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Abstract—Cyber foraging techniques have been proposed
in edge computing to support resource-intensive and latency-
sensitive mobile applications. In a natural or man-made disaster
scenario, all cyber foraging challenges are exacerbated by two
problems: edge nodes are scarce and hence easily overloaded
and failures are common due to the ad-hoc hostile conditions.

In this paper, we study the use of efficient load profiling and
migration strategies to mitigate such problems. In particular,
we propose FORMICA, an architecture for cyber foraging
orchestration, whose goal is to minimize the completion time
of a set of jobs offloaded from mobile devices. Existing service
offloading solutions are mainly concerned with outsourcing a job
out of the mobile responsibility. Our architecture supports both
mobile-based offloading and backend-driven onloading :.c., the
offloading decision is taken by the edge infrastructure and not
by the mobile node. FORMICA leverages Gelenbe networks to
estimate the load profile of each node of the edge computing
infrastructure to make proactive load profiling decisions. Our
evaluation on a proof-of-concept implementation shows the
benefits of our policy-based architecture in several (challenged
disaster) scenarios but its applicability is broad to other IoT-
based latency-sensitive applications.

I. INTRODUCTION

Mobile applications that serve the needs of disaster incident
response generate large dataset and demand large computa-
tional resource access. Such datasets are usually collected
in real-time at the disaster scenes using different Internet of
Things (IoT) devices. Examples of such devices are wearable
heads-up devices, Unmanned Aerial Vehicles equipped with
sensors, cameras, or civilian tablets or smartphones [1], [2].
To enable immediate feedback to first responders, crucial for
survivors’ rescue, IoT devices today could benefit from the
mobile edge computing paradigm [1], [3]. It is inefficient
to marshal all data collected by a bundle of sensors to the
cloud for processing and analysis; doing so requires a great
deal of bandwidth and all the back-and-forth communication
between the sensors and the cloud, and can negatively impact
performance. In this paradigm, much of the processing takes
place at the edge of the network (as opposed to taking placr in
the core of the network as in the Cloud Computing paradigm).
This (distributed) approach is growing in popularity due to
the latency-critical application needs of modern applications,
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in modern telecommunication infrastructures such as 5G,
healthcare, disaster responsiveness or video gaming indus-
tries, to name a few. Such technology is often integrated with
network virtualization and Software-Defined Infrastructures
that dynamically provide on-demand access to networking,
computation and storage resource, wherever available.

One of the most important mechanisms in edge computing
is cyber foraging: processes from mobile resources delegate
computations or code to (compile or) execute to servers
within the edge computing infrastructure [4]. A particular
case of cyber foraging is also known as offloading. The
term offloading (restrictively) implies that the cyber foraging
mechanism is orchestrated by mobile devices. When the
cyber foraging decision is managed instead by a process
within the infrastructure, the cyber foraging process is called
“onloading”. We argue that (mobile) device-driven offloading
and back-end driven should merely be policies of the cyber
foraging mechanism. The overwhelming majority of existing
solutions for cyber foraging focus on offloading [2]. As
already floated in recent work [5], [6], we instead believe that
backend-driven onloading is a wiser (fast and more scalable)
alternative to mobile devices-driven offloading. Not only
because mobile devices have resource constraints and should
not be overloaded with additional decisions, but because
resources at the edge of the network are programmable and
hence they can be better managed.

To this end, in this paper we propose FORMICA (FOR-
aging and Mlgration Cyber Architecture), a policy-based
architecture for cyber foraging and migration management. !
By policies we mean variant aspects of the cyber foraging
mechanisms and include job migration, migration (of nodes
and links, ¢.e., routing policies). With FORMICA, mobile
devices simply offload their jobs to the closest edge com-
puting node, that in turn orchestrates their execution within a
software-defined infrastructure (not necessarily an OpenFlow-
based SDN controller).

