging and migration management. 1

By policies we mean variant aspects of the cyber foraging

mechanisms and include job migration, migration (of nodes

and links, i.e., routing policies). With FORMICA, mobile

devices simply offload their jobs to the closest edge com-

puting node, that in turn orchestrates their execution within a

software-defined infrastructure (not necessarily an OpenFlow-

based SDN controller).
FORMICA is designed to be resilient to challenged edge

network, such as those within a disaster scenario, and at its

core is built with two main principles in mind: (i) stochastic

1Formica in Italian means ant. Formicidae (ants) spend most of their
life foraging for resources.978-1-5386-4633-5/18/$31.00 c© 2018 IEEE
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job runtime estimation for effective job migration across

edge severs and (ii) load profiling, a more general and

intelligent case of load balancing. The stochastic job runtime

estimation is obtained modeling the number of offloaded

jobs with a network of queues (Gelenbe Network), while the

load is profiled keeping track of several network parameters

and current conditions. To establish the practicality of our

approach, we built a proof-of-concept prototype, whose C++

code is freely available at [7]. We also analyze the cyber

foraging policy tradeoff (e.g., onloading vs offloading) with

a simulations campaign. Among our simulations results, we

found that back-end driven onloading is more effective i.e.,

the average job completion time is always lower than in

mobile-driven offloading.

The rest of the paper is organized as follows: we formulate

the effective cyber foraging problem and discuss the sketch

of our solution in Section II-A. In Section III we discuss

our FORMICA architecture, its prototype core components;

in Section III-A we describe the core idea behind the

Gelenbe network model that FORMICA uses for its job

queue estimation. In Section IV we discuss the proactive job

migration strategies implemented by the migration manager,

the other core component of the FORMICA architecture.

In Section V-B we present our simulation results and in

Section VI the related work. Finally, in Section VII we

conclude our work.

II. THE EFFECTIVE CYBER-FORAGING PROBLEM

IN NATURAL OR MAN-MADE DISASTER

Natural or man-made disaster scenarios are hostile envi-

ronments that can experience frequently connectivity loss

because of infrastructure problems. In this section we define

the Effective Cyber-Foraging Problem and we sketch our

solution.

A. Problem Definition

Cyber foraging techniques have been proposed to support

these scenarios, by allowing the offloading of (Lightwave)

Virtual Machines or code otherwise running on a mobile

node, to nearby surrogate machines, often called cloudlets [8].

Usually, cloudlets are close to the mobile device and are

reachable via a single-hop network. This ensures low-latency

connections. Two problems emerge in this context: (i) edge

nodes are scarse and hence easily overloaded; (ii) failures

are common due to hostile conditions. Those problems often

lead to unacceptable delays and significant losses, with a

subsequent increase of average job completion time. In this

paper, we address these challenges.

Problem 2.1: Given a set of (first responder) devices ready

to offload a set of computationally intensive tasks (i.e. jobs)

on an edge computing infrastructure, we define the Effective

Cyber-Foraging Problem as the edge infrastructure manage-

ment problem minimizing the average completion time of an

offloaded set of tasks by effectively orchestrating the load on

the programmable edge computing infrastructure.

Examples of tasks to be offloaded in a disaster scenario

are preprocessing of images captured by a fleet of drones,

looking for survivals, or patient health records or images

captured by first responder mobile devices for identification

and lost person matching. By programmable edge computing

load orchestration instead we mean: (a) enforcing a given

load profile on edge servers, and (b) migrate the tasks whose

expected running time is high to an edge server that is

(probabilistically or deterministically) most likely to complete

it within a shorter time, despite the potential infrastructure

failures. By load profiling instead we generalize the classical

load balancing notion. A set of servers with balanced load

have a very specific profile that has identical target load. Load

balancing techniques are inappropriate when severe failure to

the infrastructure may occur, or when edge servers (installed

by first-responders) have uneven physical CPU capacities.

To solve Problem 2.1, two additional challenges need to

be considered: when is it appropriate to offload (both from

the mobile device to an edge computing server and among

edge servers) and where should a task be migrated?

B. Our Solution: Proactive Job Orchestration

To trigger the migration of a task, we use a proactive,

self-adjusting adaptation mechanism: a task offloaded to an

edge computing node (i.e. server) migrates, if convenient, to

another edge computing server, when its hosting node reaches

a threshold. Such threshold is set to be the average number

of offloaded jobs queued and running (in service) within the

edge computing system.