FORMICA is designed to be resilient to challenged edge
network, such as those within a disaster scenario, and at its
core is built with two main principles in mind: (%) stochastic

IFormica in Italian means ant. Formicidae (ants) spend most of their
life foraging for resources.
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job runtime estimation for effective job migration across
edge severs and (i) load profiling, a more general and
intelligent case of load balancing. The stochastic job runtime
estimation is obtained modeling the number of offloaded
jobs with a network of queues (Gelenbe Network), while the
load is profiled keeping track of several network parameters
and current conditions. To establish the practicality of our
approach, we built a proof-of-concept prototype, whose C++
code is freely available at [7]. We also analyze the cyber
foraging policy tradeoff (e.g., onloading vs offloading) with
a simulations campaign. Among our simulations results, we
found that back-end driven onloading is more effective i.e.,
the average job completion time is always lower than in
mobile-driven offloading.

The rest of the paper is organized as follows: we formulate
the effective cyber foraging problem and discuss the sketch
of our solution in Section II-A. In Section III we discuss
our FORMICA architecture, its prototype core components;
in Section III-A we describe the core idea behind the
Gelenbe network model that FORMICA uses for its job
queue estimation. In Section IV we discuss the proactive job
migration strategies implemented by the migration manager,
the other core component of the FORMICA architecture.
In Section V-B we present our simulation results and in
Section VI the related work. Finally, in Section VII we
conclude our work.

II. THE EFFECTIVE CYBER-FORAGING PROBLEM
IN NATURAL OR MAN-MADE DISASTER

Natural or man-made disaster scenarios are hostile envi-
ronments that can experience frequently connectivity loss
because of infrastructure problems. In this section we define
the Effective Cyber-Foraging Problem and we sketch our
solution.

A. Problem Definition

Cyber foraging techniques have been proposed to support
these scenarios, by allowing the offloading of (Lightwave)
Virtual Machines or code otherwise running on a mobile
node, to nearby surrogate machines, often called cloudlets [8].
Usually, cloudlets are close to the mobile device and are
reachable via a single-hop network. This ensures low-latency
connections. Two problems emerge in this context: (i) edge
nodes are scarse and hence easily overloaded; (i) failures
are common due to hostile conditions. Those problems often
lead to unacceptable delays and significant losses, with a
subsequent increase of average job completion time. In this
paper, we address these challenges.

Problem 2.1: Given a set of (first responder) devices ready
to offload a set of computationally intensive tasks (i.e. jobs)
on an edge computing infrastructure, we define the Effective
Cyber-Foraging Problem as the edge infrastructure manage-
ment problem minimizing the average completion time of an
offloaded set of tasks by effectively orchestrating the load on
the programmable edge computing infrastructure.
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Examples of tasks to be offloaded in a disaster scenario
are preprocessing of images captured by a fleet of drones,
looking for survivals, or patient health records or images
captured by first responder mobile devices for identification
and lost person matching. By programmable edge computing
load orchestration instead we mean: (a) enforcing a given
load profile on edge servers, and (b) migrate the tasks whose
expected running time is high to an edge server that is
(probabilistically or deterministically) most likely to complete
it within a shorter time, despite the potential infrastructure
failures. By load profiling instead we generalize the classical
load balancing notion. A set of servers with balanced load
have a very specific profile that has identical target load. Load
balancing techniques are inappropriate when severe failure to
the infrastructure may occur, or when edge servers (installed
by first-responders) have uneven physical CPU capacities.

To solve Problem 2.1, two additional challenges need to
be considered: when is it appropriate to offload (both from
the mobile device to an edge computing server and among
edge servers) and where should a task be migrated?

B. Our Solution: Proactive Job Orchestration

To trigger the migration of a task, we use a proactive,
self-adjusting adaptation mechanism: a task offloaded to an
edge computing node (i.e. server) migrates, if convenient, to
another edge computing server, when its hosting node reaches
a threshold. Such threshold is set to be the average number
of offloaded jobs queued and running (in service) within the
edge computing system.

When do we migrate a job to another edge computing
node? Each edge computing node computes such threshold
independently, using a Gelenbe network model (G-network).
A G-network allows the estimation of the average number of
jobs currently active on each edge computing node . In the
rest of the paper we denote this quantity as E[n;].

Where do we migrate the job? The destination node of the
job migration mechanism is chosen according to different
policies (Section IV). Each migration policy correspond to
a profile. A profile of the desirable load on each node is
built considering the available CPU resources and the CPU
speed on each node; faster nodes and idle have priority. In
particular, before selecting our destination we compute how
long, on average, the hosting edge server would keep the
job waiting. When we migrate we also assign a priority
to avoid larger queues due to offloading requests arriving
during the migration time. Note how the classically sought
load balancing is only a particular case that can be achieved
with our mechanisms: jobs are equally distributed among
all available nodes; the offloading decision is performance-
agnostic, but only consider the current node load.

To maximize the efficiency of the offloading procedure,
we estimate the migration cost of each node, denoted with
Cmig(1, 7). Before migrating a job from one edge computing
server to another, we assess whether or not the time to
solution for the offloaded task would be shorter considering
the migration delay overhead.
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Figure 1: Cyber Foraging Overall Architecture running each edge
computing server: During disasters, computationally expensive tasks
are offloaded to the edge computing network from mobile devices
orchestrated by first-responders; tasks are then migrated if necessary
to match a latency-minimizer load profile.

Mathematically, this strategy can be formalized by the
following formulation: let us assume that the considered
system has K edge computing nodes; the destination node
where the task will be offloaded, denoted as dest, is chosen
by solving the following equation:

dest = argmin(d(¢, j)I(i, 7)),
J

6]

where I(i,7) is the indicator function, defined as:

Zlel E[”l}

1 K

163 = 9,

if Eln;] >
otherwise

A Cmig(i>j) < Cmig(iv 7/)

(2)
Note that 0 < j < K and d(4, j) is the known delay between
server ¢ and j.

ITI. CYBER FORAGING ARCHITECTURE AND PROTOTYPE

In this section, we describe the prototype of our proposed
cyber foraging architecture. We merely describe the funda-
mental building blocks of the architecture, while in the next
sections we explore further the intelligence behind some of
the most novel and crucial mechanisms.

Consider the disaster scenario in Figure 1 (top). Save
and rescue operations can be facilitated by the use of new
technologies. For instance, first-responders or civil smart-
phones, sensors and unmanned aerial vehicles (UAV) can
gather imagery of missing people or of the current state of
available evacuation routes, to detect the presence of chemical
or biological agents, or to provide connectivity to the nearest
available radio access network [9].

These devices represent the mobile clients in the con-
sidered scenario, whose architecture is exploded in Fig-
ure 1(bottom). To optimize first responder rescue operations,
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to save power and to speed-up their processing, such de-
vices exploit the higher computational resources of the edge
computing infrastructure by offloading image preprocessing
tasks or other computationally expensive operations. When
a job is offloaded to an idle edge computing node, it is
executed immediately, otherwise it is queued. Such queues
become longer as the availability of edge computing nodes
gets scarce, given the challenged environment.

In our prototype, each node is equipped with the following
management mechanisms:
State Cache. This structure has a view of the system and
keeps tracks of where each task is running: on which queue
of which edge computing server.
Message Manager. This prototype software component is
responsible for how the stored state is exchanged among the
neighbors. Moreover, this component is responsible for the
job data transfer.
Migration Manager. Each node evaluates the average num-
ber of jobs in the entire system as well as the potential
migration cost. These values are then used to decide if the
migration should occur or not. This architecture module also
selects the destination node according to the selected policy
(details in Section IV).
Queue Manager. After the system decides at time ¢ that a job
has to be migrated, such job receives a priority higher than
every other jobs generated by offloading requests arrived from
mobile devices at time ¢ + 1.
Routing Daemon. This component, easily interfaced with
a software-defined controller, builds up the routing table
implementing a standard Dijkstra algorithm. The cost metric
considers the minimum transmission delay between the two
nodes.

In the next sections we expand with more details our
migration managers and load profiler blocks, starting from
the queuing estimator model used by the migration manager.

A. Gelenbe Network Driven Offloading

In this section we show how our migration management
component of our cyber-foraging architecture leverages a G-
network model to evaluate the threshold that triggers the task
migration.