When do we migrate a job to another edge computing

node? Each edge computing node computes such threshold

independently, using a Gelenbe network model (G-network).

A G-network allows the estimation of the average number of

jobs currently active on each edge computing node i. In the

rest of the paper we denote this quantity as E[ni].
Where do we migrate the job? The destination node of the

job migration mechanism is chosen according to different

policies (Section IV). Each migration policy correspond to

a profile. A profile of the desirable load on each node is

built considering the available CPU resources and the CPU

speed on each node; faster nodes and idle have priority. In

particular, before selecting our destination we compute how

long, on average, the hosting edge server would keep the

job waiting. When we migrate we also assign a priority

to avoid larger queues due to offloading requests arriving

during the migration time. Note how the classically sought

load balancing is only a particular case that can be achieved

with our mechanisms: jobs are equally distributed among

all available nodes; the offloading decision is performance-

agnostic, but only consider the current node load.

To maximize the efficiency of the offloading procedure,

we estimate the migration cost of each node, denoted with

cmig(i, j). Before migrating a job from one edge computing

server to another, we assess whether or not the time to

solution for the offloaded task would be shorter considering

the migration delay overhead.
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Figure 1: Cyber Foraging Overall Architecture running each edge
computing server: During disasters, computationally expensive tasks
are offloaded to the edge computing network from mobile devices
orchestrated by first-responders; tasks are then migrated if necessary
to match a latency-minimizer load profile.

Mathematically, this strategy can be formalized by the

following formulation: let us assume that the considered

system has K edge computing nodes; the destination node

where the task will be offloaded, denoted as dest, is chosen

by solving the following equation:

dest = argmin
j

(d(i, j)I(i, j)), (1)

where I(i, j) is the indicator function, defined as:

I(i, j) =

{

1, if E[ni] >
∑

K

l=1
E[nl]

K
∧ cmig(i, j) < cmig(i, i)

0, otherwise
(2)

Note that 0 < j < K and d(i, j) is the known delay between

server i and j.

III. CYBER FORAGING ARCHITECTURE AND PROTOTYPE

In this section, we describe the prototype of our proposed

cyber foraging architecture. We merely describe the funda-

mental building blocks of the architecture, while in the next

sections we explore further the intelligence behind some of

the most novel and crucial mechanisms.

Consider the disaster scenario in Figure 1 (top). Save

and rescue operations can be facilitated by the use of new

technologies. For instance, first-responders or civil smart-

phones, sensors and unmanned aerial vehicles (UAV) can

gather imagery of missing people or of the current state of

available evacuation routes, to detect the presence of chemical

or biological agents, or to provide connectivity to the nearest

available radio access network [9].

These devices represent the mobile clients in the con-

sidered scenario, whose architecture is exploded in Fig-

ure 1(bottom). To optimize first responder rescue operations,

to save power and to speed-up their processing, such de-

vices exploit the higher computational resources of the edge

computing infrastructure by offloading image preprocessing

tasks or other computationally expensive operations. When

a job is offloaded to an idle edge computing node, it is

executed immediately, otherwise it is queued. Such queues

become longer as the availability of edge computing nodes

gets scarce, given the challenged environment.

In our prototype, each node is equipped with the following

management mechanisms:

State Cache. This structure has a view of the system and

keeps tracks of where each task is running: on which queue

of which edge computing server.

Message Manager. This prototype software component is

responsible for how the stored state is exchanged among the

neighbors. Moreover, this component is responsible for the

job data transfer.

Migration Manager. Each node evaluates the average num-

ber of jobs in the entire system as well as the potential

migration cost. These values are then used to decide if the

migration should occur or not. This architecture module also

selects the destination node according to the selected policy

(details in Section IV).

Queue Manager. After the system decides at time t that a job

has to be migrated, such job receives a priority higher than

every other jobs generated by offloading requests arrived from

mobile devices at time t+ 1.

Routing Daemon. This component, easily interfaced with

a software-defined controller, builds up the routing table

implementing a standard Dijkstra algorithm. The cost metric

considers the minimum transmission delay between the two

nodes.