Intuitively, when the utilization of each queue becomes too
low compared to the (estimated) average in the system, a node
may request a task migration from other edge servers (only
if the migration cost would justify the move). When instead
the queue utilization becomes too high, or it is estimated to
be too high, i.e. the system is experiencing an high failure
rate, our load profiling algorithm proactively redistributes the
job loads.

To compute the close form of our dynamic load profiling
threshold, we model the network of edge computing servers
with a Gelenbe network (G-network) of queues [10]. We
assume that each node has a single queue that stores all the
tasks to be executed. The size of the queue is dynamic and
it can shrink or enlarge according to the state of the system.
We assume that a (larger) set of mobile nodes surrounding
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the edge servers geo-location generates offloading requests
to be queued or instantly executed. To minimize the job
running time, our proposed system orchestrates the migration
of jobs from busier or slower servers. We model a migration
operation by moving each task to a different node’s queue.
Similar to previous work [11], we define a job as either
a standalone task or an edge function involving multiple
logically connected tasks. In case of a non-failing edge
computing server, if the queue is empty, the lifetime of a
job is merely modeled by the transmission time to reach the
closest edge computing server from the mobile node and the
job execution time. Otherwise, the lifetime of a job may be
prolonged due to the waiting time that spent in the queue.
In case of failing node, all jobs still to be executed are
reassigned (z.e., migrated). Since a task (subset of a job) may
be reassigned multiple times to failing nodes, its completion
time depends on the time that it has spent in all failing node
queues, plus the time spent in the queue of the node that
executes it (holding or service time).

Formally, we assume our system to be an open migration
process consisting of £ = {1,2,..., K} edge computing
server queues. The term open indicates that tasks can enter
or exit the system. Moreover, we assume that the service
time of each edge computing server follows an exponential
distributions with service rate uy, 1 < k < K.

The G-network model envisions two type of customers:
positive or negative. Positive customers increment the queue
and receive service as ordinary queuing network customers.
Therefore, they represent both offloading requests generated
by mobile nodes and jobs that migrate among the queues.
Negative customers instead decrease the number of positive
customers in the queue and do not receive any service. If a
queue is empty, negative customers do not have any effect.
Therefore, they represent “control” signals that trigger the job
migration.

We denote by M; the external arrival rate of positive
customers to queue k and by rj the external arrival rate of
negative customers to queue k. Moreover, a customer which
leaves queue 7 goes to queue j as a positive customer with
probability pifj, or as a negative customer with probability
p; ;- It may also depart from the network with probability d;.

A vector n = {ny,na,...,nk} defines the number of jobs
belonging to each of the X edge computing server queues.
The vector n is assumed to be a Markov process with state
space:

N={n:n,>0k=1,...,K} 3)

At the steady state, the distribution of number of tasks
in each queue, or being executed, obeys the “product form”
distribution, i.e., it can be written as the product of the
probability function depending on the single node’s queues, if
the external positive or negative customer arrivals are Poisson,
the service times of positive customers are exponential and
independent, and if the movement of customers between
queues is Markovian.
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Proposition 3.1: For each node k, the average arrival
rate of a positive customer in its queue is given by
A =70 patiqpyi + Ak and the average arrival rate of a
negative customer is given by A, = 25:1 PaltqPgr, + Tq- If
(n1,...,nn) is the steady state probability that there are ny
tasks in the k' node’s queue for k = 1,2,..., K, and if
we assumed that each node can execute at most one job at a
time, the external positive or negative customer arrivals are
a Poisson process, the service times of positive customers
are exponential and independent, and the movement of cus-
tomers between queues is Markovian, there is a steady state
distribution, then such steady state probability is:

K

i) = [[(1=pi)oyt.

i=1

’/T(?”Ll,ng,... (4)
Proof: Equation 4 is a straightforward corollary of
Theorem 1 at [10] (product form of a G-network for the
stationary probability distribution 7). [ ]
Corollary 3.1: We can estimate the number of tasks in
each queue of an edge computing system at the steady state

as follows:
Pi

L—pi
where the utilization factor p; of node i’s queue is defined
by:

Eln;] = (&)

N
Mi + Ay
Proof: All edge computing nodes are independent ele-
mentary systems of queues, using proposition 3.1 and Little’s
law [12], we have the claim. |
Our migration manager uses these close forms to evaluate
the threshold that triggers (or not) the task migration. In the
next section we describe the migration policies, the other
crucial element of our migration manager (Figure 1).