In the next sections we expand with more details our

migration managers and load profiler blocks, starting from

the queuing estimator model used by the migration manager.

A. Gelenbe Network Driven Offloading

In this section we show how our migration management

component of our cyber-foraging architecture leverages a G-

network model to evaluate the threshold that triggers the task

migration.

Intuitively, when the utilization of each queue becomes too

low compared to the (estimated) average in the system, a node

may request a task migration from other edge servers (only

if the migration cost would justify the move). When instead

the queue utilization becomes too high, or it is estimated to

be too high, i.e. the system is experiencing an high failure

rate, our load profiling algorithm proactively redistributes the

job loads.

To compute the close form of our dynamic load profiling

threshold, we model the network of edge computing servers

with a Gelenbe network (G-network) of queues [10]. We

assume that each node has a single queue that stores all the

tasks to be executed. The size of the queue is dynamic and

it can shrink or enlarge according to the state of the system.

We assume that a (larger) set of mobile nodes surrounding
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the edge servers geo-location generates offloading requests

to be queued or instantly executed. To minimize the job

running time, our proposed system orchestrates the migration

of jobs from busier or slower servers. We model a migration

operation by moving each task to a different node’s queue.

Similar to previous work [11], we define a job as either

a standalone task or an edge function involving multiple

logically connected tasks. In case of a non-failing edge

computing server, if the queue is empty, the lifetime of a

job is merely modeled by the transmission time to reach the

closest edge computing server from the mobile node and the

job execution time. Otherwise, the lifetime of a job may be

prolonged due to the waiting time that spent in the queue.

In case of failing node, all jobs still to be executed are

reassigned (i.e., migrated). Since a task (subset of a job) may

be reassigned multiple times to failing nodes, its completion

time depends on the time that it has spent in all failing node

queues, plus the time spent in the queue of the node that

executes it (holding or service time).

Formally, we assume our system to be an open migration

process consisting of K = {1, 2, . . . ,K} edge computing

server queues. The term open indicates that tasks can enter

or exit the system. Moreover, we assume that the service

time of each edge computing server follows an exponential

distributions with service rate μk, 1 ≤ k ≤ K.

The G-network model envisions two type of customers:

positive or negative. Positive customers increment the queue

and receive service as ordinary queuing network customers.

Therefore, they represent both offloading requests generated

by mobile nodes and jobs that migrate among the queues.

Negative customers instead decrease the number of positive

customers in the queue and do not receive any service. If a

queue is empty, negative customers do not have any effect.

Therefore, they represent “control” signals that trigger the job

migration.

We denote by λk the external arrival rate of positive

customers to queue k and by rk the external arrival rate of

negative customers to queue k. Moreover, a customer which

leaves queue i goes to queue j as a positive customer with

probability p+i,j , or as a negative customer with probability

p−i,j . It may also depart from the network with probability di.

A vector n = {n1, n2, . . . , nK} defines the number of jobs

belonging to each of the K edge computing server queues.

The vector n is assumed to be a Markov process with state

space:

N = {n : nk ≥ 0, k = 1, . . . ,K} (3)

At the steady state, the distribution of number of tasks

in each queue, or being executed, obeys the “product form”

distribution, i.e., it can be written as the product of the

probability function depending on the single node’s queues, if

the external positive or negative customer arrivals are Poisson,

the service times of positive customers are exponential and

independent, and if the movement of customers between

queues is Markovian.

Proposition 3.1: For each node k, the average arrival

rate of a positive customer in its queue is given by

Λ+
k =

∑K

q=1 ρqμqp
+
qk + λk and the average arrival rate of a

negative customer is given by Λ−

k =
∑K

q=1 ρqμqp
−

qk + rq. If

(n1, . . . , nm) is the steady state probability that there are nk

tasks in the kth node’s queue for k = 1, 2, . . . ,K, and if

we assumed that each node can execute at most one job at a

time, the external positive or negative customer arrivals are

a Poisson process, the service times of positive customers

are exponential and independent, and the movement of cus-

tomers between queues is Markovian, there is a steady state

distribution, then such steady state probability is:

π(n1, n2, . . . , nK) =

K
∏

i=1

(1− ρi)ρ
ni

i . (4)

Proof: Equation 4 is a straightforward corollary of

Theorem 1 at [10] (product form of a G-network for the

stationary probability distribution π).