Pi (6)

IV. MIGRATION MANAGER AND MIGRATION POLICIES

Our Cyber foraging architecture is policy-based. In this
section we describe such policies that can be used when
our migration manager triggers a job migration. Although
our system is designed to support multiple policies, in our
evaluation we focus on a representative set of the migration
policies. The destination edge server node (future host) can
be chosen based on the following criteria:

(i) Load-balancing. Tasks are equally distributed among all
available nodes, i.e., the destination is uniformly selected by
the migration manager among all active and connected nodes;
(7i) Load profiling. This is classical: a profile of the available
nodes is shaped, according to the computation resources,
and the destination is chosen according to the built profile.
Our prototype supports any profile i.e., a node with a lower
average service time has a higher probability to be selected.

To evaluate the beneficial of each policy, a migration cost,
Cmig(?, j) from node ¢ to node j, is evaluated by the migration
manager. The migration cost ¢4 is evaluated as the sum of
the following times: (i) transmission delay of the task to go
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from the current node to the new one, (i¢) time interval it
should wait in the queue before it can be processed and (ii7)
a fixed time due to processing operations needed to start the
migration. Formally, we have:
. . 1
Cmig(zaj) = dtran,s(l7]) + (nj - 1); + dproc (7)
J
where 1, dirans(?,7), dproc are the number of jobs in the
node j, the transmission delay from node 7 to node j through
the shortest path evaluated by using the transmission delay
metric, and the processing time to compute the migration
cost, respectively.

(7it) Harmonic. As third migration policy, we use Har-
monic [13], [14], a well-known randomized algorithm de-
signed to solve the k-server problem. The k-server problem
is the problem of efficiently move k servers on the nodes
of a graph GG according to a sequence of requests (a request
is a set of k-points). The problem’s aim at minimizing the
total distance covered by the servers to reach the requested
points. As each request arrives, an algorithm to solve the k-
server problem must determine which server to move to the
requested point. Our migration problem is slightly different
than the k-server problem but we still use a version of the
Harmonic algorithm to solve it. In particular, a migration
policy that we tested chooses each edge computing server
7, destination of the task migration, with probability:

(Cmig(ivj))_l
bi = =N o : ®)
Zq:l (Cmig (Zv .7))_1

Why do we use Harmonic? In a disaster (or any other chal-
lenged) scenario, network connections or servers are likely to
be unavailable, and offloading requests from first responders
arrive in an online fashion. Our (logically centralized) migra-
tion manager has to decide where to migrate without knowing
the full set of request, and the future availability of the
destination edge servers. An oblivious adversary may place
every failure exactly on the most powerful or idle server that
would be picked as a job destination. To combat the oblivious
adversary, it is known that a probabilistic approach helps: the
adversary, cannot purposely fail the picked destination as it
is chosen with a stochastic process.

In the next section we compare those policies showing how,
counter-intuitively, using the Harmonic policy may not help.
In particular, the randomization helps less and less as the
resources become scarce.

V. EVALUATION

To establish the practicality of our architecture, we com-
pare the performance of its policies over an event-driven
simulator, written in C++, whose code is available at [7].

All components of the architecture are tested within the
event driven simulator, but the core of the architecture can be
easily interfaced with an SDN controller. All network topolo-
gies are generated with BRITE [15], the Boston University
topology generator.

A. Evaluation Scenario

We generate (with BRITE) two types of topologies: the
dynamic network of offloader first-responder mobile devices
and the static network of edge computing servers. Network
topologies may follow the Barabasi-Albert (scale-free) model
or the Waxman (preferential attachment) model. We only
show results relative to the Barabasi-Albert model as we did
not find significant dependencies from the network model.
Edge computing servers are placed in a predefined geo-
graphical area and network delays are assigned to each edge
infrastructure link.

Table I: Parameters setting.