Corollary 3.1: We can estimate the number of tasks in

each queue of an edge computing system at the steady state

as follows:

E[ni] =
ρi

1− ρi
(5)

where the utilization factor ρi of node i’s queue is defined

by:

ρi =
λ+
i

μi + λ−

i

. (6)

Proof: All edge computing nodes are independent ele-

mentary systems of queues, using proposition 3.1 and Little’s

law [12], we have the claim.

Our migration manager uses these close forms to evaluate

the threshold that triggers (or not) the task migration. In the

next section we describe the migration policies, the other

crucial element of our migration manager (Figure 1).

IV. MIGRATION MANAGER AND MIGRATION POLICIES

Our Cyber foraging architecture is policy-based. In this

section we describe such policies that can be used when

our migration manager triggers a job migration. Although

our system is designed to support multiple policies, in our

evaluation we focus on a representative set of the migration

policies. The destination edge server node (future host) can

be chosen based on the following criteria:

(i) Load-balancing. Tasks are equally distributed among all

available nodes, i.e., the destination is uniformly selected by

the migration manager among all active and connected nodes;

(ii) Load profiling. This is classical: a profile of the available

nodes is shaped, according to the computation resources,

and the destination is chosen according to the built profile.

Our prototype supports any profile i.e., a node with a lower

average service time has a higher probability to be selected.

To evaluate the beneficial of each policy, a migration cost,

cmig(i, j) from node i to node j, is evaluated by the migration

manager. The migration cost cmig is evaluated as the sum of

the following times: (i) transmission delay of the task to go
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from the current node to the new one, (ii) time interval it

should wait in the queue before it can be processed and (iii)
a fixed time due to processing operations needed to start the

migration. Formally, we have:

cmig(i, j) = dtrans(i, j) + (nj − 1)
1

μj

+ dproc (7)

where nj , dtrans(i, j), dproc are the number of jobs in the

node j, the transmission delay from node i to node j through

the shortest path evaluated by using the transmission delay

metric, and the processing time to compute the migration

cost, respectively.

(iii) Harmonic. As third migration policy, we use Har-

monic [13], [14], a well-known randomized algorithm de-

signed to solve the k-server problem. The k-server problem

is the problem of efficiently move k servers on the nodes

of a graph G according to a sequence of requests (a request

is a set of k-points). The problem’s aim at minimizing the

total distance covered by the servers to reach the requested

points. As each request arrives, an algorithm to solve the k-

server problem must determine which server to move to the

requested point. Our migration problem is slightly different

than the k-server problem but we still use a version of the

Harmonic algorithm to solve it. In particular, a migration

policy that we tested chooses each edge computing server

j, destination of the task migration, with probability:

pj =
(cmig(i, j))

−1

∑N

q=1(cmig(i, j))−1
. (8)

Why do we use Harmonic? In a disaster (or any other chal-

lenged) scenario, network connections or servers are likely to

be unavailable, and offloading requests from first responders

arrive in an online fashion. Our (logically centralized) migra-

tion manager has to decide where to migrate without knowing

the full set of request, and the future availability of the

destination edge servers. An oblivious adversary may place

every failure exactly on the most powerful or idle server that

would be picked as a job destination. To combat the oblivious

adversary, it is known that a probabilistic approach helps: the

adversary, cannot purposely fail the picked destination as it

is chosen with a stochastic process.

In the next section we compare those policies showing how,

counter-intuitively, using the Harmonic policy may not help.

In particular, the randomization helps less and less as the

resources become scarce.

V. EVALUATION

To establish the practicality of our architecture, we com-

pare the performance of its policies over an event-driven

simulator, written in C++, whose code is available at [7].

All components of the architecture are tested within the

event driven simulator, but the core of the architecture can be

easily interfaced with an SDN controller. All network topolo-

gies are generated with BRITE [15], the Boston University

topology generator.

A. Evaluation Scenario

We generate (with BRITE) two types of topologies: the

dynamic network of offloader first-responder mobile devices

and the static network of edge computing servers. Network

topologies may follow the Barabasi-Albert (scale-free) model

or the Waxman (preferential attachment) model. We only

show results relative to the Barabasi-Albert model as we did

not find significant dependencies from the network model.

Edge computing servers are placed in a predefined geo-

graphical area and network delays are assigned to each edge

infrastructure link.