Parameter Value
Average Node Density [node/km?] | 10, 50, 100, 150
Mobile Nodes 10, 50, 100

Maximum generation time [s] 1,2,3
Maximum service time [s] 1,2,3
Average speed [km/h] 3

We consider M mobile nodes randomly placed within
the disaster area. Each mobile node represent a drone, an
Unmanned Aerial Vehicle (UAV) or merely a smartphone
ready to offload a task to the edge network. We assume that
mobile nodes move at a constant speed, v. Each mobile node
m generates jobs according to an exponential distribution,
with average generation rate -y,,. These jobs are uploaded
to the closest edge computing server through their wireless
link. When a job arrives at the selected edge computing
node, it may be immediately executed or inserted in a queue.
Each edge computing server k processes a job in its queue
according to an exponential distribution, with average service
rate u. The parameter settings are shown in Table 1.

In our evaluation we consider the following approaches:

« Baseline Approach. The baseline scenario does not
involve any migration mechanism. Tasks arrive at a
specific node and wait their turn in the queue until they
are served by the first edge server. This is the scenario
envisioned by the vast majorities of the previous work
on offloading. As we will see, this scenario is often
suboptimal in terms of offloaded job completion time
minimization.

o Threshold-based Approach. When the queue size of
an edge node reaches a pre-configured threshold, its
jobs migrate to an other queue according to a given
policy. We implemented three policies as described in
Section IV: load-balancing, load-profiling policy and
stochastic-based (Harmonic).

« Migration Cost-based Approach. Jobs move only if it
is worth, that is, when the queue size of an edge server
exceeds the average number of jobs in the system, tasks
migrate minimizing their migration cost overhead.

We evaluate all approaches during stable network condi-
tions (without nodes or link failures) as well as with random
link failures. When a node fails, all its tasks are migrated to
another node according to the policy chosen by the migration
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manager. In particular, we consider three percentage of nodes
failure: 10%, 50%, and 90%. 10% means that during the
simulation, we let 10% of the link fail at predefined time
interval.

B. Evaluation Results

To evaluate the proposed cyber foraging policy-based
architecture, we compare performance of different policies
estimating the time to complete 500 offloaded jobs. After
the 500" job is complete our simulation stops. In all our
simulations we assume that a job is equivalent to a task, but
an interesting open question would be to understand how to
optimally offload several tasks per job.

In the rest of this section we investigate three scenarios
and for each we pinpoint the main take-home messages
of our evaluation. The three scenarios differ in the edge
computing failure model; in the first simulation campaign,
we consider a network edge without failures; in our second
simulation campaign we consider the edge network with
random failures; in the third we consider a more powerful
adversary that forces the most powerful edge computing
servers to fail, ¢.e., it would guarantee the worst possible
performance without migration. If there are two servers with
equal power we pick the server with the largest amount of
jobs in its queue; ties are split at random.

1) Without Failures Onloading: In this subsection we
summarize the key findings when neither the edge network
nor the edge computing server fail during the duration of our
simulations.

o Mobile-driven offloading shows worse performance than
back-end driven onloading. The implementation of the
onloading Load Balancing (LB) policy or the onloading
Load Profiling (LP) policy (with or without migration
cost) leads to a lower job completion time, as shown in
Fig. 2 (a) and (b). This is expected, since onloading
allows the idle edge server capacity to be exploited.
In particular, in case of a small network size, the gap
between the mobile-driven offloading and the onloading
strategies is higher. As shown in Fig. 2 (a) and (b), when
the network size is 10 nodes, LB and LP significantly
outperform the mobile-driven offloading.

o Load Profiling (LB) outperforms Load Balancing (LB).
LP allows to exploit more efficiently system resources.
The selection of server with lower average service time
allows faster jobs completion. This result is shown in
Fig. 2 (a), (b), and (c). In particular, the Cumulative
Distribution Function of job completion time shows that
the number of completed jobs by implementing the LP
policy is always lower than the LP policy. Surprisingly,
the use of migration costs does not bring significant
advantages to the total reduction of the job completion
time. This is an interesting finding that requires further
investigation.
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2) Random Failures Onloading: In this subsection, we
summarize the key findings when edges network or edge
computing servers fail during the duration of our simulation.