Table I: Parameters setting.

Parameter Value

Average Node Density [node/km2] 10, 50, 100, 150
Mobile Nodes 10, 50, 100
Maximum generation time [s] 1, 2, 3
Maximum service time [s] 1, 2, 3
Average speed [km/h] 3

We consider M mobile nodes randomly placed within

the disaster area. Each mobile node represent a drone, an

Unmanned Aerial Vehicle (UAV) or merely a smartphone

ready to offload a task to the edge network. We assume that

mobile nodes move at a constant speed, v. Each mobile node

m generates jobs according to an exponential distribution,

with average generation rate γm. These jobs are uploaded

to the closest edge computing server through their wireless

link. When a job arrives at the selected edge computing

node, it may be immediately executed or inserted in a queue.

Each edge computing server k processes a job in its queue

according to an exponential distribution, with average service

rate μk. The parameter settings are shown in Table I.

In our evaluation we consider the following approaches:

• Baseline Approach. The baseline scenario does not

involve any migration mechanism. Tasks arrive at a

specific node and wait their turn in the queue until they

are served by the first edge server. This is the scenario

envisioned by the vast majorities of the previous work

on offloading. As we will see, this scenario is often

suboptimal in terms of offloaded job completion time

minimization.

• Threshold-based Approach. When the queue size of

an edge node reaches a pre-configured threshold, its

jobs migrate to an other queue according to a given

policy. We implemented three policies as described in

Section IV: load-balancing, load-profiling policy and

stochastic-based (Harmonic).

• Migration Cost-based Approach. Jobs move only if it

is worth, that is, when the queue size of an edge server

exceeds the average number of jobs in the system, tasks

migrate minimizing their migration cost overhead.

We evaluate all approaches during stable network condi-

tions (without nodes or link failures) as well as with random

link failures. When a node fails, all its tasks are migrated to

another node according to the policy chosen by the migration
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manager. In particular, we consider three percentage of nodes

failure: 10%, 50%, and 90%. 10% means that during the

simulation, we let 10% of the link fail at predefined time

interval.

B. Evaluation Results

To evaluate the proposed cyber foraging policy-based

architecture, we compare performance of different policies

estimating the time to complete 500 offloaded jobs. After

the 500th job is complete our simulation stops. In all our

simulations we assume that a job is equivalent to a task, but

an interesting open question would be to understand how to

optimally offload several tasks per job.

In the rest of this section we investigate three scenarios

and for each we pinpoint the main take-home messages

of our evaluation. The three scenarios differ in the edge

computing failure model; in the first simulation campaign,

we consider a network edge without failures; in our second

simulation campaign we consider the edge network with

random failures; in the third we consider a more powerful

adversary that forces the most powerful edge computing

servers to fail, i.e., it would guarantee the worst possible

performance without migration. If there are two servers with

equal power we pick the server with the largest amount of

jobs in its queue; ties are split at random.

1) Without Failures Onloading: In this subsection we

summarize the key findings when neither the edge network

nor the edge computing server fail during the duration of our

simulations.

• Mobile-driven offloading shows worse performance than

back-end driven onloading. The implementation of the

onloading Load Balancing (LB) policy or the onloading

Load Profiling (LP) policy (with or without migration

cost) leads to a lower job completion time, as shown in

Fig. 2 (a) and (b). This is expected, since onloading

allows the idle edge server capacity to be exploited.

In particular, in case of a small network size, the gap

between the mobile-driven offloading and the onloading

strategies is higher. As shown in Fig. 2 (a) and (b), when

the network size is 10 nodes, LB and LP significantly

outperform the mobile-driven offloading.

• Load Profiling (LB) outperforms Load Balancing (LB).

LP allows to exploit more efficiently system resources.

The selection of server with lower average service time

allows faster jobs completion. This result is shown in

Fig. 2 (a), (b), and (c). In particular, the Cumulative

Distribution Function of job completion time shows that

the number of completed jobs by implementing the LP

policy is always lower than the LP policy. Surprisingly,

the use of migration costs does not bring significant

advantages to the total reduction of the job completion

time. This is an interesting finding that requires further

investigation.

2) Random Failures Onloading: In this subsection, we

summarize the key findings when edges network or edge

computing servers fail during the duration of our simulation.