e Onloading LP outperforms onloading LB. Even in case
of failures, LP allows to exploit more efficiently system
resources. This is shown in Fig. 2 (d), (e) and (f). The
higher the percentage of failed nodes, the higher the time
to complete the total number of jobs. This is because,
a lower number of edge servers are available, hence
their queue size increases. Higher queue sizes are more
likely to trigger the migration mechanism. Moreover,
when the network size decreases, the job completion
time increases because the number of available edge
servers decreases, therefore jobs can be distributed on
a lower number of nodes.

o The lower the number of edge servers, the higher the job
completing time. When the number of servers decreases,
the queue size of the available servers increases, result-
ing in higher job completion time.

3) With Failures of the most powerful servers Onloading:
In this subsection, we summarize the key findings when
the most powerful edge computing servers fail during the
duration of our simulation and compare them to the stable
case (without failure).

e The Harmonic policy shows better performance than
onloading LB policy with and without failure. Powerful
edge servers allow to serve jobs faster by reducing queue
waiting time. This is shown In Fig. 3.

VI. RELATED WORK

Cyber foraging [8], [4] combines resource-constrained
mobile devices with powerful static servers by offloading
code to surrogates for remote execution. Applications can be
partitioned at different granularity levels: () application level,
to offload virtual machines, (i7) task model level, to offload
application elements that can be executed in a sequential or
parallel order; (ii7) and method level, to offload functions or
code fragment.

Research on offloading systems has followed two different
directions [16], [6]: client-driven and back-end driven.

In client-driven offloading systems, like MAUI [17],
CloneCloud [18] and Comet [19], the mobile device offloads
parts of programs on a single-server to solve the mobile
energy constrains. Problems of this approach are due to
the heterogeneity of devices, the use of an accurate code
profiling, and optimal offload conditions, that often need
continuous monitoring of network conditions.

In back-end driven offloading systems, such as Cloudlet
[8], the edge cloud is inherently designed to handle heteroge-
neous devices, and can practically access to unlimited energy
and computational resources.

We propose a cyber foraging architecture that subsumes
client-driven offloading and back-end driven onloading strate-
gies by merely instantiating a few policies.

Some architectures use run-time methods to ensure that
the workload is distributed to the appropriate servers when
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the user requests arrive at the cloud in real time [20].
Differently, offline algorithms [21] aim at balancing over-
utilized resources on the edge servers by assuming that all
the task information is known a priori or has regular patterns.

Our architecture policies are based on the Compare and
Balance approach [22], [23] that aims at reaching an equi-
librium condition of servers and at efficiently managing
workload in the system. This is achieved by selecting a node
by a probabilistic basis and comparing its load to the one of
the current hosts. The extra load is migrated if the selected
host has a lower expected job completion time.

VII. CONCLUSION

Cyber foraging is a central mechanism in edge computing;
resource-intensive jobs may start on mobile devices to finish
within a powerful server in geographical proximity. This
technology has opened the path to latency-sensitive mobile
applications. In challenging (network) environments, such as
those created by a natural or man-made disaster scenario, all
cyber foraging challenges are exacerbated by two problems:
edge nodes are scarce and hence easily overloaded and
failures are common due to the ad-hoc hostile conditions.

To cope with these challenges, in this work we have
proposed FORMICA, a policy-based architecture for cyber
foraging and job migration orchestration. With a prototype
and extensive simulations, we have shown that the cyber
foraging mechanism is more efficient when it is managed
by the back-end edge computing infrastructure. FORMICA
proactively orchestrates offloaded jobs from mobile devices
by leveraging a result in queuing theory known as the G-
network product form. This result is used to estimate the
number of jobs currently in each edge server. This informa-
tion is then used to proactively reaches a load, defined with
an high level policy profile.

Among our simulations results, we found that offloading
jobs from mobile devices to the edge cloud is insufficient to
minimize their completion time (and so back-end onloading is
a responsive alternative to classical mobile-driven offloading).
Second, in disaster scenarios or in other challenged envi-
ronments, randomized job scheduling solutions may improve
cyber foraging performance.
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