• Onloading LP outperforms onloading LB. Even in case

of failures, LP allows to exploit more efficiently system

resources. This is shown in Fig. 2 (d), (e) and (f). The

higher the percentage of failed nodes, the higher the time

to complete the total number of jobs. This is because,

a lower number of edge servers are available, hence

their queue size increases. Higher queue sizes are more

likely to trigger the migration mechanism. Moreover,

when the network size decreases, the job completion

time increases because the number of available edge

servers decreases, therefore jobs can be distributed on

a lower number of nodes.

• The lower the number of edge servers, the higher the job

completing time. When the number of servers decreases,

the queue size of the available servers increases, result-

ing in higher job completion time.

3) With Failures of the most powerful servers Onloading:

In this subsection, we summarize the key findings when

the most powerful edge computing servers fail during the

duration of our simulation and compare them to the stable

case (without failure).

• The Harmonic policy shows better performance than

onloading LB policy with and without failure. Powerful

edge servers allow to serve jobs faster by reducing queue

waiting time. This is shown In Fig. 3.

VI. RELATED WORK

Cyber foraging [8], [4] combines resource-constrained

mobile devices with powerful static servers by offloading

code to surrogates for remote execution. Applications can be

partitioned at different granularity levels: (i) application level,

to offload virtual machines, (ii) task model level, to offload

application elements that can be executed in a sequential or

parallel order; (iii) and method level, to offload functions or

code fragment.

Research on offloading systems has followed two different

directions [16], [6]: client-driven and back-end driven.

In client-driven offloading systems, like MAUI [17],

CloneCloud [18] and Comet [19], the mobile device offloads

parts of programs on a single-server to solve the mobile

energy constrains. Problems of this approach are due to

the heterogeneity of devices, the use of an accurate code

profiling, and optimal offload conditions, that often need

continuous monitoring of network conditions.

In back-end driven offloading systems, such as Cloudlet

[8], the edge cloud is inherently designed to handle heteroge-

neous devices, and can practically access to unlimited energy

and computational resources.

We propose a cyber foraging architecture that subsumes

client-driven offloading and back-end driven onloading strate-

gies by merely instantiating a few policies.

Some architectures use run-time methods to ensure that

the workload is distributed to the appropriate servers when
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Figure 2: Job completion time and cumulative distribution function with mobile-driven offloading, onloading LB, and onloading LP
policies.
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Figure 3: Job completion time and Cumulative Distribution Function with harmonic and onloading LB policies.
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the user requests arrive at the cloud in real time [20].

Differently, offline algorithms [21] aim at balancing over-

utilized resources on the edge servers by assuming that all

the task information is known a priori or has regular patterns.

Our architecture policies are based on the Compare and

Balance approach [22], [23] that aims at reaching an equi-

librium condition of servers and at efficiently managing

workload in the system. This is achieved by selecting a node

by a probabilistic basis and comparing its load to the one of

the current hosts. The extra load is migrated if the selected

host has a lower expected job completion time.

VII. CONCLUSION

Cyber foraging is a central mechanism in edge computing;

resource-intensive jobs may start on mobile devices to finish

within a powerful server in geographical proximity. This

technology has opened the path to latency-sensitive mobile

applications. In challenging (network) environments, such as

those created by a natural or man-made disaster scenario, all

cyber foraging challenges are exacerbated by two problems:

edge nodes are scarce and hence easily overloaded and

failures are common due to the ad-hoc hostile conditions.

To cope with these challenges, in this work we have

proposed FORMICA, a policy-based architecture for cyber

foraging and job migration orchestration. With a prototype

and extensive simulations, we have shown that the cyber

foraging mechanism is more efficient when it is managed

by the back-end edge computing infrastructure. FORMICA

proactively orchestrates offloaded jobs from mobile devices

by leveraging a result in queuing theory known as the G-

network product form. This result is used to estimate the

number of jobs currently in each edge server. This informa-

tion is then used to proactively reaches a load, defined with

an high level policy profile.

Among our simulations results, we found that offloading

jobs from mobile devices to the edge cloud is insufficient to

minimize their completion time (and so back-end onloading is

a responsive alternative to classical mobile-driven offloading).

Second, in disaster scenarios or in other challenged envi-

ronments, randomized job scheduling solutions may improve

cyber foraging performance.
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